WorldWideScience

Sample records for accepted waste generated

  1. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  2. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  3. Waste acceptance and logistics

    International Nuclear Information System (INIS)

    Carlson, James H.

    1992-01-01

    There are three major components which are normally highlighted when the Civilian Radioactive Waste Management Program is discussed - the repository, the monitored retrievable storage facility, and the transportation system. These are clearly the major physical system elements and they receive the greatest external attention. However, there will not be a successful, operative waste management system without fully operational waste acceptance plans and logistics arrangements. This paper will discuss the importance of developing, on a parallel basis to the normally considered waste management system elements, the waste acceptance and logistics arrangements to enable the timely transfer of spent nuclear fuel from more than one hundred and twenty waste generators to the Federal government. The paper will also describe the specific activities the Program has underway to make the necessary arrangements. (author)

  4. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  5. Acceptable knowledge document for INEEL stored transuranic waste - Rocky Flats Plant waste. Revision 2

    International Nuclear Information System (INIS)

    1998-01-01

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems

  6. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  7. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  8. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  9. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  10. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  11. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  12. US Department of Energy acceptance of commercial transuranic waste

    International Nuclear Information System (INIS)

    Taboas, A.L.; Bennett, W.S.; Brown, C.M.

    1980-02-01

    Contaminated transuranic wastes generated as a result of non-defense activities have been disposed of by shallow land burial at a commercially operated (NECO) facility located on the Hanford federal reservation, which is licensed by the State of Washington and by the NRC. About 15,000 ft 3 of commercial TRU waste have been generated each year, but generation for the next three years could triple due to decontamination and decommissioning scheduled to start in 1980. Disposal at other commercial burial sites has been precluded due to sites closing or prohibitions on acceptance of transuranic wastes. The State of Washington recently modified the NECO-Hanford operating license, effective February 29, 1980, to provide that radioactive wastes contaminated with transuranics in excess of 10 nCi/g will not be accepted for disposal. Consistent with the state policy, the NRC amended the NECO special nuclear material license so that Pu in excess of 10n Ci/g cannot be accepted after February 29, 1980. As a result, NRC requested DOE to examine the feasibility of accepting these wastes at a DOE operated site. TRU wastes accepted by the DOE would be placed in retrievable storage in accordance with DOE policy which requires retrievable storage of transuranic wastes pending final disposition in a geologic repository. DOE transuranic wastes are stored at six major DOE sites: INEL, Hanford, LASL, NTS, ORNL, and SRP. A specific site for receiving commercial TRU waste has not yet been selected. Shipments to DOE-Hanford would cause the least disruption to past practices. Commercial TRU wastes would be subject to waste form and packaging criteria established by the DOE. The waste generators would be expected to incur all applicable costs for DOE to take ownership of the waste, and provide storage, processing, and repository disposal. The 1980 charge to generators for DOE acceptance of commercial TRU waste is $147 per cubic foot

  13. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  14. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  15. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  16. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  17. Institutional innovation to generate the public acceptance of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1991-01-01

    Contrasting experiences of public acceptance of radioactive waste disposal are compared for the United Kingdom, France, Sweden and Canada. The disparity between scientifically assessed and publicly perceived levels of risk is noted. The author argues that the form of decision-making process is more important to public acceptance of radioactive waste disposal than the technology of disposal. Public risk perception can be altered by procedures employed in planning, negotiation and consultation. Precisely what constitutes acceptable risk does vary from country to country, and differences in institutional responses and innovation are particularly highlighted. (UK)

  18. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  19. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  20. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  1. TRU [transuranic] waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    International Nuclear Information System (INIS)

    1989-01-01

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig

  2. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-01-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  3. Waste generator services implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  4. Waste generator services implementation plan

    International Nuclear Information System (INIS)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999

  5. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  6. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  7. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  8. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  9. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  10. Radioactive waste disposal and public acceptance aspects

    International Nuclear Information System (INIS)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M.

    2011-01-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  11. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  12. Risk analysis for new nuclear waste sites: Will it generate public acceptance?

    International Nuclear Information System (INIS)

    Inhaber, H.

    1993-01-01

    This report discusses public acceptance of radioactive waste facilities and what seems to be increasingly militant stances against such facilities. The role of risk assessment in possibly enhancing public acceptance is investigated

  13. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  14. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  15. DOE acceptance of commercial mixed waste -- Studies are under way

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L. [Dept. of Energy, Washington, DC (United States). Technical Support Program; Owens, C.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  16. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  17. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility's WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator's waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits

  18. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  19. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  20. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  1. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  2. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  3. Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste

    International Nuclear Information System (INIS)

    1994-03-01

    In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE's own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references

  4. Waste Generation Overview, Course 23263

    International Nuclear Information System (INIS)

    Simpson, Lewis Edward

    2016-01-01

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  5. Waste Generation Overview, Course 23263

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  6. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1994-01-01

    The Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) has developed Waste Acceptance Product Specifications (EM-WAPS). The EM-WAPS will be the basis for defining product acceptance criteria compatible with the requirements of the Civilian Radioactive Waste Management System (CRWMS). The relationship between the EM-WAPS and the CRWMS Systems Requirements document (WA-SRD) will be discussed. The impact of the EM-WAPS on the Savannah River Sit (SRS) Defense Waste Processing Facility's (DWPF) Waste Acceptance Program, Waste Qualification Run planning, and startup schedule will also be reported. 14 refs., 2 tabs

  7. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste

  8. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  9. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  10. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  11. Study of waste acceptance criteria for low-level radioactive waste from medical, industrial, and research facilities (Contract research)

    International Nuclear Information System (INIS)

    Koibuchi, Hiroto; Dohi, Terumi; Ishiguro, Hideharu; Hayashi, Masaru; Senda, Masaki

    2008-12-01

    Japan Atomic Energy Agency (JAEA) is supposed to draw up the plan for the disposal program of the very low-level radioactive waste and low-level radioactive waste generated from medical, industrial and research facilities. For instance, there are these facilities in JAEA, universities, private companies, and so on. JAEA has to get to know about the waste and its acceptance of other institutions described above because it is important for us to hold the licenses for the disposal program regarding safety assessment. This report presents the basic data concerning radioactive waste of research institutes etc. except RI waste, domestic and foreign information related to acceptance criteria for disposal of the low-level radioactive waste, the current status of foreign medical waste management, waste acceptance, and such. In this report, Japan's acceptance criteria were summarized on the basis of present regulation. And, the criteria of foreign countries, United States, France, United Kingdom and Spain, were investigated by survey of each reference. In addition, it was reported that the amount of waste from laboratories etc. for near-surface disposal and their characterization in our country. The Subjects of future work: the treatment of hazardous waste, the problem of the double-regulation (the Nuclear Reactor Regulation Law and the Law Concerning Prevention from Radiation Hazards due to Radioisotopes and Others) and the possession of waste were discussed here. (author)

  12. Waste acceptance criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies

  13. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    Directory of Open Access Journals (Sweden)

    MA Abduli

    2015-07-01

    Methods: The study was a descriptive cross-sectional one conducted from 2010 to 2014. Relevant officials of the waste recovery in 22 regions of Tehran were approached in order to collect data about municipal solid waste generation through interviewing, filling out questionnaires, conducting field visits from Aradkooh Disposal and Processing Complex and collecting information on disposal and destiny of wastes. Then the data were compiled and analyzed. Results: Total solid waste generation in Tehran from 2010 to 2014 amounted to respectively 3389662, 3399344, 3449338 and 3245157 Metric Tons, categorized into three groups of municipal, companies and townships and hospital wastes. Most of the generated waste produced in Tehran was that of households and commercial (known as municipal waste from 22 Regions of Tehran. Based on the surveys conducted, per capita solid waste generation of 11 regions of Tehran ranged from 550 to 1000 grams and in other 11 ones from 1000 to 1521 grams per capita per day. The lowest and highest waste generation rate belonged respectively to region 13 with 556 grams and region 12 with 1521 grams per capita per day in 2011. Conclusion: Comparing per capita generation of municipal solid waste in different municipal regions in Tehran with maximum acceptable capacity of waste generation indicates the deviation of waste generation of all Tehran regions from the standard acceptable amount. Therefore, not only is it necessary to plan and take strategic measures to reduce Tehran waste generation but also these programs and measures should be specific to each region considering its specifications and solid waste quality and quantity.

  14. Waste transmutation and public acceptance

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1991-01-01

    The concept of transmuting radioactive wastes with reactors or accelerators is appealing. It has the potential of simplifying or eliminating problems of disposing of nuclear waste. The transmutation concept has been renewed vigorously at a time when national projects to dispose of high-level and transuranic waste are seriously delayed. In this period of tightening federal funds and program curtailments, skilled technical staffs are available at US Department of Energy (DOE) national laboratories and contractors to work on waste transmutation. If the claims of transmutation can be shown to be realistic, economically feasible, and capable of being implemented within the US institutional infrastructure, public acceptance of nuclear waste disposal may be enhanced. If the claims for transmutation are not substantiated, however, there will result a serious loss of credibility and an unjust exacerbation of public concerns about nuclear waste. The paper discusses the following topics: how public acceptance is achieved; the technical community and waste disposal; transmutation and technical communication; transmutation issues; technical fixes and public perception

  15. From waste packages acceptance criteria to waste packages acceptance process at the Centre de l'Aube disposal facility

    International Nuclear Information System (INIS)

    Dutzer, M.

    2003-01-01

    The Centre de l'Aube disposal facility has now been operated for 10 years. At the end of 2001, about 124,000 m3 of low and intermediate level short lived waste packages, representing 180,000 packages, have been disposed, for a total capacity of 1,000,000 m3. The flow of waste packages is now between 12 and 15,000 m3 per year, that is one third of the flow that was taken into account for the design of the repository. It confirms the efforts by waste generators to minimise waste production. This flow represents 25 to 30,000 packages, 50% are conditioned into the compaction facility of the repository, so that 17,000 packages are disposed per year. 54 disposal vaults have been closed. In 1996-1999, the safety assessment of the repository have been reviewed, taking into account the experience of operation. This assessment was investigated by the regulatory body and, subsequently, a so-called 'definitive license' to operate was granted to ANDRA on September 2, 1999 with updated licensing requirements. Another review will be performed in 2004. To ensure a better consistency with the safety assessment of the facility, Andra issued new technical requirements for waste packages at the end of 2000. Discussions with waste generators also showed that the waste package acceptance process should be improved to provide a more precise definition of operational criteria to comply with in waste conditioning facilities. Consequently, a new approach has been implemented since 2000. (orig.)

  16. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  17. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  18. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  19. Waste-acceptance criteria for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1987-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that disposal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straight-forward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 references, 7 figures

  20. Waste-acceptance criteria for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1986-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste-disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that dispsoal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straightforward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is the introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste-acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 refs

  1. Waste-acceptance criteria and risk-based thinking for radioactive-waste classification

    International Nuclear Information System (INIS)

    Lowenthal, M.D.

    1998-01-01

    The US system of radioactive-waste classification and its development provide a reference point for the discussion of risk-based thinking in waste classification. The official US system is described and waste-acceptance criteria for disposal sites are introduced because they constitute a form of de facto waste classification. Risk-based classification is explored and it is found that a truly risk-based system is context-dependent: risk depends not only on the waste-management activity but, for some activities such as disposal, it depends on the specific physical context. Some of the elements of the official US system incorporate risk-based thinking, but like many proposed alternative schemes, the physical context of disposal is ignored. The waste-acceptance criteria for disposal sites do account for this context dependence and could be used as a risk-based classification scheme for disposal. While different classes would be necessary for different management activities, the waste-acceptance criteria would obviate the need for the current system and could better match wastes to disposal environments saving money or improving safety or both

  2. Guidelines for developing certification programs for newly generated TRU waste

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included

  3. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  4. HWVP compliance with the Hanford site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Bromm, R.; Ornelas, J.; Fundingsland, S.; Shah, K.

    1993-01-01

    In order to ensure that the Hanford Waste Vitrification Project (HWVP) will meet solid waste acceptance criteria, a review of the criteria was performed. The primary purpose of the study was to evaluate the modifications that will be required to bring the HWVP into compliance for secondary waste which will be generated during normal operations of the facility. To accomplish this objective, the current HWVP design was evaluated based on the criteria established. Once the non-compliance areas and potentially non-compliance areas were identified, alternative plant design modifications were proposed. This paper summarizes the results and recommendations of that study

  5. Does the choice of reactor affect public acceptance of wastes?

    International Nuclear Information System (INIS)

    Inhaber, H.

    1993-01-01

    A prime goal of this conference is to suggest future reactor types that would produce greater public acceptability. Presumably the wastes generated by these cycles would, because of lesser amounts or activities, engender fewer disputes over policy than in the past. However, the world-wide arguments over low-level wastes (LLW) suggest this intent is not likely to be achieved. While the activity of these wastes is a tiny fraction of high-level wastes (HLW), the controversies over the former, in Korea, the US and elsewhere, have been as great as for the latter. There is no linear relationship between activity and political desirability. What is needed is a new approach to disposing of and siting all nuclear wastes: LLW, mixed and HLW

  6. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  7. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  8. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  9. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  10. Derivation of Waste Acceptance Criteria for Low and Intermediate Level Waste in Surface Disposal Facility

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.

    2000-01-01

    In France, low- and intermediate-level radioactive wastes are disposed in a near-surface facility, at Centre de l'Aube disposal facility. This facility, which was commissioned in 1992, has a disposal capacity of one million cubic meters, and will be operated up to about 2050. It took over the job from Centre de la Manche, which was commissioned in 1969 and shut down in 1994, after having received about 520,000 cubic meters of wastes. The Centre de l'Aube disposal facility is designed to receive a many types of waste produced by nuclear power plants, reprocessing, decommissioning, as well as by the industry, hospitals and armed forces. The limitation of radioactive transfer to man and the limitation of personnel exposure in all situations considered plausible require limiting the total activity of the waste disposed in the facility as well as the activity of each package. The paper presents how ANDRA has derived the activity-related acceptance criteria, based on the safety analysis. In the French methodology, activity is considered as end-point for deriving the concentration limits per package, whereas it is the starting point for deriving the total activity limits. For the concentration limits (called here LMA) the approach consists of five steps: the determination of radionuclides important for safety with regards to operational and long-term safety, the use of relevant safety scenarios as a tool to derive quantitative limits, the setting of dose constraint per situation associated with scenarios, the setting of contribution factor per radionuclide, and the calculation of concentration activity limits. An exhaustive survey has been performed and has shown that the totality of waste packages which should be delivered by waste generators are acceptable in terms of activity limits in the Centre de l'Aube. Examples of concentration activity limits derived from this methodology are presented. Furthermore those limits have been accepted by the French regulatory body and

  11. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  12. Just-in-time characterization and certification of DOE-generated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

  13. Just-in-time characterization and certification of DOE-generated wastes

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Primozic, F.J.; Robinson, M.A.

    1995-01-01

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D ampersand D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D ampersand D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation

  14. Quality assurance requirements and methods for high level waste package acceptability

    International Nuclear Information System (INIS)

    1992-12-01

    This document should serve as guidance for assigning the necessary items to control the conditioning process in such a way that waste packages are produced in compliance with the waste acceptance requirements. It is also provided to promote the exchange of information on quality assurance requirements and on the application of quality assurance methods associated with the production of high level waste packages, to ensure that these waste packages comply with the requirements for transportation, interim storage and waste disposal in deep geological formations. The document is intended to assist both the operators of conditioning facilities and repositories as well as national authorities and regulatory bodies, involved in the licensing of the conditioning of high level radioactive wastes or in the development of deep underground disposal systems. The document recommends the quality assurance requirements and methods which are necessary to generate data for these parameters identified in IAEA-TECDOC-560 on qualitative acceptance criteria, and indicates where and when the control methods can be applied, e.g. in the operation or commissioning of a process or in the development of a waste package design. Emphasis is on the control of the process and little reliance is placed on non-destructive or destructive testing. Qualitative criteria, relevant to disposal of high level waste, are repository dependent and are not addressed here. 37 refs, 3 figs, 2 tabs

  15. Acceptable knowledge summary report for combustible/noncombustible, metallic, and HEPA filter waste resulting from 238Pu fabrication activities

    International Nuclear Information System (INIS)

    Rogers, P.S.Z.; Foxx, C.L.

    1998-01-01

    All transuranic (TRU) waste must be sufficiently characterized and certified before it is shipped to the Waste Isolation Pilot Plant (WIPP). The US Environmental Protection Agency (EPA) allows use of acceptable knowledge (AK) for waste characterization. EPA uses the term AK in its guidance document and defines AK and provides guidelines on how acceptable knowledge should be obtained and documented. This AK package has been prepared in accordance with Acceptable Knowledge Documentation (TWCP-QP-1.1-021,R.2). This report covers acceptable knowledge information for five waste streams generated at TA-55 during operations to fabricate various heat sources using feedstock 238 Pu supplied by the Savannah River Site (SRS). The 238 Pu feedstock itself does not contain quantities of RCRA-regulated constituents above regulatory threshold limits, as known from process knowledge at SRS and as confirmed by chemical analysis. No RCRA-regulated chemicals were used during 238 Pu fabrication activities at TA-55, and all 238 Pu activities were physically separated from other plutonium processing activities. Most of the waste generated from the 238 Pu fabrication activities is thus nonmixed waste, including waste streams TA-55-43, 45, and 47. The exceptions are waste streams TA-55-44, which contains discarded lead-lined rubber gloves used in the gloveboxes that contained the 238 Pu material, and TA-55-46, which may contain pieces of discarded lead. These waste streams have been denoted as mixed because of the presence of the lead-containing material

  16. Preliminary waste acceptance requirements for the planned Konrad repository

    International Nuclear Information System (INIS)

    Warnecke, E.; Brennecke, P.

    1987-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has established Preliminary Waste Acceptance Requirements for the planned Konrad repository. These requirements were developed, in accordance with the Safety Criteria of the Reactor Safety Commission, with the help of a site specific safety assessment; they are under the reservation of the plan approval procedure, which is still in progress. In developing waste acceptance requirements, the PTB fulfills one of its duties as the institute responsible for waste disposal and gives guidelines for waste conditioning to waste producers and conditioners. (orig.) [de

  17. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  18. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  19. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  20. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  1. Reversing nuclear opposition: evolving public acceptance of a permanent nuclear waste disposal facility.

    Science.gov (United States)

    Jenkins-Smith, Hank C; Silva, Carol L; Nowlin, Matthew C; deLozier, Grant

    2011-04-01

    Nuclear facilities have long been seen as the top of the list of locally unwanted land uses (LULUs), with nuclear waste repositories generating the greatest opposition. Focusing on the case of the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, we test competing hypotheses concerning the sources of opposition and support for siting the facility, including demographics, proximity, political ideology, and partisanship, and the unfolding policy process over time. This study tracks the changes of risk perception and acceptance of WIPP over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning an 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those whose residences are closest to the WIPP facility. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval, and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to gaining public acceptance, the most significant being the opening of the WIPP facility itself. © 2010 Society for Risk Analysis.

  2. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Wierzbicki, K.S.

    1986-01-01

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  3. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    International Nuclear Information System (INIS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-01-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval

  4. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Science.gov (United States)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  5. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Energy Technology Data Exchange (ETDEWEB)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  6. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  7. Waste management facility acceptance - some findings

    International Nuclear Information System (INIS)

    Sigmon, B.

    1987-01-01

    Acceptance of waste management facilities remains a significant problem, despite years of efforts to reassure potential host communities. The tangible economic benefits from jobs, taxes, and expenditures are generally small, while the intangible risks of environmental or other impacts are difficult to evaluate and understand. No magic formula for winning local acceptance has yet been found. Limited case study and survey work does suggest some pitfalls to be avoided and some directions to be pursued. Among the most significant is the importance that communities place on controlling their own destiny. Finding a meaningful role for communities in the planning and operation of waste management facilities is a challenge that would-be developers should approach with the same creativity that characterizes their technical efforts

  8. The S-curve for forecasting waste generation in construction projects.

    Science.gov (United States)

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Attention: no radioactive waste accepted on 7 September

    CERN Multimedia

    2012-01-01

    Anouncement by the RW section of the Radiation Protection Group: The Treatment Centre for Radioactive Waste will not be accepting waste on Friday, 7 September 2012. Thank you for adjusting your activities accordingly.

  10. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  11. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  12. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  13. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  14. Acceptance criteria for disposal of radioactive wastes in shallow ground and rock cavities

    International Nuclear Information System (INIS)

    1985-01-01

    This document provides an overview of basic information related to waste acceptance criteria for disposal in shallow ground and rock cavity repositories, consisting of a discussion of acceptable waste types. The last item includes identification of those waste characteristics which may influence the performance of the disposal system and as such are areas of consideration for criteria development. The material is presented in a manner similar to a safety assessment. Waste acceptance criteria aimed at limiting the radiation exposure to acceptable levels are presented for each pathway. Radioactive wastes considered here are low-level radioactive wastes and intermediate-level radioactive wastes from nuclear fuel cycle operations and applications of radionuclides in research, medicine and industry

  15. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  16. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    Energy Technology Data Exchange (ETDEWEB)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-02-25

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management.

  17. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    International Nuclear Information System (INIS)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-01-01

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management

  18. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC''s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC

  19. User's manual for applicants proposing on-site burial of self-generated radioactive waste

    International Nuclear Information System (INIS)

    Tolbert, M.E.M.; Loretan, P.A.

    1987-01-01

    This document describes, for medical and research institutions as well as industrial generators of low-level radioactive waste, the NRC or state submittal requirements for authorizing the on-site burial of self-generated radioactive waste. An important part of completing the license application for operation justifying this alternative for waste disposal over other alternatives. Reasons that might be considered acceptable might include the need to dispose of large volumes of low activity waste that would otherwise take up valuable space in commercial sites; the ability to demonstrate that this method of disposal will result in reduced exposures to the public; the ability to show that the prohibitive costs of other methods of disposal would be detrimental to the progress of significant research which generates radioactive waste. 19 refs., 3 figs., 4 tabs

  20. Environmental Restoration Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-06-01

    The Hanford Site is operated by the U. S. Department of Energy (DOE) with a primary mission of environmental cleanup and restoration. The Environmental Restoration Disposal Facility (ERDF) is an integral part of the DOE environmental restoration effort at the Hanford Site. The purpose of this document is to establish the ERDF waste acceptance criteria for disposal of materials resulting from Hanford Site cleanup activities. Definition of and compliance with the requirements of this document will enable implementation of appropriate measures to protect human health and the environment, ensure the integrity of the ERDF liner system, facilitate efficient use of the available space in the ERDF, and comply with applicable environmental regulations and DOE orders. To serve this purpose, the document defines responsibilities, identifies the waste acceptance process, and provides the primary acceptance criteria and regulatory citations to guide ERDF users. The information contained in this document is not intended to repeat or summarize the contents of all applicable regulations

  1. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  2. Planning for the Management and Disposition of Newly Generated TRU Waste from REDC

    International Nuclear Information System (INIS)

    Coffey, D. E.; Forrester, T. W.; Krause, T.

    2002-01-01

    This paper describes the waste characteristics of newly generated transuranic waste from the Radiochemical Engineering and Development Center at the Oak Ridge National Laboratory and the basic certification structure that will be proposed by the University of Tennessee-Battelle and Bechtel Jacobs Company LLC to the Waste Isolation Pilot Plant for this waste stream. The characterization approach uses information derived from the active production operations as acceptable knowledge for the Radiochemical Engineering and Development Center transuranic waste. The characterization approach includes smear data taken from processing and waste staging hot cells, as well as analytical data on product and liquid waste streams going to liquid waste disposal. Bechtel Jacobs Company and University of Tennessee-Battelle are currently developing the elements of a Waste Isolation Pilot Plant-compliant program with a plan to be certified by the Waste Isolation Pilot Plant for shipment of newly generated transuranic waste in the next few years. The current activities include developing interface plans, program documents, and waste stream specific procedures

  3. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4

  4. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    International Nuclear Information System (INIS)

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-01-01

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive)

  5. Measurement methodology for fulfilling of waste acceptance criteria for low and intermediate level radioactive waste in storages - 59016

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Langer, F.; Schultheis, R.

    2012-01-01

    Low and intermediate level radioactive waste must be sorted and treated before it can be sent to radioactive waste storage. The waste must fulfil an extensive amount of acceptance criteria (WAC) to guarantee a safe storage period. NUKEM Technologies has a broad experience with the building and management of radioactive waste treatment facilities and has developed methods and equipment to produce the waste packages and to gather all the required information. In this article we consider low and intermediate level radioactive waste excluding nuclear fuel material, even fresh fuel with low radiation. Only solid radioactive waste (RAW) will be considered. (Liquid RAW is usually processed and solidified before storage. Exception is the reprocessing of nuclear fuel.) Low and intermediate level radioactive waste has to be kept in storage facilities until isotopes are decayed sufficiently and the waste can be released. The storage has to fulfil certain conditions regarding the possible radiological impact and the possible chemical impact on the environment. With the inventory of nuclear waste characterised, the radiological impact can be estimated. RAW mainly originates from the operation of nuclear power plants. A small amount comes from reprocessing installations or from research entities. Chemical safety aspects are of qualitative nature, excluding substances in whole but not compared to limit values. Therefore they have minor influence on the storage conditions. Hereby corrosion and immobilisation of the waste play important roles. The storage concept assumes that the waste will be released if the radioactivity has decreased to an acceptable level. NUKEM Technologies has been specialised on collecting all data needed for the fulfilling of waste acceptance criteria (WAC). The classification as low or intermediate level waste is made on base of surface dose rate of the waste package as well as on the mass specific beta activity. Low level waste must not include isotopes

  6. Physical system requirements - Accept waste

    International Nuclear Information System (INIS)

    1992-08-01

    The Nuclear Waste Policy Act (NWPA) assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the OCRWM Director subsequently issued the Management Systems improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. Thus, a comprehensive functional analysis effort has been undertaken which is intended to: Identify the functions that must be performed to fulfill the waste disposal mission; Identify the corresponding requirements imposed on each of the functions; and Identify the conceptual architecture that will be used to satisfy the requirements. The principal purpose of this requirements document is to present the results that were obtained from the conduct of a functional analysis effort for the Accept Waste mission

  7. Characteristics of radioactive waste forms conditioned for storage and disposal: Guidance for the development of waste acceptance criteria

    International Nuclear Information System (INIS)

    1983-04-01

    This report attempts to review the characteristics of the individual components of the waste package, i.e. the waste form and the container, in order to formulate, where appropriate, quidelines for the development of practical waste acceptance criteria. Primarily the criteria for disposal are considered, but if more stringent criteria are expected to be necessary for storage or transportation prior to the disposal, these will be discussed. The report will also suggest test areas which will aid the development of the final waste acceptance criteria

  8. Acceptance criteria for radioactive waste deposition

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The disposal of low-and intermediate level radioactive waste in either shallow ground or rock cavities must be subjected to special guidelines which are used by national authorities and implementing bodies when establishing and regulating respositories. These informations are given by the acceptance criteria and will depend on specific site conditions and optmized procedures. (author) [pt

  9. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  10. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    International Nuclear Information System (INIS)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-01-01

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE

  11. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-02-25

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE.

  12. Scientific, institutional, regulatory, political, and public acceptance of the waste isolation pilot plant transuranic waste repository

    International Nuclear Information System (INIS)

    Eriksson, L.G.

    2000-01-01

    The recent successful certification and opening of a first-of-a-kind, deep geological repository for safe disposal of long-lived, transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site, New Mexico, United States of America (USA), embody both long-standing local and wide-spread, gradually achieved, scientific, institutional, regulatory, political, and public acceptance. The related historical background and development are outlined and the main contributors to the successful siting, certification, and acceptance of the WIPP TRUW repository, which may also serve as a model to success for other radioactive waste disposal programs, are described. (author)

  13. ANALYZING CERTAIN CHRACTERISTICS OF MUNICIPAL SOLID WASTE GENERATION IN THE PROCES S OF WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Gábriel Györgyi T #336;ZSÉR

    2010-01-01

    Full Text Available Based on the regulations of Act XLIII/2000 on Waste Management to implement the strategic objectives and targets in the Act for the prevalence of the basic waste management principles a National Waste Management Plan II will be worked out and then accepted by the Parliament as part of the National Environmental Protection Programme. On the basis of the national plan the administrative bodies of environmental protection in accordance with the regional settlement and d evelopment programmes make a regional waste management project with the inclusion of the regional, local authorities, and other authorities concerned as well as the non governmental organisations for environmental protection. In our research we analyze the correlation between municipal solid waste per capita and urbanisation level. We have conducted similar calculations in the filed of population density and income. The study was carried out on a micro region level. Our analysis can help determine the framework conditions and factors that influence waste generation, and therefore should be taken into consideration when designing waste policies .

  14. Acceptance of non-fuel assembly hardware by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high-priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high-level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. 14 refs., 12 figs., 43 tabs

  15. Reduced waste generation technical work plan

    International Nuclear Information System (INIS)

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states ''Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction

  16. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1997-01-01

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack of installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report

  17. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    International Nuclear Information System (INIS)

    Zaelen, Gunter van; Verheyen, Annick

    2007-01-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) an acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)

  18. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance, and lessons learned in each country. The audience is invited to participate in the discussion.

  19. Factors affecting the rural domestic waste generation

    Directory of Open Access Journals (Sweden)

    A.R. Darban Astane

    2017-12-01

    Full Text Available The current study was carried out to evaluate the quantity and quality of rural domestic waste generation and to identify the factors affecting it in rural areas of Khodabandeh county in Zanjan Province, Iran. Waste samplings consisted of 318 rural households in 11 villages. In order to evaluate the quality and quantity of the rural domestic waste, waste production was classified into 12 groups and 2 main groups of organic waste and solid waste. Moreover, kriging interpolation technique in ARC-GIS software was used to evaluate the spatial distribution of the generated domestic waste and ultimately multiple regression analysis was used to evaluate the factors affecting the generation of domestic waste. The results of this study showed that the average waste generated by each person was 0.588 kilograms per day. with the share of organic waste generated by each person being 0.409 kilograms per day and the share of solid waste generated by each person being 0.179 kilograms per day. The results from spatial distribution of waste generation showed a certain pattern in three groups and a higher rate of waste generation in the northern and northwestern parts, especially in the subdistrict. The results of multiple regression analysis showed that the households’ income, assets, age, and personal attitude are respectively the most important variables affecting waste generation. The housholds’ attitude and indigenous knowledge on efficient use of materials are also the key factors which can help reducing waste generation.

  20. Nuclear waste and public acceptance. A study about the situation in the Netherlands

    International Nuclear Information System (INIS)

    Damveld, H.

    1999-01-01

    The author bases the paper and study on the concept of the risk society coined by the sociologist Ulrich Beck. Very briefly, risk society means that in modern societies the basic conflicts have shifted from the distribution of prosperity to distribution of risks. The author points out five important factors affecting the willingness to accept a risk, which all have negative indication for the case of nuclear energy. 1. Catastrophe effect: The willingness to accept a more probable risk with less serious consequences is greater than the willingness to accept an extremely unlikely risk with serious consequences. Nuclear energy is considered to be a risk with catastrophe effect. 2. Justice factor: This factor too plays a central role in the negative assessment of nuclear energy. It is considered to be unjust to impose risks on future generations. 3. Voluntariness: The acceptance of a risk increases with the voluntariness. But nuclear energy is not considered to be a voluntary risk. 4. Confidence: The extent of confidence is an important factor determing how information on a possible risk will be assessed. In the Netherlands 68 percent of the population does not trust that the government will provide immediate and honest information on nuclear accidents. 5. Avoidability: An inevitable risk is more likely to be accepted than an avoidable risk. If already produced waste is involved and if there is even a chance that the nuclear power station concerned will be shut-down, the population is more likely to accept the final repository than if it were a case of searching for a final repository for waste not yet produced. (orig.) [de

  1. A data base and a standard material for use in acceptance testing of low-activity waste products

    International Nuclear Information System (INIS)

    Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

    1998-04-01

    The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material

  2. Understanding social acceptance of electricity generation sources

    International Nuclear Information System (INIS)

    Bronfman, Nicolás C.; Jiménez, Raquel B.; Arévalo, Pilar C.; Cifuentes, Luis A.

    2012-01-01

    Social acceptability is a determinant factor in the failure or success of the government's decisions about which electricity generation sources will satisfy the growing demand for energy. The main goal of this study was to validate a causal trust-acceptability model for electricity generation sources. In the model, social acceptance of an energy source is directly caused by perceived risk and benefit and also by social trust in regulatory agencies (both directly and indirectly, through perceived risk and benefit). Results from a web-based survey of Chilean university students demonstrated that data for energy sources that are controversial in Chilean society (fossil fuels, hydro, and nuclear power) fit the hypothesized model, whereas data for non conventional renewable energy sources (solar, wind, geothermal and tidal) did not. Perceived benefit had the greatest total effect on acceptability, thus emerging as a key predictive factor of social acceptability of controversial electricity generation sources. Further implications for regulatory agencies are discussed. - Highlights: ► We tested a causal trust-acceptability model for electricity generation sources in Chile. ► Data for controversial energy sources in the Chilean society (fossil fuels, hydro and nuclear power) fit the hypothesized model. ► Data for non conventional renewable energy sources did not fit the data. ► Perceived benefit showed the greatest total effect on acceptability.

  3. Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program

    International Nuclear Information System (INIS)

    Taylor, L.L.; Shikashio, R.

    1993-09-01

    The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms

  4. Summary of research and development activities in support of waste acceptance criteria for WIPP

    International Nuclear Information System (INIS)

    Hunter, T.O.

    1979-11-01

    The development of waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP) is summarized. Specifications for acceptable waste forms are included. Nine program areas are discussed. They are: TRU characterization, HLW interactions, thermal/structural interactions, nuclide migration, permeability, brine migration, borehole plugging, operation/design support, and instrumentation development. Recommendations are included

  5. Acceptance of failed SNF [spent nuclear fuel] assemblies by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. This document discusses acceptance of failed spent fuel assemblies by the Federal Waste Management System. 18 refs., 7 figs., 25 tabs

  6. The thermo-mechanical behaviour of a salt dome with a heat-generating waste repository

    International Nuclear Information System (INIS)

    Janssen, L.G.J.; Prij, J.; Kevenaar, J.W.A.M.; Jong, C.J.T.; Klok, J.; Beemsterboer, C.

    1984-01-01

    This report reviews the analytical work on the disposal of radioactive waste in salt domes performed at ECN in the period 1 January 1980 to 31 December 1982. Chapter 4 in the main report covers the global temperature and deformation analyses of the salt dome and the surrounding rocks. The attached three topical reports cover self-contained parts of the study. The computer program TASTE developed to analyse, at acceptable cost and with, for engineering purposes, sufficient accuracies, the temperature rises in the salt dome due to the stored heat-generating waste is described in Annex 1. Annex 2 gives a description of the extended finite element program GOLIA. The program has been extended to make it suitable for the creep analysis of salt domes with repositories of heat-generating waste. The study on the closing and sealing of boreholes wit heat-generating waste is reported in Annex 3

  7. Final waste classification and waste form technical position papers

    International Nuclear Information System (INIS)

    1983-05-01

    The waste classification technical position paper describes overall procedures acceptable to NRC staff which may be used by licensees to determine the presence and concentrations of the radionuclides listed in section 61.55, and thereby classifying waste for near-surface disposal. This technical position paper also provides guidance on the types of information which should be included in shipment manifests accompanying waste shipments to near-surface disposal facilities. The technical position paper on waste form provides guidance to waste generators on test methods and results acceptable to NRC staff for implementing the 10 CFR Part 61 waste form requirements. It can be used as an acceptable approach for demonstrating compliance with the 10 CFR Part 61 waste structural stability criteria. This technical position paper includes guidance on processing waste into an acceptable stable form, designing acceptable high-integrity containers, packaging cartridge filters, and minimizing radiation effects on organic ion-exchange resins. The guidance in the waste form technical position paper may be used by licensees as the basis for qualifying process control programs to meet the waste form stability requirements, including tests which can be used to demonstrate resistance to degradation arising from the effects of compression, moisture, microbial activity, radiation, and chemical changes. Generic test data (e.g., topical reports prepared by vendors who market solidification technology) may be used for process control program qualification where such generic data is applicable to the particular types of waste generated by a licensee

  8. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  9. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  10. Waste acceptance and impact ON D and D in Switzerland

    International Nuclear Information System (INIS)

    Maxeiner, Harald

    2002-01-01

    Harald Maxeiner described clearance and waste conditioning requirements in Switzerland, and their impacts on decommissioning: Although decommissioning of the first (oldest) reactor will not take place until 2009 at the earliest (hypothetical operating lifetime of 40 years), detailed decommissioning studies have to be carried out today, in order to demonstrate the feasibility of the technologies to be used and to determine anticipated costs (for the purpose of calculating financial contributions to a decommissioning fund). The studies are based on waste acceptance criteria and guidelines that apply to waste already in existence. The focus is on preparing inventories of activated and contaminated components and conditioning of these components. The basis for present and future conditioning of radioactive wastes, as well as for their interim storage and final disposal, is provided by the official guideline HSK R-14. According to this guideline, raw waste requires to be solidified (inter alia with cement) and the resulting waste product must: remain intact until final disposal, not be readily dispersible, be resistant to aqueous media, not be readily combustible, not contain any unnecessary voids, contain as little organic material as possible. The waste package containing the waste product must: constitute a further barrier to dispersion, outlast (at least) interim storage, be documented with details of manufacturing, composition, properties, be designed to resist corrosion using suitable materials, be characterised by a quality assurance program for raw waste, waste product and waste package. The only possible reasons for interim storage of waste without solidification are: decay storage followed by conventional waste management, if waste packages fulfil acceptance criteria for the final repository without further treatment, if, in the foreseeable future, an alternative conditioning method can be expected. The guidelines and acceptance criteria mentioned set strict

  11. Production of Biogas from wastes Blended with CowDung for Electricity generation-A Case study

    Science.gov (United States)

    Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.; Sasidhar, Jaladanki

    2017-07-01

    The country’s production of solid waste generation is piling up year after year and the generation of Bio-Gas finds a fruitful solution to overcome this problem. This technology can contribute to energy conservation if the economic viability and social acceptance of this technology are favorable. Our campus has a number of hostel buildings which generates large quantum of kitchen waste and sewage per day. This research will have process ofcarrying out survey, characterization of kitchen waste from several kitchens & Canteens and knowing the potential for biogas production. The waste generated from kitchen and sewage from the hostels is given as feedstock to produce 600 m3 of biogas per day with cow dung as byproduct. The methane gas generated from Biogas is purified and this is used for power generation. Two biogas engine generators of 30 kVA and 50 kVA were installed. This power is used for backup power for girl’s hostel lighting load. From this study it is concluded that the generation of Biogas production and its usage for power production is the best option to handle these large quantum of sewage, kitchen waste generated from various buildings and also treated effluent from biogas plant and the biomass generated is a wealth for doing agriculture for any community ultimately it protects the environment.

  12. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  13. The German Final Repository Konrad for Low and Intermediate Level Waste with Negligible Heat Generation - Water Law Issues

    International Nuclear Information System (INIS)

    Boetsch, W.; Grundler, D.; Kugel, K.; Brennecke, P.; Steyer, S.

    2009-01-01

    A survey on the conceptual realization of the requirements due to water law aspects within the license the KONRAD repository for radioactive waste with negligible heat generation in Germany is given [1]. The regulatory decision for the implementation and operation of the repository KONRAD includes, among other things, water law issues. In particular, the KONRAD license includes waste requirements concerning non-radioactive hazardous material (waste package constituents) which have to be considered producing KONRAD waste packages. The intended philosophy of waste acceptance and waste package quality assurance measures to be considered by the KONRAD site operator as well as by the waste producer will be presented. It will demonstrate the selected procedure of the waste declaration and acceptance and describe the structure and logic of tools and aids to comply with the legal requirements of the license and its collateral clause issued under water law. (authors)

  14. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  15. Waste Generation in Denmark 1994-2005

    DEFF Research Database (Denmark)

    Brix, Louise Lykke; Bentzen, Jan Børsen

    In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions. In this p......In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions....... In this paper the methodology is transferred to the topic of waste generation and is used to analyse why the amount of business waste is increasing. The empirical application is related to data for the volumes of waste generated in the Danish economy for the main sectors as well as the manufacturing sector...... covering the time span 1994-2005 has been included. By means of the Log-Mean Divisia Index Method (LMDI) an algebraic decomposition of the data for the waste amounts generated is performed. This methodology separates the increases in waste amounts into effects related to economic activity, industrial...

  16. Reevaluating NIMBY: Evolving Public Fear and Acceptance in Siting a Nuclear Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Nowlin, Matthew C.; deLozier, Grant (Dept. of Political Science, Univ. of Oklahoma, Norman, OK (United States))

    2010-09-15

    The not-in-my-backyard (NIMBY) syndrome has long been the focus of academic and policy research. We test several competing hypothesis concerning the sources of NIMBY sentiments, including demographics, proximity, political ideology and partisanship, and the unfolding policy process over time. To test these hypotheses we use survey data collected in New Mexico dealing with risk perceptions and acceptance related to the Waste Isolation Pilot Project (WIPP), a permanent storage site for radioactive waste located near Carlsbad, New Mexico. WIPP became operational and received its first shipment of waste on March 26, 1999. This study tracks the changes of risk perception and acceptance over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning the 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those in the most proximate counties to WIPP. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to public acceptance, the most significant being the opening of the WIPP facility itself

  17. Reevaluating NIMBY: Evolving Public Fear and Acceptance in Siting a Nuclear Waste Facility

    International Nuclear Information System (INIS)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Nowlin, Matthew C.; de Lozier, Grant

    2010-09-01

    The not-in-my-backyard (NIMBY) syndrome has long been the focus of academic and policy research. We test several competing hypothesis concerning the sources of NIMBY sentiments, including demographics, proximity, political ideology and partisanship, and the unfolding policy process over time. To test these hypotheses we use survey data collected in New Mexico dealing with risk perceptions and acceptance related to the Waste Isolation Pilot Project (WIPP), a permanent storage site for radioactive waste located near Carlsbad, New Mexico. WIPP became operational and received its first shipment of waste on March 26, 1999. This study tracks the changes of risk perception and acceptance over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning the 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those in the most proximate counties to WIPP. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to public acceptance, the most significant being the opening of the WIPP facility itself

  18. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    Science.gov (United States)

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  19. Public comments on the draft generic environmental impact statement for management of commercially generated radioactive waste

    International Nuclear Information System (INIS)

    Kreiter, M.R.; Unruh, C.M.; McCallum, R.F.

    1980-01-01

    The US Department of Energy has the responsibility for developing the technology required for managing commercial radioactive wastes in an environmentally acceptable manner. As part of this responsibility, DOE has prepared a draft environmental impact statement on the management of commercially generated radioactive waste. The draft was issued for public comment in April of 1979; five public hearings were held. The draft GEIS is intended to provide environmental input for the selection of an appropriate program strategy for the permanent isolation of commercially generated high-level and transuranic wastes. The scope of such a strategy includes research and development into alternative treatment processes and emplacement media, site investigations into candidate media, and the examination of advanced waste management technologies. The draft statement describes the commercial radioactive wastes that would have to be managed for very long periods of time from an assumed nuclear generation scenario of 10,000 GWe-yr of power over a 65-year period ending in 2040

  20. Acceptance criteria considerations for miscellaneous wastes

    International Nuclear Information System (INIS)

    Irvine, A.R.; Forsberg, C.W.

    1987-01-01

    EPA standards set forth limitations regarding releases to the accessible environment adjacent to a geologic repository. The NRC criteria pertaining to waste form and engineered barrier performance place certain restrictions on the physical and chemical nature of the waste form and require substantially complete confinement of radioactivity until the high-heat-production period is past. After this period, the annual release of radionuclides from the waste package is normally limited to 1 part in 100,000 of the amounts calculated to be present at 1000-y decay. The regulation permits deviation from these criteria in exceptional circumstances. One such circumstance might be the absence of a significant perturbation in temperature around the stored waste. The lack of significant heat release will eliminate the hydrologic driving force for dispersal of radionuclides. Exceptional circumstances which potentially could justify a less stringent long-term release criterion are: small quantity of radioactivity, the nature of the radioactive species, and the nature of the geology in which the waste is to be emplaced. Because the MW after a suitable decay period have low heat release rates per unit volume, they apparently could be so emplaced in a repository that there would be no compelling need, according to the reasoning presented in 10 CFR 60, for a 1000-y container. Regarding attainment of the specified long-term release rate criterion, neither the solubility limits for the various waste forms nor the conductance of potential migration barriers are currently adequately characterized. The relatively small total heat generation rate for the MW in combination with the usual low volumetric heat generation rate apparently will allow application of migration barriers in a low temperature environment where barrier performance would be expected to be unchanged with time

  1. Acceptance test plan for the Waste Information Control System

    International Nuclear Information System (INIS)

    Flynn, D.F.

    1994-01-01

    This document describes the acceptance test plan for the WICS system. The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as Waste Information and Control System (WICS). The request for developing and implementing WICS has been made to the Automation and Simulation Engineering Group (ASE)

  2. Waste Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  3. Waste Characterization Methods

    International Nuclear Information System (INIS)

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-01-01

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream's generation, characterization, and management; and not merely a list of information sources.

  4. A comparison and cross-reference of commercial low-level radioactive waste acceptance criteria

    International Nuclear Information System (INIS)

    Kerr, T.A.

    1997-04-01

    This document, prepared by the National Low-Level Waste Management Program at the Idaho National Engineering and Environmental Laboratory, is a comparison and cross-reference of commercial low-level radioactive waste acceptance criteria. Many of these are draft or preliminary criteria as well as implemented criteria at operating low-level radioactive waste management facilities. Waste acceptance criteria from the following entities are included: US Nuclear Regulatory Commission, South Carolina, Washington, Utah, Nevada, California, illinois, Texas, North Carolina, Nebraska, Pennsylvania, New York, and the Midwest Compact Region. Criteria in the matrix include the following: physical form, chemical form, liquid limits, void space in packages, concentration averaging, types of packaging, chelating agents, solidification media, stability requirements, sorptive media, gas, oil, biological waste, pyrophorics, source material, special nuclear material, package dimensions, incinerator ash, dewatered resin, transuranics, and mixed waste. Each criterion in the matrix is cross-referenced to its source document so that exact requirements can be determined

  5. Solid, low-level radioactive waste certification program

    International Nuclear Information System (INIS)

    Grams, W.H.

    1991-11-01

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  6. Development of acceptance specifications for low-activity waste from the Hanford tanks

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Kier, P.H.; Brown, N.R.

    1997-01-01

    Low-activity products will be in the form of soldified waste and optional matrix and filler materials enclosed in sealed metal boxes. Acceptance specifications limit the physical characteristics of the containers, the chemical and physical characteristics of the waste form and other materials that may be in the container, the waste loading, and the radionuclide leaching characteristics of the waste form. The specifications are designed to ensure that low-activity waste products will be compatible with the driving regulatory and operational requirements and with existing production technologies

  7. Analysis of local acceptance of a radioactive waste disposal facility.

    Science.gov (United States)

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  8. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  9. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  10. Generator acceptance test and inspection report

    International Nuclear Information System (INIS)

    Johns, B.R.

    1997-01-01

    This Acceptance Test Report(ATR) is the completed testing and inspection of the new portable generator. The testing and inspection is to verify that the generator provided by the vendor meets the requirements of specification WHC-S-0252, Revision 2. Attached is various other documentation to support the inspection and testing

  11. Risk perception, risk evaluation and human values: cognitive bases of acceptability of a radioactive waste repository

    International Nuclear Information System (INIS)

    Earle, T.C.; Lindell, M.K.; Rankin, W.L.

    1981-07-01

    Public acceptance of radioactive waste management alternatives depends in part on public perception of the associated risks. Three aspects of those perceived risks were explored in this study: (1) synthetic measures of risk perception based on judgments of probability and consequences; (2) acceptability of hypothetical radioactive waste policies, and (3) effects of human values on risk perception. Both the work on synthetic measures of risk perception and on the acceptability of hypothetical policies included investigations of three categories of risk: (1) Short-term public risk (affecting persons living when the wastes are created), (2) Long-term public risk (affecting persons living after the time the wastes were created), and (3) Occupational risk (affecting persons working with the radioactive wastes). The human values work related to public risk perception in general, across categories of persons affected

  12. Identification of items and activities important to waste form acceptance by Westinghouse GoCo sites

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Marra, S.L.; Dempster, J.; Randklev, E.H.

    1993-01-01

    The Department of Energy has established specifications (Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, or WAPS) for canistered waste forms produced at Hanford, Savannah River, and West Valley. Compliance with these specifications requires that each waste form producer identify the items and activities which must be controlled to ensure compliance. As part of quality assurance oversight activities, reviewers have tried to compare the methodologies used by the waste form producers to identify items and activities important to waste form acceptance. Due to the lack of a documented comparison of the methods used by each producer, confusion has resulted over whether the methods being used are consistent. This confusion has been exacerbated by different systems of nomenclature used by each producer, and the different stages of development of each project. The waste form producers have met three times in the last two years, most recently on June 28, 1993, to exchange information on each producer's program. These meetings have been sponsored by the Westinghouse GoCo HLW Vitrification Committee. This document is the result of this most recent exchange. It fills the need for a documented comparison of the methodologies used to identify items and activities important to waste form acceptance. In this document, the methodology being used by each waste form producer is summarized, and the degree of consistency among the waste form producers is determined

  13. Acceptance issues for large items and difficult waste

    International Nuclear Information System (INIS)

    Palmer, J.; Lock, Peter

    2002-01-01

    Peter Lock described some particular cases which had given rise to difficult acceptance issues at NIREX, ranging from large size items to the impacts of chemicals used during decontamination on the mobility of radionuclides in a disposal facility: The UK strategy for intermediate level and certain low level radioactive waste disposal is based on production of cementitious waste-forms packaged in a standard range of containers as follows: 500 litre Drum - the normal container for most operational ILW (0.8 m diameter x 1.2 m high); 3 m"3 Box - a larger container for solid wastes (1.72 m x 1.72 m plan x 1.2 m high); 3 m"3 Drum - a larger container for in-drum mixing and immobilisation of sludge waste-forms (1.72 m diameter x 1.2 m high); 4 m Box - for large items of waste, especially from decommissioning (4.0 m x 2.4 m plan x 2.2 m high); 2 m LLW Box - for higher-density wastes (2.0 m x 2.4 m plan x 2.2 m high). In addition the majority of LLW is packaged by supercompaction followed by grouting in modified ISO freight containers (6 m x 2.5 m x 2.5 m). Some wastes do not fit easily into this strategy. These wastes include: very large items, (too big for the 4 m box) which, if dealt with whole, pose transport and disposal problems. These items are discussed further in Section 2; waste whose characteristics make packaging difficult. Such wastes are described in more detail in Section 3

  14. Technology, socio-political acceptance, and the low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Andrews, L.J.; Domenech, J.S.

    1986-01-01

    The technology which is required to develop and operate low-level radioactive waste disposal sites in the 1990's is available today. The push for best available technology is a response to the political difficulties in securing public acceptance of the site selection process. Advances in waste management technologies include development of High Integrity Containers (HIC), solidification media, liquid volume reduction techniques using GEODE/sub sm/ and DeVoe-Holbein technology of selective removal of target radioisotopes, and CASTOR V storage casks. Advances in technology alone, however, do not make the site selection process easier and without socio-political acceptance there may be no process at all. Chem-Nuclear has been successful in achieving community acceptance at the Barnwell facility and elsewhere. For example, last June in Fall River County, South Dakota, citizens voted almost 2:1 to support the development of a low-level radioactive waste disposal facility. In Edgemont, the city nearest the proposed site, 85% of the voters were in favor of the proposed facility

  15. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. 1991 Acceptance priority ranking

    International Nuclear Information System (INIS)

    1991-12-01

    The Standard Contract for Disposal of Spent Nuclear Fuel and/or High- Level Radioactive Waste (10 CFR Part 961) that the Department of Energy (DOE) has executed with the owners and generators of civilian spent nuclear fuel requires annual publication of the Acceptance Priority Ranking (APR). The 1991 APR details the order in which DOE will allocate Federal waste acceptance capacity. As required by the Standard Contract, the ranking is based on the age of permanently discharged spent nuclear fuel (SNF), with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. the 1991 APR will be the basis for the annual allocation of waste acceptance capacity to the Purchasers in the 1991 Annual Capacity Report (ACR), to be issued later this year. This document is based on SNF discharges as of December 31, 1990, and reflects Purchaser comments and corrections, as appropriate, to the draft APR issued on May 15, 1991

  17. Classification of radioactive waste and determination of waste specifications as well as conditions of acceptance for ultimate storage

    International Nuclear Information System (INIS)

    Merz, E.

    1983-04-01

    The determination of waste specification and conditions of acceptance must follow a certain scheme, the basics of which will be presented. First the types of waste and the ultimate storage facilities will be characterized. The various categories of waste will be listed in a universally valid system, and the preliminary conditioning options will be determined. Based on the results of safety analysis taking into account the whole system - geological circumstances, ultimate store mines, types and forms of waste - specifications for the various ultimate store products are to be derived following iterative methods. Suggestions though not of a binding nature and probably subject to eventual revisions in part will be presented. To ensure the safety goals, i.e. the exclusion of radioactivity from the human biosphere, appropriate quality control is required concerning the production and the acceptance at the ultimate store. The guiding principles to be heeded will be discussed in brief. (orig./HP) [de

  18. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  19. Qualitative acceptance criteria for radioactive wastes to be disposed of in deep geological formations

    International Nuclear Information System (INIS)

    1990-05-01

    The present Safety Guide has to be seen as a companion document to the IAEA Safety Series No. 99. It is concerned with the waste form which is an important component of the overall disposal system. Because of the broad range of waste types and conditioned forms and variations in the sites, designs and constructional approaches being considered for deep geological repositories, this report necessarily approaches the waste acceptance criteria in a general way, recognizing that the assignment of quantitative limits to these criteria has to be the responsibility of national authorities. The main objective of this Safety Guide is to set out qualitative waste acceptance criteria as a basis for specifying quantitative limits for the waste forms and packages which are intended to be disposed of in deep geological repositories. It should serve as guidance for assigning such parameter values which would fully comply with the safety assessment and performance of a waste disposal system as a whole. This document is intended to serve both national authorities and regulatory bodies involved in the development of deep underground disposal systems. The qualitative waste acceptance criteria dealt with in the present Safety Guide are primarily concerned with the disposal of high level, intermediate level and long-lived alpha bearing wastes in deep geological repositories. Although some criteria are also applicable in other waste disposal concepts, it has to be borne in mind that the set of criteria presented here shall ensure the isolation capability of a waste disposal system for periods of time much longer than for other waste streams with shorter lifetimes. 51 refs, 1 tab

  20. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  1. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  2. Model for future waste generation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov; Stenmarck, Aasa; Ekvall, Tomas

    2010-06-15

    The research presented in this report is part of the effort to estimate future Swedish waste quantities in the research programme Towards Sustainable Waste Management. More specifically, we estimate future waste coefficients that are designed to be fed into EMEC, which describes the Swedish economy in terms of 26 industrial sectors, a public sector, and households. Production in the model of industry and public sector requires input of labour, capital, energy, and other commodities. With waste-intensity coefficients added to each production parameter in each sector, EMEC can calculate the future waste quantities generated in different economic scenarios. To produce the waste-intensity coefficients, we make a survey of the current Swedish waste statistics. For each waste category from each sector we estimate whether the quantity depends primarily on the production in the sector, on the inputs of commodities, on the depreciation of capital goods, or on the size of the workforce in the sector. We calculate current waste-intensity coefficients by dividing the waste quantities by the parameter(s) to which they are assigned. We also present five different scenarios to describe how the waste intensity can develop until the year 2030. As far as possible and when deemed to be relevant, we have set the industrial waste generation to depend on the use of a commodity or an energy carrier. The quantity of spent vehicles and most equipment is set to depend on the depreciation of capital goods. Some wastes have been allocated to the staff, for example household waste from business. The quantities of wastes from households have a similar approach where every waste category is assigned to a combination of 26 different commodities

  3. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  4. Data analytics approach to create waste generation profiles for waste management and collection.

    Science.gov (United States)

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Waste Generation Overview Refresher, Course 21464

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-13

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  6. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  7. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  8. Public perception and acceptance of the siting of nuclear waste facilities in seven countries

    International Nuclear Information System (INIS)

    Numark, N.J.; Paige, H.W.; Wonder, E.F.

    1989-09-01

    This report was prepared by ERC Environmental and Energy Services Co. (ERCE) on behalf of the Pacific Northwest Laboratory (PNL) and the US Department of Energy (DOE) between February and August 1989. It updates previous reports prepared by ERCE on public acceptance of waste management activities in foreign countries. The report is intended to serve as an aid in understanding experiences with public acceptance of waste activities in foreign countries, and thereby benefit US efforts with respect to public acceptance based on lessons learned abroad. Seven countries are addressed in the report: Belgium, the Federal Republic of Germany, France, Japan, Sweden, Switzerland, and the United Kingdom. The information provided in this report was obtained both from direct interviews of the responsible waste management officials in the seven countries surveyed and from source documents provided by these individuals

  9. Risk perception, risk evaluation and human values: cognitive bases of acceptability of a radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Earle, T.C.; Lindell, M.K.; Rankin, W.L.

    1981-07-01

    Public acceptance of radioactive waste management alternatives depends in part on public perception of the associated risks. Three aspects of those perceived risks were explored in this study: (1) synthetic measures of risk perception based on judgments of probability and consequences; (2) acceptability of hypothetical radioactive waste policies, and (3) effects of human values on risk perception. Both the work on synthetic measures of risk perception and on the acceptability of hypothetical policies included investigations of three categories of risk: (1) Short-term public risk (affecting persons living when the wastes are created), (2) Long-term public risk (affecting persons living after the time the wastes were created), and (3) Occupational risk (affecting persons working with the radioactive wastes). The human values work related to public risk perception in general, across categories of persons affected. Respondents were selected according to a purposive sampling strategy.

  10. Notice of inquiry on waste acceptance issues: Response summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    On May 25, 1994, the Department of Energy published a Notice of Inquiry on Waste Acceptance Issues in the Federal Register. Through this Notice of Inquiry, the Department sought to implement the Secretary`s initiative to explore with affected parties various options and methods for sharing the costs related to the financial burden associated with continued on-site storage by eliciting the views of affected parties on: (1) The Department`s preliminary view that it does not have a statutory obligation to begin accepting spent nuclear fuel in 1998 in the absence of an operational repository or other suitable storage facility constructed under the Nuclear Waste Policy Act of 1982, as amended; (2) The need for an interim, away-from-reactor storage facility prior to repository operations; and (3) Options for offsetting, through the Nuclear Waste Fund, a portion of the financial burden that may be incurred by utilities in continuing to store spent nuclear fuel at reactor sites beyond 1998. The Department received a total of 1,111 responses representing 1,476 signatories to this Notice of Inquiry. The responses included submittals from utilities (38 responses); public utility/service commissions and utility regulators (26 responses); Federal, state, and local governments, agencies, and representatives (23 responses); industry and companies (30 responses); public interest groups and other organizations (19 responses); and members of the general public (975 responses).

  11. Notice of inquiry on waste acceptance issues: Response summary

    International Nuclear Information System (INIS)

    1995-03-01

    On May 25, 1994, the Department of Energy published a Notice of Inquiry on Waste Acceptance Issues in the Federal Register. Through this Notice of Inquiry, the Department sought to implement the Secretary's initiative to explore with affected parties various options and methods for sharing the costs related to the financial burden associated with continued on-site storage by eliciting the views of affected parties on: (1) The Department's preliminary view that it does not have a statutory obligation to begin accepting spent nuclear fuel in 1998 in the absence of an operational repository or other suitable storage facility constructed under the Nuclear Waste Policy Act of 1982, as amended; (2) The need for an interim, away-from-reactor storage facility prior to repository operations; and (3) Options for offsetting, through the Nuclear Waste Fund, a portion of the financial burden that may be incurred by utilities in continuing to store spent nuclear fuel at reactor sites beyond 1998. The Department received a total of 1,111 responses representing 1,476 signatories to this Notice of Inquiry. The responses included submittals from utilities (38 responses); public utility/service commissions and utility regulators (26 responses); Federal, state, and local governments, agencies, and representatives (23 responses); industry and companies (30 responses); public interest groups and other organizations (19 responses); and members of the general public (975 responses)

  12. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  13. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  14. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs

  15. Free Moisture in GT-73 Resin Waste Generated from the Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2002-01-01

    Solid Waste Division is presently evaluating whether to transfer spent resin generated from the Effluent Treatment Facility (ETF) to the Nevada Test Site (NTS). One of the criteria for the waste to be accepted at the NTS is that the waste must not contain more than 1 vol-percent free liquid. This criterion reduces the amount of liquid, a primary vector for subsurface contaminant migration (along with colloids), introduced into the repository. This criterion also serves to reduce the chance of an accidental spill during transport of the waste to the NTS. On December 15, 1997, a shipment from Fernald to the NTS leaked some liquid waste onto a highway in Kingman, Arizona, resulting in a Type B Accident Investigation. The direct cause of the leak was attributed to broken welds related to the use of substandard containers. The overall objective of this study was to provide guidance as to whether the spent GT-73 resin would meet the free moisture WAC set by the NTS

  16. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    International Nuclear Information System (INIS)

    Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel; Peake, Tom; Hayes, Colin

    2013-01-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri R ArcGIS R scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus R -MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel R 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  17. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    International Nuclear Information System (INIS)

    Waste Management Group

    2006-01-01

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management

  18. Charging for waste motivates generators to optimize waste control at the source

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to generators creates an incentive to optimize processes so that less waste is produced, and it provides a basis for determining the cost effectiveness of capital improvements so that the mature phase of waste management can be attained. Improving waste management practices requires a long-range commitment and consistent administration. Making this commitment and providing adequate funding for proper waste disposal are most cost-effective measures than the alternative of paying for remedial actions after improper disposal. This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  19. The UK waste input-output table: Linking waste generation to the UK economy.

    Science.gov (United States)

    Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian

    2016-10-01

    In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.

  20. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  1. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  2. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  3. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  4. Waste acceptance criteria study: Volume 2, Appendixes: Final report

    International Nuclear Information System (INIS)

    Johnson, E.R.; McLeod, N.B.; McBride, J.A.

    1988-09-01

    These appendices to the report on Waste Acceptance Criteria have been published as a separate volume for the convenience of the reader. They consist of the text of the 10CFR961 Contract for disposal of spent fuel, estimates of the cost (savings) to the DOE system of accepting different forms of spent fuel, estimates of costs of acceptance testing/inspection of spent fuel, illustrative specifications and procedures, and the resolution of comments received on a preliminary draft of the report. These estimates of costs contained herein preliminary and are intended only to demonstrate the trends in costs, the order of magnitude involved, and the methodology used to develop the costs. The illustrative specifications and procedures included herein have been developed for the purpose of providing a starting point for the development of a consensus on such matters between utilities and DOE

  5. Dissolution test for low-activity waste product acceptance

    International Nuclear Information System (INIS)

    Ebert, W. L.

    1998-01-01

    We have measured the mean and standard deviation of the solution concentrations of B, Na, and Si attained in replicate dissolution tests conducted at temperatures of 20, 40, and 70 C, for durations of 3 and 7 days, and at glass/water mass ratios of 1:10 and 1:1. These and other tests were conducted to evaluate the adequacy of the test methods specified in privatization contracts and to develop a data base that can be used to evaluate the reliability of reported results for tests performed on the waste products. Tests were conducted with a glass that we formulated to be similar to low-activity waste products that will be produced during the remediation of Hanford tank wastes. Statistical analyses indicated that, while the mean concentrations of B, Na, and Si were affected by the values of test parameters, the standard deviation of replicate tests was not. The precision of the tests was determined primarily by uncertainties in the analysis of the test solutions. Replicate measurements of other glass properties that must be reported for Hanford low-activity waste products were measured to evaluate the possible adoption of the glass used in these tests as a standard test material for the product acceptance process

  6. Estimation of restaurant solid waste generation rates

    International Nuclear Information System (INIS)

    Heck, H.H.; Major, I.

    2002-01-01

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  7. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    International Nuclear Information System (INIS)

    Roh, Seung Kook; Lee, Jin Won

    2017-01-01

    The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance

  8. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  9. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    Danna, J.G.; Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  10. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    International Nuclear Information System (INIS)

    Lunsford, G.F.

    1999-01-01

    This report is fully responsive to the requirements of Section 4.0 ''Acceptable Knowledge'' from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge

  11. Public acceptance of radioactive waste transportation systems

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1978-01-01

    As the thoughts of the country concentrate on the problems of transportation of waste through high traffic urban areas, the problem of how to deal directly and honestly with the public takes on greater significance in the nuclear industry. Non-technical aspects of the methods of transportation, especially by railroad and highway, enter into the total scheme of moving radioactive waste from both weapon and nuclear power plant sources to final processing and disposal. Factors such as shape, color, size, familiarity, and industrial designing are necessary ingredients that take on equal or more significance that the designing of containers to survive the hypothetical accident conditions of the present, or even of the future. Protective Packaging, Inc. has been a leader in the presentation of containers to the private and public sector of the nuclear industry. The products have undergone very open testing, in public, with both invited and uninvited witnesses. In those experiences, dating back to 1969, the problems of public acceptance will be related between the technical problems and the associated social and political problems that relate to container acceptance by the public in today's world. Proven experience data, relative to the safety of the present day systems will be discussed, as well as methods of improving the image in the future. Review will also be given to the effort by industry to discuss the proven record with parties outside the nuclear industry, i.e., individuals and pressure groups that are diametrically opposed to review the facts relative to safety as opposed to other, but more traditional industries

  12. Factors determining waste generation in Spanish towns and cities.

    Science.gov (United States)

    Prades, Miriam; Gallardo, Antonio; Ibàñez, Maria Victoria

    2015-01-01

    This paper analyzes the generation and composition of municipal solid waste in Spanish towns and cities with more than 5000 inhabitants, which altogether account for 87% of the Spanish population. To do so, the total composition and generation of municipal solid waste fractions were obtained from 135 towns and cities. Homogeneity tests revealed heterogeneity in the proportions of municipal solid waste fractions from one city to another. Statistical analyses identified significant differences in the generation of glass in cities of different sizes and in the generation of all fractions depending on the hydrographic area. Finally, linear regression models and residuals analysis were applied to analyze the effect of different demographic, geographic, and socioeconomic variables on the generation of waste fractions. The conclusions show that more densely populated towns, a hydrographic area, and cities with over 50,000 inhabitants have higher waste generation rates, while certain socioeconomic variables (people/car) decrease that generation. Other socioeconomic variables (foreigners and unemployment) show a positive and null influence on that waste generation, respectively.

  13. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  14. Study on reducing the generation of general waste

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Aoki, Isao; Watahiki, Masatoshi

    2000-04-01

    On August 1999, the Director of Tokai Work proposed an activity regarding recycling and reuse of general waste generated from Tokai Works. The activity was initiated by the Waste Management and Fuel Cycle Research Center, and is now being in progress through out the Tokai Works. In the course of this activity, Plutonium Fuel Center had settled the working Group and the issues related to the waste reductive have been examined. This report collects the problems that became obvious through the survey of existing segregation method, treatment process, and the amount of the waste generation, and accounts for the concrete methodology for the recycling and reuse of general waste. In order to reduce waste, it is necessary to aware of the facing issues and adopt the countermeasures proposed in this report whenever possible. The activity will then leads us to reduce waste generation, which in turn will enable us to make 100% waste recycling possible. (author)

  15. Conditions governing the acceptance of radioactive wastes by the Hauptabteilung Dekontaminationsbetriebe (HDB). Full text of legal provisions, issue no.6 of July 1, 1991, as amended until January 1, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The conditions apply to the acceptance of radwaste by the Main Decontamination Dept. (HDB) of Karlsruhe Research Center, including radioactive remnants, contaminated plant components, and primary waste from the following waste generators: Institutes of the Karlsruhe Research Center, facilities located within the Center but run by other organisations, other outside facilities not linked with the Center, as e.g. waste generators in Baden-Wuerttemberg obliged to deliver their radwaste to the Radwaste Collecting Site of the Land of Baden-Wuerttemberg. Amendments are marked at the right-hand margin of the text

  16. Radioactive waste assessment using 'minimum waste generation' scenario - summary report March 1984

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1984-11-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation - Scheme 1. Scheme 1 assumes a minimum waste generation scenario with raw waste arisings from 3 main groups; (i) existing and committed commercial reactors; (ii) fuel reprocessing plants, (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment and indicates the type of information that can be generated. (author)

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  18. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  19. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu

    2007-05-30

    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  20. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Seungkook Roh

    2017-08-01

    Full Text Available The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance.

  1. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seung Kook [Policy Research Center, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Lee, Jin Won [School of Management, Xiamen University, Xiamen (China)

    2017-08-15

    The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance.

  2. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    Science.gov (United States)

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of socioeconomic status on municipal solid waste generation rate.

    Science.gov (United States)

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    Sustainable solutions for reducing food waste require a good understanding of food waste generation and composition, including avoidable and unavoidable food waste. We analysed 12 tonnes of residual household waste collected from 1474 households, without source segregation of organic waste. Food...... waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...... ± 10 kg per year was food waste. Unavoidable food waste amounted to 80 ± 6 kg per household per year, and avoidable food waste was 103 ± 9 kg per household per year. Food waste mass was influenced significantly by the number of occupants per household (household size) and the housing type. The results...

  5. Assessment of LANL transuranic mixed waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from the evaluation of the Los Alamos National Laboratory (LANL) TRU Mixed Waste Acceptance Criteria to determine its compliance with applicable DOE requirements. The driving requirements for s TRU Mixed Waste Acceptance Criteria are essentially those contained in the ''TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant'' or WIPP WAC (DOE Report WIPP-DOE-069), 40 CFR 261-270, and DOE Order 5820.2A (Radioactive Waste Management), specifically Chapter II which is entitled ''Management of Transuranic Waste''. The primary purpose of the LANL WAC is the establishment of those criteria that must be met by generators of TRU mixed waste before such waste can be accepted by the Waste Management Group. An annotated outline of a genetic TRU mixed waste acceptance criteria document was prepared from those requirements contained in the WIPP WAC, 40 CFR 261-270, and 5820.2A, and is based solely upon those requirements

  6. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  7. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  8. Strategies for the deployment of micro-generation: Implications for social acceptance

    International Nuclear Information System (INIS)

    Sauter, Raphael; Watson, Jim

    2007-01-01

    Social acceptance of renewable energy innovation has often been discussed in the context of large renewable technology projects, acceptance having been seen as rather passive consent by the public. The potential importance of micro-generation technologies in the future energy supply mix and policymakers' increasing attention to these technologies requires a different approach to the social acceptance of renewable energy innovation and energy infrastructure technologies. Instead of mere consent to an infrastructure project, domestic micro-generation requires active acceptance by homeowners, whereby individual households become part of the electricity supply infrastructure. Acceptance may therefore be expressed in various forms: attitudes, behaviour and-most importantly-investments. This paper argues that different deployment models with varying degrees of company and consumer involvement will have a significant influence on the social acceptance of domestic micro-generation and therefore the market uptake of these technologies. Three deployment models are elaborated and briefly situated in the current UK energy policy context

  9. Review of issues relevant to acceptable risk criteria for nuclear waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1978-01-01

    Development of acceptable risk criteria for nuclear waste management requires the translation of publicly determined goals and objectives into definitive issues which, in turn, require resolution. Since these issues are largely of a subjective nature, they cannot be resolved by technological methods. Development of acceptable risk criteria might best be accomplished by application of a systematic methodology for the optimal implementation of subjective values. Multi-attribute decision analysis is well suited for this purpose

  10. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  11. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  12. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  13. The role of waste package specifications as a forerunner to ILW repository conditions for acceptance

    International Nuclear Information System (INIS)

    Barlow, S.V.; Palmer, J.D.

    1998-01-01

    In the absence of a finalized repository site, design or associated safety case, Nirex is not in a position to issue conditions for acceptance. Nirex has therefore developed a strategy which facilitates packaging of intermediate level waste by providing guidance through waste package specifications, supported by the formal assessment of specific packaging proposals on a case-by-case basis. The waste package specifications are comprehensive and cover all aspects of the waste package including dimensions and other key features, performance standards, wasteform, quality assurance, and data recording requirements. The waste package specifications will be subject to periodic review as repository design and safety cases are finalized and will progressively become site- and design-specific. The waste package specifications will eventually form the basis for conditions for acceptance. The strategy described in this paper has been successfully followed by Nirex and customers for the past ten years and has permitted wastes to be packaged for a deep repository with confidence in the absence of a finalized site and safety cases for the repository. Because the process has its basis in a generic repository concept, it remains robust, despite the increased uncertainty following the March 1997 Secretary of State's decision, as to the siting and time-scale of a deep waste repository, and continues to be an important component of the UK's waste management strategy. (author)

  14. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  15. Acceptance and tracking of waste packages from nuclear power plants at the Centre de l'Aube

    International Nuclear Information System (INIS)

    Errera, J.; Tison, J.L.

    2001-01-01

    For 30 years, the French National Agency for Radioactive Waste Management (ANDRA) is in charge of the radioactive waste management and acquired a good knowledge relating to the control of low and intermediate level waste produced by nuclear power plants (NPP), the waste characteristics and the waste conditioning. The integrated waste management system for low-level radioactive waste in France implemented by ANDRA covers all stages from waste generation to final disposal at the Centre de I'Aube near surface facility. ANDRA defined a quality assurance program for waste management that specifies the level of quality to be achieved by solidification and packaging processes, defines quality control requirements and defines waste tracking requirements, from waste generation through final disposal. Verification of quality of waste packages is implemented at three levels of the waste management system. The first one consists of inspections of waste packages at the generator's premises and audits of the quality assurance organization of the waste generator. The second level of verification consists of the waste tracking system. It allows identifying and tracking each waste package from the step it is fabricated to its final disposal at the ANDRA site. The third level of verification is obtained by mean of non-destructive and destructive assays of waste packages. These assays allow to verify generator compliance with ANDRA's technical specifications and to investigate the accuracy of physical and radioactive characteristics reported to ANDRA by the generator. (author)

  16. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  17. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams

  18. International co-operation in the management of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Changsun [Seoul National University (Korea, Republic of)

    1998-07-01

    The use of nuclear energy faces with the problem of radioactive waste disposal. The public simply abhors radioactive wastes without rightful cause. Hence, the immediate concern is to overcome this hostile preconception of the public, and to come up with safe and economic ways of disposal which are acceptable to the public. Without it, the public may not accept the idea of further use of nuclear energy. Some have concern about safeguards of fissile plutonium with respect to proliferation while others have concerns regarding protection beyond national borders related to movement of radioactive wastes for foreign disposal. Now, the disposal of radioactive waste is a global problem rather than a problem for individual nation. In this aspect, close international cooperation is recently being brought up more than ever in jointly: improving public acceptance, minimizing waste generation, eliminating the burden on future generations, developing internationally acceptable practices, exploring disposal concepts, and collaborating on R and D. (author)

  19. International co-operation in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Kang, Changsun

    1998-01-01

    The use of nuclear energy faces with the problem of radioactive waste disposal. The public simply abhors radioactive wastes without rightful cause. Hence, the immediate concern is to overcome this hostile preconception of the public, and to come up with safe and economic ways of disposal which are acceptable to the public. Without it, the public may not accept the idea of further use of nuclear energy. Some have concern about safeguards of fissile plutonium with respect to proliferation while others have concerns regarding protection beyond national borders related to movement of radioactive wastes for foreign disposal. Now, the disposal of radioactive waste is a global problem rather than a problem for individual nation. In this aspect, close international cooperation is recently being brought up more than ever in jointly: improving public acceptance, minimizing waste generation, eliminating the burden on future generations, developing internationally acceptable practices, exploring disposal concepts, and collaborating on R and D. (author)

  20. Germany: Management of decommissioning waste in Germany

    International Nuclear Information System (INIS)

    Borrmann, F.; Brennecke, P.; Koch, W.; Kugel, K.; Steyer, S.

    2007-01-01

    Over the past two decades, Germany has gained a substantial amount of experience in the decommissioning of nuclear facilities of different types and sizes. Many research reactors and all prototype nuclear power plants, as well as a few larger nuclear power plants and fuel cycle facilities, are currently at varying stages of decommissioning. Several facilities have been fully dismantled and the sites have been cleared for reuse. The decommissioning projects comprise 18 power and prototype reactors, 33 research reactors and 11 fuel cycle facilities which are being or have been decommissioned. In the future, further nuclear power plants will be shut down and decommissioned in accordance with Germany?s energy policy to phase out the use of nuclear power for commercial electricity generation as given in the April 2002 amendment of the Atomic Energy Act. Radioactive waste, from operations as well as from decommissioning activities, is to be conditioned in such a way as to comply with the waste acceptance requirements of a repository. In Germany, all types of radioactive waste (i.e., short-lived and long-lived) are to be disposed of in deep geological formations. A distinction is being made for heat generating waste (i.e., high level waste) and waste with negligible heat generation (i.e., low level and intermediate level waste). Radioactive decommissioning waste is waste with negligible heat generation. Waste acceptance requirements of a repository are of particular importance for the conditioning of radioactive waste, including decommissioning waste. The waste acceptance requirements, as they resulted from the Konrad licensing procedure, are being applied by the waste generators for the conditioning of decommissioning waste. Compliance with these requirements must be demonstrated through the waste package quality control, even if the waste will be disposed of in the future. In 2002 the Konrad repository was licensed for the disposal of all types of waste with negligible

  1. Developing models for the prediction of hospital healthcare waste generation rate.

    Science.gov (United States)

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  2. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  3. Acceptability of a low and intermediate level radioactive waste repository

    International Nuclear Information System (INIS)

    Zeleznik, N.; Polic, M.

    2000-01-01

    Siting of a radioactive waste repository, even for the waste of low and intermediate level (LILW) radioactivity, presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. In general, people are opposed to any such kind of facility in their vicinity (NIMBY). In this study we try to establish the factors that influence people's behavior regarding the construction of a radioactive waste repository in their local community, with the use of Ajzen's model of planned behavior. Two different scenarios about the construction of a radioactive waste repository in their community, together with a set of questions were presented to participants from different schools. Data from the survey were analysed by multivariate methods, and a model of relevant behaviour was proposed. From the results it can be seen that different approaches to local community participation in site selection process slightly influence people's attitudes towards the LILW repository, while significant differences in answers were found in the responses which depend on participants' knowledge. Therefore the RAO Agency will further intensify preparation of the relevant communication plan and start with its implementation to support LILW repository site selection process, which will also include educational programme. (author)

  4. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  6. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    Science.gov (United States)

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  7. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  8. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  9. Medical and Biohazardous Waste Generator's Guide (Revision2)

    Energy Technology Data Exchange (ETDEWEB)

    Waste Management Group

    2006-11-29

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management.

  10. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  11. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  12. A proposed risk acceptance criterion for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Mehta, K.

    1985-06-01

    The need to establish a radiological protection criterion that applies specifically to disposal of high level nuclear fuel wastes arises from the difficulty of applying the present ICRP recommendations. These recommendations apply to situations in which radiological detriment can be actively controlled, while a permanent waste disposal facility is meant to operate without the need for corrective actions. Also, the risks associated with waste disposal depend on events and processes that have various probabilities of occurrence. In these circumstances, it is not suitable to apply standards that are based on a single dose limit as in the present ICRP recommendations, because it will generally be possible to envisage events, perhaps rare, that would lead to doses above any selected limit. To overcome these difficulties, it is proposed to base a criterion for acceptability on a set of dose values and corresponding limiting values of probabilities; this set of values constitutes a risk-limit line. A risk-limit line suitable for waste disposal is proposed that has characteristics consistent with the basic philosophy of the ICRP and UNSCEAR recommendations, and is based on levels on natural background radiation

  13. Methodology for generating waste volume estimates

    International Nuclear Information System (INIS)

    Miller, J.Q.; Hale, T.; Miller, D.

    1991-09-01

    This document describes the methodology that will be used to calculate waste volume estimates for site characterization and remedial design/remedial action activities at each of the DOE Field Office, Oak Ridge (DOE-OR) facilities. This standardized methodology is designed to ensure consistency in waste estimating across the various sites and organizations that are involved in environmental restoration activities. The criteria and assumptions that are provided for generating these waste estimates will be implemented across all DOE-OR facilities and are subject to change based on comments received and actual waste volumes measured during future sampling and remediation activities. 7 figs., 8 tabs

  14. Nuclear waste - perceptions and realities

    International Nuclear Information System (INIS)

    Wilkinson, D.

    1984-01-01

    This paper discusses the complex scientific, sociological, political and emotive aspects of nuclear waste. The public perception of the hazards and risks, to present and future generations, in the management of nuclear wastes are highlighted. The cost of nuclear waste management to socially acceptable and technically achievable standards is discussed. (UK)

  15. An investigation into waste charges in Ireland, with emphasis on public acceptability.

    Science.gov (United States)

    Dunne, Louise; Convery, Frank J; Gallagher, Louise

    2008-12-01

    There are 34 local authorities in Ireland with legal responsibility to deal with waste arising in their jurisdictions. In 2003 the National government introduced legislation that allows local authorities to recover the costs of waste collection and disposal, and to do so by 'executive function', i.e., not requiring support or agreement by the relevant local political representatives. The year 2005 was set as the date by which implementation of a pay by weight or volume was to be introduced. The local authorities were given autonomy as to how they addressed this challenge, so we have - in theory - 34 potentially different experiences from which to learn. This paper examines the pay-as-you-throw (PAYT) waste system in Ireland as it develops in line with EU and National demands, with a view to assessing economic and environmental efficiency. All local authorities were surveyed and thirteen responded. While this only represents about 38% of the total number, it includes jurisdictions that contribute in total more than 50% of waste arising. Key figures in the policy and business community were also interviewed in order to identify how the charging schemes were implemented, and to what effect. These insights and parallel investigations are used to review the potential for problems regarding public acceptability of environmental taxes and examine the evidence for economic and environmental efficiency, as well as problem areas, using data from each of the responding local authority jurisdictions. Concentrating on the incentives and drivers across households, municipalities and private waste contractors, the variations in charging system, annual charges and landfill charges are compared where information was available. The various jurisdictions are also examined in terms of relative successes and problems encountered in the transition from fixed charge or free waste collection to PAYT systems. The Irish situation is placed in the context of the international literature on

  16. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  17. Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards.

    Science.gov (United States)

    Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G

    2013-11-01

    In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.

  18. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-01-01

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  20. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  1. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  2. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  3. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  4. Acceptance test report: Backup power system

    International Nuclear Information System (INIS)

    Cole, D.B.

    1996-01-01

    Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control

  5. Defining waste acceptance criteria for the Hanford Replacement Cross-Site Transfer System

    International Nuclear Information System (INIS)

    Hudson, J.D.

    1996-04-01

    This document provides a methodology for defining waste acceptance criteria for the Hanford Replacement Cross-Site Transfer System (RCSTS). This methodology includes characterization, transport analysis, and control. A framework is described for each of these functions. A tool was developed for performing the calculations associated with the transport analysis. This tool, a worksheet that is available in formats acceptable for a variety of PC spreadsheet programs, enables a comparison of the pressure required to transport a given slurry at a rate that particulate suspension is maintained to the pressure drop available from the RCSTS

  6. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  7. Annual report of waste generation and pollution prevention progress 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments

  8. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  9. Waste volume reduction by spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, Rodrigo A.; Tello, Clédola C. O. de, E-mail: Rodrigotoscano1@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The operation of nuclear facilities generates liquid wastes which require treatment to control the chemical compounds and removal of radioactive contaminants. These wastes can come from the cooling of the primary reactor system, from the reactor pool decontamination, washing of contaminated clothing, among others. The ion exchange resin constitutes the largest fraction of this waste, classified as low and intermediate level of radiation. According to CNEN Standard 8.01, the minimization of the volume and activity of the radioactive waste generated in the operation of a nuclear installation, radiative installation, industrial mining installation or radioactive waste deposit should be ensured. In addition, one of the acceptance criteria for wastes in repositories required by CNEN NN 6.09 is that it be solid or solidified. Thus, these wastes must be reduced in volume and solidified to meet the standards and the safety of the population and the environment. The objective of this work is to find a solution that associates the least generation of packaged waste and the acceptance criteria of waste for the deposition in the national repository. This work presents a proposal of reduction of the volume of the liquid wastes generated by nuclear facilities by drying by for reduction of volume for a greater incorporation of wastes in cement. Using spray dryer, an 18% reduction in the production of cemented waste products was observed in relation to the method currently used with compressive strength measurement above the standard, and it is believed that this value may increase in future tests. (author)

  10. Waste volume reduction by spray drying

    International Nuclear Information System (INIS)

    Toscano, Rodrigo A.; Tello, Clédola C. O. de

    2017-01-01

    The operation of nuclear facilities generates liquid wastes which require treatment to control the chemical compounds and removal of radioactive contaminants. These wastes can come from the cooling of the primary reactor system, from the reactor pool decontamination, washing of contaminated clothing, among others. The ion exchange resin constitutes the largest fraction of this waste, classified as low and intermediate level of radiation. According to CNEN Standard 8.01, the minimization of the volume and activity of the radioactive waste generated in the operation of a nuclear installation, radiative installation, industrial mining installation or radioactive waste deposit should be ensured. In addition, one of the acceptance criteria for wastes in repositories required by CNEN NN 6.09 is that it be solid or solidified. Thus, these wastes must be reduced in volume and solidified to meet the standards and the safety of the population and the environment. The objective of this work is to find a solution that associates the least generation of packaged waste and the acceptance criteria of waste for the deposition in the national repository. This work presents a proposal of reduction of the volume of the liquid wastes generated by nuclear facilities by drying by for reduction of volume for a greater incorporation of wastes in cement. Using spray dryer, an 18% reduction in the production of cemented waste products was observed in relation to the method currently used with compressive strength measurement above the standard, and it is believed that this value may increase in future tests. (author)

  11. Methodology for quantification of waste generated in Spanish railway construction works

    International Nuclear Information System (INIS)

    Guzmán Báez, Ana de; Villoria Sáez, Paola; Río Merino, Mercedes del; García Navarro, Justo

    2012-01-01

    Highlights: ► Two equations for C and D waste estimation in railway construction works are developed. ► Mixed C and D waste is the most generated category during railway construction works. ► Tunnel construction is essential to quantify the waste generated during the works. ► There is a relationship between C and D waste generated and railway functional units. ► The methodology proposed can be used to obtain new constants for other areas. - Abstract: In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C and D) waste. Specifically, in 2006, Spain generated roughly 47 million tons of C and D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C and D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C and D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C and D waste management in railway projects, by developing a model for C and D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C and D waste likely to be generated in railway construction projects, including the category of C and D waste generated for the entire project.

  12. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  13. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  14. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  15. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  16. Source segregation of food waste in office areas: Factors affecting waste generation rates and quality

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    2015-01-01

    Existing legislation mandates that the amount of waste being recycled should be increased. Among others, in its Resource Strategy Plan, the Danish Government decided that at least 60% of food waste generated by the service sector, including in office areas, should be source-sorted and collected...... separately by 2018. To assess the achievability of these targets, source-sorted food waste and residual waste from office areas was collected and weighed on a daily basis during 133 working days. Waste composition analyses were conducted every week to investigate the efficiency of the source-sorting campaign...... and the purity of the source-sorted food waste. The moisture content of source-sorted food waste and residual waste fractions, and potential methane production from source-sorted food waste, was also investigated.Food waste generation equated to 23. ±. 5. kg/employee/year, of which 20. ±. 5. kg...

  17. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  18. Estimation of construction waste generation and management in Thailand.

    Science.gov (United States)

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  19. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  20. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  1. Development of performance assessment methodology for establishment of quantitative acceptance criteria of near-surface radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. R.; Lee, E. Y.; Park, J. W.; Chang, G. M.; Park, H. Y.; Yeom, Y. S. [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2002-03-15

    The contents and the scope of this study are as follows : review of state-of-the-art on the establishment of waste acceptance criteria in foreign near-surface radioactive waste disposal facilities, investigation of radiological assessment methodologies and scenarios, investigation of existing models and computer codes used in performance/safety assessment, development of a performance assessment methodology(draft) to derive quantitatively radionuclide acceptance criteria of domestic near-surface disposal facility, preliminary performance/safety assessment in accordance with the developed methodology.

  2. Gas generation from transuranic waste degradation: an interim assessment

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1979-10-01

    A review of all available, applicable data pertaining to gas generation from the degradation of transuranic waste matrix material and packaging is presented. Waste forms are representative of existing defense-related TRU wastes and include cellulosics, plastics, rubbers, concrete, process sludges, and mild steel. Degradation mechanisms studied were radiolysis, thermal, bacterial, and chemical corrosion. Gas generation rates are presented in terms of moles of gas produced per year per drum, and in G(gas) values for radiolytic degradation. Comparison of generation rates is made, as is a discussion of potential short- and long-term concerns. Techniques for reducing gas generation rates are discussed. 6 figures, 10 tables

  3. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  4. Requirements for a radioactive waste data base

    International Nuclear Information System (INIS)

    Sato, Y.; Kobayashi, I.; Kikuchi, M.

    1990-01-01

    With the progress of nuclear fuel cycle in Japan, various types of radioactive waste will generate at each nuclear facility in the cycle. Therefor generated volume and stored quantity of waste will be supposed to increase. From the viewpoints of safety and public acceptance, by using mainframe computer it is necessary that the treatment of historical waste data, the estimation of generated waste volume and stored quantity and the investigation of research and development status of waste processing and disposal are carried out. This paper proposes design and development of the radioactive waste data base which is able to properly and correctly manage and grasp numerical and/or documentary information for generated radioactive waste. So the data base will be expected to use for planning the future management of radioactive waste. (author)

  5. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    Energy Technology Data Exchange (ETDEWEB)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  6. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    International Nuclear Information System (INIS)

    WERRY, S.M.

    2000-01-01

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151

  7. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  8. Generation of electronic waste in India: Current scenario, dilemmas ...

    African Journals Online (AJOL)

    This paper tries to quantify the amount of E-waste generated in India with the related stakeholder involvement. Electronic waste (E-waste) or waste electrical and electronic equipments (WEEE), which is relatively a recent addition to the hazardous waste stream, is drawing rapid attention across the globe as the quantity ...

  9. Construction and demolition waste generation rates for high-rise buildings in Malaysia.

    Science.gov (United States)

    Mah, Chooi Mei; Fujiwara, Takeshi; Ho, Chin Siong

    2016-12-01

    Construction and demolition waste continues to sharply increase in step with the economic growth of less developed countries. Though the construction industry is large, it is composed of small firms with individual waste management practices, often leading to the deleterious environmental outcomes. Quantifying construction and demolition waste generation allows policy makers and stakeholders to understand the true internal and external costs of construction, providing a necessary foundation for waste management planning that may overcome deleterious environmental outcomes and may be both economically and environmentally optimal. This study offers a theoretical method for estimating the construction and demolition project waste generation rate by utilising available data, including waste disposal truck size and number, and waste volume and composition. This method is proposed as a less burdensome and more broadly applicable alternative, in contrast to waste estimation by on-site hand sorting and weighing. The developed method is applied to 11 projects across Malaysia as the case study. This study quantifies waste generation rate and illustrates the construction method in influencing the waste generation rate, estimating that the conventional construction method has a waste generation rate of 9.88 t 100 m -2 , the mixed-construction method has a waste generation rate of 3.29 t 100 m -2 , and demolition projects have a waste generation rate of 104.28 t 100 m -2 . © The Author(s) 2016.

  10. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  11. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  12. Radioactive Waste Management Produced from the Generator Tc-99m Products

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Affan Ahmad; Tuyono

    2012-01-01

    Generator Tc-99m product is used in hospitals will result in radioactive waste both solid waste in the form of a column compacted Tc-99m Generator, bottles vials and bottles of saline fluid path series: burning of solid waste in the form of paper straw, hand gloves, and cardboard (vial packing boxes and wrapping Generator) and liquid waste form leaching results lead pot and enclosure. So that these wastes pose no radiological consequences for both humans and the environment, it must be properly managed in accordance with the provisions. In order to realize these expectations should be made so that the radioactive waste management system can be handled effectively, optimal, economical, safe and secure and in accordance with applicable regulations. Management system is in it include: procedures for handling radioactive waste, solid waste compacted, burning of solid waste management, liquid waste handling, shipment of radioactive waste and determination of the amount of radiation doses received by workers who handle radioactive waste. (author)

  13. Determination of acceptable risk criteria for nuclear waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1977-01-01

    The initial phase of the work performed during FY 1977 consisted of performing a ''scoping'' study to define issues, determine an optimal methodology for their resolution, and compile a data base for acceptable risk criteria development. The issues, spanning technical, psychological, and ethical dimensions, were categorized in seven major areas: (1) unplanned or accidental events, (2) present vs future risks, (3) institutional controls and retrievability, (4) dose-response mechanism and uncertainty, (5) spatial distribution of exposed populations, (6) different types of nuclear wastes, and (7) public perception. The optimum methodology for developing ARC was determined to be multi-attribute decision analysis encompassing numerous specific techniques for choosing, from among several alternatives, the optimal course of action when the alternatives are constrained to meet specified attributes. The data base developed during the study comprises existing regulations and guidelines, maximum permissible dose, natural geologic hazards, nonradioactive hazardous waste practices, bioethical perspectives, and data from an opinion survey

  14. Determination of acceptable risk criteria for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.

    1977-10-21

    The initial phase of the work performed during FY 1977 consisted of performing a ''scoping'' study to define issues, determine an optimal methodology for their resolution, and compile a data base for acceptable risk criteria development. The issues, spanning technical, psychological, and ethical dimensions, were categorized in seven major areas: (1) unplanned or accidental events, (2) present vs future risks, (3) institutional controls and retrievability, (4) dose-response mechanism and uncertainty, (5) spatial distribution of exposed populations, (6) different types of nuclear wastes, and (7) public perception. The optimum methodology for developing ARC was determined to be multi-attribute decision analysis encompassing numerous specific techniques for choosing, from among several alternatives, the optimal course of action when the alternatives are constrained to meet specified attributes. The data base developed during the study comprises existing regulations and guidelines, maximum permissible dose, natural geologic hazards, nonradioactive hazardous waste practices, bioethical perspectives, and data from an opinion survey.

  15. Nuclear waste in public acceptance

    International Nuclear Information System (INIS)

    Vastchenko, Svetlana V.

    2003-01-01

    The existing problem on a faithful acceptance of nuclear information by population is connected, to a considerable extent, with a bad nuclear 'reputation' because of a great amount of misrepresented and false information from 'the greens'. In contrast to a bare style of professionals often neglecting an emotional perception, a loud voice of 'the greens' appeals both to the head, and to the heart of the audience. People pattern their behaviour weakly on problems of safe application of different irradiation sources in industry, conditions of life, medicine and everyday life. Radiation danger of some sources is often exaggerated (computers, nuclear technologies, radiation treatment) and the danger of the others is, on the contrary, underestimated (nuclear and roentgen methods of diagnostics and medical treatment). The majority of our citizens do not know which level of radiation is normal and safe, which ways radioactive substances intake into the organism of a human being and how to diminish the dose load on the organism by simple measures. Only specialists can be orientated themselves in a great number of radiation units. Low level of knowledge of the population and false conceptions are connected with the fact that they are mainly informed about nuclear technologies from mass media, where the voice of 'Greenpeace' is loudly sounded, but they often give misrepresented and false information doing it in the very emotional form. In contrast to them, scientists-professionals often ignore a sensitive part of apprehending of information and do not attach importance to it. As a rule, the style of specialists is of a serious academician character when they meet with the public. People preconception to nuclear waste and distrust to a positive information concerning nuclear technologies are explained, to a considerable extent, by a bivalent type of thinking when people operate by two opposite conceptions only, such as 'there is' or 'there is not' (there is or there is not

  16. Nuclear waste in public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Vastchenko, Svetlana V. [Joint Institute for Power and Nuclear Research - Sosny / National Academy of Science, A.K.Krasin Str., 99, Minsk 220109 (Belarus)

    2003-07-01

    The existing problem on a faithful acceptance of nuclear information by population is connected, to a considerable extent, with a bad nuclear 'reputation' because of a great amount of misrepresented and false information from 'the greens'. In contrast to a bare style of professionals often neglecting an emotional perception, a loud voice of 'the greens' appeals both to the head, and to the heart of the audience. People pattern their behaviour weakly on problems of safe application of different irradiation sources in industry, conditions of life, medicine and everyday life. Radiation danger of some sources is often exaggerated (computers, nuclear technologies, radiation treatment) and the danger of the others is, on the contrary, underestimated (nuclear and roentgen methods of diagnostics and medical treatment). The majority of our citizens do not know which level of radiation is normal and safe, which ways radioactive substances intake into the organism of a human being and how to diminish the dose load on the organism by simple measures. Only specialists can be orientated themselves in a great number of radiation units. Low level of knowledge of the population and false conceptions are connected with the fact that they are mainly informed about nuclear technologies from mass media, where the voice of 'Greenpeace' is loudly sounded, but they often give misrepresented and false information doing it in the very emotional form. In contrast to them, scientists-professionals often ignore a sensitive part of apprehending of information and do not attach importance to it. As a rule, the style of specialists is of a serious academician character when they meet with the public. People preconception to nuclear waste and distrust to a positive information concerning nuclear technologies are explained, to a considerable extent, by a bivalent type of thinking when people operate by two opposite conceptions only, such as 'there is

  17. Energy and wastes. Chapter 1

    International Nuclear Information System (INIS)

    2002-01-01

    In the Chapter 1 'Energy and wastes' it is shown the wastes generation inevitability at power production, because there are no absolutely wasteless technologies. After energy production technologies analysis the data that nuclear energy is most ecologically acceptable at maintenance related radiation safety measures

  18. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  19. Audits of hazardous waste TSDFs let generators sleep easy

    International Nuclear Information System (INIS)

    Carr, F.H.

    1990-01-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them

  20. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  1. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  2. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  3. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  4. Diesel generator trailer acceptance test procedure

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1994-01-01

    This Acceptance Test Procedure (ATP) will document compliance with the requirements of WHC-S-0252 Rev. 1 and ECNs 609271, and 609272. The equipment being tested is a 150KW Diesel Generator mounted on a trailer with switchgear. The unit was purchased as a Design and Fabrication procurement activity. The ATP was written by the Seller and will be performed by the Seller with representatives of the Westinghouse Hanford Company witnessing the test at the Seller's location

  5. Solid low-level waste certification strategy

    International Nuclear Information System (INIS)

    Smith, M.A.

    1991-08-01

    The purpose of the Solid Low-Level Waste (SLLW) Certification Program is to provide assurance that SLLW generated at the ORNL meets the applicable waste acceptance criteria for those facilities to which the waste is sent for treatment, handling, storage, or disposal. This document describes the strategy to be used for certification of SLLW or ORNL. The SLLW Certification Program applies to all ORNL operations involving the generation, shipment, handling, treatment, storage and disposal of SLLW. Mixed wastes, containing both hazardous and radioactive constituents, and transuranic wastes are not included in the scope of this document. 13 refs., 3 figs

  6. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  7. Strategy for managing mixed waste at a plant site

    International Nuclear Information System (INIS)

    Fentiman, A.

    1991-01-01

    No waste disposal site is currently accepting mixed waste, but facilities across the country continue to generate it. The waste manager at each site is faced with two problems: how to manage the mixed waste already on-site and how to minimize the amount of new waste generated. A strategy has been developed to address each problem. A key element of the strategy is a building-by-building survey of the site. The survey provides information on how and where mixed waste is generated and stored. This paper describes a method for planning and conducting a site-wide mixed-waste survey. It then outlines approaches to managing existing mixed waste and to minimizing mixed-waste generation using information from the survey

  8. Survey of a technology to introduce the waste-fueled power generation. Basic manual for introduction of the waste-fueled power generation; Haikibutsu hatsuden donyu gijutsu chosa. Haikibutsu hatsuden donyu kihon manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Local government offices, etc., which are expected to shoulder responsibility for introducing the waste-fueled power generation, want to need exact information on technical information concerning the waste-fueled power generation and the method to materialize the introduction plan, etc. Therefore, Electric Power Development Co. surveyed and studied it under the contract with NEDO. The results were collected together as a basic manual for introduction of the waste-fueled power generation. As an outline of the waste-fueled power generation, the manual explains the significance, the present situation and potentials, the waste-fueled power system, an outline of working out the waste-fueled power generation plan, an outline of construction and operation/maintenance of the waste-fueled power generation, an outline of various systems relating to the waste-fueled power generation, etc. As the items for the study of making a concrete plan for power generation equipment, the manual explains the amount of refuse to be incinerated, the present status of generation capacity as viewed from the quality of refuse, the quality of refuse and the design of power generation equipment, boiler efficiency, power generation efficiency, construction cost and operation cost, etc. In addition, the paper describes a case study of the waste-fueled power generation plan. 118 figs., 39 tabs.

  9. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  10. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  11. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  12. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  13. Radioactive Wastes Generated From JAERI Partitioning-Transmutation Fuel Cycle

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Morita, Yasuji; Nishihara, Kenji

    2003-01-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI's processes. Long-lived radionuclides such as 14 C and 59 Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (authors)

  14. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  15. Annual report of waste generation and pollution prevention progress 1998; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities

  16. Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities

    International Nuclear Information System (INIS)

    Wolsink, Maarten

    2010-01-01

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are

  17. Management of liquid radioactive wastes at PNRI

    International Nuclear Information System (INIS)

    Garcia, C.M.

    1994-10-01

    Liquid wastes accepted at PNRI waste management facility are generated by hospitals and research institutions from all over the country including those generated from the research laboratories within the PNRI. The operation of the Philippine TRIGA Research Reactor is also a potential source of liquid waste to be handled and managed by the facility in the future. This technical report is a result of the study of the present status and development of the management of liquid wastes at PNRI. (auth.). 8 refs.; 3 figs.; 4 tabs

  18. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Fueled viking generator S/N 106 acceptance vibration test report

    International Nuclear Information System (INIS)

    Anderson, C.; Brewer, C.O.; Abrahamson, S.G.

    1976-01-01

    The Viking Generator S/N 106 was vibrated to the Teledyne Isotope Flight Acceptance Schedule (Random Only) with no deviation from normal generator functional output. Radiographic analysis and power tests before and after the vibration test indicated no change in the condition of the generator. The work was conducted in the Alpha Fuels Environmental Test Facility at Mound Laboratory

  20. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  1. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Science.gov (United States)

    2010-07-01

    ... conditionally exempt small quantity generator waste. 273.8 Section 273.8 Protection of Environment ENVIRONMENTAL....8 Applicability—household and conditionally exempt small quantity generator waste. (a) Persons... universal wastes defined at § 273.9; and/or (2) Conditionally exempt small quantity generator wastes that...

  2. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    Science.gov (United States)

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  3. Preliminary criticality study supporting transuranic waste acceptance into the plasma hearth process

    International Nuclear Information System (INIS)

    Slate, L.J.; Santee, G.E. Jr.

    1996-01-01

    This study documents preliminary scoping calculations to address criticality issues associated with the processing of transuranic (TRU) waste and TRU mixed waste in the Plasma Hearth Process (PHP) Test Project. To assess the criticality potential associated with processing TRU waste, the process flow in the PHP is evaluated to identify the stages where criticality could occur. A criticality analysis methodology is then formulated to analyze the criticality potential. Based on these analyses, TRU acceptance criteria can be defined for the PHP. For the current level of analysis, the methodology only assesses the physical system as designed and does not address issues associated with the criticality double contingency principle. The analyses suggest that criticality within the PHP system and within the planned treatment residue (stag) containers does not pose a criticality hazard even when processing waste feed drums containing a quantity of TRU greater than would be reasonably expected. The analyses also indicate that the quantity of TRU that can be processed during each batch is controlled by moving and storage conditions for the resulting slag collection drums

  4. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  5. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  6. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  7. Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

    2013-04-01

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated

  8. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  9. Assessment of LANL PCB waste management documentation

    International Nuclear Information System (INIS)

    David, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Polychlorinated Biphenyls (PCB) Waste Acceptance Criteria (WAC) to determine if it meets applicable DOE and Code of Federal Regulation (CFR) requirements. DOE Order 5820.2A and 40 CFR 761 (Polychlorinated Biphenyls Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions) set forth requirements and guidelines for the establishment of Waste Acceptance Criteria. The primary purpose of a PCB WAC is to provide generators and waste management with established criteria that must be met before PCB wastes can be accepted for treatment, storage, and/or disposal. An annotated outline for a generic PCB WAC was developed based on the requirements of 5820.2A and 40 CFR 761. The major elements that should be addressed by a PCB WAC were determined to be as follows: Waste Package/Container, Waste Forms, PCB Concentrations, Labeling, and Data Package Certification

  10. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  11. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  12. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    International Nuclear Information System (INIS)

    González Pericot, N.; Villoria Sáez, P.; Del Río Merino, M.; Liébana Carrasco, O.

    2014-01-01

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites

  13. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  14. Methodology for quantification of waste generated in Spanish railway construction works.

    Science.gov (United States)

    de Guzmán Báez, Ana; Villoria Sáez, Paola; del Río Merino, Mercedes; García Navarro, Justo

    2012-05-01

    In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C&D) waste. Specifically, in 2006, Spain generated roughly 47million tons of C&D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C&D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C&D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C&D waste management in railway projects, by developing a model for C&D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C&D waste likely to be generated in railway construction projects, including the category of C&D waste generated for the entire project. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Waste management at WAK

    International Nuclear Information System (INIS)

    Kuhn, K.D.; Willax, H.O.

    1986-01-01

    After a short description of the WAK plant and its reprocessing and intervention activities, types and sources of WAK wastes are described. Roughly half of the waste volume is generated during reprocessing, the other half during intervention periods. Most of the waste is transported to KfK for conditioning. Only waste from the head end cell is cementated on the spot. HLLW is stored in stainless steel tanks. Some results from analyzing this stuff are given. The corrosion behavior is acceptable for medium term storage. (orig.)

  16. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China.

    Science.gov (United States)

    Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan

    2018-02-20

    As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    . The outcome of the study indicates that, despite a common ‘minimum’ regulatory regime, the performance of waste management systems is very different among member states. The best performing member states are the nations which have promoted efficient material and energy recovery, leading to significant...... operated by each member state (structural indicators). Managing waste appropriately generates environmental benefits, leading to the comforting, and potentially misleading impression that waste generation is acceptable, as long as environmental value is gained from the recovery of materials and energy....... However, it is quite clear that, if waste is not produced in the first place, through waste prevention activities, waste management impacts and benefits cease to exist. Problem solved. The issue is that a ‘waste free’ or a ‘zero waste’ society is a purely abstract concept that has little value...

  18. Nuclear power plants waste management practices in France

    International Nuclear Information System (INIS)

    Matsuda, Fumio

    1998-01-01

    This survey offers a complete review concerning the nuclear power plants waste management in France from generation to disposal, as well as future evolutions. Fundamental Safety Rule specified by the government defines safety objectives, design bases for surface disposals and preliminary terms for acceptance of waste packages on the surface disposal site. A governmental decree authorizes the creation of CSA (Centre de Stockage de l'Aude; French surface repository), and defines the limits of radiological inventory of the disposal facility. The national waste agency ANDRA was established in 1979 by government (turned into public in 1991), and ANDRA defines the technical specifications involving acceptance criteria of the waste packages. The main feature of the French management includes; Comprehensive quality assurance program that encompasses all area of the management. Centralized installation for the melting of contaminated scrap metals and incineration of low level technological wastes. Mobile unit for common treatment of ion exchange resin. Concrete package assuring the long term containment. Complete tracking system of wastes from generation to disposal. This survey would be useful in the consideration of Japanese waste management including miscellaneous wastes, high βγ wastes, large metallic wastes, etc. (author)

  19. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  20. National profile on commercially generated low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ''National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.'' The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy's (DOES) management of mixed waste and generally does not address wastes from remedial action activities

  1. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  2. Requirements on radioactive waste for disposal (waste acceptance requirements as of February 2017). Konrad repository; Anforderungen an endzulagernde radioaktive Abfaelle (Endlagerungsbedingungen, Stand: Februar 2017). Endlager Konrad

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, Karin; Moeller, Kai (eds.)

    2017-02-10

    The Bundesamt fuer Strahlenschutz (BfS - Federal Office for Radiation Protection) has established waste acceptance requirements for the Konrad repository. These requirements were developed on the basis of the results of a site-specific safety assessment. They include general requirements on waste packages and specific requirements on waste forms and packagings as well as limitations for activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. Requirements on documentation and delivery of waste packages were additionally included.

  3. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    Science.gov (United States)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  4. Radioisotope Characterization of HB Line Low Activity Waste

    International Nuclear Information System (INIS)

    Snyder, S.J.

    1999-01-01

    The purpose of this document is to provide a physical, chemical, hazardous and radiological characterization of Low-Level Waste (LLW) generated in HB-Line as required by the 1S Manual, Savannah River Site Waste Acceptance Criteria Manual

  5. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  6. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  7. Quantifying and analysing food waste generated by Indonesian undergraduate students

    Science.gov (United States)

    Mandasari, P.

    2018-03-01

    Despite the fact that environmental consequences derived from food waste have been widely known, studies on the amount of food waste and its influencing factors have relatively been paid little attention. Addressing this shortage, this paper aimed to quantify monthly avoidable food waste generated by Indonesian undergraduate students and analyse factors influencing the occurrence of avoidable food waste. Based on data from 106 undergraduate students, descriptive statistics and logistic regression were applied in this study. The results indicated that 4,987.5 g of food waste was generated in a month (equal to 59,850 g yearly); or 47.05 g per person monthly (equal to 564.62 g per person per a year). Meanwhile, eating out frequency and gender were found to be significant predictors of food waste occurrence.

  8. Participatory approach, acceptability and transparency of waste management LCAs: case studies of Torino and Cuneo.

    Science.gov (United States)

    Blengini, Gian Andrea; Fantoni, Moris; Busto, Mirko; Genon, Giuseppe; Zanetti, Maria Chiara

    2012-09-01

    The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  11. Assessment of national systems for obtaining local acceptance of waste management siting and routing activities

    Energy Technology Data Exchange (ETDEWEB)

    Paige, H.W.; Lipman, D.S.; Owens, J.E.

    1980-07-01

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties of obtaining local acceptance for siting of waste management facilities and activities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, time did not permit addressing in any detail their relevance to common problems in the US. It would appear the US could benefit from a periodic review of the successes and failures of these efforts, including analysis of their applicability to the US system. Of those countries (Germany, Sweden, Switzerland, Japan, Belgium, and the US) who are working to a time table for the preparation of a high-level waste (HLW) repository, Germany is the only country to have gained local siting acceptance for theirs. With this (the most difficult of siting problems) behind them they appear to be in the best overall condition relative to waste management progress and plans. This has been achieved without a particularly favorable political structure, made up for by determination on the part of the political leadership. Of the remaining three countries studied (France, UK and Canada) France, with its AVM production facility, is clearly the world leader in the HLW immobilization aspect of waste management. France, Belgium and the UK appear to have the least favorable political structures and environments for arriving at waste management decisions. US, Switzerland and Canada appear to have the least favorable political structures and environments for arriving at waste management decisions.

  12. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  13. Assessment of national waste generation in EU Member States’ efficiency

    OpenAIRE

    Halkos, George; Petrou, Kleoniki Natalia

    2018-01-01

    Waste generation and management may be considered as either a by-product of economic actions or even used as input to economic activity like energy recovery. Every country produces different amounts of municipal solid waste (MSW) and with different composition. This paper deals with the efficiency of 28 EU Member States for the years 2008, 2010 and 2012 by employing Data Envelopment Analysis (DEA) and by using eight parameters, namely waste generation, employment rate, capital formation, GDP,...

  14. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  15. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  16. Management of radioactive wastes with negligible heat generation

    International Nuclear Information System (INIS)

    Alter, U.

    1990-01-01

    In the Federal Republic of Germany only one company is responsible for the management of radioactive wastes with negligible heat generations. This is the Company for Nuclear Service (GNS mbH). It was the intention of the competent authorities of the FRG to intensify state control during conditioning, intermediate storage and transport of low- and medium level radioactive waste. A guideline provides that the responsibility of the waste producers and of those concerned with conditioning, storage and transport of radioactive waste is assigned in the individual case and that the qualitative and quantitative registration of all waste streams will be ensured. An overview of the radioactive waste management within the last two years in the FRG is presented. (orig./DG)

  17. Thirty-year solid waste generation forecast for facilities at SRS

    International Nuclear Information System (INIS)

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D ampersand D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast

  18. Present state of the design and realization of regional radioactive waste depositories and waste acceptance criteria for disposal

    International Nuclear Information System (INIS)

    Kortus, J.

    1988-01-01

    Surface type regional depositories for radioactive wastes from nuclear power plants are described in detail. The depository of the Mochovce nuclear power plant is located near the plant, that of the Dukovany nuclear power plant is directly on the premises of the plant. Particular attention is paid to the design of the monolithic reinforced concrete pits, draining of rainwater from their surface, draining of seeping rainwater from the pit environment by means of a double drainage system, and insulation of the pits against water. The construction of the Mochovce depository started in 1987; some experience gained from this activity is presented. The radioactive waste acceptance criteria for depositories of this kind, based on safety analysis, are given. (author). 2 figs

  19. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  20. Perceived risks of nuclear fuel waste disposal: trust, compensation, and public acceptance in Canada

    International Nuclear Information System (INIS)

    Hine, D.W.; Summers, C.

    1996-01-01

    AECL's recommendation to place the high-level radioactive waste in corrosion resistant containers and bury it in underground vaults several hundred metres deep in the rock of the Canadian shield is presently under federal review. If and when the disposal concept is approved by the federal review panel, a search will begin for a suitable host community. Given that siting guidelines prevent the government from unilaterally imposing the waste on a reluctant community, identifying a suitable site may represent the single greatest obstacle to successfully implementing the disposal concept. Even if the concept is approved by the review panel, it may be very difficult to find a community that is willing to accept the waste. In the US, efforts to site an underground disposal facility for high-level nuclear waste at Yucca Mountain has run into strong opposition from local residents and politicians, resulting in long delays and major cost overruns

  1. Identification and understanding the factors affecting the public and political acceptance of long term storage of spent fuel and high-level radioactive wastes

    International Nuclear Information System (INIS)

    Gorea, Valica

    2006-01-01

    In the end of 2004, according to the information available to the IAEA, there were 440 nuclear reactors operating worldwide, with a total net capacity of 366.3 GW(e), 6 of them being connected to the grid in 2004 ( 2 in Ukraine, one each in China, Japan and the Russian Federation and a reconnection in Canada) by comparison with 2 connections and 2 re-connections in 2003. Also, in the end of 2004, 26 nuclear power plants were under construction with a total net capacity of 20.8 GW(e). The conclusion accepted by common consent is that the nuclear power is still in progress and represents one of the options for power security on long and middle term. If we refer to the nuclear fusion which will produce commercial electric power, over 30 - 40 years, in practically unlimited quantities, the above underlining becomes even more evident. Fortunately, besides the beneficent characteristics, such as: clean, stable as engendering and price, has also a negative characteristic, which generally breathes fear into the people: radioactive waste. A classification of the radioactive waste is not the target of this presentation. I just want to point that a nuclear power plant produces during the time spent fuel - long life high radioactive, generating heat. Another high radioactive waste have similar characteristics (HLW = High Level Waste) for which reason these two categories of wastes are treated together. The spent fuel and the High Level Waste are interim stored for cooling, for around 50 years, afterwards it is transferred to the final repository where it will be kept for hundreds of years, in the case of an open fuel cycle and this is also the case of Cernavoda NPP. Taking into consideration that the Cernavoda Unit 1 reaches the age of 10 years of commercial running during December 2006, it results that the issue of the final disposal is not such urgent as it looks. The objectives of long term management of radioactive waste are public health and protection of the environment

  2. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  3. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...

  4. Hospital waste management in Lebanon

    International Nuclear Information System (INIS)

    Chaker, Alissar

    1999-01-01

    Hospital wastes comprises approximately 80% domestic waste components, also known as non-risk waste and 20% hazardous or risk waste. The 20% of the hospital waste stream or the risk waste (also known as infectious, medical, clinical wastes) comprises components which could be potentially contaminated with infections, chemical or radioactive agents. Therefore, it should be handled and disposed of in such a manner as to minimize potential human exposure and cross-contamination. Hospital risk waste and be subdivided into seven general categories as follows: infections, anatomical/pathological, chemical, pharmaceutical, radioactive waste, sharps and pressurised containers. These waste categories are generated by many types of health care establishments, including hospitals, clinics, infirmaries.... The document presents also tables of number of hospitals and estimated bed number in different regions in Lebanon; estimated hospital risk and non-risk waste generation per tonnes per day for the years 1998 until 2010 and finally sensitivity analysis of estimated generation of hospital risk waste in Lebanon per tonnes per day for the years 1998 until 2010. The management, treatment and disposal of hospital risk waste constitute important environmental and public safety issues. It is recognised that there is alack of infrastructure for the safe and environmentally acceptable disposal of hospital waste in Lebanon

  5. Framing ethical acceptability: a problem with nuclear waste in Canada.

    Science.gov (United States)

    Wilding, Ethan T

    2012-06-01

    Ethical frameworks are often used in professional fields as a means of providing explicit ethical guidance for individuals and institutions when confronted with ethically important decisions. The notion of an ethical framework has received little critical attention, however, and the concept subsequently lends itself easily to misuse and ambiguous application. This is the case with the 'ethical framework' offered by Canada's Nuclear Waste Management Organization (NWMO), the crown-corporation which owns and is responsible for the long-term management of Canada's high-level nuclear fuel waste. It makes a very specific claim, namely that it is managing Canada's long-lived radioactive nuclear fuel waste in an ethically responsible manner. According to this organization, what it means to behave in an ethically responsible manner is to act and develop policy in accordance with its ethical framework. What, then, is its ethical framework, and can it be satisfied? In this paper I will show that the NWMO's ethical and social framework is deeply flawed in two respects: (a) it fails to meet the minimum requirements of a code of ethic or ethical framework by offering only questions, and no principles or rules of conduct; and (b) if posed as principles or rules of conduct, some of its questions are unsatisfiable. In particular, I will show that one of its claims, namely that it seek informed consent from individuals exposed to risk of harm from nuclear waste, cannot be satisfied as formulated. The result is that the NWMO's ethical framework is not, at present, ethically acceptable.

  6. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  7. Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System

    Directory of Open Access Journals (Sweden)

    Chang-Gi Min

    2017-06-01

    Full Text Available This study proposes an evaluation method for variable generation (VG acceptability with an adequate level of power system flexibility. In this method, a risk index referred to as the ramping capability shortage expectation (RSE is used to quantify flexibility. The RSE value of the current power system is selected as the adequate level of flexibility (i.e., RSE criterion. VG acceptability is represented by the VG penetration level for the RSE criterion. The proposed evaluation method was applied to the generation expansion plan in Korea for 2029 in order to examine the validity of the existing plan for VG penetration. Sensitivity analysis was also performed to analyze the effects of changes in system uncertainty on VG acceptability. The results show that the planned VG penetration level for 2029 can improve by approximately 12% while securing flexibility.

  8. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    Science.gov (United States)

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Changing needs in a waste information management system: A disposer's viewpoint

    International Nuclear Information System (INIS)

    Fauver, S.L.

    1987-01-01

    An enhanced radioactive waste management information system (RWMIS) is currently under development to accommodate more specific reporting requirements. Radioactive waste management project (RWMP) has recently completed a draft revision of its Operational Radioactive Defense Waste Management Plan for the Nevada Test Site which identifies NTS waste acceptance criteria and revised data requirements for waste generators. Emphasis shifts to the characterization of individual waste packages. RWMP proposes that the waste generator number individual waste packages in a manner which identifies the generator, waste stream, container type, and method of treatment or stabilization. A listing of radionuclides and concentrations will be required, as well as physical and chemical data specific to each waste package. Analytical methods and techniques used for waste package characterization must be detailed by each generator in their quality assurance plan which is reviewed by DOE Nevada Operations Office

  10. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  11. Integrated software system for low level waste management

    International Nuclear Information System (INIS)

    Worku, G.

    1995-01-01

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal under the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications

  12. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  13. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  14. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  15. Challenges in development of matrices for vitrification of old legacy waste and high-level radioactive waste generated from reprocessing of AHWR and FBR spent fuel

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2012-01-01

    Majority of radioactivity in entire nuclear fuel cycle is concentrated in HLW. A three step strategy for management of HLW has been adopted in India. This involves immobilization of waste oxides in stable and inert solid matrices, interim retrievable storage of the conditioned waste product under continuous cooling and disposal in deep geological formations. Glass has been accepted as most suitable matrix world-wide for immobilization of HLW, because of its attractive features like ability to accommodate wide range of waste constituents, modest processing temperatures, adequate chemical, thermal and radiation stability. Borosilicate glass matrix developed by BARC in collaboration with CGCRI has been adopted in India for immobilization of HLW. In view of compositional variation of HLW from site to site, tailor make changes in the glass formulations are often necessary to incorporate all the waste constituents and having the product of desirable characteristics. The vitrified waste products made with different glass formulations and simulated waste need to be characterized for chemical durability, thermal stability, homogeneity etc. before finalizing a suitable glass formulation. The present extended abstract summarises the studies carried out for development of glass formulations for vitrification of legacy waste and futuristic waste likely to be generated from AHWR and FBR having wide variations in their compositions. The presently stored HLW at Trombay is characterized by significant concentrations of uranium, sodium and sulphate in addition to fission products, corrosion products and small amount of other actinides

  16. Quantitative assessment of medical waste generation in the capital city of Bangladesh

    International Nuclear Information System (INIS)

    Patwary, Masum A.; O'Hare, William Thomas; Street, Graham; Maudood Elahi, K.; Hossain, Syed Shahadat; Sarker, Mosharraf H.

    2009-01-01

    There is a concern that mismanagement of medical waste in developing countries may be a significant risk factor for disease transmission. Quantitative estimation of medical waste generation is needed to estimate the potential risk and as a basis for any waste management plan. Dhaka City, the capital of Bangladesh, is an example of a major city in a developing country where there has been no rigorous estimation of medical waste generation based upon a thorough scientific study. These estimates were obtained by stringent weighing of waste in a carefully chosen, representative, sample of HCEs, including non-residential diagnostic centres. This study used a statistically designed sampling of waste generation in a broad range of Health Care Establishments (HCEs) to indicate that the amount of waste produced in Dhaka can be estimated to be 37 ± 5 ton per day. The proportion of this waste that would be classified as hazardous waste by World Health Organisation (WHO) guidelines was found to be approximately 21%. The amount of waste, and the proportion of hazardous waste, was found to vary significantly with the size and type of HCE.

  17. Wastes power generation introduction manual. Main edition; Haikibutsu hatsuden donyu manual. Honpen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A practical and specific working manual was prepared that satisfies the standards and criteria defined in the relevant law such as the Sanitation and Environment Ordinance No. 249, the guideline for generation of dioxins caused by refuse disposal, and that enables the reports evaluating the wastes quantitatively to be submitted to heads of the local governments when persons in charge of planning the introduction of wastes power generation at local governments discuss the wastes power generation systems. Taking general combustible wastes and sewage sludge treatments as the object, this paper details from the economic performance to size of wastes treatment at the priority limit for the power generation facility introduction. The subject power generation systems include the following: the stoker furnace/separation type ash melting furnace power generation system, the fluidized bed/separation type ash melting furnace power generation system, and the direct type gasification melting furnace power generation system, whose establishment of safety, reliability and stability have been verified by full-size system operation record available at the local governments, the gas turbine re-powering composite type power generation system (gas turbine power plants are installed beside the incineration furnaces) that makes high-efficiency power generation possible, and the RDF power generation system (power generation by mixed combustion with general refuses, and power generation using RDF (refuse derived fuel) exclusive combustion). Other important discussion and assessment items include environment and resource utilization performances. (NEDO)

  18. Waste-form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    Contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements

  19. Educational project for the nuclear power and nuclear waste public acceptance fostering

    International Nuclear Information System (INIS)

    Constantin, M.; Diaconu, Daniela

    2005-01-01

    Full text: Until now, public acceptance of nuclear power in Romania can be assessed as good. The main motivations could be: the primacy effect of the information, the poverty, the absence of the interest, the relative low informing level. However we expect important changes in the near future: more active NGOs with anti-nuclear opinion, the public's awareness will be more important, serious opposition against the continuation of the nuclear development may appear followed by a reformulation of the Romanian ecologists ideas. The problem of radioactive nuclear wastes (RNW) is the most sensitive and, related to the public opinion, we expect it will become crucial in 10-15 years. The main assumption of our project is that children who are now in schools will be tomorrow's decision makers on 'nuclear energy and RNW. Thus, we intend to prepare the young generation for the future participation in the decision making process related to RNW. The paper shows the main ideas (initial conditions obtained by actual knowledge level measurements, constraints, methods, information contents, evaluation methods and produced outputs) of the educational proposed programme. The work is part of the Romanian contribution to COWAM FP6 project. (authors)

  20. The Texas low-level waste compact: Classification and semantic problems

    International Nuclear Information System (INIS)

    LeMone, D.V.

    1995-01-01

    The disposal of low-level radioactive wastes for the State of Texas, as well as the participating compact states of Maine and Vermont, will require a stable classification scheme and a mutually acceptable series of definitions for the orderly planning, development, emplacement, and closure of the proposed Texas low-level site. Under the currently utilized system of classification, low-level radioactive wastes are usually segregated under six basic classes. These classes are: Class A, Class B, Class C, NARM, NORM, and Mixed Low-Level Waste. These wastes originate from two primary sources: utility generators and non-utility generators (medical/industrial/university). The Texas Low-Level Radioactive Waste Disposal Site currently will not accept either Greater Than Class C (GTCC) waste or Transuranic (TRU) waste (exceeding 370 Bq/g (10 nCi/g)), thereby establishing the upper limits for disposal. One basic problem for all low-level entities is the national classification scheme. There is no currently defined lower limit for radioactive wastes. This standard is essential and must be addressed in order to effectively project future waste streams. Semantic problems include the rendering of precise definitions for such common words as processing, recycling, generation, etc.; they are not necessarily defined or used in the same sense between generators or states. Consistency in terminology is an absolute essential for adequate nuclear waste management. Other problems that must be addressed include such areas as: types of beneficiation of waste (supercompaction and incineration versus untreated waste), validation of point of origin, consistent and easily recognizable labeling that includes an inventory, transport tracking, and package standards

  1. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  2. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  3. Cross-Site Transfer System at Hanford: long-term strategy for waste acceptance

    International Nuclear Information System (INIS)

    Shekarriz, A.; Onishi, Y.; Smith, P.A.; Sterner, M.; Rector, D.R.; Virden, J.

    1997-02-01

    This report summarizes results of a technical panel review of the current methodology for accepting waste for transport through the Hanford Replacement Cross-Site Transfer System (RCSTS), which was constructed to replace the existing pipelines that hydraulically connect the 200 West and 200 East areas. This report is a complement to an existing document (Hudson 1996); the methodology proposed in that document was refined based on panel recommendations. The refinements were focused around predicting and preventing the 3 main modes suspected of plugging the existing CSTS: precipitation, gelation, particle dropout/settling. The proposed analysis will require integration of computer modeling and laboratory experiments to build a defensible case for transportability of a proposed slurry composition for a given tank. This will be validated by recirculating actual tank waste, in-tank and in-farm, prior to transport. The panel's recommendation was that the probability of success of waste transfer would be greatly improved by integrating the predictive analysis with real-time control during RCSTS operation. The methodology will be optimized

  4. Status of ERDA TRU waste packaging study

    International Nuclear Information System (INIS)

    Doty, J.W. Jr.

    1977-01-01

    This paper discusses the status of Task 3 of the TRU Waste Cyclone Drum Incinerator and Treatment System program. This task covers acceptable TRU packaging for interim storage and terminal isolation. The kind of TRU wastes generated by contractors and its transport are discussed. Both drum and box systems are desirable

  5. Smart Home Technologies: Insights into Generation-Specific Acceptance Motives

    Science.gov (United States)

    Gaul, Sylvia; Ziefle, Martina

    In this research we examine the generation specific acceptance motives of eHealth technologies in order to assess the likelihood of success for these new technologies. 280 participants (14 - 92 years of age) volunteered to participate in a survey, in which using motives and barriers toward smart home technologies were explored. The scenario envisaged was the use of a medical stent implemented into the body, which monitors automatically the health status and which is able to remotely communicate with the doctor. Participants were asked to evaluate the pros and cons of the usage of this technology, their acceptance motives and potential utilization barriers. In order to understand the complex nature of acceptance, personal variables (age, technical expertise, health status), individual's cognitive concepts toward ageing as well as perceived usefulness were related. Outcomes show that trust, believe in the reliability of technology, privacy and security as well as intimacy facets are essential for acceptance and should be considered in order to proactively design a successful rollout of smart home technologies.

  6. Creating trust in a risk context. On social acceptance of risks in siting of repositories for radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Lidskog, R.

    1993-01-01

    Taking Beck's and Giddens' recent formulation of the society's new conditions for gaining trust as theoretical point of departure, this article focusses trust and risk with regard to hazardous and radioactive waste disposal in Sweden. Seeing trust as intimately connected with cognitive understanding of risk, the information strategies of the companies with responsibility for hazardous and radioactive waste management are analyzed. Central in gaining trust is the creation of access points - points of connection between lay individuals or collectivities and the representatives of expert systems - at which trust can be built up or maintained. This article emphasizes that this kind of local conflict is to be seen as a struggle concerning the cognitive understanding of risk-generating activities, and the question is to what extent the cognitive understanding of nuclear companies will be accepted among the affected local population and to what extent the local population will develop and maintain an alternative cognitive understanding. 78 refs

  7. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  8. The characterization of cement waste form for final disposal of decommissioned concrete waste

    International Nuclear Information System (INIS)

    Lee, K.W.; Lee, Y.J.; Hwang, D.S.; Moon, J.K.

    2015-01-01

    Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. In addition, 83 drums of 200 l, and 41 containers of 4 m 3 of concrete waste were generated. Conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled into a void space after concrete rubble pre-placement into 200 l drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10 as the optimized mixing ratio. In addition, the compressive strength of cement waste form was satisfied, including fine powder up to a maximum 40 wt% in concrete debris waste of about 75%. (authors)

  9. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  10. Factors contributing to the waste generation in building projects of Pakistan

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, F.A.

    2016-01-01

    Generation of construction waste is a worldwide issue that concerns not only governments but also the building actors involved in construction industry. For developing countries like Pakistan, rising levels of waste generation, due to the rapid growth of towns and cities have become critical issue. Therefore this study is aimed to detect the factors, which are the main causes of construction waste generation. Questionnaire survey has been conducted to achieve this task and RIW (Relative Importance Weight) method has been used to analyze the results of this study. The important factors contributing to the generation of construction as identified in this study are: frequent changes/ revision in design during construction process; poor scheduling; unavailability of storage; poor workmanship; poor layout; inefficient planning and scheduling of resources and lack of coordination among supervision staff deployed at site. Based on the identified factors, the study also has presented some suggestions for the reduction of construction waste in building construction projects of Pakistan. (author)

  11. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Druyts, F.; Mallants, D.; Sillen, X.; Iseghem, P. Van

    2004-01-01

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  12. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  13. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  14. The Konrad mine - the planned German repository for radioactive waste with negligible heat generation

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.

    1990-07-01

    This report deals with the planned Konrad repository and describes the current state of affairs. In particular, the technical concept is explained and a survey of the radioactive waste intended for disposal is given. The safety assessments which have been made, including the derivation of preliminary waste acceptance requirements, are described and the principles of the waste package control are outlined. (orig./HP) [de

  15. Extreme E-waste generated from successful Operations Management?

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Zhilyaev, Dmitry; Parajuly, Keshav

    This paper identifies how research in the field of Operations Management (OM) has been extremely successful in reducing costs for the manufacturing of electrical and electronic equipment by focusing on design for assembly and manufacturing. The downside is the generation of extreme amounts of e......-waste. Based on a literature survey, 2251 kg of e-waste and on case study, this research identifies the need to extend product lifetimes to drive down e-waste. The study concludes that more research is needed on designs for disassembly, repair, refurbishment, and remanufacturing to meet future requirements...

  16. Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe.

    Science.gov (United States)

    Briassoulis, Demetres; Babou, Epifania; Hiskakis, Miltiadis; Scarascia, Giacomo; Picuno, Pietro; Guarde, Dorleta; Dejean, Cyril

    2013-12-01

    A review of agricultural plastic waste generation and consolidation in Europe is presented. A detailed geographical mapping of the agricultural plastic use and waste generation in Europe was conducted focusing on areas of high concentration of agricultural plastics. Quantitative data and analysis of the agricultural plastic waste generation by category, geographical distribution and compositional range, and physical characteristics of the agricultural plastic waste per use and the temporal distribution of the waste generation are presented. Data were collected and cross-checked from a variety of sources, including European, national and regional services and organizations, local agronomists, retailers and farmers, importers and converters. Missing data were estimated indirectly based on the recorded cultivated areas and the characteristics of the agricultural plastics commonly used in the particular regions. The temporal distribution, the composition and physical characteristics of the agricultural plastic waste streams were mapped by category and by application. This study represents the first systematic effort to map and analyse agricultural plastic waste generation and consolidation in Europe.

  17. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  18. Generation of and control measures for, e-waste in Hong Kong

    International Nuclear Information System (INIS)

    Chung Shanshan; Lau Kayan; Zhang Chan

    2011-01-01

    While accurately estimating electrical and electronic waste (e-waste) generation is important for building appropriate infrastructure for its collection and recycling, making reliable estimates of this kind is difficult in Hong Kong owing to the fact that neither accurate trade statistics nor sales data of relevant products are available. In view of this, data of e-products consumption at household level was collected by a tailor-made questionnaire survey from the public for obtaining a reasonable e-waste generation estimate. It was estimated that on average no more than 80,443 tonnes (11.5 kg/capita) of waste is generated from non-plasma and non-liquid crystal display televisions, refrigerators, washing machines, air-conditioners and personal computers each year by Hong Kong households. However, not more than 17% of this is disposed as waste despite a producer responsibility scheme (PRS) not being in place because of the existence of a vibrant e-waste trading sector. The form of PRS control that can possibly win most public support is one that would involve the current e-waste traders as a major party in providing the reverse logistics with a visible recycling charge levied at the point of importation. This reverse logistic service should be convenient, reliable and highly accessible to the consumers.

  19. Current Status of Municipal Solid Waste Generation in Malaysia

    OpenAIRE

    Budhiarta, Iwan; Siwar, Chamhuri; Basri, Hassan

    2012-01-01

    Recent investigations in 2010 resulted information that population of Kuala Lumpur City Area has reached 1.66 million people (JPM, 2009). With the population growth rate of 6.1 percent, then the population in the year 2010 can be estimated at least to 1.69 million people. The number of municipal solid waste generated from Kuala Lumpur State Territory and delivered to TBTS was recorded of 2,000 tonnes per day. Accordingly, the solid waste generation average for any person is 1.2 kilograms a da...

  20. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  1. Conceptual framework for the study of food waste generation and prevention in the hospitality sector.

    Science.gov (United States)

    Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo; Steinberger, Julia; Padfield, Rory; Ujang, Zaini

    2016-03-01

    Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation, especially outside the household. This is partially due to weaknesses in the methodological approaches used to understand such a complex problem. This paper proposes a novel conceptual framework to identify and explain the patterns and drivers of food waste generation in the hospitality sector, with the aim of identifying food waste prevention measures. This conceptual framework integrates data collection and analysis methods from ethnography and grounded theory, complemented with concepts and tools from industrial ecology for the analysis of quantitative data. A case study of food waste generation at a hotel restaurant in Malaysia is used as an example to illustrate how this conceptual framework can be applied. The conceptual framework links the biophysical and economic flows of food provisioning and waste generation, with the social and cultural practices associated with food preparation and consumption. The case study demonstrates that food waste is intrinsically linked to the way we provision and consume food, the material and socio-cultural context of food consumption and food waste generation. Food provisioning, food consumption and food waste generation should be studied together in order to fully understand how, where and most importantly why food waste is generated. This understanding will then enable to draw detailed, case specific food waste prevention plans addressing the material and socio-economic aspects of food waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Development of comprehensive waste acceptance criteria for commercial nuclear waste

    International Nuclear Information System (INIS)

    O'Hara, F.A.; Miller, N.E.; Ausmus, B.S.; Yates, K.R.; Means, J.L.; Christensen, R.N.; Kulacki, F.A.

    1979-01-01

    A detailed methodology is presented for the identification of the characteristics of commercial nuclear waste which may require criteria. This methodology is analyzed as a six-step process which begins with identification of waste operations and proceeds until the waste characteristics affecting the potential release of radionuclides are determined. All waste types and operations were analyzed using the methodology presented. Several illustrative example are included. It is found that thirty-three characteristics can be identified as possibly requiring criteria

  3. Comparative study of municipal solid waste generation and composition in Shiraz city (2014

    Directory of Open Access Journals (Sweden)

    A. Norouzian Baghani

    2017-06-01

    Full Text Available Background: Exponential growths of population and urbanization, and the development of social economy have resulted in an increase in the amount of MSW generation throughout the world. Objective: The present study aimed to survey qualitative and quantitative analysis of solid waste in Shiraz city and comparative these results with the world scenario of solid wastes generation for improving the sustainable management of solid waste. Methods: This cross-sectional study was conducted in 2014 in nine municipality regions Shiraz with a total population of approximately 1,549,354 people. Basic data was gathered through Shiraz waste management organization. Then generation (per capita and constituent percent of the solid waste were evaluated based on the sampling and field analyzing from reliable guidelines. Data were analyzed with Stata-13 and Excel statistical software. Kolmogorov-Smirnov test used for the normality of variables. Means were compared by Student T test and Mann-Whitney test. Findings: The rate of solid waste generated in the Shiraz city was 222.65 kg per person per year in 2014. Statistical analysis showed that the variables of organic materials, paper and cardboard, glass and metal between developed and developing countries were a significant difference (P0.05. Conclusion: Solid waste per capita in Shiraz city (about 600 g/day was near to the average amount of solid waste generation in Iran and other developing countries. Due to the high content of organic material in municipal solid waste of Shiraz, minimization of these material and separation of dry and wet solid wastes must be noted from the people and municipalities.

  4. Deconstructing the Nature of Safety and Acceptability in Nuclear Fuel Waste Management, Canada

    International Nuclear Information System (INIS)

    Murphy, Brenda L.

    2003-01-01

    Since the Hare report was released in 1977, Canada's nuclear fuel waste management policies have been focused on one option, deep geologic disposal. However, since new legislation, called the Nuclear Fuel Waste Management Act came into force on November 15, 2002, the newly established Nuclear Waste Management Organisation has been mandated to review, over the next three years, not only deep geologic disposal but also to consider a suite of other options including reactor-site and centralised storage, and both above and below ground options. At this point in time, the process for the study and the criteria by which it will be evaluated are still quite unclear. The need for this new approach to NFW management in Canada was highlighted by an Environmental Assessment Panel (EA Panel) report in 1998. This EA Panel reviewed the 1994 environmental impact statement submitted by Atomic Energy Canada Limited (AECL) regarding the concept of deep geologic disposal in the Canadian Shield (Disposal Concept EA). The EA Panel's key conclusion was: From a technical perspective, safety of the AECL concept has been on balance adequately demonstrated for a conceptual stage of development, but from a social perspective, it has not. As it stands, the AECL concept for deep geological disposal has not been demonstrated to have broad public support. The concept in its current form does not have the required level of acceptability to be adopted as Canada's approach for managing nuclear fuel wastes. AECL's study consisted of a review of the deep geologic disposal concept, since no site has yet been selected. It is generally understood that this type of disposal facility, if eventually sited, will be located on the Ontario portion of the Canadian Shield because Ontario power generators own and manage about 90% of Canada's NFW. This key EA Panel conclusion is predicated on the use of two key decision-making criteria - safety and acceptability. This paper reviews and assesses the specific ways

  5. Evaluation and development of a policy for waste generation control - electric and electronic waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    Although a policy to reduce waste amount and promote recycling for large electric appliances was introduced, it is still in the initial stage operated in a form of recommendation and the general management system of electric and electronic waste has not established yet. In this study, the generation and disposal of electric and electronic waste were examined and the effectiveness of present policy was evaluated. Based on the analysis, a policy for the more appropriate electric and electronic waste management was presented. 34 refs., 4 figs., 51 tabs.

  6. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  7. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  8. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  9. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    1995-09-01

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher

  10. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  11. Preliminary estimates of the impacts of alternative spent fuel acceptance rates

    International Nuclear Information System (INIS)

    Clark, L.L.; McKee, R.W.; Short, S.M.

    1986-02-01

    The rate at which spent fuel is accepted by the federal waste management system is an important interface between the private nuclear power sector and the federal government, which will assume responsibility for spent fuel disposal. An analysis of alternative rates based on minimum age criteria indicates substantial incentives to limit acceptance rates so as to result in minimum 10 to 15 year fuel ages for repository acceptance [1500 to 2500 metric tons of uranium (MTU) per year]. These incentives include lower heat generation rates and systems costs

  12. FRIDA: A model for the generation and handling of solid waste in Denmark

    DEFF Research Database (Denmark)

    Larsen, Helge V.; Møller Andersen, Frits

    2012-01-01

    Since 1994, Danish waste treatment plants have been obliged to report to the Danish EPA the annual amounts of waste treated. Applying these data, we analyse the development, link amounts of waste to economic and demographic variables, and present a model for the generation and treatment of waste...... in Denmark. Using the model and official projections of the economic development, a baseline projection for the generation and treatment of waste is presented. © 2012 Elsevier B.V. All rights reserved....

  13. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  14. Waste Receiving and Processing Module 2A waste certification strategy

    International Nuclear Information System (INIS)

    LeClair, M.D.; Pottmeyer, J.A.; Hyre, R.A.

    1994-01-01

    This document addresses the certification of Mixed Low Level Waste (MLLW) that will be treated in the Waste Receiving and Processing Facility Module 2A (WRAP 2A) and is destined for disposal in the MLLW trench of the Low Level Burial Grounds (LLBG). The MLLW that will be treated in WRAP 2A contains land disposal restricted and radioactive constituents. Certification of the treated waste is dependent on numerous waste management activities conducted throughout the WRAP 2A operation. These activities range from waste treatability testing conducted prior to WRAP 2A waste acceptance to overchecking final waste form quality prior to transferring waste to disposal. This document addresses the high level strategies and methodologies for certifying the final waste form. Integration among all design and verification activities that support final waste form quality assurance is also discussed. The information generated from this effort may directly support other ongoing activities including the WRAP 2A Waste Characterization Study, WRAP 2A Waste Analysis Plan development, Sample Plan development, and the WRAP 2A Data Management System functional requirements definition

  15. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  16. Generating acceptability of PNRI environmental radioactivity monitoring studies at the former ammunition dump area in Clark special economic zone

    International Nuclear Information System (INIS)

    Garcia, Teofilo Y.

    2002-11-01

    The rejection of the 1991 Treaty of Friendship and Cooperation, which sought to extend the military bases agreement (MBA), paved the way for the Americans to abandon Clark Air Base in Angeles, Pampanga, which had served as an American military base since 1947. The total and immediate pullout of the Americans left the base in an ''as is'' condition and without the benefits of restoration efforts. Various studies and reports have been conducted to determine the presence of hazardous wastes in the former Clark Air Base. The issue of hazardous wastes purportedly left there by the Americans is a continuing and a growing concern particularly of citizens living within its area. The Philippine Nuclear Research Institute (PNRI) In November of 1997 and in April of 1998, the Philippine Nuclear Research Institute PNRI, upon the request of Clark Development Corporation, conducted a thorough radiological monitoring in CSEZ in order to determine the presence of radioactive contamination. Radioactive materials such as cesium-137 and tritium are considered hazardous wastes. Results of monitoring showed that radiation levels in CSEZ were within allowable standards. This means that the workers and residents at the Clark Air Base ( t he base ) are free from dangers of exposure to radiation. Despite the findings, however, reports by the media and environmental NGOs on the presence of hazardous wastes, including radioactive wastes, in Clark have proliferated. This action plan and project (APP) intends to address the issue of environmental radioactivity contamination (if any) within the CSEZ. The APP results are geared towards dispelling the persistent fear of the public in general, and the base stakeholders especially its residents, in particular, regarding the presence of radioactive contamination which results in untoward health effects to those exposed to such contaminants. Thus, the sectoral concern of this APP is to heighten the level of social acceptability by the base

  17. Generating acceptability of PNRI environmental radioactivity monitoring studies at the former ammunition dump area in Clark special economic zone

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Teofilo Y

    2002-11-01

    The rejection of the 1991 Treaty of Friendship and Cooperation, which sought to extend the military bases agreement (MBA), paved the way for the Americans to abandon Clark Air Base in Angeles, Pampanga, which had served as an American military base since 1947. The total and immediate pullout of the Americans left the base in an ''as is'' condition and without the benefits of restoration efforts. Various studies and reports have been conducted to determine the presence of hazardous wastes in the former Clark Air Base. The issue of hazardous wastes purportedly left there by the Americans is a continuing and a growing concern particularly of citizens living within its area. The Philippine Nuclear Research Institute (PNRI) In November of 1997 and in April of 1998, the Philippine Nuclear Research Institute PNRI, upon the request of Clark Development Corporation, conducted a thorough radiological monitoring in CSEZ in order to determine the presence of radioactive contamination. Radioactive materials such as cesium-137 and tritium are considered hazardous wastes. Results of monitoring showed that radiation levels in CSEZ were within allowable standards. This means that the workers and residents at the Clark Air Base ({sup t}he base{sup )} are free from dangers of exposure to radiation. Despite the findings, however, reports by the media and environmental NGOs on the presence of hazardous wastes, including radioactive wastes, in Clark have proliferated. This action plan and project (APP) intends to address the issue of environmental radioactivity contamination (if any) within the CSEZ. The APP results are geared towards dispelling the persistent fear of the public in general, and the base stakeholders especially its residents, in particular, regarding the presence of radioactive contamination which results in untoward health effects to those exposed to such contaminants. Thus, the sectoral concern of this APP is to heighten the level of social acceptability by the base

  18. The global economic and regulatory determinants of household food waste generation: A cross-country analysis.

    Science.gov (United States)

    Chalak, Ali; Abou-Daher, Chaza; Chaaban, Jad; Abiad, Mohamad G

    2016-02-01

    Food is generally wasted all along the supply chain, with an estimated loss of 35percent generated at the consumer level. Consequently, household food waste constitutes a sizable proportion of the total waste generated throughout the food supply chain. Yet such wastes vary drastically between developed and developing countries. Using data collected from 44 countries with various income levels, this paper investigates the impact of legislation and economic incentives on household food waste generation. The obtained results indicate that well-defined regulations, policies and strategies are more effective than fiscal measures in mitigating household food waste generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  20. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  1. Waste certification review program at the Savannah River Site

    International Nuclear Information System (INIS)

    Faulk, G.W.; Kinney, J.C.; Knapp, D.C.; Burdette, T.E.

    1996-01-01

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators' waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988)

  2. Thermoelectric as recovery and harvesting of waste heat from portable generator

    Science.gov (United States)

    Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.

  3. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  4. Status of waste form testing

    International Nuclear Information System (INIS)

    Lawroski, H.

    1984-01-01

    The promulgation of the amendment of 10 CFR Part 61 by the Nuclear Regulatory Commission of December 27, 1982 by Federal Register Notice with an effective date of December 27, 1983 established the criteria for licensing requirements, paragraph 60.56, contained the description to provide adequate stability of the site through the use of suitable waste forms. In May, 1983, the NRC published a final Branch Technical Position (BTP) paper on waste form. The position taken by the BTP was considerably more severe than indicated in 10 CFR Part 61. An extensive and expensive testing program was started in 1983. As an interim measure, the presently utilized solidification processes such as cement, Dow binder, Envirostone and bitumen, and the presently qualified High Integrity containers (HICs) were considered acceptable with the caveat that acceptable process control programs were being utilized. The NRC requested that topical reports for licenses be submitted. The topical reports were to contain test results to substantiate the acceptability of the waste forms. The test results to date show that the volume of wastes will have to increase to meet the position taken by the NRC in the BTP. This position will cause more waste to be generated which is contrary to the emphasis by states and others to reduce the volume of waste. The details of testing will be discussed in the paper to be presented

  5. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  6. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  7. Safe dry storage of intermediate-level waste at CRL

    International Nuclear Information System (INIS)

    Chiu, A.; Sanderson, T.; Lian, J.

    2011-01-01

    Ongoing operations at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) generate High-, Intermediate- and Low-Level Waste (HLW, ILW and LLW) that will require safe storage for several decades until a long-term management facility is available. This waste is stored in below grade concrete structures (i.e. tile holes or bunkers) or the above-ground Shielded Modular Above Ground Storage (SMAGS) facility depending on the thermal and shielding requirements of the particular waste package. Existing facilities are reaching their capacity and alternate storage is required for the future storage of this radioactive material. To this end, work has been undertaken at CRL to design, license, construct and commission the next generation of waste management facilities. This paper provides a brief overview of the existing radioactive-waste management facilities used at CRL and focuses on the essential requirements and issues to be considered in designing a new waste storage facility. Fundamentally, there are four general requirements for a new storage facility to dry store dry non-fissile ILW. They are the need to provide: (1) containment, (2) shielding, (3) decay heat removal, and (4) ability to retrieve the waste for eventual placement in an appropriate long-term management facility. Additionally, consideration must be given to interfacing existing waste generating facilities with the new storage facility. The new facilities will be designed to accept waste for 40 years followed by 60 years of passive storage for a facility lifespan of 100 years. The design should be modular and constructed in phases, each designed to accept ten years of waste. This strategy will allow for modifications to subsequent modules to account for changes in waste characteristics and generation rates. Two design concepts currently under consideration are discussed. (author)

  8. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  9. Waste minimization: A team approach at McGuire nuclear

    International Nuclear Information System (INIS)

    Poteat, E.L.

    1995-01-01

    The production of radioactive waste and its subsequent disposal is a costly proposition. Burial of low-level waste (LLW), if available at all, is expensive and getting more so. The availability of disposal options is often subject to the whims and vagaries of political forces that cannot be predicted, let alone controlled in any way by the members of the nuclear community. On-site storage is a limited and, quite often, an extremely difficult process to put into place. After LLW has been generated, various volume reduction techniques are available, but these can vary widely in cost and effectiveness. If and when new disposal sites are available, the waste acceptance criteria may be such that some or all of the volume reduction processes will not produce an acceptable final waste form. Consequently, the best thing to do is probably deceptively simple: Do not generate the waste in the first place. This is the philosophy that McGuire nuclear station operates under, and this paper discusses the team approach that has been developed to support this idea

  10. Overview of the NRC nuclear waste management program

    International Nuclear Information System (INIS)

    Malaro, J.C.

    1976-01-01

    The NRC has firmly established waste management as a high-priority effort and has made the commitment to act rapidly and methodically to establish a sound regulatory base for licensing waste management activities. We believe the priorities for NRC work in waste management are consistent with the needs of the overall national waste management program. Present licensing procedures and criteria are adequate for the short term, and priority attention is being given to the longer term, when the quantities of waste to be managed will be greater and licensing demands will increase. Recognizing that its decision will affect industry, other governmental jurisdictions, private interest groups, and the public at large, NRC has encouraged and will continue to encourage their participation in planning our program. We also recognize that the problems of nuclear waste management are international in scope. Many waste management problems (e.g., potential for contamination of oceans and atmosphere, need for isolation of some wastes for longer periods than governments and political boundaries have remained stable in the past), require a set of internationally acceptable and accepted solutions. The wastes from the U.S. nuclear industry will account for only about one third of the nuclear waste generated in the world. Therefore, we propose to cooperate and where appropriate take the lead in establishing acceptable worldwide policies, standards and procedures for handling nuclear wastes

  11. The effect of gender and age structure on municipal waste generation in Poland

    International Nuclear Information System (INIS)

    Talalaj, Izabela Anna; Walery, Maria

    2015-01-01

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior

  12. The effect of gender and age structure on municipal waste generation in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Talalaj, Izabela Anna, E-mail: izabela.tj@gmail.com; Walery, Maria, E-mail: m.walery@pb.edu.pl

    2015-06-15

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior.

  13. Waste characterization: What's on second?

    International Nuclear Information System (INIS)

    Schultz, F.J.; Smith, M.A.

    1989-07-01

    Waste characterization is the process whereby the physical properties and chemical composition of waste are determined. Waste characterization is an important element which is necessary to certify that waste meets the acceptance criteria for storage, treatment, or disposal. Department of Energy (DOE) Orders list and describe the germane waste form, package, and container criteria for the storage of both solid low-level waste package, and container criteria for the storage of both solid low-level waste (SLLW) and transuranic (TRU) waste, including chemical composition and compatibility, hazardous material content (e.g., lead), fissile material content, radioisotopic inventory, particulate content, equivalent alpha activity, thermal heat output, and absence of free liquids, explosives, and compressed gases. At the Oak Ridge National Laboratory (ORNL), the responsibility for waste characterization begins with the individual or individuals who generate the waste. The generator must be able to document the type and estimate the quantity of various materials (e.g., waste forms -- physical characteristics, chemical composition, hazardous materials, major radioisotopes) which have been placed into the waste container. Analyses of process flow sheets and a statistically valid sampling program can provide much of the required information as well as a documented level of confidence in the acquired data. A program is being instituted in which major generator facilities perform radionuclide assay of small packets of waste prior to being placed into a waste drum. 17 refs., 1 fig., 4 tabs

  14. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  15. Public Acceptance of Low-Level Waste Disposal Critical to the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Sonny Goldston, W.T.

    2009-01-01

    The disposal of various Low-Level Waste (LLW) forms projected to result from the operation of a pilot or large scale Advanced Fuel Cycle Initiative Programs' (formally known as Global Nuclear Energy Partnership (GNEP)) reprocessing and vitrification plants requires the DOE LLW program and regulatory structure to be utilized in its present form due to the limited availability of Nuclear Regulatory Commission licensed commercial LLW disposal facilities to handle wastes with radionuclide concentrations that are greater than Nuclear Regulatory Commission (NRC) Class A limits. This paper will describe the LLW forms and the regulatory structures and facilities available to dispose of this waste. Then the paper discusses the necessity of an excellent public involvement program to ensure the success of an effective technical solution. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal of Low-Level Radioactive Waste (LLW) at the Savannah River Site (SRS). An extensive public communications effort resulted in endorsement of changes in disposal practices by the SRS Citizens Advisory Board that was critical to the success of the program. A recommendation will be made to install a public involvement program that is similar to the SRS Citizens Advisory Board in order to ensure the success of the AFCI programs in view of the limited availability to handle the wastes from the program and the public acceptance of change that will be required. (authors)

  16. Generation and management of medical waste in Serbia: A review

    Directory of Open Access Journals (Sweden)

    Šerović Radmila M.

    2016-01-01

    Full Text Available This study presents generation, quantities and medical waste (MW management in Serbia. It represents assessment methods and total annual MW generation by categories. It was concluded that pharmaceutical (64% and infectious (32% MW production is the largest. According to available data, MW management in Serbia is currently at low level, except when it comes to infectious waste. Research proposed simpler treatment methods in existing autoclaves and complex methods (incineration and plasma-pyrolysis, as well as short-term and long-term solutions. Predicted MW growing amount requires existing capacity increase for processing and new solutions application. Installed autoclaves capacity could be increased by increasing working time, in order to avoid additional investment. However, treatment in autoclave is only suitable for infectious MW. For other medical waste, which main fractions are pharmaceutical and chemical waste, there is no infrastructure. As temporary solution, pharmaceutical waste is treated abroad which in longer period is not financially feasible. Considering that MW treatment in Serbia currently is based on health facilities network equipped with autoclaves, as central (CTF and local (LTF treatments facilities for infectious waste treatment, it is recommended additional capacity implementation for treatment of non-infectious waste to this network, with simultaneous management level optimization of whole MW.

  17. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  18. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1991-01-01

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  19. Overview of high-level waste management accomplishments

    International Nuclear Information System (INIS)

    Lawroski, H.; Berreth, J.R.; Freeby, W.A.

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle

  20. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  1. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  2. Urban solid waste generation and disposal in Mexico: a case study.

    Science.gov (United States)

    Buenrostro, O; Bocco, G; Bernache, G

    2001-04-01

    The adequate management of municipal solid waste in developing countries is difficult because of the scarcity of studies about their composition. This paper analyses the composition of urban solid waste (USW) in the city of Morelia, Michoacán, Mexico. Residential and non-residential waste sources were sampled, and a structured interview was made to evaluate the socioeconomic characteristics of the studied area. Also, to determine the seasonal patterns of solid waste generation and the efficiency level of the collection service, quantification of solid waste deposited in the dumping ground was measured. Our results show that the recorded amount of SW deposited in the municipal dumping-ground is less than the estimated amount of SW generated; for this reason, the former amount is not recommended as an unbiased indicator for planning public waste collection services. It is essential that dumping-grounds are permanently monitored and that the incoming waste be weighed in order to have a more efficient record of USW deposited in the dumping-ground per day; these data are fundamental for developing adequate managing strategies.

  3. Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System

    OpenAIRE

    Chang-Gi Min; Mun-Kyeom Kim

    2017-01-01

    This study proposes an evaluation method for variable generation (VG) acceptability with an adequate level of power system flexibility. In this method, a risk index referred to as the ramping capability shortage expectation (RSE) is used to quantify flexibility. The RSE value of the current power system is selected as the adequate level of flexibility (i.e., RSE criterion). VG acceptability is represented by the VG penetration level for the RSE criterion. The proposed evaluation method was ap...

  4. Mixed Waste Focus Area program management plan

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal

  5. Waste form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    In this program, contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements (both as they exist and as they are modified with time). 6 tables

  6. Policy and practices in the United States of America for DOE-generated nuclear wastes

    International Nuclear Information System (INIS)

    Gilbert, F.C.

    1984-01-01

    Throughout the history of attempts to utilize atomic power in the USA, health and safety have been primary considerations in programme policy formulation. A brief historical review of the US nuclear waste management policy formulation over the years aids understanding of our current management strategy for government-generated (primarily defence-related) nuclear wastes. Scientists involved in the Manhattan project during World War II were aware of the dangers of radioactive wastes. The first reaction to this concern was the establishment of a health physics programme to monitor radioactive hazards in Manhattan District Laboratories. The Atomic Energy Act of 1946, which established the Atomic Energy Commission, called for protection of the health and safety of the public as well as atomic workers. That concept has been continued and strengthened, throughout the history of nuclear waste management in the USA. Passage of the Atomic Energy Act of 1954 required consideration of radioactive wastes generated by private industry as well as those produced by the Manhattan projects. Commercial waste management policy was based on the already established policy for management of government-generated wastes and is the subject of a separate paper at this symposium. Current US policy is to maintain separate but complementary programmes for nuclear wastes generated by government activities and those from commercial sources. US policy and practices for management of government-generated radioactive waste are summarized. Key organizational structure relating to waste management responsibility is presented. (author)

  7. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford?s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program

  8. A revised oceanographic model to calculate the limiting capacity of the ocean to accept radioactive waste

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Grimwood, P.D.

    1976-12-01

    This report describes an oceanographic model which has been developed for the use in calculating the capacity of the oceans to accept radioactive wastes. One component is a relatively short-term diffusion model which is based on that described in an earlier report (Webb et al., NRPB-R14(1973)), but which has been generalised to some extent. Another component is a compartment model which is used to calculate long-term widespread water concentrations. This addition overcomes some of the short comings of the earlier diffusion model. Incorporation of radioactivity into deep ocean sediments is included in this long-term model as a removal mechanism. The combined model is used to provide a conservative (safe) estimate of the maximum concentrations of radioactivity in water as a function of time after the start of a continuous disposal operation. These results can then be used to assess the limiting capacity of an ocean to accept radioactive waste. (author)

  9. Volume reduction of radioactive concrete waste generated from KRR-2 and UCP

    International Nuclear Information System (INIS)

    Min, B. Y.; Choi, W. K.; Park, J. W.; Lee, K. W.

    2009-01-01

    As a part of a technical development for the volume reduction and stabilization of contaminated concrete wastes generated by dismantling a research reactor and uranium conversion plant, we have developed the volume reduction technology and immobilization of fine powder applicable to an activated heavy weight concrete generated by dismantling KRR-2 and a uranium contaminated light weight concrete produced from a UCP decommissioning. During a decommissioning of nuclear plants and facilities, large quantities of contaminated concrete wastes are generated. The decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant has been under way. In Korea, two decommissioning projects such as the decommissioning of the retired research reactors (KRR-1 and 2) and a uranium conversion plant (UCP) at the Korea Atomic Energy Research Institute (KAERI) has been carried out. By dismantling KRR-2, more than 260 tons of radioactive concrete wastes are generated among the total 2,000 tons of concrete wastes and more than 60 tons of concrete wastes contaminated with uranium compounds are generated in UCP decommissioning up to now. The volume reduction and recycling of the wastes is essential to reduce the waste management cost with expecting that an approximate disposal cost for low level radioactive waste will be more than 5,000 US dollars per 200 liter waste drum in Korea. It is well known that most of the radioactivity exist in cement mortar and paste composed of concrete. In this context, the volume reduction of concrete waste is based on the separation of radioactive concrete into a clean recyclable aggregates and a radioactive fine cement powder, which can be readily performed by heating to weaken the adherence force between the cement matrix and the aggregates followed by mechanical crushing and milling processes. In this study, we have investigated the characteristics of separation of aggregates and the distribution of radioactivity into

  10. WASTE CERTIFICATION PROGRAM PLAN - REVISION 7

    International Nuclear Information System (INIS)

    MORGAN, LK

    2002-01-01

    The primary changes that have been made to this revision reflect the relocation of the Waste Certification Official (WCO) organizationally from the Quality Services Division (QSD) into the Laboratory Waste Services (LWS) Organization. Additionally, the responsibilities for program oversight have been differentiated between the QSD and LWS. The intent of this effort is to ensure that those oversight functions, which properly belonged to the WCO, moved with that function; but retain an independent oversight function outside of the LWS Organization ensuring the potential for introduction of organizational bias, regarding programmatic and technical issues, is minimized. The Waste Certification Program (WCP) itself has been modified to allow the waste certification function to be performed by any of the personnel within the LWS Waste Acceptance/Certification functional area. However, a single individual may not perform both the technical waste acceptance review and the final certification review on the same 2109 data package. Those reviews must be performed by separate individuals in a peer review process. There will continue to be a designated WCO who will have lead programmatic responsibility for the WCP and will exercise overall program operational oversite as well as determine the overall requirements of the certification program. The quality assurance organization will perform independent, outside oversight to ensure that any organizational bias does not degrade the integrity of the waste certification process. The core elements of the previous WCP have been retained, however, the terms and process structure have been modified.. There are now two ''control points,'' (1) the data package enters the waste certification process with the signature of the Generator Interface/Generator Interface Equivalent (GI/GIE), (2) the package is ''certified'', thus exiting the process. The WCP contains three steps, (1) the technical review for waste acceptance, (2) a review of the

  11. Strategy and methodology for radioactive waste characterization

    International Nuclear Information System (INIS)

    2007-03-01

    its implementation. Waste acceptance criteria may specify the inventory of specific radionuclides for the whole repository or for individual waste packages, which will affect the characterization programme. The performance assessment of the repository will draw conclusions about the critical radionuclides for disposal. This publication provides: (a) a review of the requirements for and development of a waste characterization programme strategy, quality assurance programme, and quality control activities at the waste generator, processor, repository, and local or national laboratory levels; (b) a review of characterization responsibilities applicable to waste generators, processors, and repository operators, as well as an examination of the cost and benefits of waste characterization; (c) a review of the important factors to be considered in a waste characterization programme, including accuracy and uncertainties, scaling factors, and measurement methods; (d) a discussion of the applicability of various waste characterization methodologies to specific categories of waste streams (simple/stable waste streams, complex/variable waste streams, decommissioning waste streams, etc.); (e) a discussion and a tabulated review of the most commonly used characterization methods and techniques

  12. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  13. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  14. Bioethical perspective on acceptable-risk criteria for nuclear-waste management

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1977-01-01

    Wisely managing the profound human and environmental risks of nuclear wastes requires complex moral and ethical judgments. Whereas traditional ethics is limited to interpersonal relations, a new system of ethics--bioethics--concerns man's relation with nature. Environmentalists claim that technology has upset the balance of nature, that nature is sacred and has inviolable rights, and that man must therefore regulate his behavior to conform to earth's limited carrying capacity. They also say that Judeo-Christian monotheism and anthropocentrism have sanctioned the exploitation of nature in the West, whereas Eastern religions teach adaptation to nature. Evidence suggests, however, that the balance of nature is neither absolute nor precarious, but is continually changing. Moreover, technology has brought more good than harm to man, and man's needs should supersede nature's. Other evidence indicates that the earth's resources may be neither limited nor nearly exhausted. Persuasive arguments also demonstrate that man's relation with nature is not traceable to religious assumptions. In assessing the risks/benefits of nuclear-waste management, we should avoid risks that jeopardize the rights of future generations without imposing excessive sacrifices on the present generation

  15. Bioethical perspective on acceptable-risk criteria for nuclear-waste management

    Energy Technology Data Exchange (ETDEWEB)

    Maxey, M.N.

    1977-07-15

    Wisely managing the profound human and environmental risks of nuclear wastes requires complex moral and ethical judgments. Whereas traditional ethics is limited to interpersonal relations, a new system of ethics--bioethics--concerns man's relation with nature. Environmentalists claim that technology has upset the balance of nature, that nature is sacred and has inviolable rights, and that man must therefore regulate his behavior to conform to earth's limited carrying capacity. They also say that Judeo-Christian monotheism and anthropocentrism have sanctioned the exploitation of nature in the West, whereas Eastern religions teach adaptation to nature. Evidence suggests, however, that the balance of nature is neither absolute nor precarious, but is continually changing. Moreover, technology has brought more good than harm to man, and man's needs should supersede nature's. Other evidence indicates that the earth's resources may be neither limited nor nearly exhausted. Persuasive arguments also demonstrate that man's relation with nature is not traceable to religious assumptions. In assessing the risks/benefits of nuclear-waste management, we should avoid risks that jeopardize the rights of future generations without imposing excessive sacrifices on the present generation.

  16. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  17. Food waste generation and industrial uses: A review.

    Science.gov (United States)

    Girotto, Francesca; Alibardi, Luca; Cossu, Raffaello

    2015-11-01

    Food waste is made up of materials intended for human consumption that are subsequently discharged, lost, degraded or contaminated. The problem of food waste is currently on an increase, involving all sectors of waste management from collection to disposal; the identifying of sustainable solutions extends to all contributors to the food supply chains, agricultural and industrial sectors, as well as retailers and final consumers. A series of solutions may be implemented in the appropriate management of food waste, and prioritised in a similar way to waste management hierarchy. The most sought-after solutions are represented by avoidance and donation of edible fractions to social services. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Further steps foresee the recovery of nutrients and fixation of carbon by composting. Final and less desirable options are incineration and landfilling. A considerable amount of research has been carried out on food waste with a view to the recovery of energy or related products. The present review aims to provide an overview of current debate on food waste definitions, generation and reduction strategies, and conversion technologies emerging from the biorefinery concept. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Can we always ignore ship-generated food waste?

    International Nuclear Information System (INIS)

    Polglaze, John

    2003-01-01

    Considerable quantities of food waste can be generated at a rapid rate in ships, particularly those with large numbers of people onboard. By virtue of the amounts involved and its nature, food waste is potentially the most difficult to manage component of a ship's garbage stream, however, in most sea areas it may be dealt with by the simple expedient of direct discharge to sea. As a consequence, only minimal attention is paid to food waste management by many ship and port operators and advisory bodies, and there is a paucity of information in the available literature. The determination that management of ships' food waste is inconsequential is, however, incorrect in many circumstances. Disposal to sea is not always possible due to restrictions imposed by MARPOL 73/78 and other marine pollution control instruments. Effective management of food waste can be critical for ships that operate in areas where disposal is restricted or totally prohibited

  19. Management of radioactive waste generated from nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    Jeong-Mook Kim

    2000-01-01

    Fundamental objectives and efforts to safely manage radioactive wastes generating from the expanding nuclear power industry in the Republic of Korea are described. Management, treatment and storage of radioactive wastes arising in different form are addressed. A long tern plan to reduce the volume of solid waste is outlined. (author)

  20. Development of bagless transfer system for standard waste boxes

    International Nuclear Information System (INIS)

    Presgrove, S.B.; Patel, K.

    1991-01-01

    At several DOE site, substantial volumes of Transuranic (TRU) waste has been handled on a daily basis. Usually, the waste has been transferred from the facilities to the Waste Isolation Pilot Plant (WIPP) or to an on site storage facility using the ''bag-out'' technique. This process begins in the most contaminated area by placing the waste in a strong plastic bag, twisting closed the neck of the bag, then taping the closed neck. This reduces the exposed TRU waste and the resulting contamination. However, even though that the contamination is reduced, it remains high enough to prevent direct transfer into the environment. In order to reduce the contamination to acceptable levels, the ''bag-out'' process is repeated until the outside contamination on the plastic bag is acceptable. This procedure has been affective, however, it also generates organic waste in the process. During the design of the Transuranic Waste Facility (TWF) at the Savannah River Site, a conceptual alternative was developed using the Standard Waste Box (SWB)

  1. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  2. Gamma-ray spectrometry combined with acceptable knowledge (GSAK). A technique for characterization of certain remote-handled transuranic (RH-TRU) wastes. Part 1. Methodology and techniques

    International Nuclear Information System (INIS)

    Hartwell, J.K.; McIlwain, M.E.

    2005-01-01

    Gamma-ray spectrometry combined with acceptable knowledge (GSAK) is a technique for the characterization of certain remote-handled transuranic (RH-TRU) wastes. GSAK uses gamma-ray spectrometry to quantify a portion of the fission product inventory of RH-TRU wastes. These fission product results are then coupled with calculated inventories derived from acceptable process knowledge to characterize the radionuclide content of the assayed wastes. GSAK has been evaluated and tested through several test exercises. GSAK approach is described, while test results are presented in Part II. (author)

  3. The DWPF strategy for producing an acceptable product

    International Nuclear Information System (INIS)

    Goldston, W.T.; Plodinec, M.J.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will convert the 130 million liters of high-level nuclear waste at SRS into stable borosilicate glass. Production of canistered waste forms by the DWPF is scheduled to begin well before submission of the license application for the first repository. The Department of Energy has defined waste acceptance specifications to ensure that DWPF canistered waste forms will be acceptable for eventual disposal. To ensure that canistered waste forms meet those specifications, a program is being carried out to qualify the waste form and those aspects of the production process which affect product quality. This program includes: Pre-production qualification testing of simulated and actual waste forms; Disciplined demonstrations of the ability to produce an acceptable product during startup testing; and Application of a rigorous product control program during production

  4. A NEW WASTE CLASSIFYING MODEL: HOW WASTE CLASSIFICATION CAN BECOME MORE OBJECTIVE?

    Directory of Open Access Journals (Sweden)

    Burcea Stefan Gabriel

    2015-07-01

    Full Text Available The waste management specialist must be able to identify and analyze waste generation sources and to propose proper solutions to prevent the waste generation and encurage the waste minimisation. In certain situations like implementing an integrated waste management sustem and configure the waste collection methods and capacities, practitioners can face the challenge to classify the generated waste. This will tend to be the more demanding as the literature does not provide a coherent system of criteria required for an objective waste classification process. The waste incineration will determine no doubt a different waste classification than waste composting or mechanical and biological treatment. In this case the main question is what are the proper classification criteria witch can be used to realise an objective waste classification? The article provide a short critical literature review of the existing waste classification criteria and suggests the conclusion that the literature can not provide unitary waste classification system which is unanimously accepted and assumed by ideologists and practitioners. There are various classification criteria and more interesting perspectives in the literature regarding the waste classification, but the most common criteria based on which specialists classify waste into several classes, categories and types are the generation source, physical and chemical features, aggregation state, origin or derivation, hazardous degree etc. The traditional classification criteria divided waste into various categories, subcategories and types; such an approach is a conjectural one because is inevitable that according to the context in which the waste classification is required the used criteria to differ significantly; hence the need to uniformizating the waste classification systems. For the first part of the article it has been used indirect observation research method by analyzing the literature and the various

  5. Status and integration of studies of gas generation in Hanford wastes

    International Nuclear Information System (INIS)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments

  6. Status and integration of studies of gas generation in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments.

  7. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  8. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  9. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  10. Acceptability analysis of technical-scale plants for electricity generation; Ansatz zur Akzeptabilitaetsanalyse grosstechnischer Anlagen zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Katharina; Koch, Marco K. [Bochum Univ. (Germany). AG Reaktorsimulation und -sicherheit

    2013-03-15

    Public acceptance of technical-scale plants for electricity generation is an indispensable prerequisite for the long-term continuity of supply of electricity. Even though nuclear power in Germany continues to meet with particularly grave objections, this is no longer an exception. Problems associated with the rapidly declining willingness of the public to accept specific disadvantages connected with electricity generation are confronting not only nuclear, but also large fossil-fired and renewable-resource power plants. To investigate to what extent these objections based on subjective heuristics are justified, a model is developed for analyzing the objective acceptability of electricity-producing large power plants, which allows the assessment of their acceptability to be measured on the basis of quantitative analysis of the discrepancies between acceptability and acceptance and may serve as a tool for promoting public acceptance. (orig.)

  11. Radioactive waste and public acceptance

    International Nuclear Information System (INIS)

    Perkins, B.

    1977-01-01

    Radioactive waste just happens to be the major issue in the public eye now--it could be replaced by another issue later. A survey is quoted to prove that wastes are not really one of the burning national issues of the day. The people opposing the nuclear program cannot be said to represent the public. The taste of the press for the melodramatic is pointed out. The issue needs to be presented with the proper perspective, in the context of the benefits and risks of nuclear power

  12. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    Science.gov (United States)

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  13. Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Kuan, P.; Bhatt, R.N.

    2003-01-01

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-based characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits

  14. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced

  15. Managing California's low-level waste: state policy and waste generators

    International Nuclear Information System (INIS)

    Pasternak, A.D.; Cramer, E.N.

    1985-01-01

    Since 1982, public and private organizations in California that use radioactive materials and generate low-level radioactive waste have worked together through the California Radioactive Materials Management Forum (CRMMF) to assure the continued safe disposal of low-level waste (LLW). The forum's corporate and institutional members include electric utilities, universities, hospitals, industries, professional societies, and firms engaged in biological research and the manufacture of radiopharmaceuticals. In addition, over 200 individuals are members. The objectives of CRMMF are: (a) establishing a disposal facility for LLW in California and (b) maintaining access to the existing disposal sites in Washington, Nevada, and South Carolina until a California site is licensed and operating. This paper describes the forum's programs in the areas of legislation, litigation, and public information that contribute to the achievement of these objectives

  16. Risk assessment and radioactive waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1979-01-01

    Problems of radioactive waste management, both real and apparent, have provided a serious constraint in the development of nuclear power. Several studies have been conducted in an attempt to evaluate the actual (quantifiable) risks of radioactive waste management and place them in a reasonable perspective. These studies are reviewed and discussed. Generally, the studies indicate the risks to be of a level of seriousness which might normally be considered acceptable in current society. However, it is apparent that this acceptability has not been attained and public apprehension prevails. To understand the reasons for this apprehension requires an assessment of those factors of ''perceived'' risks which play a major role in determining public attitudes toward radioactive waste management programs and nuclear power, in general. Such factors might include the spector of legacies of harm to future generations, genetic effects, nuclear garbage dumps, proliferation of plutonium inventories, nuclear terrorism, etc. A major problem in development of acceptable waste management policies and programs requires not only the recognition of the importance of perceived risk factors but development of a methodology for their incorporation in planning and conduct of such activities. Some approaches to the development of this methodology are discussed

  17. Gamma-ray spectrometry combined with acceptable knowledge (GSAK). A technique for characterization of certain remote-handled transuranic (RH-TRU) wastes. Part 2. Testing and results

    International Nuclear Information System (INIS)

    Hartwell, J.K.; McIlwain, M.E.

    2005-01-01

    Gamma-ray spectrometry combined with acceptable knowledge (GSAK) is a technique for the characterization of certain remote-handled transuranic (RH-TRU) wastes. GSAK uses gamma-ray spectrometry to quantify a portion of the fission product inventory of RH-TRU wastes. These fission product results are then coupled with calculated inventories derived from acceptable process knowledge to characterize the radionuclide content of the assayed wastes. GSAK has been evaluated and tested through several test exercises. These tests and their results are described; while the former paper in this issue presents the methodology, equipment and techniques. (author)

  18. Continuous organic waste digester and methane gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Araneta, V.A.

    1979-01-01

    A patent on the construction of a utility model of an industrial product of a continuous organic-waste digester and methane-gas generator is described. It comprises an airtight chamber to receive slurry of organic waste; a gas-water scrubber to purge carbon dioxide, odor-omitting gases and froth or scrum from newly formed methane gas evolving from said slurry of organic wastes; and two dually functioning slurry-feed and -discharge pipes connected to a reversible pump. It has one pipe with an opening at the base of an airtight chamber and the other pipe with up-ended openings below the fluid level of the slurry to be accumulated in the airtight chamber.

  19. Systematic analysis method for radioactive wastes generated from nuclear research facilities

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio; Takahashi, Kuniaki

    2011-01-01

    Analytical methods have been developed for the simple and rapid determination of radioactive nuclides, which are selected as important nuclides for the safety assessment of the disposal of wastes generated from research facilities. We advanced the development of a high-efficiency nondestructive measurement technique for γ-ray-emitting nuclides, simple and rapid methods for the pretreatment of hard-to-dissolve samples and subsequent radiochemical separation, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of sample, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities. (author)

  20. Successfully burying low-level waste for fun and profit

    International Nuclear Information System (INIS)

    Strong, T.R.; Kirner, N.P.

    1984-01-01

    The state of Washington, now receiving more than half the nation's waste, is here to provide a practical review of the benefits of having a low-level waste disposal site and to provide our perspective on how the state of Washington carries out its responsibilities through regulation of that disposal site. This information is offered in the hope that it may be useful to other states when they accept their responsibility to provide for the disposal of their low-level radioactive waste. The 1980 Low-Level Waste Policy Act very directly gave the responsibility for finding and developing new waste disposal capacity to the states. Through the process of compacting, the states have begun to accept this responsibility. From Washington's perspective, however, the progress shown to date, especially in some states generating very large amounts of waste, has not been adequate to meet the 1986 deadline

  1. Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  2. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  3. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  4. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  5. Generation and collection of restaurant waste: Characterization and evaluation at a case study in Italy.

    Science.gov (United States)

    Tatàno, Fabio; Caramiello, Cristina; Paolini, Tonino; Tripolone, Luca

    2017-03-01

    Because restaurants (as a division of the hospitality sector) contribute to the generation of commercial and institutional waste, thus representing both a challenge and an opportunity, the objective of the present study was to deepen the knowledge of restaurant waste in terms of the qualitative and quantitative characteristics of waste generation and the performance achievable by the implementation of a separate collection scheme. In this study, the generated waste was characterized and the implemented separate collection was evaluated at a relevant case study restaurant in a coastal tourist area of Central Italy (Marche Region, Adriatic Sea side). The qualitative (compositional) characterization of the generated total restaurant waste showed considerable incidences of, in decreasing order, food (28.2%), glass (22.6%), paper/cardboard (19.1%), and plastic (17.1%). The quantitative (parametric) characterization of the generated restaurant waste determined the unit generation values of total waste and individual fractions based on the traditional employee and area parameters and the peculiar meal parameter. In particular, the obtained representative values per meal were: 0.72kgmeal -1 for total waste, and ranging, for individual fractions, from 0.20 (for food) to 0.008kgmeal -1 (for textile). Based on the critical evaluation of some of the resulting unit waste generation values, possible influences of restaurant practices, conditions, or characteristics were pointed out. In particular, food waste generation per meal can likely be limited by: promoting and using local, fresh, and quality food; standardizing and limiting daily menu items; basing food recipes on consolidated cooking knowledge and experience; and limiting plate sizes. The evaluation of the monthly variation of the monitored separate collection, ranging from an higher level of 52.7% to a lower level of 41.4%, indicated the following: a reduction in the separate collection level can be expected at times of

  6. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-06-01

    Chalk River Nuclear Laboratories are developing methods to condition power reactor wastes and to immobilize their radionuclides. Evaporation alone and combined with bituminization has been an important part of the program. After testing at the laboratories a 0.5 m 2 wiped-film evaporator was sent to the Douglas Point Nuclear Generating Station (220 MWe) to demonstrate its suitability to handle typical reactor liquid wastes. Two specific tasks undertaken with the wiped-film evaporator were successfully completed. The first was purification of contaminated heavy water which had leaked from the moderator circuit. The heavy water is normally recovered, cleaned by filters and ion-exchange resin and then upgraded by electrolysis. Cleaning the heavy water with the wiped-film evaporator produced better quality water for upgrading than had been achieved by any previous method and at much lower operating cost. The second task was to concentrate and immobilize a decontamination waste. The waste was generated from the decontamination of pump bowls used in the primary heat transport circuit. The simultaneous addition of the liquid waste and bitumen emulsion to the wiped-film evaporator produced a solid containing 30 wt% waste solids in a bitumen matrix. The volume reduction achieved was 16:1 based on the volumes of initial liquid waste and the final product generated. The quantity sent to storage was 20 times less than had the waste been immobilized in a cement matrix. The successful demonstration has resulted in a proposal to install a wiped-film evaporator at the station to clean heavy water and immobilize decontamination wastes. (author)

  7. Greater-than-Class-C low-level radioactive waste management concepts

    International Nuclear Information System (INIS)

    Knecht, M.A.

    1988-01-01

    In 1986, Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 assigned to the Federal Government responsibility for the disposal of commercial greater-than-Class-C (GTCC) low-level radioactive waste (LLW). In 1987, DOE committed to Congress to accept GTCC LLW and provide storage and other waste management as necessary until disposal capacity is available. Current estimates are that about 6,000 m 3 of unpackaged GTCC LLW will be generated to the year 2020. Generators estimate that 100 m 3 of raw GTCC LLW might exceed planned storage capacity to the year 2020. This paper reports the activities of the National Low-Level Waste Program to manage GTCC low-level radioactive waste

  8. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2009-01-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  9. The concept of responsibility to future generations for the management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Vial, E.

    2004-01-01

    Recognition of the concept of responsibility to future generations seems, to imply the need to assume responsibility today for radioactive waste legacy of the past as well as for the waste that is currently being generated. However, this view of things, or more precisely this interpretation, is clouded by the lack of a clear definition of the concept of responsibility towards future generations. The concept has been used mainly in connection with long-lived radioactive wastes, which pose the greatest management problem as it so so far exceeds any human scale of reference. Consideration for future generations has to be a factor in the management of all types of radioactive waste, be it short, medium or long-lived waste or very low, low, intermediate or highly radioactive waste. As a general rule the concept of responsibility has made focus on long lived waste, whatever its level of radioactivity. The current alternatives for the management of radioactive waste may be: interim storage, final disposal, incineration, transmutation, to lower the radioactivity of the wastes. These different alternatives are discussed because they are not all genuine solutions and need to be deepened. (N.C.)

  10. The current waste generation and management trends in South Africa: A Review

    CSIR Research Space (South Africa)

    Nkosi, N

    2013-04-01

    Full Text Available This paper, a continuation and expansion of the work of Muzenda et al, 2012 [1] looks at the current waste generation and management trends in South Africa. The waste tyre problem in South Africa is also briefly discussed. Solid waste management...

  11. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  12. Vitrification of liquid waste from nuclear power plants

    International Nuclear Information System (INIS)

    Sheng Jiawei; Choi, Kwansik; Song, Myung-Jae

    2001-01-01

    Glass is an acceptable waste form to solidify the low-level waste from nuclear power plants (NPPs) because of the simplicity of processing and its unique ability to accept a wide variety of waste streams. Vitrification is being considered to solidify the high-boron-containing liquid waste generated from Korean NPPs. This study dealt with the development of a glass formulation to solidify the liquid waste. Studies were conducted in a borosilicate glass system. Crucible studies have been performed with surrogate waste. Several developed glass frits were evaluated to determine their suitability for vitrifying the liquid waste. The results indicated that the 20 wt% waste oxides loading required could not be obtained using these glass frits. Flyash produced from coal-burning electric power stations, whose major components are SiO 2 and Al 2 O 3 , is a desirable glass network former. Detailed product evaluations including waste loading, homogeneity, chemical durability and viscosity, etc., were carried out on selected formulations using flyash. Up to 30 wt% of the waste oxides was successfully solidified into the flyash after the addition of 5-10 wt% Na 2 O at 1200 deg. C

  13. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  14. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  15. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  16. Solid Waste Information Tracking System (SWITS), Backlog Waste Modifications, Software Requirements Specification (SRS)

    International Nuclear Information System (INIS)

    Clark, R.E.

    1995-01-01

    Purpose of this document is to define the system requirements necessary to improve computer support for the WHC backlog waste business process through enhancements to the backlog waste function of the SWITS system. This SRS document covers enhancements to the SWITS system to support changes to the existing Backlog Waste screens including new data elements, label changes, and new pop-up screens. The pop-ups will allow the user to flag the processes that a waste container must have performed on it, and will provide history tracking of changes to data. A new screen will also be provided allowing Acceptable Services to perform mass updates to specific data in Backlog Waste table. The SWITS Backlog Waste enhancements in this document will support the project goals in WHC-SD-WM-003 and its Revision 1 (Radioactive Solid Waste Tracking System Conceptual Definition) for the control, tracing, and inventory management of waste as the packages are generated and moved through final disposal (cradle-to-grave)

  17. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  18. Savannah River Site sample and analysis plan for Clemson Technical Center waste

    International Nuclear Information System (INIS)

    Hagstrom, T.

    1998-04-01

    The purpose of this sampling and analysis plan is to determine the chemical, physical and radiological properties of the SRS radioactive Polychlorinated Biphenyl (PCB) liquid waste stream, to verify that it conforms to Waste Acceptance Criteria of the Department of Energy (DOE) East Tennessee Technology Park (ETTP) Toxic Substance Control Act (TSCA) Incineration Facility. Waste being sent to the ETTP TSCA Incinerator for treatment must be sufficiently characterized to ensure that the waste stream meets the waste acceptance criteria to ensure proper handling, classification, and processing of incoming waste to meet the Waste Storage and Treatment Facility's Operating Permits. This sampling and analysis plan is limited to WSRC container(s) of homogeneous or multiphasic radioactive PCB contaminated liquids generated in association with a treatability study at Clemson Technical Center (CTC) and currently stored at the WSRC Solid Waste Division Mixed Waste Storage Facility (MWSF)

  19. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    International Nuclear Information System (INIS)

    Faria, Érica R.; Tello, Clédola C.O.; Costa, Bruna S.

    2017-01-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  20. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Érica R.; Tello, Clédola C.O., E-mail: erica.engqui@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte/MG (Brazil); Costa, Bruna S., E-mail: brusilveirac@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2017-07-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  1. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  2. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  3. Electrical and Electronical Waste Generation in Turkey: Bursa Case Study

    Directory of Open Access Journals (Sweden)

    Güray SALİHOĞLU

    2016-10-01

    Full Text Available Electrical and electronical equipment that gradually take more place in our daily life, spend their service life in short times and become an e-waste problem to be solved.  Because of the hazardous components they contain, e-waste can cause environmental and human health threats if they are not properly managed. If they are managed properly, they can be a valuable raw material source, since they contain valuable metals such as copper, silver, gold, palladium and recyclable components such as plastics and metals. According to a research conducted in 2014, the global e-waste amount accounts to a source worth 52 billion $; however, only 16% of this source has been properly recycled. It is important to know the potential e-waste amount and the behaviors of people in the production of e-waste to realize a proper e-waste management in our country. The amount and property of electrical and electronic equipment and e-waste generation potential per person in Bursa was investigated in this study. A questionnaire was prepared and applied to a group of people including 31 families (100 person. The questions were to investigate the behaviors in the use, replacement, and management of electrical and electronical equipment. The findings showed that usage of lamps (fluorescent and others were higher than the other equipment, and usage of mobile phones were found to be highest in terms of devices. It was also found that when the mobiles become e-waste since the owners do not want to use them, they are not just thrown away and kept at homes instead. E-waste generation potential of a person from the families investigated was estimated to be 8.14 kg/year.

  4. WRAP Module 1 sampling strategy and waste characterization alternatives study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeson, C.L.

    1994-09-30

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  5. WRAP Module 1 sampling strategy and waste characterization alternatives study

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-01-01

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner

  6. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion...

  7. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  8. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  9. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  10. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    International Nuclear Information System (INIS)

    Araújo, Marcelo Guimarães; Magrini, Alessandra; Mahler, Cláudio Fernando; Bilitewski, Bernd

    2012-01-01

    Highlights: ► Literature of WEEE generation in developing countries is reviewed. ► We analyse existing estimates of WEEE generation for Brazil. ► We present a model for WEEE generation estimate. ► WEEE generation of 3.77 kg/capita year for 2008 is estimated. ► Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the “boom” in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  11. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00025; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  12. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  13. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  14. The Mixed Waste Focus Area: Status and accomplishments

    International Nuclear Information System (INIS)

    Conner, J.E.

    1997-01-01

    The Mixed Waste Focus Area began operations in February of 1995. Its mission is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments, and regulators. The MWFA will develop, demonstrate, and deliver implementable technologies for treatment of mixed waste within the DOE complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation, and disposal. The MWFA's mission arises from the Resources Conservation and Recovery Act (RCRA) as amended by the Federal Facility Compliance Act. Each DOE site facility that generates or stores mixed waste prepared a plan, the Site Treatment Plan, for developing treatment capacities and treating that waste. Agreements for each site were concluded with state regulators, resulting in Consent Orders providing enforceable milestones for achieving treatment of the waste. The paper discusses the implementation of the program, its status, accomplishments and goals for FY1996, and plans for 1997

  15. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  16. Precipitation-filtering technology for uranium waste solution generated on washing-electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam, E-mail: kimsum@kaeri.re.kr; Park, Uk-Ryang; Kim, Seung-Soo; Moon, Jei-Kwon

    2015-05-15

    Graphical abstract: A recycling process diagram for the volume reduction of waste solution generated from washing-electrokinetic decontamination. - Highlights: • A process for recycling a waste solution generated was developed. • The total metal precipitation rate by NaOH in a supernatant after precipitation was the highest at pH 9. • The uranium radioactivity in the treated solution upon injection of 0.2 g of alum was lower. • After drying, the volume of sludge was reduced to 35% of the initial sludge volume. - Abstract: Large volumes of uranium waste solution are generated during the operation of washing-electrokinetic decontamination equipment used to remove uranium from radioactive soil. A treatment technology for uranium waste solution generated upon washing-electrokinetic decontamination for soil contaminated with uranium has been developed. The results of laboratory-size precipitation experiments were as follows. The total amount of metal precipitation by NaOH for waste solution was highest at pH 11. Ca(II), K(I), and Al(III) ions in the supernatant partially remained after precipitation, whereas the concentration of uranium in the supernatant was below 0.2 ppm. Also, when NaOH was used as a precipitant, the majority of the K(I) ions in the treated solution remained. The problem of CaO is to need a long dissolution time in the precipitation tank, while Ca(OH){sub 2} can save a dissolution time. However, the volume of the waste solution generated when using Ca(OH){sub 2} increased by 8 mL/100 mL (waste solution) compared to that generated when using CaO. NaOH precipitant required lower an injection volume lower than that required for Ca(OH){sub 2} or CaO. When CaO was used as a precipitant, the uranium radioactivity in the treated solution at pH 11 reached its lowest value, compared to values of uranium radioactivity at pH 9 and pH 5. Also, the uranium radioactivity in the treated solution upon injection of 0.2 g of alum with CaO or Ca(OH){sub 2} was

  17. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  18. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    International Nuclear Information System (INIS)

    Orchard, B.J.; Harvego, L.A.; Carlson, T.L.; Grant, R.P.

    2009-01-01

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation's expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratory's NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL's contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL's TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: (1

  19. The state-of-the-art report on management of the decommissioning waste generated from nuclear facilities

    International Nuclear Information System (INIS)

    Kang, Il Sik; Lee, K. M.; Chung, K. H.; Kim, T. K.; Kim, K. J.

    1998-03-01

    As a result of this research on management methodologies of decommissioning waste from nuclear facilities, the state of the art of decommissioning status, plan, and management field on decommissioning waste in foreign countries as well as in Korea is evaluated. Radioactive waste for final disposal according to reusing non-radioactive waste by clear guideline on classification criteria of decommissioning waste by clear guideline on classification criteria of decommissioning waste will be reduced and metal through melting decontamination may be reused. Also, the relevant regulations on acceptance criteria of disposal site for decommissioning waste should be introduced to manage decommissioning waste effectively. It is necessary that large transport containers which satisfy relevant regulations should be designed and manufactured to transport of large waste. (author). 49 refs., 24 tabs., 30 figs

  20. Major factors contributing to the construction waste generation in building projects of Iraq

    Directory of Open Access Journals (Sweden)

    Khaleel Tareq

    2018-01-01

    Full Text Available Due to the economic growth and improvement of the construction industry witnessed by most countries, there has become a crucial need for employing modern possibilities in the construction sector to build taller, longer and deeper structures. However, one aspect that heads forward with the same intensity is the generation of 100 million tons of construction waste every year. This generation has occurred due to several factors with different levels of importance. Hence, this study reveals 15 factors influencing construction waste generation and categorizes them into 3 groups, (materials management on site, (materials handling, transportation and storage and (site management and practices. A questionnaire survey of 100 respondents was distributed among different engineers to assess the construction waste factors. Results showed that damage of materials on site, double handling of materials and incompetent contractor’s technical staff were the most significant factors of each category with Relative Importance Indexes (RII of 0.866, 0.844 and 0.83, respectively. These findings will help the practitioners to reduce construction waste quantities in sites and improve waste management performance factors to control the construction waste problems.