WorldWideScience

Sample records for acceptable light-duty diesel

  1. A perspective on the potential development of environmentally acceptable light-duty diesel vehicles.

    OpenAIRE

    Hammerle, R; Schuetzle, D; Adams, W.

    1994-01-01

    Between 1979 and 1985, an international technical focus was placed upon potential human health effects associated with exposure to diesel emissions. A substantial data base was developed on the composition of diesel emissions; the fate of these emissions in the atmosphere; and the effects of whole particles and their chemical constituents on microorganisms, cells, and animals. Since that time, a number of significant developments have been made in diesel engine technology that require a new l...

  2. Issues concerning the light-duty diesel

    Energy Technology Data Exchange (ETDEWEB)

    Clusen, Ruth C.

    1979-09-01

    The current reasons for concern about the diesel engine for light-duty vehicles are explained, and an overview of the major issues impacting upon future diesel-related policy considerations is presented. Light-duty diesels are of immediate concern because proposed environmental legislation could impact upon their market future as early as model year 1981. The environmental issues affecting these vehicles also have implications for other categories of diesels (heavy-duty mobile and stationary application). Part I presents background and overview information on the reasons for the diesel's emergence as a major concern in the regulatory area and Part II summarizes the issues surrounding the diesel in three major areas: protecting health and the environment; fuel conservation; and broad economic and programmaic trade-offs arising from the previous two areas.

  3. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  4. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  5. Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism

    DEFF Research Database (Denmark)

    Ng, Hoon Kiat; Gan, Suyin; Ng, Jo-Han;

    2013-01-01

    This computational fluid dynamics (CFD) study is performed to investigate the combustion characteristics and emissions formation processes of biodiesel fuels in a light-duty diesel engine. A compact reaction mechanism with 80 species and 303 reactions is used to account for the effects of chemical...... kinetics. Here, the mechanism is capable of emulating biodiesel–diesel mixture of different blending levels and biodiesel produced from different feedstock. The integrated CFD-kinetic model was validated against a test matrix which covers the entire saturated–unsaturated methyl ester range typical...... of biodiesel fuels, as well as the biodiesel–diesel blending levels. The simulated cases were then validated for in-cylinder pressure profiles and peak pressure values/timings. Errors in the peak pressure values did not exceed 1%, while the variations in peak pressure timings were kept within 1.5 crank angle...

  6. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2004-08-23

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  7. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment

    Energy Technology Data Exchange (ETDEWEB)

    K. Stork; R. Poola

    1998-10-01

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

  8. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment; FINAL

    International Nuclear Information System (INIS)

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO(sub x)) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM(sub 2.5)). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO(sub x) and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles

  9. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  10. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low

  11. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Charlie

    2000-08-20

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  12. Evaluation of the contribution of light-duty vehicles to the underground atmosphere diesel emissions burden : Phase I

    International Nuclear Information System (INIS)

    The characterization of diesel particulate matter (DPM) exhaust emissions from light-duty (LD) and heavy-duty (HD) vehicles in a metal mine and the estimation of the relative contributions of both types of vehicles to the overall underground contaminant burden represent the objectives of the study. The first phase of the project involves the selection of the mine, the characterization of the mine's diesel fleet, duty cycle assessment method, raw exhaust DPM sampling issues and the determination of the cross-section of the fleet which is to be tested during phase 2 of the project. This document relates to phase 1. The evaluation of high-efficiency diesel filtration technology from the perspective of impact on the underground environment is a major concern of the Diesel Emissions Evaluation Program funding this study, as well as issues concerning its implementation. The Falconbridge Onaping operation was selected for the purpose of the study. The data concerning the diesel fleet is included in tables in the document. A large amount of underground coordination will be required for phase 2 of the project. 11 refs., 7 tabs., 5 figs

  13. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  14. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions

    Institute of Scientific and Technical Information of China (English)

    Jingnan Hu; Ye Wu; Zhishi Wang; Zhenhua Li; Yu Zhou; Haitao Wang; Xiaofeng Bao; Jiming Hao

    2012-01-01

    The real-world fuel efficiency and exhaust emission profiles of CO,HC and NOx for light-duty diesel vehicles were investigated.Using a portable emissions measurement system,16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method.The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 ± 0.6) L/100 km,while other five diesel taxies showed relatively high values at (8.5 ± 1.7) L/100 km due to the variation in transmission systems and emission control strategies.Compared to similar Corolla gasoline models,the diesel cars confirmed an advantage of ca.20% higher fuel efficiency.HC and CO emissions of all the 16 taxies are quite low,with the average at (0.05 ± 0.02) g/km and (0.38 ± 0.15) g/km,respectively.The average NOx emission factor of the 11 Corolla taxies is (0.56 ± 0.17) g/krn,about three times higher than their gasoline counterparts.Two of the three Hyundai Sonata taxies,configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies,indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination.A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified.To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area,traffic planning also needs improvement.

  15. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  16. Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels

    OpenAIRE

    2010-01-01

    Abstract In this study, regulated and unregulated gaseous emissions and fuel consumption with five different fuels were tested in a 4-cylinder, light-duty diesel EURO IV typically used for the automotive vehicles in Europe. Three different biodiesel fuels obtained from soybean oil, rapeseed oil and palm oil, a Fischer Tropsch fuel and an ultra low sulphur diesel were studied. The test used was the New European Driving Cycle (NEDC), this allowed tests to be carried out on an engine ...

  17. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  18. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: light duty diesel vehicles.

    Science.gov (United States)

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Laing, Paul M

    2002-01-15

    Wind tunnel measurements and direct tailpipe particulate matter (PM) sampling are utilized to examine how the combination of oxidation catalyst and fuel sulfur content affects the nature and quantity of PM emissions from the exhaust of a light duty diesel truck. When low sulfur fuel (4 ppm) is used, or when high sulfur (350 ppm)fuel is employed without an active catalyst present, a single log-normal distribution of exhaust particles is observed with a number mean diameter in the range of 70-83 nm. In the absence of the oxidation catalyst, the high sulfur level has at most a modest effect on particle emissions (<50%) and a minor effect on particle size (<5%). In combination with the active oxidation catalyst tested, high sulfur fuel can lead to a second, nanoparticle, mode, which appears at approximately 20 nm during high speed operation (70 mph), but is not present at low speed (40 mph). A thermodenuder significantly reduces the nanoparticle mode when set to temperatures above approximately 200 degrees C, suggesting that these particles are semivolatile in nature. Because they are observed only when the catalyst is present and the sulfur level is high, this mode likely originates from the nucleation of sulfates formed over the catalyst, although the composition may also include hydrocarbons. PMID:11827064

  19. Impacts of Ambient Temperature and Pressure on PM2.5 Emission Profiles of Light-Duty Diesel Vehicles

    Science.gov (United States)

    Wang, Chenyu; Wu, Ye; Li, Zhenhua; Hao, Jiming

    2012-01-01

    The impact of the environmental factors on the emissions of particulate matter (PM) number, size distribution and mass size distribution from diesel passenger cars was evaluated. Particle measurements from five modern light-duty diesel vehicles (LDDV) were performed in June and November 2011. Commercial low sulfur diesel fuel (less than 50 ppm) was used during the testing of these vehicles which were not equipped with after-treatment devices. The dynamometer test was based on the Economic Commission of Europe (ECE) 15 cycles. The results indicate that PM2.5 emissions from LDDV are significantly affected by ambient temperature and pressure. A comparison of the emissions concentration of PM2.5 in these two different months showed that the number concentration in June was (3.8 ± 0.69) × 107 cm-3 and (2.5 ± 0.66) × 107 cm-3 in November. The PM concentration of about 30 nm diameter was 25 ± 6% of the total emissions in November while only 14 ± 3% of total emissions in June. In the 60 nm to 2.5 μm test range, November data shows less of a contribution for number than data from June testing. The concentration of mass emissions in June was (325 ± 44) mg/m3 and (92 ± 30) mg/m3 in November. The contribution of the number of PM particles in November testing is lower than testing in June by 34% and the mass concentration in November is 70% lower than that in June. With the decrease of ambient temperature and the increase of ambient pressure, both the oxygen concentration in cylinder and air-fuel ratio are increased, which caused lower particle number and mass emissions during November testing. The size distribution is also altered by these changes: the more efficient in-cylinder combustion resulted in a higher proportion of particles in the 30 nm and smaller range than for other particle sizes.

  20. Use of a Chamber to Comprehensively Characterise Emissions and Subsequent Processes from a Light-Duty Diesel Engine

    Science.gov (United States)

    Allan, J. D.; Alfarra, M. R. R.; Whitehead, J.; McFiggans, G.; Kong, S.; Harrison, R. M.; Alam, M. S.; Hamilton, J. F.; Pereira, K. L.; Holmes, R. E.

    2014-12-01

    Around 1 in 3 light duty vehicles in the UK use diesel engines, meaning that on-road emissions of particulates, NOx and VOCs and subsequent chemical processes are substantially different to countries where gasoline engines dominate. As part of the Natural Environment Research Council (NERC) Com-Part project, emissions from a diesel engine dynamometer rig representative of the EURO 4 standard were studied. The exhaust was passed to the Manchester aerosol chamber, which consists of an 18 m3 teflon bag and by injecting a sample of exhaust fumes into filtered and chemically scrubbed air, a controllable dilution can be performed and the sample held in situ for analysis by a suite of instruments. The system also allows the injection of other chemicals (e.g. ozone, additional VOCs) and the initiation of photochemistry using a bank of halogen bulbs and a filtered Xe arc lamp to simulate solar light. Because a large volume of dilute emissions can be held for a period of hours, this permits a wide range of instrumentation to be used and relatively slow processes studied. Furthermore, because the bag is collapsible, the entire particulate contents can be collected on a filter for offline analysis. Aerosol microphysical properties are studied using a Scanning Mobility Particle Sizer (SMPS) and Centrifugal Particle Mass Analyser (CPMA); aerosol composition using a Soot Particle Aerosol Mass Spectrometer (SP-AMS), Single Particle Soot Photometer (SP2), Sunset Laboratories OC EC analyser and offline gas- and high performance liquid chromatography (employing advanced mass spectrometry such as ion trap and fourier transform ion cyclotron resonance); VOCs using comprehensive 2D gas chromatography; aerosol optical properties using a Cavity Attenuated Phase Shift Single Scattering Albedo monitor (CAPS-PMSSA), 3 wavelength Photoacoustic Soot Spectrometer (PASS-3) and Multi Angle Absorption Photometer (MAAP); particle hygroscopcity using a Hygroscopicity Tandem Differential Mobility

  1. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities.

    Science.gov (United States)

    Wang, Gang; Cheng, Shuiyuan; Lang, Jianlei; Li, Song; Tian, Liang

    2016-08-01

    A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.

  2. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities.

    Science.gov (United States)

    Wang, Gang; Cheng, Shuiyuan; Lang, Jianlei; Li, Song; Tian, Liang

    2016-08-01

    A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene. PMID:27521933

  3. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine.

    Science.gov (United States)

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph

    2015-06-16

    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend.

  4. 40 CFR 86.099-17 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... closed loop operation, fuel system commands, coolant temperature, calculated load value, fuel pressure... status (closed loop, open loop, other), fuel trim, ignition timing advance, intake air temperature... diesel cycle light-duty vehicles or diesel cycle light-duty trucks, except where the catalyst is...

  5. Caracterização das emissões de aldeídos de veículos do ciclo diesel Emission of aldehydes from light duty diesel vehicles

    Directory of Open Access Journals (Sweden)

    Rui de Abrantes

    2005-06-01

    Full Text Available OBJETIVO: Caracterizar as emissões de acetaldeído e formaldeído, substâncias nocivas para a saúde das pessoas e cujas emissões dos veículos a diesel ainda não estão regulamentadas. MÉTODOS: Testes padronizados foram realizados em quatro veículos leves comerciais do ciclo diesel, testados num dinamômetro de chassis, usando o procedimento de teste FTP-75. Os poluentes foram analisados por cromatografia líquida de alta eficiência. RESULTADOS: Os resultados mostraram que a emissão de acetaldeído variou de 5,9 a 45,4 mg/km e a de formaldeído variou de 16,5 a 115,2 mg/km. A emissão média para a soma dos aldeídos foi de 58,7 mg/km, variando de 22,5 mg/km a 160 mg/km. A proporção entre os dois se manteve constante, próximo de 74% de formaldeído e 26% de acetaldeído. CONCLUSÕES: A emissão de aldeídos provenientes de veículos movidos a diesel foi significativa quando comparada com as emissões reais dos veículos de ignição por centelha ou com o limite previsto para os veículos do ciclo Otto na legislação brasileira. O estabelecimento de limites de emissão para essas substâncias para veículos a diesel mostra-se importante, considerando o crescimento da frota de veículos a diesel, a toxicidade desses compostos e sua participação como precursores nas reações de formação de gás ozônio na baixa troposfera.OBJECTIVE: To characterize acetaldehyde and formaldehyde emissions, which are harmful gases to human health and not yet regulated for diesel engines. METHODS: Standardized tests were performed in four diesel light duty commercial vehicles, using a frame dynamometer and test procedure FTP-75. The pollutants were analyzed by high performance liquid chromatography. RESULTS: Results have shown acetaldehyde emission ranged from 5.9 to 45.4 mg/km, and formaldehyde emission from 16.5 to 115.2 mg/km. The average emission for aldehyde sum was 58.7 mg/km, ranging from 22.4 to 160.6 mg/km. The proportion between the two

  6. Experimental Investigation of Performance and Emission Characteristics of Blends of Jatropha Oil Methyl Ester and Ethanol in Light Duty Diesel Vehicle

    Directory of Open Access Journals (Sweden)

    Mr. S.K.Sinha,

    2014-02-01

    Full Text Available Diesel engine are most versatile engine which are mostly use as main prime movers in transportation , decentralized electric generation and agricultures sector. The current growth in environmental degradation and limited availability of fossil fuels has been a matter of concern throughout the world. In view of this fact it has become necessary to explore renewable alternative fuel from resources available locally, such as vegetable oils alcohol, animal fats etc. whose properties are comparable with mineral diesel and it can be used in the existing C.I. engine without any major hardware modification. The fuel should also meet the present energy needs for vast rural population, stimulating rural development and creating employment opportunities. Apart from this, it should address global concerns about net reduction of carbon emissions. The present energy scenario has motivated the world scientist to explore non petroleum, renewable and clean fuel which helps in sustainable development. The bio origin fuel can provide a feasible solution. Biodiesel is the one of the bio-origin fuels, it can derive from vegetable oil (edible or non-edible, and animal fats .However in India it is not viable to produce biodiesel using edible oil due to food security issues. Non-edible oils are more preferred oil as a feedstock to produce bio-diesel. Vegetable oils are the mixture of organic compound which contain straight chain compound to complex structure of proteins and fat which called triglycerides. Triglyceride made of one mole of glycerol and three moles of fatty acids. The vegetable oil has high viscosity than mineral diesel due to high molecular weight and complex molecular structure. Neat vegetable oil due to its poor volatility and high viscosity is not suitable for diesel engine application

  7. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    Science.gov (United States)

    Lee, Hyungmin; Jeong, Yeonhwan

    2012-12-01

    This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  8. Impact of oxygenated additives to palm and jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine

    International Nuclear Information System (INIS)

    Highlights: • The attempt was to improve palm and jatropha biodiesel–diesel blends with additives. • Ethanol, n-butanol and diethyl ether were used as additives. • Diethyl ether gave almost 4.5% increment of brake power with 3.5% increment of BTE. • Ethanol gave up to 40% decrement of CO and 8% decrement of NO. • Diethyl ether, n-butanol improved performance and emission, ethanol only improved emission. - Abstract: In recent years, palm and jatropha biodiesels have been considered as potential renewable energy sources in Malaysia. Therefore, this experimental investigation was conducted to improve the blend of these two biodiesels (20% biodiesel blend, named P20 and J20, respectively) with the help of oxygenated additives. The comparative improvement of P20 and J20 blends with ethanol, n-butanol, or diethyl ether as additives was evaluated in terms of performance and emissions characteristics of a four-stroke single cylinder diesel engine. The final blend consisted of 80% diesel, 15% biodiesel, and 5% additive. Tests were conducted at different speeds (1200–2400 rpm) at constant full load conditions. Use of additives significantly improved brake power and brake thermal efficiency (BTE). Compared with P20 blend, the use of diethyl ether as additive increased brake power and BTE by about 4.10% and 4.4%, respectively, at 2200 rpm. A similar improvement was observed for J20. The other two additives also improved performance. Although HC emission increased slightly, all blends with additives reduced more NOx and CO emissions than P20 and J20 almost throughout the entire engine test. The use of ethanol as additive reduced CO emission by up to 40%, while the use of diethyl ether as additive reduced NOx emissions by up to 13%. The additives’ oxygen content, volatility, and latent evaporation heat controlled the emissions characteristics of the blends. An analysis of the combustion chamber pressure, temperature and heat release rate of the modified blends

  9. Instantaneous Emission Simulation for Light-Duty Diesel Vehicle with Different Driving Cycles by CMEM Model%不同行驶工况下轻型柴油车瞬时排放的CMEM模拟研究

    Institute of Scientific and Technical Information of China (English)

    戴璞; 陈长虹; 黄成; 李莉; 贾记红; 董艳强

    2009-01-01

    CMEM model for calculating time based instantaneous emission from light duty diesel vehicle and its input parameters were introduced.On-board test data were used to validate the simulation results.The relative error of THC,CO,and NOx are 14.2%,3.7% and 32.7%,respectively,while the correlation coefficients reach 0.73,0.72 and 0.87. The instantaneous emissions of the light duty diesel vehicle simulated by CMEM model are strongly coherent with the transient driving cycle in Shanghai.The simulation of instantaneous emissions and fuel economy under the ECE-15 cycle,FTP cycle,Japan 10-15 cycle and the cycle of shanghai arterial road show that the instantaneous emissions decline with the increase of the vehicle speed,especially from 0-10 km·h-1 to 10-20 km·h-1.The acceleration process dominated the whole emissions,which contributes over 30% of the total emission,and sometimes it even reaches over 70%.The contributions of shanghai arterial road for idle condition are 40% and 30%,emission factors of CO are 1.3,1.5 and 1.4 times of ECE-15 cycle,FTP cycle,Japan 10-15 cycle respectively;THC are respectively 1.5,2.1 and 1.9 times of above cycles;and emission factors of NOx are respectively 1.2,1.3 and 1.3 times of ECE-15 cycle,FTP cycle and Japan 10-15 cycle.The fuel economy of the light-duty diesel car on shanghai arterial road is the worst,which is 9.56 km·L-1. The driving cycles used on abroad can not reflect the actual driving conditions in China.%以轻型柴油车为研究对象,给出了轻型柴油车瞬时排放计算模型的结构和主要输入参数,并将车辆在实际道路上的瞬时排放计算结果与实测数据作了对比验证.结果表明,THC、CO以及NOx排放的相对误差分别为14.2%、 3.7%和32.7%,相关系数分别达到0.73、 0.72和0.87,表明CMEM模型能够较好地反映车辆在实际道路上排放的瞬时变化.对车辆在日本10-15工况、欧洲ECE工况、美国FTP城区工况及上海城市主干道路况上的排放和燃

  10. A complementary emissions test for light-duty vehicles: Assessing the technical feasibility of candidate procedures

    OpenAIRE

    WEISS MARTIN; Bonnel, Pierre; HUMMEL RUDOLF; STEININGER Nikolaus

    2012-01-01

    Light-duty diesel vehicles emit on the road substantially more nitrogen oxides than permitted by regulatory emissions standards. The European Commission addresses this problem by developing a complementary emissions test procedure for the type approval and in-service conformity testing of these vehicles. To facilitate the technical development, the European Commission established in January 2011 the Real-Driving Emissions - Light-Duty Vehicles (RDE-LDV) working group that is open to all stake...

  11. Multi-Dimensional Modeling of Combustion and Pollutants Formation of New Technology Light Duty Diesel Engines Modélisation multidimensionnelle de la combustion et de la formation des polluants dans les nouveaux moteurs diesel automobiles

    Directory of Open Access Journals (Sweden)

    Belardini P.

    2006-12-01

    Full Text Available In the present paper some results, obtained by the use of modern numerical CFD tools, are presented. In particular, starting from the experimental characterization of a common rail DI Diesel engine, the empirical constants of the different submodels were tuned to obtain satisfactory results in some key test conditions. The main constraints of numerical models, to obtain a right scaling of pollutants predictions in the different test cases are analyzed. The numerical analysis demonstrates that the numerical CFD tools, at their stage of development, can help the engine designers to define the more promising strategies to obtain tailpipe emission control of common rail Diesel DI engines. Dans cet article, nous présentons les résultats obtenus en utilisant des outils de simulation de la mécanique des fluides numérique (CFD. À partir de résultats expérimentaux issus de la caractérisation d'un moteur Diesel common rail, les constantes empiriques de divers modèles ont été ajustées afin d'obtenir des résultats satisfaisants pour des cas tests représentatifs. Les principales contraintes des modèles numériques pour obtenir une bonne précision dans les différents cas d'études sont ici analysées. Cette analyse numérique montre que la CFD permet déjà, au stade de développement atteint, d'aider les ingénieurs à définir les stratégies les plus prometteuses pour maîtriser les émissions à l'échappement des moteurs Diesel à injection common rail.

  12. Light duty utility arm startup plan

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, G.A.

    1998-09-01

    This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

  13. Light Duty Utility Arm Software Test Plan

    International Nuclear Information System (INIS)

    This plan describes how validation testing of the software will be implemented for the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). The purpose of LDUA software validation testing is to demonstrate and document that the LDUA software meets its software requirements specification

  14. 低排放轻型车用柴油机结构及燃烧系统的优化%Optimization of structure and combustion system for a low-emission light-duty diesel engine

    Institute of Scientific and Technical Information of China (English)

    尹必峰; 杨宽宽; 贾和坤; 徐毅; 孙建中; 王伟峰

    2013-01-01

    Based on a 4F20 diesel engine with a mechanical fuel injection system, a high-pressure common rail diesel engine was developed to meet the national stage IV Emission Regulation. The optimization and matching of mechanical, combustion and after-treatment systems were conducted. For the development of the mechanical system, the ribs were added and a separated structure between the cylinder head bosses and the liner was utilized to increase the cylinder block stiffness and to reduce the liner distortion. The geometry of the upper water jacket in the cylinder block was designed to be circular, and its height was increased to match the TDC position of the first piston ring to improve the cooling effect of piston. The installing hole of for the glow plug was added on the base of three-hole layout, and then the coordinates of four holes were optimized. Degassing holes were added at corresponding position in the cylinder head gasket and cylinder head to eliminate dead flow regions and to enhance cooling effect; Coolant passages were set around the injector and above the intake, exhaust ports, and the local maximum temperature of cylinder head was reduced from 469.1K to 457.8K according to the optimized results. A new type of double row gear transmission system was designed which can run compactly and stably at low noise levels. For the optimization of the combustion system, the precise and flexible control of fuel injection timing and amount as well as split injection strategies were achieved by upgrading the mechanical fuel injection system to the BOSCH CRS2.0 electronically controlled high-pressure common rail fuel injection system. The injection pressure was improved significantly (the max pressure could reach up to 160MPa) as a result of the upgrade. The pre-injection can effectively improve the NOx emission about 30% at small and medium load, and low NOx and soot emissions were achieved while maintaining fuel efficiency after the introduction of post-injection at

  15. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Science.gov (United States)

    2010-02-19

    ...On February 10, 2000 (65 FR 6698), EPA published emission standards for light-duty vehicles and light-duty trucks requiring vehicle manufacturers to reduce tailpipe emissions. Specifically, EPA sought to reduce emissions of nitrogen oxides and non-methane hydrocarbons, pollutants which contribute to ozone pollution. The rulemaking also required oil refiners to limit the sulfur content of the......

  16. Light duty utility arm walkdown report

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, J.L.

    1998-09-25

    This document is a report of the Light Duty Utility Arm (LDUA) drawing walkdown. The purpose of this walkdown was to validate the essential configuration of the LDUA in preparation of deploying the equipment in a Hanford waste tank. The LDUA system has, over the course of its development, caused the generation of a considerable number of design drawings. The number of drawings is estimated to be well over 1,000. A large number consist of vendor type drawings, furnished by both Pacific Northwest National Laboratory (PNNL) and SPAR Aerospace Limited (SPAR). A smaller number, approximately 200, are H-6 type drawing sheets in the Project Hanford Management Contract (PHMC) document control system. A preliminary inspection of the drawings showed that the physical configuration of the LDUA did not match the documented configuration. As a result of these findings, a scoping walkdown of 20 critical drawing sheets was performed to determine if a problem existed in configuration management of the LDUA system. The results of this activity showed that 18 of the 20 drawing sheets were found to contain errors or omissions of varying concern. Given this, Characterization Engineering determined that a walkdown of the drawings necessary and sufficient to enable safe operation and maintenance of the LDUA should be performed. A review team was assembled to perform a review of all of the drawings and determine the set which would need to be verified through an engineering walkdown. The team determined that approximately 150 H-6 type drawing sheets would need to be verified, 12 SPAR/PNNL drawing sheets would need to be verified and converted to H-6 drawings, and three to six new drawings would be created (see Appendix A). This report documents the results of that walkdown.

  17. Reduction of particle emissions from light duty vehicles and from taxies; Reduktion af partikelelemissioner fra varebiler og taxier

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Johan; Henriques, M.; Weibel, T.G. [TetraPlan A/S (Denmark)

    2006-11-03

    This project, 'Reduction of particle emissions from light duty vehicles and from taxies', analyses different strategies to reduce the particle emission, their effect for particle emissions, and the resulting cost for the society and for the companies. The project describes the EU regulation of emissions, the possibilities of reducing the emissions via special requirements in environmental zones and the Danish taxation of light duty vehicles. Further, the project includes interviews with owners of light duty vehicles and taxies and also with Danish producers of particle filters. The strategies analysed in the scenarios include: 1) Promotion of particle filters; 2) Shift from diesel to gasoline and; 3) Downsizing. The effects for particle emissions and for mortality are described. Further, the costs and benefits for the society and the cost for the companies are evaluated. The effects of the scenarios are analysed, both for initiatives implemented at a national level and for implementation in an environmental zone in the municipality of Copenhagen. The main results are that the socioeconomic benefits in the year 2012 are greater than the costs, if taxis and light duty vehicles have filters installed and if they are driving in the Copenhagen area. For light duty vehicles it is only profitable, if the prices of the filters fall to the price level that is expected in the future in the study. Further, the analysis shows that for light duty vehicles and taxies driving all over the country, the socioeconomic benefits achieved by installing particle filters are too small to cover the costs. The analysis shows that it is also profitable socio-economically to change from diesel to petrol for light duty vehicles and for taxies (except taxies driving nationally). The analysis is based on the producer prices including the general net tax level, while the specific taxes are not included. From the point of view of the companies it is not profitable to change to petrol

  18. 40 CFR 86.1811-09 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission standards for light-duty... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW... Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle...

  19. Experiment and analysis on path optimization of low-temperature premixed combustion for light-duty vehicle diesel engine%轻型柴油机预混合低温燃烧路径优化试验及分析

    Institute of Scientific and Technical Information of China (English)

    尹必峰; 王佳; 何建光; 徐毅; 贾和坤

    2014-01-01

    为探索轻型车用柴油机在中小负荷率工况下实现超低排放的预混合低温燃烧策略,以某四缸轻型车用柴油机为样机,在中小负荷率工况下,进行了喷射正时、废气再循环率(exhaust gas recirculation,EGR)、进气温度、喷射压力、预喷射等不同控制参数对柴油机预混合低温燃烧影响的试验研究。证明适时早喷射可延长预混合期实现预混合燃烧,改善柴油机碳烟排放;采用高比例EGR技术降低进气氧浓度能有效控制预混合燃烧温度,可有效降低 NOx排放,同时可推迟由早喷射造成的过早的燃烧相位;在适时早喷射结合高比例 EGR 的基础上,协同优化喷射压力、进气温度与预喷射参数改善NOx和碳烟排放Trade-off关系,以实现超低排放的预混合低温燃烧;通过预混合低温燃烧路径优化后,10%、25%和50%负荷率工况NOx排放与原机相比分别降低97.8%、80.7%和62.1%,碳烟排放分别降低76%、93.9%和47.1%。3个负荷率工况下优化后的有效燃油消耗率比优化前略有上升。研究结果为轻型柴油机预混合低温燃烧过程的优化及污染物排放控制技术提供了理论基础。%The combustion process of diesel engines has a significant effect on the power, economy, and emission performance of a vehicle. As internal combustion engines tend to be highly effective, energy-saving, and environmentally friendly, all the scholars of the world in this area concentrate on creatively developing the combustion theories and techniques for the oncoming generation of engines in order to break through the emission limits of conventional diesel engines. Aiming at the difficulties of forming the homogeneous charge and organizing the combustion progress for the compact structure of light-duty vehicle diesel engines, the research in this paper was based upon advanced injection combined with high proportion cooling EGR to achieve the low

  20. Light Duty Utility Arm computer software configuration management plan

    International Nuclear Information System (INIS)

    This plan describes the configuration management for the Light Duty Utility Arm robotic manipulation arm control software. It identifies the requirement, associated documents, and the software control methodology. The Light Duty Utility Ann (LDUA) System is a multi-axis robotic manipulator arm and deployment vehicle, used to perform surveillance and characterization operations in support of remediation of defense nuclear wastes currently stored in the Hanford Underground Storage Tanks (USTs) through the available 30.5 cm (12 in.) risers. This plan describes the configuration management of the LDUA software

  1. Unregulated emissions from light-duty hybrid electric vehicles

    Science.gov (United States)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  2. Status of advanced light-duty transportation technologies in the US

    International Nuclear Information System (INIS)

    The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R and D targets and technology validation programs of the US government. - Highlights: ► Summary of the current status of LDVs and fuels. ► Overview of government policies and incentives for advanced vehicles and fuels. ► Technical and infrastructure barriers for biofuels, PHEVs, and FCEVs. ► Cost targets and research challenges for batteries and fuel cells. ► Summary of near- to mid-term market considerations for vehicles and fuels.

  3. Recent evidence concerning higher NO x emissions from passenger cars and light duty vehicles

    Science.gov (United States)

    Carslaw, David C.; Beevers, Sean D.; Tate, James E.; Westmoreland, Emily J.; Williams, Martin L.

    2011-12-01

    Ambient trends in nitrogen oxides (NO x) and nitrogen dioxide (NO 2) for many air pollution monitoring sites in European cities have stabilised in recent years. The lack of a decrease in the concentration of NO x and in particular NO 2 is of concern given European air quality standards are set in law. The lack of decrease in the concentration of NO x and NO 2 is also in clear disagreement with emission inventory estimates and projections. This work undertakes a comprehensive analysis of recent vehicle emissions remote sensing data from seven urban locations across the UK. The large sample size of 84,269 vehicles was carefully cross-referenced to a detailed and comprehensive database of vehicle information. We find that there are significant discrepancies between current UK/European estimates of NO x emissions and those derived from the remote sensing data for several important classes of vehicle. In the case of light duty diesel vehicles it is found that NO x emissions have changed little over 20 years or so over a period when the proportion of directly emitted NO 2 has increased substantially. For diesel cars it is found that absolute emissions of NO x are higher across all legislative classes than suggested by UK and other European emission inventories. Moreover, the analysis shows that more recent technology diesel cars (Euro 3-5) have clear increasing NO x emissions as a function of Vehicle Specific Power, which is absent for older technology vehicles. Under higher engine loads, these newer model diesel cars have a NO x/CO 2 ratio twice that of older model cars, which may be related to the increased use of turbo-charging. Current emissions of NO x from early technology catalyst-equipped petrol cars (Euro 1/2) were also found to be higher than emission inventory estimates - and comparable with NO x emissions from diesel cars. For heavy duty vehicles, it is found that NO x emissions were relatively stable until the introduction of Euro IV technology when

  4. PEMS Light Duty Vehicles Application: Experiences in Downtown Milan

    OpenAIRE

    RUBINO LAURETTA; BONNEL PIERRE; HUMMEL RUDOLF; KRASENBRINK ALOIS; MANFREDI URBANO; DE SANTI GIOVANNI; Perotti, M.; G Bomba

    2007-01-01

    ABSTRACT Portable Emissions Measurement Systems (PEMS) are becoming an important regulatory tool to monitor the in-use compliance of large sources like heavyduty vehicles (HDV) or non-road mobile machinery (NRMM). Legislative research programmes in Europe, United States and Japan are introducing PEMS in the regulations. The application of PEMS to light-duty vehicles (LDVs) is not part of or driven by official legislative requirements. However, as the vehicleengine operation points in the l...

  5. 40 CFR 86.1717-99 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission control diagnostic system for... Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1717-99 Emission control... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM...

  6. 40 CFR 86.1717-01 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission control diagnostic system for... Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1717-01 Emission control... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM...

  7. 40 CFR Appendix Xviii to Part 86 - Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks...

    Science.gov (United States)

    2010-07-01

    ..., Subpart R XVIII Appendix XVIII to Part 86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Light-Duty Vehicles and Light Light-Duty Trucks Certifying to the Provisions of Part 86, Subpart R... calculate the residual at the deleted point, denoted as (yi − yi′). Obtain a statistic by dividing (yi −...

  8. Chemical characterization of emissions from advanced technology light-duty vehicles

    Science.gov (United States)

    Graham, Lisa

    Results of detailed emissions measurements of seven 2000 model year advanced technology vehicles are reported. Six of the seven vehicles were imported from Europe and Japan and are not yet available for sale in Canada. Three of the vehicles were with direct injection diesel (DDI) technology, three with gasoline direct injection (GDI) technology and one vehicle was a gasoline-electric hybrid. It is expected that vehicles with these technologies will be forming a larger fraction of the Canadian light-duty vehicle fleet in the coming years in response to requirements to reduce greenhouse gas emissions from the transportation sector in support of Canada's ratification of the Kyoto Protocol; and as a result of improving fuel quality (most notably reducing the sulphur content of both diesel and gasoline). It is therefore important to understand the potential impacts on air quality of such changes in the composition of the vehicle fleet. The emissions from these vehicles were characterized over four test cycles representing different driving conditions. Samples of the exhaust were collected for determining methane, non-methane hydrocarbons and carbonyl compounds for the purposes of comparing ozone-forming potential of the emissions. Although these vehicles were not certified to Canadian emissions standards as tested, all vehicles met the then current Tier 1 emission standards, except for one diesel vehicle which did not meet the particulate matter (PM) standard. The DDI vehicles had the highest NO X emissions, the highest specific reactivity and the highest ozone-forming potential of the vehicles tested. When compared to conventional gasoline vehicles, the ozone-forming potential was equivalent. The GDI vehicles had lower NO X emissions, lower specific reactivity and lower ozone-forming potential than the conventional gasoline vehicles. Both the diesel and GDI vehicles had higher PM emissions than the conventional gasoline vehicles. The gasoline-electric hybrid vehicle

  9. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

    2012-01-01

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  10. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  11. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles.

    Science.gov (United States)

    Alves, Célia A; Barbosa, Cátia; Rocha, Sónia; Calvo, Ana; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier

    2015-08-01

    The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with

  12. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    Science.gov (United States)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  13. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Science.gov (United States)

    2010-01-01

    ... Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions... fleets, a State may follow a Light Duty Alternative Fueled Vehicle Plan that has been approved by...

  14. Light Duty Utility Arm interface control document plan

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, J.W.

    1994-12-27

    This document describes the interface control documents that will be used to identify and control interface features throughout all phases of the Light Duty Utility Arm (LDUA) development and design. After the system is built, delivered and installed in the Cold Test Facility and later at the tank farm, the Interface Control Documents can be used in maintaining the configuration control process. The Interface Control Document will consist of Interface Control Drawings and a data base directly tied to the Interface Control Drawings. The data base can be used as an index to conveniently find interface information. Design drawings and other text documents that contain interface information will appear in the database. The Interface Control Drawings will be used to document and control the data and information that define the interface boundaries between systems, subsystems and equipment. Also, the interface boundaries will define the areas of responsibility for systems and subsystems. The drawing will delineate and identify all the physical and functional interfaces that required coordination to establish and maintain compatibility between the co-functioning equipment, computer software, and the tank farm facilities. An appendix contains the Engineering interface control database system riser manual.

  15. Light duty arm system deployment plans and applications

    International Nuclear Information System (INIS)

    The Light Duty Utility Arm (LDUA) System is being developed to provide an integrated system of technologies to deploy tools and sensors, called end effectors, in underground storage tanks. The objective of this project is to develop and field new technologies to obtain information about the conditions and contents of the United States Department of Energy's (DOE's) underground waste storage tanks and to perform small scale retrieval operations. The project scope includes development and demonstration of advanced robotic technologies, sensory end effectors, waste retrieval tools, and support systems for field deployment in underground storage tanks. In-tank demonstrations of the LDUA System are planned at three DOE sites by the fall of 1997. The system will be deployed in tanks at Hanford, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL) to demonstrate system applications in the areas of surveillance and inspection, in-tank waste analysis, sampling, and waste heel retrieval. This paper will provide a general description of the system design and discuss planned applications of the system technologies to support DOE environmental restoration programs

  16. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  17. Light Duty Utility Arm interface control document plan

    International Nuclear Information System (INIS)

    This document describes the interface control documents that will be used to identify and control interface features throughout all phases of the Light Duty Utility Arm (LDUA) development and design. After the system is built, delivered and installed in the Cold Test Facility and later at the tank farm, the Interface Control Documents can be used in maintaining the configuration control process. The Interface Control Document will consist of Interface Control Drawings and a data base directly tied to the Interface Control Drawings. The data base can be used as an index to conveniently find interface information. Design drawings and other text documents that contain interface information will appear in the database. The Interface Control Drawings will be used to document and control the data and information that define the interface boundaries between systems, subsystems and equipment. Also, the interface boundaries will define the areas of responsibility for systems and subsystems. The drawing will delineate and identify all the physical and functional interfaces that required coordination to establish and maintain compatibility between the co-functioning equipment, computer software, and the tank farm facilities. An appendix contains the Engineering interface control database system riser manual

  18. The benefits and costs of new fuels and engines for light-duty vehicles in the United States.

    Science.gov (United States)

    Keefe, Ryan; Griffin, James P; Graham, John D

    2008-10-01

    Rising oil prices and concerns about energy security and climate change are spurring reconsideration of both automobile propulsion systems and the fuels that supply energy to them. In addition to the gasoline internal combustion engine, recent years have seen alternatives develop in the automotive marketplace. Currently, hybrid-electric vehicles, advanced diesels, and flex-fuel vehicles running on a high percentage mixture of ethanol and gasoline (E85) are appearing at auto shows and in driveways. We conduct a rigorous benefit-cost analysis from both the private and societal perspective of the marginal benefits and costs of each technology--using the conventional gasoline engine as a baseline. The private perspective considers only those factors that influence the decisions of individual consumers, while the societal perspective accounts for environmental, energy, and congestion externalities as well. Our analysis illustrates that both hybrids and diesels show promise for particular light-duty applications (sport utility vehicles and pickup trucks), but that vehicles running continuously on E85 consistently have greater costs than benefits. The results for diesels were particularly robust over a wide range of sensitivity analyses. The results from the societal analysis are qualitatively similar to the private analysis, demonstrating that the most relevant factors to the benefit-cost calculations are the factors that drive the individual consumer's decision. We conclude with a brief discussion of marketplace and public policy trends that will both illustrate and influence the relative adoption of these alternative technologies in the United States in the coming decade. PMID:18684162

  19. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    Science.gov (United States)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    Satellite Supervisory Control and Data Acquisition (SCADA) of a Photovoltaic (PV)/diesel hybrid system was tested using NASA's Advanced Communication Technology Satellite (ACTS) and Ultra Small Aperture Terminal (USAT) ground stations. The setup consisted of a custom-designed PV/diesel hybrid system, located at the Florida Solar Energy Center (FSEC), which was controlled and monitored at a "remote" hub via Ka-band satellite link connecting two 1/4 Watt USATs in a SCADA arrangement. The robustness of the communications link was tested for remote monitoring of the health and performance of a PV/diesel hybrid system, and for investigating load control and battery charging strategies to maximize battery capacity and lifetime, and minimize loss of critical load probability. Baseline hardware performance test results demonstrated that continuous two-second data transfers can be accomplished under clear sky conditions with an error rate of less than 1%. The delay introduced by the satellite (1/4 sec) was transparent to synchronization of satellite modem as well as to the PV/diesel-hybrid computer. End-to-end communications link recovery times were less than 36 seconds for loss of power and less than one second for loss of link. The system recovered by resuming operation without any manual intervention, which is important since the 4 dB margin is not sufficient to prevent loss of the satellite link during moderate to heavy rain. Hybrid operations during loss of communications link continued seamlessly but real-time monitoring was interrupted. For this sub-tropical region, the estimated amount of time that the signal fade will exceed the 4 dB margin is about 10%. These results suggest that data rates of 4800 bps and a link margin of 4 dB with a 1/4 Watt transmitter are sufficient for end-to-end operation in this SCADA application.

  20. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    The purpose of this document is to provide criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. Actual component design, fabrication, testing, and inspection will be performed by various DOE laboratories, industry, and academia. This document augments WHC-SD-TD-FRD-003, 'Functions and Requirements for the Light Duty Utility Arm Integrated System' (F). All requirements dictated in the F shall also be applicable in this document. Whenever conflicts arise between this document and the F, this document shall take precedence

  1. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    Science.gov (United States)

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  2. CHOOSING OF PERFORMANCE PARAMETERS OF LIGHT-DUTY ENGINE RUNNING ON NATURAL GAS AND HYDROGEN MIXTURE

    Directory of Open Access Journals (Sweden)

    Y. Dube

    2011-01-01

    Full Text Available The results of investigation of light-duty gas engine running on natural gas and hydrogen mixture has been given. The mathematical model of combustion process with variable Vibe combus-tion factor for this engine type has been specified.

  3. 40 CFR Appendix Xiv to Part 86 - Determination of Acceptable Durability Test Schedule for Light-Duty Vehicles and Light Light-Duty...

    Science.gov (United States)

    2010-07-01

    .... 4. Calculate the sums of squares corrected to the mean of the standard schedule: Bstd=[∑(Xs)2−((∑Xs)2/Ns))std Where: Xs = Individual mileages at which the vehicle will be tested. Ns = Total number...

  4. Fleet average NOx emission performance of 2007 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles

    International Nuclear Information System (INIS)

    This report summarized the regulatory requirements related to nitrous oxide (NOx) fleet averaging for light-duty vehicles, light-duty trucks, and medium-duty passenger vehicles under the On-Road Vehicle and Engine Emission Regulations. The regulations introduced more stringent national emission standards for on-road vehicles and engines and include technical standards that establish maximum limits on vehicle exhaust emissions. The fleet average NOx emission performance of individual companies and the overall Canadian fleet for 2007 was summarized, and the effectiveness of the Canadian fleet average NOx emission program was evaluated in relation to its environmental performance objectives. A total of 22 companies submitted reports for 294 test groups comprising 1,599,051 vehicles of the 2007 model year. The average NOx value for the entire LDV/LLDT fleet was 0.06897630 grams per mile. The average value for the HLDT/MDPV fleet was 0.160668 grams per mile. NOx values for both overall fleets remained better than the corresponding fleet average NOx standards, and were consistent with the environmental performance objectives of the regulations. 9 tabs., 3 figs.

  5. Fleet average NOx emission performance of 2007 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    This report summarized the regulatory requirements related to nitrous oxide (NO{sub x}) fleet averaging for light-duty vehicles, light-duty trucks, and medium-duty passenger vehicles under the On-Road Vehicle and Engine Emission Regulations. The regulations introduced more stringent national emission standards for on-road vehicles and engines and include technical standards that establish maximum limits on vehicle exhaust emissions. The fleet average NO{sub x} emission performance of individual companies and the overall Canadian fleet for 2007 was summarized, and the effectiveness of the Canadian fleet average NO{sub x} emission program was evaluated in relation to its environmental performance objectives. A total of 22 companies submitted reports for 294 test groups comprising 1,599,051 vehicles of the 2007 model year. The average NO{sub x} value for the entire LDV/LLDT fleet was 0.06897630 grams per mile. The average value for the HLDT/MDPV fleet was 0.160668 grams per mile. NO{sub x} values for both overall fleets remained better than the corresponding fleet average NO{sub x} standards, and were consistent with the environmental performance objectives of the regulations. 9 tabs., 3 figs.

  6. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Modelling and control of a light-duty hybrid electric truck

    OpenAIRE

    Park, Jong-Kyu

    2006-01-01

    This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the ...

  9. Computer software requirements specification for the world model light duty utility arm system

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.E.

    1996-02-01

    This Computer Software Requirements Specification defines the software requirements for the world model of the Light Duty Utility Arm (LDUA) System. It is intended to be used to guide the design of the application software, to be a basis for assessing the application software design, and to establish what is to be tested in the finished application software product. (This deploys end effectors into underground storage tanks by means of robotic arm on end of telescoping mast.)

  10. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van Asch, R.; Verbeek, R.

    2009-10-15

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  11. 77 FR 64051 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-10-18

    ... which was published in the Federal Register of Monday, October 15, 2012 (77 FR 62624). The final rule... Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy...

  12. On the primary emission of formic acid from light duty gasoline vehicles and ocean-going vessels

    Science.gov (United States)

    Crisp, Timia A.; Brady, James M.; Cappa, Christopher D.; Collier, Sonya; Forestieri, Sara D.; Kleeman, Michael J.; Kuwayama, Toshihiro; Lerner, Brian M.; Williams, Eric J.; Zhang, Qi; Bertram, Timothy H.

    2014-12-01

    We present determinations of fuel-based emission factors for formic acid (EFHCOOH) from light duty gasoline vehicles (LDGVs) and in-use ocean-going vessels. Emission ratios, from which the emission factors were derived, were determined from LDGVs through measurement of HCOOH and carbon dioxide (CO2) in the exhaust of a fleet of eight LDGVs driven under the California Unified Cycle at the California Air Resources Board's Haagen-Smit Laboratory. Emission ratios from in-use ocean-going vessels were determined through direct measurement of HCOOH and CO2 in ship plumes intercepted by the R/V Atlantis during the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign within 24 nautical miles of the California coast. The eight car fleet average EFHCOOH was 0.94 ± 0.32 (1σ) and 0.57 ± 0.18 mg (kg fuel)-1 for the cold start and hot running phases of the drive cycle, respectively. This difference suggests that catalytic converter performance and the air/fuel equivalence ratio are important metrics contributing to EFHCOOH. EFHCOOH was determined to be 1.94 ± 1.06 mg (kg fuel)-1 for a single diesel vehicle driven under highway driving conditions, higher on average than any individual LDGV tested. In comparison, HCOOH primary emissions from in-use ocean-going vessels were substantially larger, averaging 20.89 ± 8.50 mg (kg fuel)-1. On a global scale, HCOOH primary emissions from fossil fuel combustion are likely to be insignificant relative to secondary production mechanisms, however primary emissions may contribute more significantly on a finer, regional scale in urban locations.

  13. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Dr Janet L [Univ. of Tennessee, Knoxville, TN (United States); Greene, David [Univ. of Tennessee, Knoxville, TN (United States); Gibson, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  14. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  15. Light Duty Utility Arm system pre-operational (cold test) test plan

    International Nuclear Information System (INIS)

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  16. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  17. Application for certification 1993 model year light-duty vehicles - Chrysler

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  18. Application for certification 1993 model year light-duty vehicles - Honda

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  19. Application for certification 1993 model year light-duty vehicles - Nissan

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  20. Application for certification 1993 model year light-duty vehicles - Rover Group

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  1. Application for certification 1993 model year light-duty vehicles - Ford

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  2. Application for certification 1994 model year light-duty vehicles - Ferrari

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  3. Application for certification 1993 model year light-duty vehicles - Fiat

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  4. Application for certification 1993 model year light-duty vehicles - Porsche

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  5. Application for certification 1993 model year light-duty vehicles - BMW

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  6. Application for certification 1994 model year light-duty vehicles - Porsche

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  7. Application for certification 1993 model year light-duty trucks - Isuzu

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  8. Application for certification 1993 model year light-duty vehicles - Volvo

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  9. Application for certification 1993 model year light-duty vehicles - Nummi

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  10. Application for certification 1993 model year light-duty vehicles - Mercedes Benz

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  11. Application for certification 1993 model year light-duty vehicles - Rolls Royce

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  12. Application for certification 1993 model year light-duty vehicles - Mitsubishi

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  13. Application for certification 1993 model year light-duty trucks - Mitsubishi

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  14. Application for certification 1993 model year light-duty vehicles - Vector Aeromotive

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  15. Application for certification 1993 model year light-duty vehicles - General Motors Corporation

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  16. Application for certification 1993 model year light-duty vehicles - Liphardt and Associates

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  17. Application for certification 1993 model year light-duty vehicles - Jaguar cars

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  18. Application for certification 1993 model year light-duty trucks - Nissan

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  19. Application for certification 1993 model year light-duty vehicles - Volkswagen

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  20. Application for certification 1993 model year light-duty trucks - Mazda

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  1. Application for certification 1993 model year light-duty trucks - Chrysler

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  2. Application for certification 1993 model year light-duty vehicles - Harley Davidson

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  3. Application for certification 1993 model year light-duty vehicles - Kia motors

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  4. Application for certification 1993 model year light-duty vehicles - Jaguar

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  5. Telepresence and virtual environment applications on the light duty utility arm system

    International Nuclear Information System (INIS)

    The Tri-Party Agreement was initiated in 1989 to provide a thirty-year clean-up plan for the United States Department of Energy's (DOE) Hanford Site. This plan addresses the remediation of hazardous chemical and radioactive wastes with a major emphasis on the characterization of Hanford's underground waste storage tanks. To assist in this task the DOE is funding the development of a light duty robotic arm capable of deploying various tools which can inspect and characterize the interior of DOE waste tanks. Current development includes two new technologies -- stereoscopic telepresence, which will allow three-dimensional viewing of the waste tank interior; and open-quotes virtual environmentsclose quotes (or open-quotes virtual realityclose quotes), which will provide computer-simulated world wherein operators can practice inspections and other activities prior to performing actual operations in real waste tanks

  6. Light duty utility remote manipulator for underground storage tank inspection and characterization

    International Nuclear Information System (INIS)

    The Light Duty Utility Arm (LDUA) is a remote manipulator which is being designed and fabricated to perform surveillance and characterization activities in support of the remediation of underground storage tanks at the Hanford site as well as other U.S. Department of Energy (DOE) sites. The LDUA is a highly dexterous manipulator which utilizes an advanced control system to safely and reliably deploy a series of sensors to characterize underground storage tanks. The electrical components of the in tank system are radiation hardened and the mechanical components are designed to operate in the corrosive environment which exists in the tanks. The use of this system will allow the DOE to sample and characterize the waste material in the tanks prior to the initiation of waste retrieval operations. (author) 2 figs

  7. Light duty utility remote manipulator for underground storage tank inspection and characterization

    International Nuclear Information System (INIS)

    The Light Duty Utility Arm (LDUA) is a remote manipulator system which is being designed and fabricated to perform surveillance and characterization activities in support of the remediation of underground storage tanks at the Hanford site as well as other DOE sites. The LDUA is a mechanical manipulator which utilizes an advanced control system to safely and reliably deploy a series of sensors to characterize underground storage tanks. The electrical components of the in tank system are radiation hardened and the mechanical components are designed to operate in the corrosive environment which exists in the tanks. The use of this system will allow the US Department of Energy to sample and characterize the waste material in the tanks prior to the initiation of waste retrieval operations. In addition to its use for inspecting and characterizing underground storage tanks, the system has the potential to be used in other environments where accessibility is limited and where high radiation levels exist

  8. Underground tank assessment using Hanford's light-duty utility arm system

    International Nuclear Information System (INIS)

    In 1989 the Hanford Federal Facility Agreement and Consent Order, or Tri-Party Agreement, was signed initiating a 30-yr program to clean up hazardous chemical and radioactive wastes at the U.S. Department of Energy's (DOE's) Hanford site. A major portion of this program is directed toward the stabilization and remediation of dangerous wastes accumulated in underground storage tanks. Verification of tank structural integrity and characterization of waste stored in the tanks is a high priority of this program. The light-duty utility arm (LDUA) system is being developed to obtain this vital data. This system will provide the capability to perform tank surveillance and inspection, in situ waste characterization, and small-scale retrieval operations. The DOE's Office of Technology Development (EM-50) is sponsoring this work to support Waste Operations (EM-30) missions, including retrieval and separations technology development, tank characterization and surveillance programs, and tank safety assessment

  9. Implications of Sustainability for the United States Light-Duty Transportation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Chris

    2016-06-29

    Climate change is a problem that must be solved. The primary cause of this problem is burning of fossil fuels to generate energy. A dramatic reduction in carbon emissions must happen soon, and a significant fraction of this reduction must come from the transportation sector. This paper reviews existing literature to assess the consensus of the scientific and engineering communities concerning the potential for the United States' light-duty transportation sector to meet a goal of 80% reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries.

  10. Benchmarking real-time RGBD odometry for light-duty UAVs

    Science.gov (United States)

    Willis, Andrew R.; Sahawneh, Laith R.; Brink, Kevin M.

    2016-06-01

    This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.

  11. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  12. 40 CFR 86.097-9 - Emission standards for 1997 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 1997 and later model year light-duty trucks. 86.097-9 Section 86.097-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  13. 40 CFR 86.099-9 - Emission standards for 1999 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 1999 and later model year light-duty trucks. 86.099-9 Section 86.099-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  14. 40 CFR 86.001-9 - Emission standards for 2001 and later model year light-duty trucks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2001 and later model year light-duty trucks 86.001-9 Section 86.001-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  15. 77 FR 62623 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-10-15

    ...EPA and NHTSA, on behalf of the Department of Transportation, are issuing final rules to further reduce greenhouse gas emissions and improve fuel economy for light-duty vehicles for model years 2017 and beyond. On May 21, 2010, President Obama issued a Presidential Memorandum requesting that NHTSA and EPA develop through notice and comment rulemaking a coordinated National Program to improve......

  16. 77 FR 68070 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-11-15

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 85, 86, and 600 DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523, 531, 533, 536, and 537 RIN 2060-AQ54; RIN 2127-AK79 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas...

  17. 40 CFR 86.099-8 - Emission standards for 1999 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 1999 and later model year light-duty vehicles. 86.099-8 Section 86.099-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  18. 40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  19. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2000 and later model year light-duty trucks. 86.000-9 Section 86.000-9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  20. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Short test standards for 1981 and later model year light-duty trucks. 85.2204 Section 85.2204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty...

  1. 40 CFR 85.2203 - Short test standards for 1981 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Short test standards for 1981 and later model year light-duty vehicles. 85.2203 Section 85.2203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty...

  2. 40 CFR 86.000-8 - Emission standards for 2000 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2000 and later model year light-duty vehicles. 86.000-8 Section 86.000-8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions...

  3. 49 CFR Appendix A to Part 541 - Light Duty Truck Lines Subject to the Requirements of This Standard

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Light Duty Truck Lines Subject to the Requirements of This Standard A Appendix A to Part 541 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD Pt....

  4. Cold temperature effects on speciated MSAT emissions from light duty vehicles operating on gasoline and ethanol blends

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty gasoline vehicles. Vehicle testing was conducted using a three phase LA92 driving cycle on a temperature controlled chassis...

  5. Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

  6. 40 CFR 52.2301 - Federal compliance date for automobile and light-duty truck coating. Texas Air Control Board...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Federal compliance date for automobile... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2301 Federal compliance date for automobile and..., automobile and light-duty truck coating operations were to have complied with final control limits of §...

  7. 40 CFR 86.096-8 - Emission standards for 1996 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from SAE International, 400 Commonwealth... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... gas-fueled and liquefied petroleum gas-fueled light-duty vehicles) shall meet all standards in...

  8. 40 CFR Appendix Xi to Part 86 - Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles XI Appendix XI to Part 86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86,...

  9. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and light light-duty trucks. (a) Fleet average NMOG standards and compliance. (1) Each manufacturer...

  10. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  11. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China

    Science.gov (United States)

    Cao, Xinyue; Yao, Zhiliang; Shen, Xianbao; Ye, Yu; Jiang, Xi

    2016-01-01

    This study is the third in a series of three papers aimed at characterizing the VOC emissions of vehicles in Beijing. In this study, 30 light-duty vehicles fueled with gasoline were evaluated using a portable emission measurement system (PEMS) as they were driven on a predesigned, fixed test route. All of the tested vehicles were rented from private vehicle owners and spanned regulatory compliance guidelines ranging from Pre-China I to China IV. Alkanes, alkenes, aromatics and some additional species in the exhaust were collected in Tedlar bags and analyzed using gas chromatography/mass spectrometry (GC-MS). Carbonyls were collected on 2,4-dinitrophenyhydrazine (DNPH) cartridges and analyzed using high-performance liquid chromatography (HPLC). Overall, 74 VOC species were detected from the tested vehicles, including 22 alkanes, 6 alkenes, 1 alkyne, 16 aromatics, 3 cyclanes, 10 halohydrocarbons, 12 carbonyls and 4 other compounds. Alkanes, aromatics and carbonyls were the dominant VOCs with weight percentages of approximately 36.4%, 33.1% and 17.4%, respectively. The average VOC emission factors and standard deviations of the Pre-China I, China I, China II, China III and China IV vehicles were 469.3 ± 200.1, 80.7 ± 46.1, 56.8 ± 37.4, 25.6 ± 11.7 and 14.9 ± 8.2 mg/km, respectively, which indicated that the VOC emissions significantly decreased under stricter vehicular emission standards. Driving cycles also influenced the VOC emissions from the tested vehicles. The average VOC emission factors based on the travel distances of the tested vehicles under urban driving cycles were greater than those under highway driving cycles. In addition, we calculated the ozone formation potential (OFP) using the maximum incremental reactivity (MIR) method. The results of this study will be helpful for understanding the true emission levels of light-duty gasoline vehicles and will provide information for controlling VOC emissions from vehicles in Beijing, China.

  12. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds

    International Nuclear Information System (INIS)

    A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg-Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NOx storage-reduction (NOxSR) catalysts show improved performances in NOx storage than Pt,Ba/alumina NOxSR catalysts at reaction temperatures lower than 200C. These catalysts show also improved resistance to deactivation by SO2. The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NOx storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NOx. The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300C. On these catalysts FT-IR characterization evidences the formation of a Pt-Cu alloy after reduction

  13. Compact methanol reformer test for fuel-cell powered light-duty vehicles

    Science.gov (United States)

    Emonts, B.; Bøgild Hansen, J.; Lœgsgaard Jørgensen, S.; Höhlein, B.; Peters, R.

    On-board production of hydrogen from methanol based on a steam reformer in connection with the use of low-temperature fuel-cells (PEMFC) is an attractive option as energy conversion unit for light-duty vehicles. A steam reforming process at higher pressures with an external burner offers advantages in comparison to a steam reformer with integrated partial oxidation in terms of total efficiency for electricity production. The main aim of a common project carried out by the Forschungszentrum Jülich (FZJ), Haldor Topsøe A/S (HTAS) and Siemens AG is to design, to construct and to test a steam reformer reactor concept (HTAS) with external catalytic burner (FZJ) as heat source as well as catalysts for heterogeneously catalyzed hydrogen production (HTAS), concepts for gas treatment (HTAS, FZJ) and a low-temperature fuel cell (Siemens). Based on the experimental results obtained so far concerning methanol reformers, catalytic burners and gas conditioning units, our report describes the total system, a test unit and preliminary test results related to a hydrogen production capacity of 50 kW (LHV) and dynamic operating conditions. This hydrogen production system is aimed at reducing the specific weight (<2 kg/kWth or 4 kg/kWel) combined with high efficiency for net electricity generation from methanol (about 50%) and low specific emissions. The application of Pd-membranes as gas cleaning unit fulfill the requirements with high hydrogen permeability and low cost of the noble metal.

  14. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  15. Experimental and numerical assessment of on-road diesel and biodiesel emissions

    Energy Technology Data Exchange (ETDEWEB)

    West, B.H.; Storey, J.M.; Lewis, S.A.; Devault, G.L.; Green, J.B. [Oak Ridge National Lab., TN (United States); Sluder, C.S.; Hodgson, J.W.; Moore, B.L. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-12-31

    The Federal Highway Administration`s TRAF-series of models use modal data to estimate fuel consumption and emissions for different traffic scenarios. A process for producing data-based modal models from road and dynamometer measurements has been developed and applied to a number of light-duty gasoline vehicles for the FHWA. The resulting models, or lookup tables, provide emissions and fuel consumption as functions of vehicle speed and acceleration. Surface plots of the data provide a valuable visual benchmark of the emissions characteristics of the vehicles. Due to the potential fuel savings in the light-duty sector via introduction of diesels, and the concomitant growing interest in diesel engine emissions, the measurement methodology has been extended under DOE sponsorship to include a diesel pickup truck running a variety of fuels, including number 2 diesel fuel, biodiesel, Fischer-Tropsch, and blends.

  16. An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers

    OpenAIRE

    Rubin, Jonathan D.; Kling, Catherine

    1993-01-01

    This paper presents results of an empirical study of emission banking for light-duty vehicle manufacturers. An intertemporal model of manufacturers' choices is combined with econometrically estimated abatement cost functions to simulate the cost savings and emission effects of an averaging, trading, and banking marketable permit system relative to command-and-control regulations. While the cost savings of such a system are estimated to be modest, the intertemporal emission effects may be siza...

  17. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  18. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  19. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  20. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  1. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  2. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  3. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  4. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Science.gov (United States)

    2010-07-01

    ... by gasoline, diesel, methanol, natural gas and liquefied petroleum gas fuels except as noted. Multi-fueled vehicles shall comply with all requirements established for each consumed fuel. For methanol... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents....

  5. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-27

    Tom Wenzel of Lawrence Berkeley National Laboratory comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicle, specifically on the relationship between vehicle weight and vehicle safety.

  6. Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation

    OpenAIRE

    TUTUIANU MONICA; Bonnel, Pierre; CIUFFO BIAGIO; HANIU Takahiro; ICHIKAWA Noriyuki; MAROTTA Alessandro; PAVLOVIC JELICA; Steven, Heinz

    2015-01-01

    This paper presents the World-wide harmonized Light duty Test Cycle (WLTC), developed under the Working Party on Pollution and Energy (GRPE) and sponsored by the European Union (with Switzerland) and Japan. India, Korea and USA have also actively contributed. The objective was to design the harmonized driving cycle from "real world" driving data in different regions around the world, combined with suitable weighting factors. To this aim, driving data and traffic statistics of light duty vehic...

  7. A statistical model for estimating oxides of nitrogen emissions from light duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fomunung, I; Washington, S.; Guensler, R. [Georgia Institute of Technology, Atlanta (United States). School of Civil and Environmental Engineering and Georgia Transportation Institute

    1999-09-01

    Motor vehicle emission rate models for predicting oxides of nitrogen (NOx) emissions are insensitive to vehicle modes of operation such as cruise, acceleration, deceleration, and idle, because they are based on average trip speed. Research has shown that NOx emissions are sensitive to engine load; hence, load-bases variables need to be included in emissions models. Ongoing studies attempting to incorporate these 'modal' variables have experienced difficulties with: (1) incomplete and/or non-representative data sets of emissions test data vis-a-vis the modal operating profiles of the tested vehicles; (2) lack of information for predicting on-road operating parameters of vehicles; and (3) non-representative vehicles recruited for emissions tests. The objective of this research was to develop a statistical model for predicting NOx emissions from light-duty gasoline motor vehicles. The primary end use of this model is forecasting, rather than explanation of the factor that affect NOx emissions, which brings us to bear different requirements from the statistical model. The three challenges noted above are addressed by: (1) analyzing a data set of more than 13,000 hot-stabilized laboratory treadmill tests on 19 driving cycles (specific speed versus time testing conditions), and 114 variables describing vehicle, engine and test cycle characteristics; (2) making the models compatible with empirical data on how vehicles are being operated in-use; and (3) developing statistical weights to account for the differences in model year distributions between the emissions testing database and the current national on-road fleets. The NOx emissions model is estimated using ordinary least-squares regression techniques, with transformed response variable and regression weights. Tree regression is employed as a tool for mining relationships among variables in the data, with particular focus on identifying useful interactions among discrete variables. Details of the model

  8. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  9. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  10. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  11. Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector

    International Nuclear Information System (INIS)

    To meet long-term environmental and energy security goals, the United States must reduce petroleum use in the light-duty vehicle fleet by 70% and greenhouse gas emissions by a factor of ten compared to business-as-usual growth projections for the year 2050. A wedge-based approach was used to quantify the scope of the problem in real terms, and to develop options for meeting mid-century targets. Four mitigation mechanisms were considered: (1) improvements in near-term vehicle technologies; (2) emphasis on low-carbon biofuels; (3) de-carbonization of the electric grid; and (4) demand-side travel-reduction initiatives. Projections from previous studies were used to characterize the potential of individual mitigation mechanisms, which were then integrated into a light-duty vehicle fleet model; particular emphasis was given to systemic constraints on scale and rates of change. Based on these projections, two different greenhouse gas (GHG) mitigation implementation plans were considered ('evolutionary' and 'aggressive'). Fleet model projections indicate that both the evolutionary and aggressive approaches can effectively end US dependence on foreign oil, but achieving an 80% GHG reduction requires changes that extend significantly beyond even the aggressive case, which was projected to achieve a 65% reduction.

  12. Gas-oil/water emulsion fuel for automotive diesel engines. energia

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In this paper the work performed within the contract EE-C-201-I is reported. The results achieved in the tests of high speed diesel engines with water in oil emulsion feeding system are summarized. First, carried out trials on test bench are described; then operation in light duty truck on the road and on roller test bench is reported and trials with constant speed diesel engine are related. Finally, the work about emulsion characterization is synthetized. The conclusion shows as the water in oil emulsion is a feeding system suitable for high speed diesel engine operation because BSFC, grade of smoke, exhaust temperature and emission are lowered without considerable troubles.

  13. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG XuSheng; ZHAO Hui; HU ZongJie; WU ZhiJun; LI LiGuang

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes: nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 rim. Only CM was observed for all fuels under the condition of 50 N. M, 2000 r/min. When the engine torque was higher than 150 N. M, log-modal PSD of diesel shifted to bimodal. At higher loads, if the biodiesel blend ratio was below 60%, the PSD of bio-diesel blends still included the two modes. However, no NM particles were found for pure biodiesel. At lower loads, only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparUcle formation indi-cated that for the light-duty diesel engine with oxidation catalysts, fuel consumption and exhaust temperature increased with increasing the engine loads, and Sol was converted to SO3 by catalyst which, in its hydrated form, could act as the precursor for biodiesei NM formation. Therefore, sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  14. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  15. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  16. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  17. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes:nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 nm. Only CM was observed for all fuels under the condition of 50 N.m,2000 r/min. When the engine torque was higher than 150 N.m,log-modal PSD of diesel shifted to bimodal. At higher loads,if the biodiesel blend ratio was below 60%,the PSD of biodiesel blends still included the two modes. However,no NM particles were found for pure biodiesel. At lower loads,only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparticle formation indicated that for the light-duty diesel engine with oxidation catalysts,fuel consumption and exhaust temperature increased with increasing the engine loads,and SO2 was converted to SO3 by catalyst which,in its hydrated form,could act as the precursor for biodiesel NM formation. Therefore,sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  18. 40 CFR 86.709-99 - In-use emission standards for 1999 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false In-use emission standards for 1999 and later model year light-duty trucks. 86.709-99 Section 86.709-99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED)...

  19. 40 CFR 86.708-98 - In-use emission standards for 1998 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false In-use emission standards for 1998 and later model year light-duty vehicles. 86.708-98 Section 86.708-98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  20. 40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false In-use emission standards for 1994 and later model year light-duty vehicles. 86.708-94 Section 86.708-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  1. 40 CFR 86.709-94 - In-use emission standards for 1994 and later model year light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false In-use emission standards for 1994 and later model year light-duty trucks. 86.709-94 Section 86.709-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED)...

  2. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.

    2014-05-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  3. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  4. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  5. A simulated study on the performance of diesel engine with ethanol-diesel blend fuel

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Qiang

    2013-01-01

    Full Text Available This paper describes the simulated study on atomization, wall-film formation, combustion and emission forming process of ethanol-diesel blend fuels in a high speed light duty diesel engine. The result shows that increased ethanol volume percentage of the blend fuels could improve atomization and reduce wall-film formation. However, in the meanwhile, with the increased ethanol volume percentage, low heat values of blend fuels decrease, while both total heat releases and cylinder pressures drop. By adding codes into the FIRE software, the NOx and soot formation region mass fractions are outputted. The simulated results display a good correlation with the NOx and soot formation. Besides, the NOx, soot and CO emissions decrease with the increased ethanol volume percentage. The power output of engine penalize, while energy utilization of blend fuels improve and combustion noise reduce, owing to the increased ethanol volume percentage.

  6. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics. PMID:26247853

  7. Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam.

    Science.gov (United States)

    Tung, H D; Tong, H Y; Hung, W T; Anh, N T N

    2011-06-15

    This paper reports on a 2-year emissions monitoring program launched by the Centre for Environmental Monitoring of the Vietnam Environment Administration which aimed at determining emission factors and emission inventories for two typical types of vehicle in Hanoi, Vietnam. The program involves four major activities. A database for motorcycles and light duty vehicles (LDV) in Hanoi was first compiled through a questionnaire survey. Then, two typical driving cycles were developed for the first time for motorcycles and LDVs in Hanoi. Based on this database and the developed driving cycles for Hanoi, a sample of 12 representative test vehicles were selected to determine vehicle specific fuel consumption and emission factors (CO, HC, NOx and CO(2)). This set of emission factors were developed for the first time in Hanoi with due considerations of local driving characteristics. In particular, it was found that the emission factors derived from Economic Commission for Europe (ECE) driving cycles and adopted in some previous studies were generally overestimated. Eventually, emission inventories for motorcycles and LDVs were derived by combining the vehicle population data, the developed vehicle specific emission factors and vehicle kilometre travelled (VKT) information from the survey. The inventory suggested that motorcycles contributed most to CO, HC and NOx emissions while LDVs appeared to be more fuel consuming.

  8. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    OpenAIRE

    Asad Naeem Shah; Ge Yun-Shan; Muhammad Akram Shaikh

    2011-01-01

    This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes) species emanated from a light duty SI (Spark Ignition) vehicle E-0 (fuelled on gasoline) and E-10 (ethanol-gasoline blend). Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity) has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with th...

  9. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    International Nuclear Information System (INIS)

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO2). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO2 equivalent emission rate. Both CO2 and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO2 was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO2). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO2 from fuel consumption

  10. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.; Shoffner, B.

    2014-06-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  11. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    Science.gov (United States)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  12. A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050

    International Nuclear Information System (INIS)

    Highlights: • NGVs are economical, but limited by infrastructure and OEM model availability. • NGVs compete more with EVs than conventional vehicles. • By displacing EVs, NGVs offer little or negative GHG reduction benefits. • Public refueling infrastructure is a better investment than home CNG compressors. • Bi-fuel vehicles can be a bridge technology until infrastructure build-out. - Abstract: We modeled and conducted a parametric analysis of the US light-duty vehicle (LDV) stock to examine the impact of natural gas vehicles (NGVs) as they compete with electric vehicles, hybrids, and conventional powertrains. We find that low natural gas prices and sufficient public refueling infrastructure are the key drivers to NGV adoption when matched with availability of compressed natural gas powertrains from automakers. Due to the time and investment required for the build out of infrastructure and the introduction of vehicles by original equipment manufacturers, home natural gas compressor sales and bi-fuel NGVs serve as bridge technologies through 2030. By 2050, however, NGVs could comprise as much as 20% of annual vehicle sales and 10% of the LDV stock fraction. We also find that NGVs may displace electric vehicles, rather than conventional powertrains, as they both compete for consumers that drive enough miles such that fuel cost savings offset higher purchase costs. Due to this dynamic, NGVs in our LDV stock model offer little to no greenhouse gas emissions reduction as they displace lower emission powertrains. This finding is subject to the uncertainty in efficiency technology progression and the set of powertains and fuels considered

  13. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  14. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  15. Fleet average NOx emission performance of 2008 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles[In relation to the On-Road Vehicle and Engine Emission Regulations under the Canadian Environmental Protection Act, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-12-15

    The On-Road Vehicle and Engine Emission Regulations came into effect under the Canadian Environmental Protection Act in 2004. The regulations introduced more stringent emissions standards for on-road vehicles and engines, and aligned Canada's emission standards for various vehicles with those of the United States Environmental Protection Agency (EPA). This report summarized the fleet average nitrogen oxide (NO{sub x}) emissions performance of individual companies and the overall Canadian fleet for the 2008 model year for light duty vehicles (LDV), light duty trucks (LLDT), heavy light duty trucks (HLDT) and medium duty passenger vehicles (MDPV). The report evaluated the effectiveness of the Canadian fleet average NO{sub x} emission program in achieving its stated environmental performance objectives. The report demonstrated that approximately 99 percent of the LDV and LLDT fleet, and 71 percent of the HLDT and MDPV fleet were certified to a bin at, or below, the applicable fleet average NO{sub x} standard. Average NO{sub x} values continued to decrease, in accordance with the performance objectives of the regulations. 9 tabs., 5 figs.

  16. The effect of dieselization in passenger cars emissions for Spanish regions: 1998–2006

    International Nuclear Information System (INIS)

    Following the goal of improving on-road fuel efficiency, the Spanish Government engaged in an active policy called the dieselization between 1998 and 2006, which was intended primarily for light duty vehicle (mostly passenger cars and SUV’s). However, the effect of the dieselization on controlling emissions has been questioned by many authors. At the Spanish national level, we first provide descriptive evidence of the effects of dieselization on passenger cars emissions. Second, we use a panel data set for 16 Spanish regions between 1998 and 2006, and estimate a dynamic panel data model that relates CO2 emissions generated by passenger cars with a set of variables related to the dieselization process, fuel efficiency and other control variables. Combining both analysis, we find the existence of a significant indirect, negative effect on CO2 emissions caused by the dieselization, which is more important than the direct, positive technology-efficiency impact. - Highlights: ► We examine the effect on road transport CO2 emissions of the dieselization process in Spain between 1998 and 2006. ► We estimate a dynamic panel data model that relates CO2 emissions and dieselization. ► We find the overall impact of dieselization on emissions is positive, though small. ► The ‘rebound’ effect on emissions has been more important than its direct, technology-efficiency impact. ► This result is highly robust to alternative econometric methods.

  17. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, Andre L.

    2000-08-20

    weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

  18. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    Science.gov (United States)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  19. 通用汽车公司轻型车发动机油规格介绍及其影响分析%The Introduction and Effect Analysis of GM Light-Duty Vehicle Lubricant Specification

    Institute of Scientific and Technical Information of China (English)

    吴长彧; 刘东海; 孙翔兰; 胡静; 崔鹤

    2012-01-01

    Dexos is introduced in this paper.It is the lubricant specification for light-duty vehicle engine service fills,includes Dexos 1 and Dexos 2,and was developed by General Motors Corporation in 2009.Dexos 1 has been applied on gasoline engine car produced after 2011 on a global scale except Europe,while Dexos 2 on both gasoline car and diesel car produced since 2010 in Europe.The Physical and chemical indexes and engine tests of Dexos come from the latest API/ILSAC GF-5 in America,ACEA C3-2007 in Europe,and GM' s own engine tests.By comparing performance indexes of Dexos 1 and API/ILSAC GF-5,Dexos 2 and ACEA C,the differences among them have been found in this paper.And the cost and effect of Dexos 1 on API lubricant specifications have also been analyzed.%文章介绍了通用汽车公司于2009年推出的轻型车服务油规格——Dexos。该规格包括Dexos 1和Dexos 2,其中Dexos 1用于除欧洲外的全球2011年款汽油轿车,Dexos 2专为欧洲轿车发动机设计,在欧洲用于2010年款各种轿车。Dexos规格的理化指标和台架试验分别来源于美国最新的API/ILSAC GF-5规格的试验和指标、欧洲ACEA C3-2007试验和指标及通用的内部发动机试验。文章分别将Dexos 1与API/ILSAC GF-5规格、Dexos 2与ACEA C类油规格进行了比较,并指出了这些规格在指标及性能上的差异。分析了Dexos 1规格的成本以及Dexos 1规格的推出对API油品规格的影响。

  20. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division. Building Technology and Urban Systems Dept.

    2012-08-01

    NHTSA recently completed a logistic regression analysis (Kahane 2012) updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data for 2002 to 2008 involving MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and a category for all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.

  1. Assessment of Mexico's program to use ethanol as transportation fuel: impact of 6% ethanol-blended fuel on emissions of light-duty gasoline vehicles.

    Science.gov (United States)

    Schifter, Isaac; Díaz, Luis; Rodríguez, Rene; Salazar, Lucia

    2011-02-01

    Recently, the Mexican government launched a national program encouraging the blending of renewable fuels in engine fuel. To aid the assessment of the environmental consequences of this move, the effect of gasoline fuel additives, ethanol and methyl tert-butyl ether, on the tailpipe and the evaporative emissions of Mexico sold cars was investigated. Regulated exhaust and evaporative emissions, such as carbon monoxide, non-methane hydrocarbons, and nitrogen oxides, and 15 unregulated emissions were measured under various conditions on a set of 2005-2008 model light-duty vehicles selected based on sales statistics for the Mexico City metropolitan area provided by car manufacturers. The selected car brands are also frequent in Canada, the USA, and other parts of the world. This paper provides details and results of the experiment that are essential for evaluation of changes in the emission inventory, originating in the low-blend ethanol addition in light vehicle fuel.

  2. Development of real-world driving cycles and estimation of emission factors for in-use light-duty gasoline vehicles in urban areas.

    Science.gov (United States)

    Hwa, Mei-Yin; Yu, Tai-Yi

    2014-07-01

    This investigation adopts vehicle tracking manner to establish real-world driving patterns and estimates emission factors with dynamometers with 23 traffic-driving variables for 384 in-use light-duty passenger vehicles during non-rush hour. Adequate numbers of driving variables were decided with factor analysis and cluster analysis. The dynamometer tests were performed on FTP75 cycle and five local driving cycles derived from real-world speed profiles. Results presented that local driving cycles and FTP75 cycle were completely different in driving characteristic parameters of typical driving cycles and emission factors. The highest values of emission factor ratios of local driving cycle and FTP75 cycle for CO, NMHC, NO x , CH4, and CO2 were 1.38, 1.65, 1.58, 1.39, and 1.14, respectively. PMID:24526615

  3. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Asad Naeem Shah

    2011-10-01

    Full Text Available This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes species emanated from a light duty SI (Spark Ignition vehicle E-0 (fuelled on gasoline and E-10 (ethanol-gasoline blend. Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with the standard protocols recommended for light duty vehicle emissions. Carbonyls and BTEX were analyzed by HPLC (High Performance Liquid Chromatography with UV detector and GC/MS (Gas Chromatography/Mass Spectroscopy, respectively. Formaldehyde and acetaldehyde were the predominant components of the carbonyls for E-0 and E-10, respectively. During transient mode, formaldehyde, acrolein + acetone, and tolualdehyde pollutants were decreased but, acetaldehyde emissions increased with E-10 as compared to E-0. The BTEX emissions were also decreased with E-10, relative to E-0. During the steady-state modes, formaldehyde, acrolein + acetone and propionaldehyde were lower, aromatic aldehydes were absent, but acetaldehyde pollutants were higher with E-10 compared to E-0. The BTEX emissions were decreased at medium and higher speed modes however, increased at lower speed mode with E-10 as compared to E-0. Total BTEX emissions were maximal at lower speed mode but, least at medium speed mode for both the fuels. SR of the pollutants was higher over transient cycle of operation, compared with steady-state mode. Relative to E-0, E-10 displayed lower SR during both transient as well as steady-state mode.

  4. Measurement of Gas-phase Acids in Diesel Exhaust

    Science.gov (United States)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  5. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  6. Policies for improving the efficiency of the Brazilian light-duty vehicle fleet and their implications for fuel use, greenhouse gas emissions and land use

    International Nuclear Information System (INIS)

    The increase in greenhouse gas concentrations in the atmosphere, energy security issues and competition for land use are putting pressure on governments and policymakers. However, these three subjects are not usually treated in integrated form. This paper shows that the implementation of energy efficiency policies combined with policies to encourage use of biofuels can help reduce greenhouse gases emissions while easing land use competition from sugarcane ethanol in Brazil. By adapting the ADVISOR (Advanced Vehicle Simulator) software to evaluate vehicle efficiency, and by estimating the Brazilian light-duty vehicle market share based on historical data, this paper estimates the possible levels of GHG emissions and area planted with sugarcane in 2030 in the country. The findings indicate that reductions from 8% to 20% in greenhouse gas emissions and 0.9-1.8 million ha in sugarcane planted area are possible with no significant technological breakthroughs over the horizon to 2030 in comparison with a baseline scenario. - Highlights: → We simulated energy efficiency policies combined with Brazilian biofuels policy. → Vehicle efficiency programs helps for energy saving, reducing GHG and planted area. → Alternative scenario indicate that sugarcane expansion could be 24% less in Brazil.

  7. Methods of characterizing the distribution of exhaust emissions from light-duty, gasoline-powered motor vehicles in the U.S. fleet.

    Science.gov (United States)

    Fulper, Carl R; Kishan, Sandeep; Baldauf, Richard W; Sabisch, Michael; Warila, Jim; Fujit, Eric M; Scarbro, Carl; Crews, William S; Snow, Richard; Gabele, Peter; Santos, Robert; Tierney, Eugene; Cantrell, Bruce

    2010-11-01

    Mobile sources significantly contribute to ambient concentrations of airborne particulate matter (PM). Source apportionment studies for PM10 (PM fleet to provide data for PM inventory and emissions modeling. The vehicle recruitment design produced a sample that could represent the regional fleet, and by extension, the national fleet. All vehicles were recruited from a stratified sample on the basis of vehicle class (car, truck) and model-year group. The pool of available vehicles was drawn primarily from a sample of vehicle owners designed to represent the selected demographic and geographic characteristics of the Kansas City population. Emissions testing utilized a portable, light-duty chassis dynamometer with vehicles tested using the LA-92 driving cycle, on-board emissions measurement systems, and remote sensing devices. Particulate mass emissions were the focus of the study, with continuous and integrated samples collected. In addition, sample analyses included criteria gases (carbon monoxide, carbon dioxide, nitric oxide/nitrogen dioxide, hydrocarbons), air toxics (speciated volatile organic compounds), and PM constituents (elemental/organic carbon, metals, semi-volatile organic compounds). Results indicated that PM emissions from the in-use fleet varied by up to 3 orders of magnitude, with emissions generally increasing for older model-year vehicles. The study also identified a strong influence of ambient temperature on vehicle PM mass emissions, with rates increasing with decreasing temperatures.

  8. On-road measurements of NMVOCs and NOx: Determination of light-duty vehicles emission factors from tunnel studies in Brussels city center

    Science.gov (United States)

    Ait-Helal, W.; Beeldens, A.; Boonen, E.; Borbon, A.; Boréave, A.; Cazaunau, M.; Chen, H.; Daële, V.; Dupart, Y.; Gaimoz, C.; Gallus, M.; George, C.; Grand, N.; Grosselin, B.; Herrmann, H.; Ifang, S.; Kurtenbach, R.; Maille, M.; Marjanovic, I.; Mellouki, A.; Miet, K.; Mothes, F.; Poulain, L.; Rabe, R.; Zapf, P.; Kleffmann, J.; Doussin, J.-F.

    2015-12-01

    Emission factors (EFs) of pollutants emitted by light-duty vehicles (LDV) were investigated in the Leopold II tunnel in Brussels city center (Belgium), in September 2011 and in January 2013, respectively. Two sampling sites were housing the instruments for the measurements of a large range of air pollutants, including non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx) and carbon dioxide (CO2). The NMVOCs and NOx traffic EFs for LDV were determined from their correlation with CO2 using a single point analysis method. The emission factor of NOx is (544 ± 199) mg vehicle-1 km-1; NMVOCs emission factors vary from (0.26 ± 0.09) mg vehicle-1 km-1 for cis-but-2-ene to (8.11 ± 2.71) mg vehicle-1 km-1 for toluene. Good agreement is observed between the EFs determined in the Leopold II tunnel and the most recent EFs determined in another European roadway tunnel in 2004, with only a slight decrease of the EFs during the last decade. An historical perspective is provided and the observed trend in the NMVOCs emission factors reflect changes in the car fleet composition, the fuels and/or the engine technology that have occurred within the last three decades in Europe.

  9. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  10. Physico-chemical properties and biological effects of diesel and biomass particles.

    Science.gov (United States)

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. PMID:27194366

  11. Fleet average NO{sub x} emission performance of 2004 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles[In relation to the On-Road Vehicle and Engine Emission Regulations under the Canadian Environmental Protection Act, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    The On-Road Vehicle and Engine Emission Regulations came into effect on January 1, 2004. The regulations introduced more stringent national emission standards for on-road vehicles and engines, and also required that companies submit reports containing information concerning the company's fleets. This report presented a summary of the regulatory requirements relating to nitric oxide (NO{sub x}) fleet average emissions for light-duty vehicles, light-duty trucks, and medium-duty passenger vehicles under the new regulations. The effectiveness of the Canadian fleet average NO{sub x} emission program at achieving environmental performance objectives was also evaluated. A summary of the fleet average NO{sub x} emission performance of individual companies was presented, as well as the overall Canadian fleet average of the 2004 model year based on data submitted by companies in their end of model year reports. A total of 21 companies submitted reports covering 2004 model year vehicles in 10 test groups, comprising 1,350,719 vehicles of the 2004 model year manufactured or imported for the purpose of sale in Canada. The average NO{sub x} value for the entire Canadian LDV/LDT fleet was 0.2016463 grams per mile. The average NO{sub x} values for the entire Canadian HLDT/MDPV fleet was 0.321976 grams per mile. It was concluded that the NO{sub x} values for both fleets were consistent with the environmental performance objectives of the regulations for the 2004 model year. 9 tabs.

  12. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  13. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  14. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Thomas P

    2009-10-27

    I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

  15. Light duty vehicle driveability investigation

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, H.A. Jr.

    1978-12-01

    This report describes the results of an automobile driveability, emission, fuel economy and performance testing program conducted for the U.S. Environmental Protection Agency. A total of twenty-two 1977 and 1978 model vehicles were subjected to a series of tests when adjusted to the manufacturers' recommended settings and when adjusted to simulate maladjustments found on in-use vehicles in an earlier EPA Restorative Maintenance Evaluation Project. The CRC driveability tests were performed on a weather controlled large roll chassis dynamometer at 16C and the emissions and fuel economy tests were conducted according to the 1975 Federal Test Procedure, except that evaporative emissions tests were not conducted.

  16. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  17. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included

  18. Low Emissions Aftertreatment and Diesel Emissions Reduction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable

  19. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  20. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    CERN Document Server

    Singh, G

    2000-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  1. Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.

    Science.gov (United States)

    Rasmussen, R E; Devillez, G; Smith, L R

    1989-06-01

    Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment. PMID:2473105

  2. Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.

    Science.gov (United States)

    Rasmussen, R E; Devillez, G; Smith, L R

    1989-06-01

    Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment.

  3. Strategy on Development of Gasoline and Diesel Standards in China with Reference to Overseas Practice for Upgrading Gasoline and Diesel Quality

    Institute of Scientific and Technical Information of China (English)

    Yang Zhe; Yang Guoxun

    2004-01-01

    This article analyzes the standards for car exhaust emissions and gasoline and diesel quality in Europe and the US. As revealed by the evolution of gasoline and diesel standards in China, the gasoline and diesel compositions of China and the exhaust gas emissions standard are closely related with the specifics of the petroleum refining industry and automotive industry in China. After studying the current situations of gasoline and diesel quality in China while taking into account the commonly accepted practice in the overseas this article raises some suggestions on development of gasoline and diesel standards in compliance with the actual conditions of China.

  4. Diesel emissions in Vienna

    Science.gov (United States)

    Horvath, H.; Kreiner, I.; Norek, C.; Preining, O.; Georgi, B.

    The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult. A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m -3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012-0.07 g g -1 of collected dust. A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m -3. This value increases by 5.5 μg m -3 per 500 diesel vehicles h -1 passing near the sampling location. The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily

  5. Experimental Study of Selective Catalytic Reduction System On CI Engine Fuelled with Diesel-Ethanol Blend for NOx Reduction with Injection of Urea Solutions

    Directory of Open Access Journals (Sweden)

    R. Praveen

    2014-05-01

    Full Text Available Nowadays exhaust emission control from internal combustion engines have become one of the most important challenges. Oxides of nitrogen (NOx are one of the major hazardous pollutants that come out from diesel engines. There are various techniques existing for NOx control but each techniques has its own advantages and disadvantages. Technologies available for NOx reductions either increase other polluting gas emission or increase fuel consumption. The objective of this paper is to determine the maximum reduction of NOx emissions by varying concentration of urea solution with reduction catalyst. An aqueous solution of urea was injected in engine exhaust pipe for reducing NOx emissions in single cylinder light duty stationery DI diesel engine fuelled with diesel and diesel- (10% ethanol blend. A concentration of urea solution varying from 30 to 35% by weight with constant flow rates and tested with fitting Titanium dioxide (TiO2 coated catalyst which controls by products of ammonia and water vapour. Results indicated that a maximum of 70 % of NOx reduction was achieved an engine fuelled with diesel-ethanol blend and constant flow rate of 0.75 lit/hr with an urea concentration of 35% and 66% NOx of reduced with neat diesel using Titanium dioxide catalyst in Selective Catalytic Reduction system.

  6. Combination of Ag/Al2O3 and Fe-BEA for High-Activity Catalyst System for H2-Assisted NH3-SCR of NO x for Light-Duty Diesel Car Applications

    DEFF Research Database (Denmark)

    Fogel, S.; Doronkin, D. E.; Høj, J. W.;

    2013-01-01

    Low-temperature active Ag/Al2O3 and high-temperature active Fe-BEA zeolite were combined and tested for H2-assisted NH3-selective catalytic reduction (SCR) of NO x . The catalysts were either washcoated onto separate monoliths that were placed up- or downstream of each other (dual-brick layout......-BEA through the “fast”-SCR reaction when Fe-BEA was placed downstream or as inner layer. When no H2, which is needed for the SCR reaction over Ag/Al2O3, was added, the dual-layer layout was preferred. The shorter diffusion distance between the layers is a probable explanation....

  7. Near-highway aerosol and gas-phase measurements in a high-diesel environment

    Science.gov (United States)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2015-04-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of light duty vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September 2011 joint PM-DRIVE (Particulate Matter - DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the vehicle type, traffic concentration, and traffic speed to be quantified. Six aerosol age and source profiles were resolved using the positive matrix factorization model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen-containing aerosol with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol. While quantitatively separating the influence of diesel from that of gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. Although the measurement site was located next to a large source of primary emissions, which are typically found to have low oxygen incorporation, OOA was found to comprise the majority of the measured organic aerosol, and isotopic analysis showed that the measured OOA contained mainly modern carbon, not fossil-derived carbon. Thus, even in this heavily vehicular-emission-impacted environment, photochemical processes

  8. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  9. Acceptance test report: Backup power system

    International Nuclear Information System (INIS)

    Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control

  10. Acceptable risk

    International Nuclear Information System (INIS)

    The hazards of nuclear power, radioactive wastes and radiation are analysed in a general book describing and defining acceptable-risk problems, the difficulties in resolving them and considering such issues as uncertainty about their definition, lack of relevant facts, conflicting and conflicted social values and disagreements between technical experts and the lay public. The many methods that have been proposed for resolving acceptable-risk problems are identified and criticised. (author)

  11. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  12. Handbook of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Tschoeke, Helmut (eds.) [Magdeburg Univ. (Germany). Inst. of Mobile Systems; Mollenhauer, Klaus

    2010-07-01

    The diesel engine continues to be the most cost effective internal combustion engine for motor vehicles as well as mobile and stationary machines. Given the discussion of CO2, the diesel engine is superior to all other drive engines in terms of flexibility, performance, emissions and ruggedness. The intensive search for alternative drive concepts, e. g. hybrid or purely electric drives, has revealed the advantages of the diesel engine for cost effective long distance use wherever high energy densities of energy carriers are indispensible, i. e. storage capacities are low. This English edition of the Handbook of Diesel Engines provides a comprehensive overview of diesel engines of every size from small single cylinder engines up through large two-stroke marine engines. Fifty-eight well-known experts from industry and academia collaborated on this handbook. In addition to the fundamentals and design of diesel engines, it specifically treats in detail the increasingly important subjects of energy efficiency, exhaust emission, exhaust gas aftertreatment, injection systems, electronic engine management and conventional and alternative fuels. This handbook is an indispensable companion in the field of diesel engines. It is geared toward both experts working in research and development and the industry and students studying engineering, mechatronics, electrical engineering or electronics. Anyone interested in learning more about technology and understanding the function and interaction of the complex system of the diesel engine will also find their questions answered. (orig.)

  13. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  14. Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars

    Science.gov (United States)

    Brandenberger, Sandro; Mohr, Martin; Grob, Koni; Neukom, Hans Peter

    In this study we determined particle-bound paraffins in the exhaust of six light-duty diesel vehicles on a chassis dynamometer for different driving cycles and ambient temperatures. The filters containing particulate matter were extracted with dichloromethane in a Soxhlet apparatus, and the paraffin analysis was performed using two-dimensional normal phase high-pressure liquid chromatography (HPLC) coupled on-line to gas chromatography-flame ionization detection (GC-FID). The different molecular mass of lubricant and diesel paraffins facilitated the distinction between diesel and lubricant contribution to the emission. Although all vehicles were certified according to the same emission class, there were considerable variations between vehicles. The study showed that under cold-start conditions the organic mass fraction ranged from 10% to 30% with respect to particle mass and the paraffins from 30% to 60% with respect to the organic mass. With cold engine, falling ambient temperature increased the emission of unburned diesel fuel, whereas that from unburned lubricating oil was less affected. Under warm-start conditions, the ambient temperature had less impact on the emission of paraffins. The emissions were also affected by the operating conditions of the engine: driving cycles with higher mean load tend towards higher emissions of lubricant. The operating conditions also affected the distribution of paraffins: the emission of light paraffins seemed to be lower with higher load in the driving cycle. With an urban and a highway cycle, roughly 40% and 80% w/w, respectively, of unburned paraffins were contributed by the lubricant. Measurements of polycyclic aromatic hydrocarbons (PAH) in lubricating oil showed lubricant to be a sink for PAHs. As lubricant significantly contributes to the organic emission, as shown in this study, it can be assumed that it is also a significant source of PAH emissions.

  15. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars.

    Science.gov (United States)

    Yang, Liuhanzi; Franco, Vicente; Mock, Peter; Kolke, Reinhard; Zhang, Shaojun; Wu, Ye; German, John

    2015-12-15

    Controlling nitrogen oxides (NOx) emissions from diesel passenger cars during real-world driving is one of the major technical challenges facing diesel auto manufacturers. Three main technologies are available for this purpose: exhaust gas recirculation (EGR), lean-burn NOx traps (LNT), and selective catalytic reduction (SCR). Seventy-three Euro 6 diesel passenger cars (8 EGR only, 40 LNT, and 25 SCR) were tested on a chassis dynamometer over both the European type-approval cycle (NEDC, cold engine start) and the more realistic Worldwide harmonized light-duty test cycle (WLTC version 2.0, hot start) between 2012 and 2015. Most vehicles met the legislative limit of 0.08 g/km of NOx over NEDC (average emission factors by technology: EGR-only 0.07 g/km, LNT 0.04 g/km, and SCR 0.05 g/km), but the average emission factors rose dramatically over WLTC (EGR-only 0.17 g/km, LNT 0.21 g/km, and SCR 0.13 g/km). Five LNT-equipped vehicles exhibited very poor performance over the WLTC, emitting 7-15 times the regulated limit. These results illustrate how diesel NOx emissions are not properly controlled under the current, NEDC-based homologation framework. The upcoming real-driving emissions (RDE) regulation, which mandates an additional on-road emissions test for EU type approvals, could be a step in the right direction to address this problem. PMID:26580818

  16. CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine Using Non-Premixed Combustion Model

    Directory of Open Access Journals (Sweden)

    S Gavudhama Karunanidhi

    2014-07-01

    Full Text Available In this study the simulation process of non-premixed combustion in a direct injection single cylinder diesel engine has been described. Direct injection diesel engines are used both in heavy duty vehicles and light duty vehicles. The fuel is injected directly into the combustion chamber. The fuel mixes with the high pressure air in the combustion chamber and combustion occurs. Due to the non-premixed nature of the combustion occurring in such engines, non-premixed combustion model of ANSYS FLUENT 14.5 can be used to simulate the combustion process. A 4-stroke diesel engine corresponds to one fuel injector hole without considering valves was modeled and combustion simulation process was studied. Here two types of combustion chambers were compared. Combustion studies of both chambers:- shallow depth and hemispherical combustion chambers were carried out. Emission characteristics of both combustion chambers had also been carried out. The obtained results are compared. It has been found that hemispherical combustion chamber is more efficient as it produces higher pressure and temperature compared to that of shallow depth combustion chamber. As the temperature increases the formation of NOx emissions and soot formation also get increased.

  17. 轻型遥控人工林集材索道力学分析及线路设计%Mechanics Analysis and Route Design of Light-duty Remote Control Ropeway Suitable for Plantation Skidding

    Institute of Scientific and Technical Information of China (English)

    罗才英; 冯建祥

    2012-01-01

    A study was performed to prove up the mechanism of sliding of tow traction ropes on friction winding drum of winch near the lower fulcrum route section by analyzing the mechanics of closed side and loosed side of tow ropes in every section of hoisting working procedure along route of light-duty remote control ropeway suitable for plantation skidding. Moreover, the mechanisms of brake failure of the friction winding drum and lifting lumbers dropping in hook were clarified when a car was close to the upper pivot or the lowest point of ropeway through mechanics analysis of the skidding ropeway with high obliquity in over loading condition of running down slope or adverse slope. A design project of light-duty remote control ropeway for plantation skidding was presented, which could satisfy with exception slide condition and ensure safety and reliability during log carrying. The technical parameters for remote control car ropeway was optimized according to weight counterbalance of ropeway based on the productive test in cutting areas in plantations, in order to scientifically and reasonably set remote control car skidding ropeways; thereby to make the ropeways work economically, efficiently, safely and reliably.%通过对轻型遥控人工林集材索道沿线路各区段起重提升工序中牵引索紧边、松边的力学分析,探明索道在接近下支点线路区段,牵引索在绞盘机摩擦卷筒上打滑的机理;通过对大倾角集材索道重载顺坡或逆坡运行条件下的力学分析,阐明跑车在接近上支点及接近索道最低点时,摩擦卷筒制动失效、吊运木材落钩的机理.提出符合免滑条件、运载安全可靠的轻型遥控人工林集材索道线路设计方案.在人工林伐区生产试验基础上,对索道配重问题进行研究,优化索道技术参数,确保集材索道科学合理地安装架设,经济高效及安全可靠地营运.

  18. Direct measurements of near-highway emissions in a high diesel environment

    Science.gov (United States)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2014-10-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of Light Duty Vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September~2011 joint PM-DRIVE (Particulate Matter- DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon (VOC) species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the identification of vehicle type and characteristics, traffic concentration, and traffic speed to be quantified and compared to measured aerosol and VOCs. Six aerosol age and source profiles were resolved using the positive matrix factorization (PMF) model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen containing aerosol (NOA) with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol (BBOA). While quantitatively separating the influence of diesel vs. gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. A comparison between these high-diesel environment measurements and measurements taken in low-diesel (North American) environments was examined and the potential feedback between vehicular emissions and SOA formation was probed. Although the measurement site was located next to a large source of primary emissions, which are

  19. Direct measurements of near-highway emissions in a high diesel environment

    Directory of Open Access Journals (Sweden)

    H. L. DeWitt

    2014-10-01

    Full Text Available Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of Light Duty Vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME. As part of the September~2011 joint PM-DRIVE (Particulate Matter- DiRect and Indirect on-road Vehicular Emissions and MOCOPO (Measuring and mOdeling traffic COngestion and POllution field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon (VOC species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the identification of vehicle type and characteristics, traffic concentration, and traffic speed to be quantified and compared to measured aerosol and VOCs. Six aerosol age and source profiles were resolved using the positive matrix factorization (PMF model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA commonly associated with primary vehicular emissions, a nitrogen containing aerosol (NOA with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA, and biomass burning aerosol (BBOA. While quantitatively separating the influence of diesel vs. gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. A comparison between these high-diesel environment measurements and measurements taken in low-diesel (North American environments was examined and the potential feedback between vehicular emissions and SOA formation was probed. Although the measurement site was located next to a large source of primary emissions

  20. Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine

    Directory of Open Access Journals (Sweden)

    Sunbong Lee

    2014-06-01

    Full Text Available Bio-oil (bio-oil was produced from chicken manure in a pilot-scale pyrolysis facility. The raw bio-oil had a very high viscosity and sediments which made direct application to diesel engines difficult. The bio-oil was blended with diesel fuel with 25% and 75% volumetric ratio at the normal temperature, named as blend 25. A rapid compression and expansion machine was used for a combustion test under the experimental condition corresponding to the medium operation point of a light duty diesel engine using diesel fuel, and blend 25 for comparison. The injection related pressure signal and cylinder pressure signal were instantaneously picked up to analyze the combustion characteristics in addition to the measurement of NOx and smoke emissions. Blend 25 resulted in reduction of the smoke emission by 80% and improvements of the apparent combustion efficiency while the NOx emission increased by 40%. A discussion was done based on the analysis results of combustion.

  1. PM₂.₅-bound polycyclic aromatic hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline.

    Science.gov (United States)

    Oliveira, Rafael Lopes; Loyola, Josiane; Minho, Alan Silva; Quiterio, Simone Lorena; de Almeida Azevedo, Débora; Arbilla, Graciela

    2014-12-01

    The aim of this study was to characterize the PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and their diagnostic ratios in an area impacted by light-duty vehicles fueled by neat ethanol and ethanol-blended gasoline. Samples were collected using a high-volume sampler, extracted, and analyzed for all 16 EPA-priority PAHs using gas chromatography/mass spectrometry (GC/MS) following the EPA 3550B Method. The most abundant PAHs were benzo[g,h,i]perylene, benzo[b]fluoranthene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene. The total mean concentration was 3.80 ± 2.88 ng m(-3), and the contribution of carcinogenic species was 58 ± 16 % of the total PAHs. The cumulative health hazard from the PAH mixture was determined, and the carcinogenic equivalents and mutagenic equivalents were 0.80 ± 0.82 and 1.17 ± 1.04 ng m(-3), respectively. Diagnostic ratios and normalized ratios were calculated for the individual samples.

  2. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  3. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  4. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy

    2016-06-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  5. Mastering the diesel process

    Energy Technology Data Exchange (ETDEWEB)

    Antila, E.; Kaario, O.; Lahtinen, T. (and others)

    2004-07-01

    This is the final report of the research project 'Mastering the Diesel Process'. The project has been a joint research effort of the Helsinki University of Technology, the Tampere University of Technology, the Technical Research Centre of Finland, and the Aabo Akademi University. Moreover, the contribution of the Michigan Technological University has been important. The project 'Mastering the Diesel Process' has been a computational research project on the physical phenomena of diesel combustion. The theoretical basis of the project lies on computational fluid dynamics. Various submodels for computational fluid dynamics have been developed or tested within engine simulation. Various model combinations in three diesel engines of different sizes have been studied. The most important submodels comprise fuel spray drop breakup, fuel evaporation, gas-fuel interaction in the spray, mixing model of combustion, heat transfer, emission mechanisms. The boundary conditions and flow field modelling have been studied, as well. The main simulation tool have been Star-CD. KIVA code have been used in the model development, as well. By the help of simulation, we are able to investigate the effect of various design parameters or operational parameters on diesel combustion and emission formation. (orig.)

  6. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    Science.gov (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  7. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Møller, Peter; Nøjgaard, Jakob Klenø;

    2011-01-01

    Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial...... cells (HUVECs). Viability and production of reactive oxygen species (ROS) were investigated in all cell types. We collected particles from combustion of D(100) and 20% (w/w) blends of animal fat or rapeseed oil methyl esters in light-duty vehicle engines complying with Euro2 or Euro4 standards....... Particles emitted from the Euro4 engine were smaller in size and more potent than particles emitted from the Euro2 engine with respect to ROS production and DNA damage, but similarly potent concerning cytokine mRNA expression. Particles emitted from combustion of biodiesel blends were larger in size...

  8. 辛烷值改进剂和工况对GDI轻型车非常规排放的影响%Effects of Octane Improver and Cycle on Unconventional Gas Emissions for Light-Duty GDI Vehicle

    Institute of Scientific and Technical Information of China (English)

    郭红松; 孙龙; 秦宏宇; 曹磊; 赵伟

    2014-01-01

    在底盘测功机上利用MEXA-6000FT等设备对比研究了NEDC/WLTC/FTP75三种循环工况和乙醇/MTBE两种辛烷值改进剂对轻型GDI车辆NO2/SO2/NH3/HCHO/HCOOH/C6H6/C7H8等十种非常规气体排放的影响,试验车辆为国内外不同厂家生产的3辆轻型GDI车辆。研究发现,循环工况对GDI轻型车非常规排放有明显影响,三种循环相比较而言,NEDC循环下HCHO、HCOOH、C6H6、C7H8、CH4、NO排放最高,FTP75循环下最低;相对于NEDC循环下,FTP75循环下HCHO降幅最小约25%,C7H8降幅最大约85%;NEDC循环下NH3排放最低;FTP75循环下NO2、SO2排放最低,WLTC循环下N2O排放最低。研究还发现,相对于普通汽油,乙醇汽油和MTBE汽油可以减少NH3排放40%以上,但HCOOH排放增加6倍以上,N2O排放增加20%以上。%The effects of test cycles NEDC/WLTC/FTP75 and octane improver ethanol/MTBE on NO2/SO2/NH3/HCHO/HCOOH/C6H6/C7H8 emissions etc. for light-duty GDI vehicles were studied using MEXA-6000FT instrument etc. on a chassis dynamometer in this paper. Three light-duty GDI vehicles made by different OEMs from different countries were used in the study. It was found that test cycles had obvious impacts on unconventional gas emissions for GDI vehicles. In 3 cycles, HCHO、HCOOH、C6H6、C7H8、CH4、NO emissions were the biggest under NEDC;on the contrary, they were least under FTP75. Compared with those under NEDC, HCHO dropped in minimum by about 25%and C7H8 decreased in maximum by about 85% under FTP75;NH3 emission was lowest under NEDC;NO2 and SO2 emissions were lowest under FTP75,N2O emission was lowest under WLTC. It was also found that, compared with normal gasoline, ethanol gasoline and MTBE gasoline can reduce NH3 emission by more than 40%,but the HCOOH emission increased more than 6 times while N2O increased more than 20%.

  9. 轻型车排放测试影响因素试验研究%An Experimental Study on the Effect Factors of the Light-duty Vehicle Emission Testing

    Institute of Scientific and Technical Information of China (English)

    潘朋; 王建海; 田冬莲

    2012-01-01

    针对某款国Ⅳ轻型汽油车进行了不同测试条件下的排放对比试验,分析了测试条件对试验结果的影响.试验结果表明,随着预置环境温度升高,车辆HC和CO排放量有所下降;随着驱动轮胎压力的降低,车辆的排放量及油耗会逐渐增高;固定链条与水平方向形成一定倾角向下固定车辆时的排放量和油耗大于水平拉紧车辆的情况;驾驶员驾驶经验和对车辆状况的熟悉程度会影响排放试验结果.提出了减小各因素对排放测试结果影响的建议.%Through contrast testing on the emission of national IV light-duty vehicle under different test conditions, the impact of testing conditions on the test results are analyzed. The results indicate that, with the increase of preset ambient temperature, the HC and CO emission will decrease. With the drop of driving tire pressure, vehicle emission and fuel consumption will increase gradually. The emission and fuel consumption of vehicle when it is fixed by chain with certain angle are higher than the way which the vehicle is fixed by chain at horizontal direction. The driving style and familiarity on the vehicle of the driver can also influence the emission test results. Finally, proposals on reducing the effect of various factors on the emission test results are proposed.

  10. Acceptability, acceptance and decision making

    International Nuclear Information System (INIS)

    There is a fundamental difference between the acceptability of a civilizatory or societal risk and the acceptability of the decision-making process that leads to a civilizatory or societal risk. The analysis of individual risk decisions - regarding who, executes when which indisputably hazardous, unhealthy or dangerous behaviour under which circumstances - is not helpful in finding solutions for the political decisions at hand in Germany concerning nuclear energy in particular or energy in general. The debt for implementation of any technology, in the sense of making the technology a success in terms of broad acceptance and general utilisation, lies with the particular industry involved. Regardless of the technology, innovation research identifies the implementation phase as most critical to the success of any innovation. In this sense, nuclear technology is at best still an innovation, because the implementation has not yet been completed. Fear and opposition to innovation are ubiquitous. Even the economy - which is often described as 'rational' - is full of this resistance. Innovation has an impact on the pivotal point between stability, the presupposition for the successful execution of decisions already taken and instability, which includes insecurity, but is also necessary for the success of further development. By definition, innovations are beyond our sphere of experience; not at the level of reliability and trust yet to come. Yet they are evaluated via the simplifying heuristics for making decisions proven not only to be necessary and useful, but also accurate in the familiar. The 'settlement of the debt of implementation', the accompanying communication, the decision-making procedures concerning the regulation of averse effects of the technology, but also the tailoring of the new technology or service itself must be directed to appropriate target groups. But the group often aimed at in the nuclear debate, the group, which largely determines political

  11. Diesel Engine Mechanics.

    Science.gov (United States)

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  12. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  13. Diesel Engine Idling Test

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  14. Diesel sisustab / Jenni Juurinen

    Index Scriptorium Estoniae

    Juurinen, Jenni

    2007-01-01

    Renzo Rosso poolt 1978. a. Itaalias asutatud rõivafirma Diesel sisustas 2007. a. kevadel Stay Inn-projekti raames katusekorteri Helsingi kesklinnas. Diesili kujundaja Vesa Kemppainen. Sisustuses on kasutatud peamiselt soome mööblit ja seintel eksponeeritud soome noorte kunstnike taieseid. Autoreid: Harri Koskinen (voodi), Thomas Pedersen (Stingrey kiiktool), Jenni Hiltunen (maalid)

  15. Light duty utility arm startup plan

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, G.A.

    1998-03-11

    This Startup Plan encompasses activities necessary to perform startup and operation of the LDUA in Facility Group 3 tanks and complete turnover to CPO. The activities discussed in this plan will occur prior to, and following the US Department Energy, Richland Operations Office Operational Readiness Review. This startup plan does not authorize or direct any specific field activities or authorize a change of configuration. As such, this startup plan need not be Unresolved Safety Question (USQ) screened.

  16. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  17. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  18. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    Science.gov (United States)

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  19. Particulate matter size distribution and associated polycyclic aromatic hydrocarbon content from indirect and direct injection diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Collin, F.; Gonnord, M.F. [Ecole Polytechnique, Lab. DCMR, Palaiseau Cedex (France); Momique, J.C.; Monier, R. [PSA Peugeot Citroen, La Garenne-Colombes (France); Walter, Ch. [Association Gradient, Compiegne (France)

    2001-03-28

    Within the framework of atmospheric aerosol study, evaluation of the contribution of the particle source to global atmospheric pollution is a challenge that requires an improvement in the knowledge of particulate matter. As a part of this knowledge improvement, this study has been focused on particles emitted from diesel vehicles. Two light-duty diesel vehicles were studied for particulate matter size distribution and associated polycyclic aromatic hydrocarbon (PAH) content. A diffusional and inertial spectrometer was used, allowing particles from 7.5 nm to 15 {mu}m to be collected and analysed. Teflon-coated glass fibre filters were employed as collector substrates, and weighted prior to and after sampling. Each of them was extracted with methylene chloride in an accelerated solvent extractor, cleaned on a silica gel micro-column and analysed for PAHy by gas chromatography/mass spectrometry using internal standards for quantitation. Both analytical and sampling methods were validated. The highest particle mass was found to be emitted at 0.2 {mu}m for the direct injection engine and 0.07 {mu}m for the indirect injection engine. PAHs were found to be essentially distributed on particles in the accumulation mode, at about 0.2 {mu}m, and high molecular weight PAH distributions were found to be bimodal or trimodal, depending on the engine injection. (Author)

  20. Development of an integrated methodology for the design and optimization of charging and EGR circuits in modern diesel engines based on 1D-CFD engine modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arrigoni, Stefano; Avolio, Giovanni; Loudjertli, Lydia; Renella, Alfonso; Vassallo, Alberto [General Motors Powertrain Europe, Turin (Italy)

    2011-07-01

    In modern diesel engines, the requirements on the combustion system are very tightening, due to an aggressive combination of pollutant emission, fuel economy, NVH and fun-to-drive targets. In particular, the charging and EGR circuits, with their impact on combustion system performance, deserve a special attention, both in terms of architecture selection, as well as component design and specifications. Since most of these choices occur very early in the engine design phase, it is of high importance to have a reliable analytical tool capable to predict the performance of such components, prior than the actual hardware is available for testing. The present paper describes the development and application to a new diesel engine of an integrated approach for charging and EGR circuit design optimization, based on a set of high-level targets for emissions, fuel economy and performance. In order to achieve this goal, a 1D-CFD approach based on GT-Power suite has been employed: specific sub-routines and semi-empirical models for accurate heat-release and emission prediction have been developed and validated, and finally applied to a light-duty passenger car diesel engine under development. The results show that the tool is capable to predict engine indicated cycle as well as NOx, PM emissions depending on the characteristics of charging and EGR circuits, and can be used to cascade high-level engine target to component specifications (turbocharger, EGR cooler, intercooler) in an effective way. (orig.)

  1. Experimental Study on the Coastdown Resistance for Light-duty Vehicles at Various Altitudes%轻型车海拔环境下滑行阻力试验研究

    Institute of Scientific and Technical Information of China (English)

    刘乐; 付铁强; 李孟良; 刘建军; 赵伟

    2013-01-01

    In order to study the variation of automotive coastdown resistance at different altitudes and temperatures, and verify the modification method of automotive coastdown resistance. so coastdown tests are conducted for three light-duty vehicles at four altitudes and four temperatures in this paper, then the real coastdown resistance and the modified resistance are obtained, and the results shows that: the modification method of automotive coastdown resistance presented in this paper can modify the automotive coastdown resistance at 0m and 20℃to that at various altitudes and temperatures preciously, with the average error of ±5% and the maximum error of 10%; besides, the modification method can be used for different kinds of vehicles;by using this method the cost and time of automotive test can be saved.%为了研究海拔高度和温度等试验条件变化时汽车滑行阻力的变化规律,并对一种汽车滑行阻力修正方法进行验证,本文对三辆试验车进行了四个海拔高度和四个温度条件下的滑行试验,得出了实测阻力和修正阻力,试验结果表明:文中提到的滑行阻力修正方法能够精确地将0米20℃条件下车辆的滑行阻力修正到不同海拔高度和温度条件下,误差在±5%以内,最大绝对误差可保持在10%以内,且对不同类型车辆都适用,通过该方法的使用,可节省试验成本和时间。

  2. Seasonality of Diesel Fuel Prices

    OpenAIRE

    Ibendahl, Gregg

    2012-01-01

    Diesel fuel is a major expense for most farmers. Diesel fuel prices do exhibit some seasonality so farmers can try to lower their fuel expenses by buying their fuel in months when prices are lower. However, purchasing fuel before it is needed results in a carrying charge to the farmer. This paper examines the optimal purchase month for diesel fuel for both spring planting and fall harvest. Both risk neutral and risk-averse farmers are considered. Higher interest rates discourage advance purch...

  3. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    , the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  4. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Directory of Open Access Journals (Sweden)

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  5. Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines

    OpenAIRE

    Torregrosa, A. J.; Broatch Jacobi, Jaime Alberto; García Martínez, Antonio; Monico Muñoz, Luisa Fernanda

    2013-01-01

    Diesel engines are the most commonly used internal combustion engines nowadays, especially in European transportation. This preference is due to their low consumption and acceptable driveability and comfort. However, the main disadvantages of traditional direct injection Diesel engines are their high levels of noise, nitrogen oxides (NO x) and soot emissions, and the usage of fossil fuels. In order to tackle the problem of high emission levels, new combustion concepts have been recen...

  6. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  7. 真空轻型井点降水在深埋隧道未成岩富水粉细砂层施工中的应用%The Application of the Vacuum Light-Duty Well Point Dewatering Method to the Construction of I)ccp Tunnels in Non-Rocky, Water-Rich,Silty Sand Stratum

    Institute of Scientific and Technical Information of China (English)

    王菀; 蒋永强; 张文新; 陈天恩

    2012-01-01

    真空轻型井点降水在基坑和浅埋隧道施工中应用较多,但很少在深埋隧道中应用,对其降水效果也难以判断。依托兰渝铁路桃树坪隧道洞内降水工程,通过降水管如何设计与施工对真空轻型井点在洞内降水进行了研究。实践证明轻型井点降水在深埋隧道能够达到无水施工的效果,保证了隧道开挖过程中的砂层自稳,并对后续施工提出了改进建议。对类似工程具有参考意义。%The vacuum light-duty well point dewatering method is widely applied to the construction of foundation pits and shal- low-buried tunnels,but rarely applied to the construction of deep-buried tunnels, in which case lhe dewatering effect of the method is hard to estimate. Based on the dewatering project of the Taoshuping Tunnel of the Lanzhou-Chongqing Railway, a study is made,in the paper, of the effects of the vacuum light-duty well point dewatering method inside tunnels in regard to how to design and build the dewatering pipes,the result of which shows that by means of the vacuum light-duty well point dewate- ring method, the waterless construction inside deep-buried tunnels can be realized and the stability of the sandy stratum can be ensured during excavation. Some post-excavation construction advice for improvement is also proposed. The paper may serve as a useful reference for other similar projects in the future.

  8. Evaluation of Emissions Bio diesel

    International Nuclear Information System (INIS)

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs

  9. Evaluation of Emissions Bio diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  10. Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, M.; Palacios, M.A.; Gomez, M.M. [Departamento de Quimica Analitica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040- Madrid (Spain); Morrison, G.; Rauch, S. [Chalmers University of Technology, Gothenburg (Sweden); McLeod, C.; Ma, R. [University of Sheffield, Sheffield (United Kingdom); Caroli, S.; Alimonti, A.; Petrucci, F.; Bocca, B. [Istituto Superiore di Sanita, Rome (Italy); Schramel, P.; Zischka, M. [GSF National Research Centre for Environment and Health, Neuherberg (Germany); Pettersson, C. [Scandiaconsult Sverige AB, Gothenburg (Sweden); Wass, U. [Volvo Technological Development Corporation, Gothenburg (Sweden); Luna, M. [Ford, Madrid (Spain); Saenz, J.C. [INTA Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Santamaria, J. [Seat, Barcelona (Spain)

    2002-09-16

    A comparison of platinum-group element (PGE) emission between gasoline and diesel engine catalytic converters is reported within this work. Whole raw exhaust fumes from four catalysts of three different types were examined during their useful lifetime, from fresh to 80000 km. Two were gasoline engine catalysts (Pt-Pd-Rh and Pd-Rh), while the other two were diesel engine catalysts (Pt). Samples were collected following the 91441 EUDC driving cycle for light-duty vehicle testing, and the sample collection device used allowed differentiation between the particulate and soluble fractions, the latter being the most relevant from an environmental point of view. Analyses were performed by inductively coupled plasma-mass spectrometry (ICP-MS) (quadrupole and high resolution), and special attention was paid to the control of spectral interference, especially in the case of Pd and Rh. The results obtained show that, for fresh catalysts, the release of particulate PGE through car exhaust fumes does not follow any particular trend, with a wide range (one-two orders of magnitude) for the content of noble metals emitted. The samples collected from 30000-80000 km present a more homogeneous PGE release for all catalysts studied. A decrease of approximately one order of magnitude is observed with respect to the release from fresh catalysts, except in the case of the diesel engine catalyst, for which PGE emission continued to be higher than in the case of gasoline engines. The fraction of soluble PGE was found to represent less than 10% of the total amount released from fresh catalysts. For aged catalysts, the figures are significantly higher, especially for Pd and Rh. Particulate PGE can be considered as virtually biologically inert, while soluble PGE forms can represent an environmental risk due to their bioavailability, which leads them to accumulate in the environment.

  11. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  12. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  13. A Review on Diesel Soot Emission, its Effect and Control

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available The diesel engines are energy efficient, but their particulate (soot emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; impact agriculture productivity, soiling of buildings; reductions in visibility; and global climate change. The review covers important recent developments on technologies for control of particulate matter (PM; diesel particulate filters (DPFs, summarizing new filter and catalyst materials and DPM measurement. DPF technology is in a state of optimization and cost reduction. New DPF regeneration strategies (active, passive and plasma-assisted regenerations as well as the new learning on the fundamentals of soot/catalyst interaction are described. Recent developments in diesel oxidation catalysts (DOC are also summarized showing potential issues with advanced combustion strategies, important interactions on NO2 formation, and new formulations for durability. Finally, systematic compilation of the concerned newer literature on catalytic oxidation of soot in a well conceivable tabular form is given. A total of 156 references are cited. ©2010 BCREC UNDIP. All rights reserved(Received: 2nd June 2010, Revised: 17th June 2010; Accepted: 24th June 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Review on Diesel Soot Emission, its Effect and Control. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 69-86. doi:10.9767/bcrec.5.2.794.69-86][DOI: http://dx.doi.org/10.9767/bcrec.5.2.794.69-86 || or local:   http://ejournal.undip.ac.id/index.php/bcrec/article/view/794 ]Cited by in: ACS 1 |

  14. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    emission requirements as well as attempting to minimise fuel expenses, the engine speed has been lowered together with an increase in the engine mean pressure which in terms lead to larger bearing loads. With worsened operating conditions from two sides, the encountered problems are understandable......Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...

  15. System for operating solid oxide fuel cell generator on diesel fuel

    Science.gov (United States)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  16. Noise Optimization in Diesel Engines

    Directory of Open Access Journals (Sweden)

    S. Narayan

    2014-04-01

    Full Text Available Euro 6 norms emphasize on reduction of emissions from the engines. New injection methods are being adopted for homogenous mixture formation in diesel engines. During steady state conditions homogenous combustion gave noise levels in lower frequencies. In this work noise produced in a 440 cc diesel engine has been investigated. The engine was run under various operating conditions varying various injection parameters.

  17. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  18. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  19. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  20. Responsible technology acceptance

    DEFF Research Database (Denmark)

    Toft, Madeleine Broman; Schuitema, Geertje; Thøgersen, John

    2014-01-01

    in terms of a positive impact for society and the environment. Therefore, we expect that Smart Grid technology acceptance can be better explained when the well-known technology acceptance parameters included in the Technology Acceptance Model are supplemented by moral norms as suggested by the Norm...... Activation Model. We tested this proposition by means of an online survey of Danish (N=323), Norwegian (N=303) and Swiss (N=324) private consumers. The study confirms that adding personal norms to the independent variables of the Technology Acceptance Model leads to a significant increase in the explained...... on private consumers’ acceptance of having Smart Grid technology installed in their home. We analyse acceptance in a combined framework of the Technology Acceptance Model and the Norm Activation Model. We propose that individuals are only likely to accept Smart Grid technology if they assess usefulness...

  1. Evaluation of a Semiempirical, Zero-Dimensional, Multizone Model to Predict Nitric Oxide Emissions in DI Diesel Engines’ Combustion Chamber

    Directory of Open Access Journals (Sweden)

    Nicholas S. Savva

    2016-01-01

    Full Text Available In the present study, a semiempirical, zero-dimensional multizone model, developed by the authors, is implemented on two automotive diesel engines, a heavy-duty truck engine and a light-duty passenger car engine with pilot fuel injection, for various operating conditions including variation of power/speed, EGR rate, fuel injection timing, fuel injection pressure, and boost pressure, to verify its capability for Nitric Oxide (NO emission prediction. The model utilizes cylinder’s basic geometry and engine operating data and measured cylinder pressure to estimate the apparent combustion rate which is then discretized into burning zones according to the calculation step used. The requisite unburnt charge for the combustion in the zones is calculated using the zone equivalence ratio provided from a new empirical formula involving parameters derived from the processing of the measured cylinder pressure and typical engine operating parameters. For the calculation of NO formation, the extended Zeldovich mechanism is used. From this approach, the model is able to provide the evolution of NO formation inside each burned zone and, cumulatively, the cylinder’s NO formation history. As proven from the investigation conducted herein, the proposed model adequately predicts NO emissions and NO trends when the engine settings vary, with low computational cost. These encourage its use for engine control optimization regarding NOx abatement and real-time/model-based NOx control applications.

  2. Offer/Acceptance Ratio.

    Science.gov (United States)

    Collins, Mimi

    1997-01-01

    Explores how human resource professionals, with above average offer/acceptance ratios, streamline their recruitment efforts. Profiles company strategies with internships, internal promotion, cooperative education programs, and how to get candidates to accept offers. Also discusses how to use the offer/acceptance ratio as a measure of program…

  3. Adiabatic turbocompound diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-02-01

    The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.

  4. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    OpenAIRE

    Hossain, M; S.M.A Sujan; M.S. Jamal

    2013-01-01

    Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT) most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ) showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation s...

  5. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    Science.gov (United States)

    Rationale: Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  6. Ultra-deep Desulfurization of Diesel Highlighted as 2004 Major Advance in Green Chemistry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The sulfur levels in diesel have been increasingly restricted in the world out of environmental considerations. Environmental regulations to be applied by 2006 in Europe, the US and other countries, for instance, limit the level to less than 15 ppm. To meet these stringent conditions, novel desulfurization processes are needed to ensure sustainable and economically acceptable technology.

  7. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  8. Catalytic treatment of diesel engines, NOx emissions

    International Nuclear Information System (INIS)

    Some aspects of the operation of diesel engines are revised together with the pollutant emissions they produce, as well as the available catalytic technologies for the treatment of diesel emissions. Furthermore the performance of a catalyst developed in the environmental catalysis group for NOx reduction using synthetic gas mixtures simulating the emissions from diesel engines is presented

  9. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  10. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  11. Modeling study of oxygenated fuels on diesel combustion: Effects of oxygen concentration, cetane number and C/H ratio

    International Nuclear Information System (INIS)

    Highlights: • The effects of oxygenated fuels on diesel combustion are extensively investigated. • CO and soot emissions are reduced with the increase of oxygen concentration. • The C–O bond in the oxygenated fuels inhibits the formation of soot precursor C2H2. • Small intermediates such as C2H4 and C2H6 are significantly reduced. • Oxygen concentration seems to be the dominating factor affecting the emissions. - Abstract: The present modeling study aims to gain better insights on the effects of oxygenated fuels on the diesel oxidation and emission formation processes under realistic engine operating conditions. To do that, various blend fuels formulated from diesel, biodiesel, ethanol and DMC fuels were obtained with different oxygen concentrations, cetane numbers and C/H ratios. Simulations were conducted using the coupled KIVA–CHEMKIN code on a light duty diesel engine at a fixed engine speed of 2400 rpm under full load conditions. Constructed numerical simulation models integrated with detailed chemical kinetics were validated against the experimental results with reliable accuracies. Simulation results revealed that as the overall oxygen concentration of the blend fuel increased, significant beneficial effects were shown with reduced NOx, CO and soot emissions. Particularly, with the increase of oxygen concentration, the peak CO concentration and its final emission level were found to be remarkably reduced due to the fuel borne oxygen, reduced carbon influx as well as the possibility accelerated CO oxidation rate. More tangible reductions were shown on the soot emissions probably because the C–O bond in the oxygenated blend fuels had played an important role in inhibiting the carbon atoms from soot formation. Furthermore, as oxygenated fuels were added, the peak concentration of the soot precursor C2H2 species and small hydrocarbon intermediates such as C2H4 and C2H6 were also significantly reduced. In general, it was found that compared to the

  12. Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures

    Science.gov (United States)

    Mathis, Urs; Mohr, Martin; Forss, Anna-Maria

    Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dp0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.

  13. Vegetable oil as a diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    O' Callaghan, C.

    1982-05-01

    There are a wide range of vegetable oils which may be used in the diesel engine such as palm oil, soyabean oil, sunflower oil and rapeseed oil. This paper reports on preliminary work with rapeseed oil as a possible alternative to diesel. The oil was degummed by hydration. Physical and chemical properties of the oil are compared to diesel fuel. Three types of fuel were tested in a tractor: (a) pure diesel oil; (b) a 50:50 mixture of diesel oil and rapeseed oil; and (c) pure rapeseed oil. Power-speed curves were constructed for each fuel type and observations on nozzle cooking and smoke emissions made.

  14. ARC Code TI: ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — ACCEPT consists of an overall software infrastructure framework and two main software components. The software infrastructure framework consists of code written to...

  15. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, M.N.; Akhter, M.S.; Shahadat, M.M.Z. [Rajshahi Univ. of Engineering and Technology (Bangladesh). Dept. of Mechanical Engineering

    2006-02-15

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NO{sub x}) emission. However, compared with the diesel fuel, NO{sub x} emission with diesel-biodiesel blends was slightly reduced when EGR was applied. (author)

  16. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    Science.gov (United States)

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  17. Problems diagnosis in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Leugner, L.

    1986-10-01

    Diagnosis of engine problems in diesel engines used in Western Canadian coal mines is discussed. Areas to which attention must be paid include the air cleaners, turbocharger, engine compression and the fuel system. Exhaust smoke should be analysed to help diagnose combustion related problems.

  18. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...

  19. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  20. ALTERNATIVE FUELS FOR DIESEL ENGINES

    OpenAIRE

    Jacek Caban; Agata Gniecka; Lukáš Holeša

    2013-01-01

    This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  1. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes;

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjects...

  2. Impacts of fuel formulation and engine operating parameters on the nanostructure and reactivity of diesel soot

    Science.gov (United States)

    Yehliu, Kuen

    This study focuses on the impacts of fuel formulations on the reactivity and nanostructure of diesel soot. A 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine was used in generating soot samples. The impacts of engine operating modes and the start of combustion on soot reactivity were investigated first. Based on preliminary investigations, a test condition of 2400 rpm and 64 Nm, with single and split injection strategies, was chosen for studying the impacts of fuel formulation on the characteristics of diesel soot. Three test fuels were used: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester (B100), and a synthetic Fischer-Tropsch fuel (FT) produced in a gas-to-liquid process. The start of injection (SOI) and fuel rail pressures were adjusted such that the three test fuels have similar combustion phasing, thereby facilitating comparisons between soots from the different fuels. Soot reactivity was investigated by thermogravimetric analysis (TGA). According to TGA, B100 soot exhibits the fastest oxidation on a mass basis followed by BP15 and FT derived soots in order of apparent rate constant. X-ray photoelectron spectroscopy (XPS) indicates no relation between the surface oxygen content and the soot reactivity. Crystalline information for the soot samples was obtained using X-ray diffraction (XRD). The basal plane diameter obtained from XRD was inversely related to the apparent rate constants for soot oxidation. For comparison, high resolution transmission electron microscopy (HRTEM) provided images of the graphene layers. Quantitative image analysis proceeded by a custom algorithm. B100 derived soot possessed the shortest mean fringe length and greatest mean fringe tortuosity. This suggests soot (nano)structural disorder correlates with a faster oxidation rate. Such results are in agreement with the X-ray analysis, as the observed fringe length is a measure of basal plane diameter. Moreover the relation

  3. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.J. [National Renewable Energy Lab., Golden, CO (United States); Duffield, J.A. [Dept. of Agriculture, Washington, DC (United States). Office of Energy; Coulon, R.B.; Camobreco, V.J. [Ecobalance, Rockville, MD (United States)

    1996-12-31

    The US Department of Energy`s Office of Transportation Technologies, DOE`s National Renewable Energy Laboratory, the US Department of Agriculture`s Office of Energy and Ecobalance are carrying out a comprehensive Life Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects f the cradle-to-grave production and use of biodiesel. The purpose of the project (initiated in November 1995) is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life cycle model for petroleum diesel fuel. The two models are used to compare the life cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The results of an LCA such as this are strongly influenced by decisions made at the study outset, related to scoping, modeling, and methodology. Objectivity as well as acceptable of the results depend upon careful definition and consideration of such issues. This paper communicates the project scoping decisions which have been made in response to a series of stakeholder peer reviews. At the submission stage of this paper, no intermediate results were available for publication. They will be presented during the conference.

  4. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Directory of Open Access Journals (Sweden)

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  5. The solubility and environmental characteristics of diesel ethers

    International Nuclear Information System (INIS)

    Concern over diesel particulate emissions has been ongoing for the past 2 decades, and a number of agencies have shown that adding ethers to diesel engines can reduce these particulates. However, the exact mechanism is not known. Methyl tert-butyl ether (MTBE) has been used for several years to improve the performance of gasoline engines. MTBE is very soluble in water and leaches out of the gasoline and into groundwater very easily. MTBE is being phased out due to this problem. This paper presented the results of a project initiated to evaluate candidate ethers for their solubility in water as well as other environmental characteristics. The ethers may also have the potential for reducing the emissions from diesel engines. Thirty-four ethers were tested for solubility, aquatic toxicity and biological oxygen demand. The tests were conducted due to concerns that MTBE has been shown to cause contamination as a result of its high solubility. The study focused on screening potential diesel ethers for a variety of acceptability criteria such as solubility, aquatic toxicity and degradation potential. A review of measuring methods, materials and instrumentation procedures was presented, along with solubility measurements. The stoichiometry and physical properties of petroleum ethers were also provided as well as test procedures for aquatic toxicity and microtox. A generalized property prediction model was presented. It was concluded that the properties, toxicity and degradation of the ethers vary widely. Solubility correlates with the structure of the ethers: di and tri-ethers are very soluble and any methyl ether also has high solubility. Biochemical oxygen testing of all tested ethers was low, indicating a low breakdown with typical bacterial cultures. The aquatic toxicity of the ethers is variable and correlates inversely with the solubility. The higher the solubility, the lower the toxicity. 24 refs., 10 tabs

  6. A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2014-08-01

    A new multi-dimensional quasi-discrete model is suggested and tested for the analysis of heating and evaporation of Diesel fuel droplets. As in the original quasi-discrete model suggested earlier, the components of Diesel fuel with close thermodynamic and transport properties are grouped together to form quasi-components. In contrast to the original quasi-discrete model, the new model takes into account the contribution of not only alkanes, but also various other groups of hydrocarbons in Diesel fuels; quasi-components are formed within individual groups. Also, in contrast to the original quasi-discrete model, the contributions of individual components are not approximated by the distribution function of carbon numbers. The formation of quasi-components is based on taking into account the contributions of individual components without any approximations. Groups contributing small molar fractions to the composition of Diesel fuel (less than about 1.5%) are replaced with characteristic components. The actual Diesel fuel is simplified to form six groups: alkanes, cycloalkanes, bicycloalkanes, alkylbenzenes, indanes & tetralines, and naphthalenes, and 3 components C19H34 (tricycloalkane), C13H 12 (diaromatic), and C14H10 (phenanthrene). It is shown that the approximation of Diesel fuel by 15 quasi-components and components, leads to errors in estimated temperatures and evaporation times in typical Diesel engine conditions not exceeding about 3.7% and 2.5% respectively, which is acceptable for most engineering applications. © 2014 Published by Elsevier Ltd. All rights reserved.

  7. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  8. Newbery Medal Acceptance.

    Science.gov (United States)

    Freedman, Russell

    1988-01-01

    Presents the Newbery Medal acceptance speech of Russell Freedman, writer of children's nonfiction. Discusses the place of nonfiction in the world of children's literature, the evolution of children's biographies, and the author's work on "Lincoln." (ARH)

  9. Analysis of Scrum acceptance

    OpenAIRE

    Vončina, Bojan

    2016-01-01

    The purpose of the thesis was to analyse the acceptance of Scrum methodology, which has become one of the leading agile methodologies, and to find out which were the key factors that influenced the acceptance. The analysis was conducted in Comtrade, which is one of the largest Slovenian software development companies. The First part (theoretical part) contains an introduction chapter, a detailed presentation of Scrum methodology and the presentation of theoretical models, on which practical ...

  10. Operations Acceptance Management

    OpenAIRE

    Suchá, Ivana

    2010-01-01

    This paper examines the process of Operations Acceptance Management, whose main task is to control Operations Acceptance Tests (OAT). In the first part the author focuses on the theoretical ground for the problem in the context of ITSM best practices framework ITIL. Benefits, process pitfalls and possibilities for automation are discussed in this part. The second part contains a case study of DHL IT Services (Prague), where a solution optimizing the overall workflow was implemented using simp...

  11. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes;

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjec...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  12. Acceptability of human risk.

    OpenAIRE

    Kasperson, R.E.

    1983-01-01

    This paper has three objectives: to explore the nature of the problem implicit in the term "risk acceptability," to examine the possible contributions of scientific information to risk standard-setting, and to argue that societal response is best guided by considerations of process rather than formal methods of analysis. Most technological risks are not accepted but are imposed. There is also little reason to expect consensus among individuals on their tolerance of risk. Moreover, debates abo...

  13. Accepting grammars and systems.

    OpenAIRE

    Bordihn, Henning; Fernau, Henning

    2007-01-01

    We investigate several kinds of regulated rewriting (programmed, matrix, with regular control, ordered, and variants thereof) and of parallel rewriting mechanisms (Lindenmayer systems, uniformly limited Lindenmayer systems, limited Lindenmayer systems and scattered context grammars) as accepting devices, in contrast with the usual generating mode. In some cases, accepting mode turns out to be just as powerful as generating mode, e.g. within the grammars of the Chomsky ...

  14. On-Line Diagnosis of Diesel Engine Misfire Based on Syncretic Theory%基于融合理论的车用柴油机失火在线诊断

    Institute of Scientific and Technical Information of China (English)

    胡明江

    2013-01-01

    为避免车用柴油机失火故障发生,基于信息融合理论,制定了柴油机失火诊断策略和失火率预测模型;利用轻型车排放转鼓循环的动力与排放等试验数据,对柴油机失火及失火率进行了判别与预测.根据国Ⅳ的OBD系统项目试验条款,通过失火控制器设定失火故障,进行了车用柴油机失火诊断、失火率预测和排放测试等试验.结果表明:诊断训练误差为0.08%,失火诊断的准确率为99.92%,失火率的诊断误差为0.05%,证实了制定的柴油机失火诊断策略是切实可行的;表明了信息融合方法是柴油机失火诊断、失火率预测的理论基础,为车用柴油机满足OBD排放规定提供了保障.%In order to avoid the engine misfire,based on the information syncretic theory,the misfire rate forecasting model of the diesel engine was established and the misfire diagnostic strategy of the diesel engine was put forward.Using the syncretic parameters on the power and emissions test data of the light-duty vehicle chassis dynamometer,the misfire pattern of diesel engine was diagnosed and the misfire rate of diesel engine was inspected.According to the test terms of the OBD system in the national Ⅳ emissions regulations,the diesel engine misfire types were put forward by the misfire controller.The tests on the misfire pattern,the misfire rate and the emissions were inspected and diagnosed in the light-duty vehicle chassis dynamometer.The test result showed that the diagnostic training error was 0.08%,the misfire diagnostic accuracy was 99.92%,and the diagnostic error of the misfire rate was 0.05%.It has been confirmed that the misfire diagnosis strategy was feasible; the information syncretic method was the diagnostic theoretical basis of the misfire,the misfire rate and the emissions of the diesel engine.This has provided the guarantee that the automotive diesel engine emissions could meet the OBD requirements.

  15. Development of stoichiometric diesel concept: Phase 2. Final report, March 1989-November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Badgley, P.R.

    1991-12-18

    This report is an account of work performed on an SBIR Phase II work effect. The report details the results of a research program to design, construct and test a diesel engine which operates at stoichiometric air-fuel ratio. The program has shown that it is possible to achieve acceptable combustion with non-visible smoke emission at stoichiometric air/fuel ratio using a single cylinder Caterpillar lY73 laboratory engine. Based upon engine test results, computer analysis shows that the current U.S. Army 600 horsepower diesel engine used in the Bradley Fighting Vehicle can be increased to 950 horsepower with no increase in air flow or peak cylinder pressures by using the stoichiometric concept and incorporating turbocompounding to recover the additional exhaust energy.... Cycle simulation, Direct injection, Indirect injection, Stoichiometric diesel, Low-heat-rejection, Optimum prechamber, Turbocompound, Thermal barrier, Coating.

  16. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    Science.gov (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  17. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NOX emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NOx and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NOx emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  18. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  19. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Strzelec, Andrea [ORNL

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  20. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Science.gov (United States)

    2010-07-01

    ...-cycle vehicles, and Otto-cycle vehicles requiring particulate emissions measurements. 86.110-94 Section... 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete... Otto-cycle vehicles requiring particulate emissions measurements. Section 86.110-94 includes text...

  1. HVO, hydrotreated vegetable oil. A premium renewable biofuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, Seppo [Neste Oil, Porvoo (Finland); Honkanen, Markku; Kuronen, Markku [Neste Oil, Espoo (Finland)

    2013-06-01

    HVO is renewable paraffinic diesel fuel produced from vegetable oils or animal fats by hydrotreating and isomerization. Composition is similar to GTL. HVO is not ''biodiesel'' which is a definition reserved for FAME. HVO can be used in diesel fuel without any ''blending wall'' as well as in addition to the FAME in EN 590. As a blending component HVO enhances fuel properties thanks to its high cetane, zero aromatics and reasonable distillation range. HVO can be used for upgrading gas oils to meet diesel fuel standard and for producing premium diesel fuels. HVO is comparable to fossil diesel regarding fuel logistics, stability, water separation and microbiological growth. The use of HVO as such or in blends reduces NO{sub x} and particulate emissions. Risks for fuel system deposits and engine oil deterioration are low. Combustion is practically ash-free meaning low risk for exhaust aftertreatment life-time. Winter grade fuels down to -40 C cloud point can be produced by HVO process from many kinds of feedstocks. HVO is fully accepted by directives and fuel standards. (orig.)

  2. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  3. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  4. Robustness - acceptance criteria

    DEFF Research Database (Denmark)

    Rizzuto, Enrico; Sørensen, John Dalsgaard; Kroon, Inger B.

    2010-01-01

    This factsheet describes the general framework on the bases of which acceptance criteria for requirements on the robustness of structures can be set. Such framework is based on the more general concept of risk-based assessment of engineering systems. The present factsheet is to be seen in conjunc......This factsheet describes the general framework on the bases of which acceptance criteria for requirements on the robustness of structures can be set. Such framework is based on the more general concept of risk-based assessment of engineering systems. The present factsheet is to be seen...

  5. Impact of using automotive diesel fuel adulterated with heating diesel on the performance of a stationary diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kalligeros, S. [Elinoil S.A., Athens (Greece). Research and Development Dept.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G. [National Technical University of Athens (Greece). School of Chemical Engineering

    2005-03-01

    Air quality improvement, especially in urban areas, is one of the major concerns. For this reason, car and equipment manufacturers and refiners have been exploring various avenues to comply with the increasingly severe anti-pollution requirements. Adulteration of fuels stands as a roadblock to this improvement. In this paper, fuel consumption, particulate matter and exhaust emission measurements from a single cylinder, stationary Diesel engine are presented. The engine was fuelled with automotive Diesel fuel, which was adulterated with domestic heating Diesel in proportions up to 100%. The four types of adulterated Diesel fuel investigated increased all types of emissions compared to automotive Diesel fuel. The only positive result was a slight decrease of the volumetric fuel consumption in some loads. (author)

  6. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  7. Approaches to acceptable risk

    International Nuclear Information System (INIS)

    Several alternative approaches to address the question open-quotes How safe is safe enough?close quotes are reviewed and an attempt is made to apply the reasoning behind these approaches to the issue of acceptability of radiation exposures received in space. The approaches to the issue of the acceptability of technological risk described here are primarily analytical, and are drawn from examples in the management of environmental health risks. These include risk-based approaches, in which specific quantitative risk targets determine the acceptability of an activity, and cost-benefit and decision analysis, which generally focus on the estimation and evaluation of risks, benefits and costs, in a framework that balances these factors against each other. These analytical methods tend by their quantitative nature to emphasize the magnitude of risks, costs and alternatives, and to downplay other factors, especially those that are not easily expressed in quantitative terms, that affect acceptance or rejection of risk. Such other factors include the issues of risk perceptions and how and by whom risk decisions are made

  8. Approaches to acceptable risk

    Energy Technology Data Exchange (ETDEWEB)

    Whipple, C.

    1997-04-30

    Several alternative approaches to address the question {open_quotes}How safe is safe enough?{close_quotes} are reviewed and an attempt is made to apply the reasoning behind these approaches to the issue of acceptability of radiation exposures received in space. The approaches to the issue of the acceptability of technological risk described here are primarily analytical, and are drawn from examples in the management of environmental health risks. These include risk-based approaches, in which specific quantitative risk targets determine the acceptability of an activity, and cost-benefit and decision analysis, which generally focus on the estimation and evaluation of risks, benefits and costs, in a framework that balances these factors against each other. These analytical methods tend by their quantitative nature to emphasize the magnitude of risks, costs and alternatives, and to downplay other factors, especially those that are not easily expressed in quantitative terms, that affect acceptance or rejection of risk. Such other factors include the issues of risk perceptions and how and by whom risk decisions are made.

  9. 1984 Newbery Acceptance Speech.

    Science.gov (United States)

    Cleary, Beverly

    1984-01-01

    This acceptance speech for an award honoring "Dear Mr. Henshaw," a book about feelings of a lonely child of divorce intended for eight-, nine-, and ten-year-olds, highlights children's letters to author. Changes in society that affect children, the inception of "Dear Mr. Henshaw," and children's reactions to books are highlighted. (EJS)

  10. Diesel Technology: Engines. [Teacher and Student Editions.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  11. Standardized Curriculum for Diesel Engine Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  12. [Diesel emission control technologies: a review].

    Science.gov (United States)

    He, Hong; Weng, Duan; Zi, Xin-Yun

    2007-06-01

    The authors reviewed the researches on diesel emission control for both new engine technologies and aftertreatment technologies. Emphases were focused on the recent advancements of the diesel particulate filter (DPF) and the selective catalytic reduction (SCR) of NO(x). In addition, it was explored for the future development in this field.

  13. Biodiesel and Renewable Diesel: A Critical Comparison

    Science.gov (United States)

    Several types of fuels can be obtained from lipid feedstocks. These include biodiesel and what is termed renewable diesel. While biodiesel retains the ester moiety occurring in triacylglycerols in converted form as mono-alkyl esters, the composition of renewable diesel, hydrocarbons, emulates that ...

  14. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  15. Hydrogenation Technology for Producing Clean Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    Chen Shuiyin; Xiong Zhenlin; Gao Xiaodong; Nie Hong

    2004-01-01

    With the standard of environmental protection becoming increasingly strict, it is required to remove sulfur and aromatics in diesel deeply. RIPP has developed several new hydrogenation catalysts and flexible processes, by means of which clean diesel fuel with low sulfur and low aromatic contents can be produced. From SRGO (Straight Run Gas Oil), which has an aromatic content of less than 30m%, a low sulfur and low aromatic diesel fuel or ultra-low sulfur diesel can be obtained by adopting a new process operating on highly active RN-series catalysts. From a feed with higher aromatic content (A=30~80m%),such as FCC-LCO, a low sulfur and low aromatic diesel fuel can be obtained by the SSHT, MHUG and DDA processes.

  16. Optical properties of urban aerosols, aircraft emissions, and heavy-duty diesel trucks using aerosol light extinction measurements by an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex)

    Science.gov (United States)

    Freedman, A.; Massoli, P.; Wood, E. C.; Allan, J. D.; Fortner, E.; Yu, Z.; Herndon, S. C.; Miake-Lye, R. C.; Onasch, T. B.

    2010-12-01

    We present results of optical property characterization of ambient particulate during several field deployments where measurements of aerosol light extinction (σep) are obtained using an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex). The CAPS PMex is able to provide extinction measurements with 3-σ detection limit of 3 Mm-1 for 1s integration time. The CAPS PMex (630 nm) is integrated in the Aerodyne Research, Inc. (ARI) mobile laboratory where a co-located Multi Angle Absorption Photometer (MAAP) provides particle light absorption coefficient at 632 nm. The combination of the CAPS with the MAAP data allows estimating the single scattering albedo (ω) of the ambient aerosol particles. The ARI mobile laboratory was deployed in winter 2010 at the Chicago O’Hare International Airport to measure gas phase and particulate emissions from different aircraft engines, and during summer 2010 in Oakland, CA, to characterize vehicular gaseous and particulate emissions (mainly exhaust from heavy-duty diesel trucks) from the Caldecott Tunnel. We provide estimates of black carbon emission factors from individual aircraft engines and diesel trucks, in addition to characterizing the optical properties of these ambient samples studying fleet-average emissions for both light-duty passenger vehicles and heavy-duty diesel trucks. Two CAPS PMex instruments (measuring σep at 630 and 532 nm) were also deployed during the CalNex 2010 study (May 14 - June 16) at the CalTech ground site in Pasadena, CA. During the same time, a photo-acoustic spectrometer (PAS, DMT) and an aethalometer instrument (Magee Sci.) measured particle light absorption of submicron aerosol particles from the same sample line as the CAPS PMex monitors. We combine these data to provide multi-wavelength ω trends for the one-month campaign. Our results show the high potential of the CAPS as light weight, compact instrument to perform precise and accurate σep measurements of

  17. Acceptance of Tinnitus : Validation of the Tinnitus Acceptance Questionnaire

    OpenAIRE

    Weise, Cornelia; Kleinstäuber, Maria; Hesser, Hugo; Westin, Vendela; Andersson, Gerhard

    2013-01-01

    The concept of acceptance has recently received growing attention within tinnitus research due to the fact that tinnitus acceptance is one of the major targets of psychotherapeutic treatments. Accordingly, acceptance-based treatments will most likely be increasingly offered to tinnitus patients and assessments of acceptance-related behaviours will thus be needed. The current study investigated the factorial structure of the Tinnitus Acceptance Questionnaire (TAQ) and the role of tinnitus acce...

  18. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  19. 30 CFR 250.510 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must be equipped...

  20. 30 CFR 250.610 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines which are...

  1. Series 190 Diesel Engines Used in China's Oil Drilling

    Institute of Scientific and Technical Information of China (English)

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  2. kitchingroup-57: Accepted

    OpenAIRE

    John Kitchin

    2016-01-01

    This is the accepted version of this manuscript. @article{kitchin-2015-examp, author = {Kitchin, John R.}, title = {Examples of Effective Data Sharing in Scientific Publishing}, journal = {ACS Catalysis}, volume = {5}, number = {6}, pages = {3894-3899}, year = 2015, doi = {10.1021/acscatal.5b00538}, url = { http://dx.doi.org/10.1021/acscatal.5b00538 }, keywords = {DESC0004031, early-career, orgmode, Data sharing }, eprint = { http://dx.doi.org/10.1021/acscatal.5b00538 }, }

  3. Age and Acceptance of Euthanasia.

    Science.gov (United States)

    Ward, Russell A.

    1980-01-01

    Study explores relationship between age (and sex and race) and acceptance of euthanasia. Women and non-Whites were less accepting because of religiosity. Among older people less acceptance was attributable to their lesser education and greater religiosity. Results suggest that quality of life in old age affects acceptability of euthanasia. (Author)

  4. Order acceptance with reinforcement learning

    NARCIS (Netherlands)

    Mainegra Hing, M.; Harten, van A.; Schuur, Peter

    2001-01-01

    Order Acceptance (OA) is one of the main functions in a business control framework. Basically, OA involves for each order a 0/1 (i.e., reject/accept) decision. Always accepting an order when capacity is available could unable the system to accept more convenient orders in the future. Another importa

  5. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  6. Acceptance conditions in automated negotiation

    OpenAIRE

    Baarslag, T.; Hindriks, K.V.; Jonker, C.M.

    2011-01-01

    In every negotiation with a deadline, one of the negotiating parties has to accept an offer to avoid a break off. A break off is usually an undesirable outcome for both parties, therefore it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When designing such conditions one is faced with the acceptance dilemma: accepting the current offer may be suboptimal, as better offers may still be presented. On the other hand, accepting too late m...

  7. Poly-Acrylic Acid Derivatives as Diesel Flow Improver for Paraffin-Based Daqing Diesel

    Institute of Scientific and Technical Information of China (English)

    Cuiyu Jiang; Ming Xu; Xiaoli Xi; Panlun Qi; Hongyan Shang

    2006-01-01

    Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR,-COOH,-CONHR, and -COO-NH3+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0# diesel by 6-7 ℃.

  8. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  9. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2016-08-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  10. Impact of fuels on diesel exhaust emissions

    International Nuclear Information System (INIS)

    This report presents an investigation of the emissions from eight diesel fuels with different sulphur and aromatic content. A bus and a truck were used in the investigation. Chemical analysis and biological testing have been performed. The aim of this project was to find a 'good' diesel fuel which can be used in urban areas. Seven of the fuels were meant to be such fuels. It has been confirmed in this study that there exists a quantifiable relationship between the variables of the diesel fuel blends and the variables of the chemical emissions and their biological effects. 119 figs., 12 tabs., approx. 100 refs

  11. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    OpenAIRE

    Mr. Rajesh Guntur,; Dr. M.L.S. Deva Kumar,; Dr.K.Vijaya Kumar Reddy

    2011-01-01

    Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline). Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engine...

  12. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil

    OpenAIRE

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, NS; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel...

  13. Marketing for Acceptance

    Directory of Open Access Journals (Sweden)

    Tina L. Johnston, Ph.D.

    2009-11-01

    Full Text Available Becoming a researcher comes with the credentializing pressure to publish articles in peer-reviewed journals (Glaser, 1992; Glaser, 2007; Glaser, 2008. The work intensive process is exacerbated when the author’s research method is grounded theory. This study investigated the concerns of early and experienced grounded theorists to discover how they worked towards publishing research projects that applied grounded theory as a methodology. The result was a grounded theory of marketing for acceptance that provides the reader with insight into ways that classic grounded theorists have published their works. This is followed by a discussion of ideas for normalizing classic grounded theory research methods in our substantive fields.

  14. [Emission characteristics of a diesel car fueled with coal based Fischer-Tropsch (F-T) diesel and fossil diesel blends].

    Science.gov (United States)

    Hu, Zhi-Yuan; Cheng, Liang; Tan, Pi-Qiang; Lou, Di-Ming

    2012-11-01

    According to the first type test cycle of China national standard GB 18352.3-2005, the CO, NO(x), HC, PM and CO2 emission characteristics of a PASSAT diesel car fueled with Shanghai local IV diesel, coal based Fischer-Tropsch (F-T) diesel, and the blends of coal based F-T diesel and Shanghai local IV diesel up to 10% and 50% by volume were analyzed respectively. And the environmental impacts such as decreased air quality, health impact, photochemical ozone, global warming, and acidification that could be caused by CO, NO(x), HC, PM and CO2 emission of the diesel car were also assessed. The results showed that under GB 18352.3-2005 No. 1 test driving cycle, which consisted of four urban driving cycles and one extra urban driving cycle, the CO, HC, PM and CO2 emissions were released mainly in the urban driving cycles whereas the NO(x) emissions occurred mainly in the extra urban driving cycle. Compared with Shanghai local IV diesel, all of the CO, NO(x), HC, PM and CO2 emissions of the diesel car decreased to different extents when fueled with coal based F-T diesel blends. Moreover, the aerosol generation potential, global warming potential and acidification potential of F-T diesel fueled diesel car were also reduced. To sum up, coal based F-T diesel would be one of the alternative fuels to diesel in China. PMID:23323400

  15. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  16. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  17. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  18. Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, Jeffrey; Wood, Eric; Chaney, Larry; Holden, Jacob; Jeffers, Matthew; Wang, Lijuan

    2016-06-08

    Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts. Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.

  19. Hydrogen in vans and light duty trucks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Physics

    1996-12-31

    The potential for application of hydrogen in light goods vehicles (i.e., freight vehicles with a gross vehicle weight of less than 6 tonnes) for local goods distribution, and the resulting energy and environmental consequences are evaluated. Local distribution of goods by road transport in Denmark is characterized by very poor energy efficiency and by considerable negative environmental impacts compared to the transport demand (tonne-km) covered. Based on an investigation of the Danish stock of LGVs and its application for local freight transportation the paper outlines and assesses different designs for hydrogen operation, all based on hydrogen generated by electrolysis. For each combination of design and weight category hydrogen consumption and emissions are calculated for typical driving patterns, and the potential for emission reduction is assessed. In addition, the longer-term application of hydrogen as energy carrier for renewable energy is evaluated against bio-fuels and electrical propulsion. (Author)

  20. Fire hazards evaluation for light duty utility arm system

    Energy Technology Data Exchange (ETDEWEB)

    HUCKFELDT, R.A.

    1999-02-24

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  1. Hydrogen in Vans and Light Duty Trucks in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The potential for application of hydrogen in light goods vehicles(i.e. freight vehicles with a gross vehicle weight of less than 6 tonnes) for local goods distribution, and the resulting energy and environmental consequences are evaluated. Local distribution of goods by road transport...... is characterised by very poor energy efficiency and by considerable negative environmental impacts compared to the transport demand covered. Based on an investigation of the Danish stock of LGVs and its application for local freight transportation the article outlines and assesses different designs for hydrogen...

  2. Synthesis gas production from JP-8 and diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski, P. [Spring, TX (United States); Chernikowski, A. [ECP - GlidArc Technologies, La Ferte St Aubin (France)

    2004-07-01

    Production and characteristics of a gaseous reformate from military JP-8 aviation fuel and French commercial diesel oil is described. Conversion is assisted by high-voltage cold plasma; the plasma is also used for the continuous activation of the partial oxidation of the 0.6-L and 1.8-L reformers with preheated atmospheric air. The process is capable of accepting almost any feedstock with up to four per cent sulphur content, without the production of soot, coke or tar. The total conversion is achieved without the addition of water or steam. The electrical energy required to assist the conversion is about one per cent of the reformate gas power output which has reached up to 22 kW. 8 refs., 4 figs.

  3. Commercial Test of Two Diesel Demulsifiers

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaohong

    2003-01-01

    PetroChina Lanzhou Petrochemical Company conducted commercial tests for application of two types of diesel demulsifiers, the HPL-2 and GX-02 demulsifiers, in order to solve the emulsion problem arising from caustic washing of straight-run diesel fraction obtained from atmospheric and vacuum distillation unit at the Lanzhou refinery. After addition of each demulsifier into the diesel fraction the oil content in caustic residue was apparently decreased, and discharge of waste caustic was reduced, resulting in the elimination of emulsification and a significant increase of economic benefits. When 70 ppm of the HPL-2 demulsifier was added to diesel fraction, the oil content in waste caustic exiting the second-stage caustic wash settling tank was reduced to 2.45% from 7.90 %, whereas this value was reduced to 2.81% from 5.96% with addition of the GX-02 demulsifier.

  4. Analysis of noise emitted from diesel engines

    Science.gov (United States)

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  5. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  6. Diesel fuel in the United States

    International Nuclear Information System (INIS)

    In the 1970's, Diesel technology had a poor image in the United States owing to the inadequate performance and reliability observed in certain models. The 1990's brought increased awareness of greenhouse effect issues. Greater Diesel penetration of the American automobile market could represent a short-term solution for reducing CO2 emissions, along with the use of hybrid vehicles, but the impact on American refining plant would be substantial. (author)

  7. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    Science.gov (United States)

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. PMID:19913283

  8. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S.; Yokota, H.; Kakegawa, T. [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  9. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  10. Diesel Consumption of Agriculture in China

    Directory of Open Access Journals (Sweden)

    Shusen Gui

    2012-12-01

    Full Text Available As agricultural mechanization accelerates the development of agriculture in China, to control the growth of the resulting energy consumption of mechanized agriculture without negatively affecting economic development has become a major challenge. A systematic analysis of the factors (total power, unit diesel consumption, etc. influencing diesel consumption using the SECA model, combined with simulations on agricultural diesel flows in China between 1996 and 2010 is performed in this work. Seven agricultural subsectors, fifteen categories of agricultural machinery and five farm operations are considered. The results show that farming and transportation are the two largest diesel consumers, accounting for 86.23% of the total diesel consumption in agriculture in 2010. Technological progress has led to a decrease in the unit diesel consumption and an increase in the unit productivity of all machinery, and there is still much potential for future progress. Additionally, the annual average working hours have decreased rapidly for most agricultural machinery, thereby influencing the development of mechanized agriculture.

  11. Is nuclear power acceptable

    International Nuclear Information System (INIS)

    The energy shortage forecast for the early 21st century is considered. Possible energy sources other than fossil fuel are stated as geothermal, fusion, solar and fission, of which only fission has been demonstrated technically and economically. The environmental impacts of fission are examined. The hazards are discussed under the following headings: nuclear accident, fatality risk, safe reactor, property damage, acts of God, low-level release of radioactivity, diversion of fissile material and sabotage, radioactive waste disposal, toxicity of plutonium. The public reaction to nuclear power is analyzed, and proposals are made for a programme of safety and security which the author hopes will make it acceptable as the ultimate energy source. (U.K.)

  12. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  13. Public acceptance of nuclear power

    International Nuclear Information System (INIS)

    The lecture addresses the question why we need public acceptance work and provides some clues to it. It explains various human behaviour patterns which determine the basics for public acceptance. To some extent, the opposition to nuclear energy and the role the media play are described. Public acceptance efforts of industry are critically reviewed. Some hints on difficulties with polling are provided. The lecture concludes with recommendations for further public acceptance work. (author)

  14. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emissions from diesel vehicles are known to be harmful to human health and environment. An experimental study of the diesel fuel reformation by a plasmatron and diesel engine exhaust cleaning by means of plasma chemical pretreatment of fuel is described. Plasma chemical reformation of fuel was carried by a DC arc plasmatron that was fabricated to increase an ability of the gas activation. Some portion of the fuel was activated in an arc discharge and turned into the hydrogen-rich synthesis gas. The yield of reformation for the diesel fuel showed 80 % ∼ 100 % when the small quantities of fuel (flow rate up to about 6 cc/min) were reformed. The regulation for an emission from the diesel vehicle is getting more stringent, the research in the field of the in-cylinder processing technologies (pretreatment) becomes more important issue as well as the catalyst after-treatment. The used high durability plasmatron has the characteristics of low contamination level, low anode erosion rate, low plasma temperature, and effective activation of the process gas. The developed fuel reformation system with the plasmatron was connected to the air feeding inlet sleeve of the diesel engine Kookje 3T90LT-AC (Korea) in order to study the reduction of NOx content in the engine's emission. Tubular reformation chamber was connected to the engine through the heat exchanger DOVER B10Hx20/1P-SC-S. Its cooling jacket was connected in series with the cooling system of the plasmatron. At the exit of this device gas temperature did not exceed ∼40 .deg. C at plasmatron power up to 1.5 kW which seemed quite acceptable. Gas composition was studied here using RBR-Ecom KD gas analyzer. The design of the DC arc plasmatron applied for the plasma chemical fuel reformation was improved boosting the degree of fuel-air mixture activation that provided the

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  18. Combustion and emission characteristics of a diesel engine fuelled with jatropha and diesel oil blends

    Directory of Open Access Journals (Sweden)

    Elango Thangavelu

    2011-01-01

    Full Text Available The depletion of oil resources as well as the stringent environmental regulations has led to the development of alternate energy sources. In this work the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with blends of jatropha and diesel oil are evaluated. Experiments were conducted with different blends of jatropha oil and diesel at various loads. The peak pressures of all the blends at full load are slightly lower than the base diesel. There is an increase in the ignition delay with biodiesel because of its high viscosity and density. The results show that the brake thermal efficiency of diesel is higher at all loads followed by blends of jatropha oil and diesel. The maximum brake thermal efficiency and minimum specific fuel consumption were found for blends up to B20. The specific fuel consumption, exhaust gas temperature, smoke opacity and NOx were comparatively higher. However there is an appreciable decrease in HC and CO2 emissions while the decrease in CO emission is marginal. It was observed that the combustion characteristics of the blends of esterified jatropha oil with diesel followed closely with that of the base line diesel.

  19. HPS simulation and acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Mundim, Luiz Martins [UERJ, Rio de Janeiro, RJ (Brazil); Pol, Maria Elena [CBPF, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: The High Precision Spectrometer (HPS) is a proposal of sub-detector to be installed in the region of 200-240m from each side of CMS along the LHC beam-line to measure scattered protons from exclusive centrally produced processes, pp → p + X + p. In order to study the protons that reach the detectors, the beam-line of the LHC accelerator has to be taken into account, as the particles are deflected by dipoles and suffer the influence of quadrupoles and other beam devices. The LHC team provides a detailed description of these elements, currents, energies, magnetic fields, and all the information needed to study the propagation of the protons. The program HECTOR, developed at the University of Louvain, uses the information from LHC to calculate at any point along the beam-line the kinematic quantities that characterize the scattered protons. A simple minded program was initially developed for the preliminary studies of acceptances varying the position and size of the foreseen detectors. Also, it took into account vertex and position smearing, to simulate a realistic resolution of the tracking detectors. These studies were performed using a particle gun generator which shoot protons from the IP within reasonable ranges of possible t and ξ (the square of the four-momentum transfer and the fractional energy loss of the outgoing proton in a diffractive collision), and propagated them to the position of the tracking detectors. These kinematic quantities were reconstructed back at the IP using the transport equations from HECTOR. This simplified simulation was afterwards interfaced with the full software of CMS, CMSSW, in such a way that when a diffractive event was fully simulated and reconstructed in the central detector, the outgoing protons were treated by the HPS software and then the complete (CMS+HPS) event was output. The ExHuME generator was used to produce Monte Carlo simulations to study the mass acceptance of the HPS detector, and central and

  20. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  1. Bio-diesel: uncertain future

    International Nuclear Information System (INIS)

    Biodiesel in a renewable source of energy. It is also less polluting in terms of emission of pollutants like CO2, CO, NO and particulate matter than the standard diesel. As it contains no sulfur, it emits no SO2. However its claim for environmental protection is disputed and its high production cost makes it economically unattractive. Present status of biodiesel production and research studies going on to cut the cost and to improve the quality of biodiesel are reviewed. Increasing yield of vegetable oils, using animal fats and frying oil wastes and improving the esterification process used for producing biodiesel from vegetable oils are some of the ways to cut the cost. To improve the quality of biodiesel, attempts are being made to produce biodiesel with a lower glycerin content so that clogging of injection nozzles during combustion is reduced and performance of biodiesel is improved. Biotechnological developments are in the direction of generically modifying oil plants to produce new types of oil to specifications. Controversy in the European Economic Community regarding giving subsidies to biofuel and exemption from fossil fuel taxes is described. (M.G.B.)

  2. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-20

    The overall objective of this program is to develop the diesel engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: Definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; Definition of the specific effect of each coal-related lube oil contaminant; Determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; Evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and Presentation of the engine/lubricant system design determined to have the most potential.

  3. Optimal construction and combined wind and diesel power production in a regional power purchase

    Energy Technology Data Exchange (ETDEWEB)

    Lautala, P.; Antila, H.; Raekkoelaeinen, J.; Heikkilae, H. [Tampere Univ. of Technology (Finland). Automation and Control Inst.

    1998-12-31

    A weak electricity transmission and distribution network and a wind generator were modelled by a non-linear dynamic model. Energy purchase of a small utility was modelled as a linear mixed integer optimisation problem. The dynamic model was used to simulate the effects of distance between the wind generator and a regional power grid and the effects of changes in the production of the wind generator. The optimisation model was used to investigate the effect of the combined diesel and wind production. In this case the results show that if the distance between the generator and the network grid is more than 70 km, then voltage fluctuations exceed acceptable levels. The optimisation provides the value of the combined diesel and wind production. (orig.)

  4. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  5. Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

    2002-08-25

    Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

  6. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... from other than safety cans must be dispensed by means of— (1) Gravity feed with a hose equipped with a...) An anti-siphoning device. (c) Diesel fuel must not be dispensed using compressed gas. (d) Diesel...

  7. Diesel exhaust exposures in port workers.

    Science.gov (United States)

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number

  8. Performance of diesel engine fuelled with sunflower biodiesel blends; Desempenho de motor diesel com misturas de biodiesel de oleo de girassol

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Ila Maria; Maziero, Jose Valdemar Gonzalez; Bernardi, Jose Augusto; Storino, Moises [Instituto Agronomico de Campinas (CEA/IAC), SP (Brazil). Centro de Engenharia e Automacao; Ungaro, Maria Regina [Instituto Agronomico de Campinas (IAC), SP (Brazil). Centro de Graos e Fibras

    2006-07-01

    The aim of this paper was to evaluate the use of sunflower bio diesel blends in a CI engine, direct injection. The test procedure was done in a dynamometer bench had been determined the performance of engine through power take-off (PTO) with use of diesel and sunflower bio diesel blends (B5, B10, B20 and B100). The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kw; 271 g/kw.h); B5 (40,3 kw; 271 g/kw.h); B10 (39,8 kw; 277 g/kw.h); B20 (40,0 kw; 277 g/kw.h) e B100 (39,8 kw; 291 g/kw.h). It was conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analyze of lubricating oil showed that the viscosity, water content and level of iron were the parameters more affected, although it had been acceptable. (author)

  9. Dual fuel diesel engine operation using LPG

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  10. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    OpenAIRE

    Saddam H. Al-lwayzy; Talal Yusaf

    2015-01-01

    Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD). Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10%) and ethanol (10%) have been mixed and added to (80%) diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel...

  11. The market for gasoline cars and diesel cars

    International Nuclear Information System (INIS)

    In Europe the tax tariff is much lower for diesel fuel than for gasoline. This benefit is used by manufacturers to increase the price of diesel-fueled cars, which limits the possibility to control the use of diesel cars by means of a fiscal policy (tax incidence). Attention is paid to the impact of fiscal advantages for diesel cars on the purchasing behavior of the consumer and the pricing policy (price discrimination) of the car manufacturers. 1 ref

  12. Diesel spray penetration studied by simultaneous Mie and shadowgraphy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bougie, B.; Tulej, M.; Beaud, P.; Knopp, G.; Radi, P.; Gerber, T.

    2003-03-01

    The influence of gas density and vaporization on penetration and dispersion of Diesel sprays were investigated in a High Temperature High Pressure Cell (HTDZ) within the range of typical Diesel engine injection parameters. The temporal evolution of cold and vaporizing Diesel sprays were probed simultaneously by laser elastic scattering- and shadowgraphy-techniques. The experimental results were used to verify recently proposed Diesel spray models. (author)

  13. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  14. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil.

    Science.gov (United States)

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, Ns; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel oil biodegradation. The effects of various culture parameters (pH, temperature, NaCl concentrations, initial hydrocarbon concentration, initial inoculum size, role of chemical surfactant, and role of carbon and nitrogen sources) on biodegradation of diesel oil were evaluated. Optimal diesel oil biodegradation by A. baumanii occurred at initial pH 7, 35°C and initial hydrocarbon concentration at 4%. The biodegradation products under optimal cultural conditions were analyzed by GC-MS. The present study suggests that A. baumannii can be used for effective degradation of diesel oil from industrial effluents contaminated with diesel oil. PMID:25530870

  15. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y.J.; Ju, U.S.; Park, Y.C. [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  16. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  17. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  18. Penetration of diesel exhaust particles through commercially available dust half masks.

    Science.gov (United States)

    Penconek, Agata; Drążyk, Paulina; Moskal, Arkadiusz

    2013-04-01

    Half masks are certified by the competent, national institutions--National Institute for Occupational Safety and Health (NIOSH) in the USA and the respective European national institutions applying common European regulations. However, certification testing is conducted with particles of NaCl, paraffin oil, or dioctyl phthalate (DOP) and at the constant flow rate, whereas particles commonly found in workplaces may differ in size, shape, and morphology from these particles. Therefore, the aim of this study was to investigate filtration efficiency of commercially available filtering facepiece half masks under the condition of exposure to diesel fumes. In this study, we focused on the particulate phase [diesel exhaust particles (DEP)] of three (petroleum diesel, ecodiesel, and biodiesel) diesel fuel combustion types. Two types of European standard-certified half masks, FFP2 and FFP - Filtering Facepiece, and three types of popular diesel fuels were tested. The study showed that the filtration efficiencies for each examined half mask and for each of diesel exhaust fumes were lower than the minimum filtration efficiency required for the standard test aerosols by the European standards. For FFP2 and FFP3 particulate half masks, standard minimum filtration efficiency is 94 and 99%, respectively, whereas 84-89% of mass of DEP from various fuels were filtered by the tested FFP2 and only 75-86% by the FFP3. The study indicated that DEP is more penetrating for these filters than the standard salt or paraffin oil test aerosols. The study also showed that the most penetrating DEP are probably in the 30- to 300-nm size range, regardless of the fuel type and the half-mask model. Finally, the pressure drops across both half masks during the 80-min tests remained below an acceptable maximum of breathing resistance-regardless of the fuel types. The respiratory system, during 40-min test exposures, may be exposed to 12-16mg of DEP if a FFP2 or FFP3 particulate half mask is used. To

  19. Potential of Sagittaria trifolia for Phytoremediation of Diesel.

    Science.gov (United States)

    Zhang, Xinying; Wang, Jun; Liu, Xiaoyan; Gu, Lingfeng; Hou, Yunyun; He, Chiquan; Chen, Xueping; Liang, Xia

    2015-01-01

    The phytoremediation potential and responses of Sagittaria trifolia to diesel were investigated. In order to elucidate the biochemical and physiological responses of S. trifolia to diesel, the chlorophyll content, root vitality, soluble protein content and antioxidant enzymes activity (peroxidase (POD), catalase (CAT) and antioxidant enzymes superoxide dismutase (SOD)) were determined in the plant tissues after 50 d of diesel treatment. The results showed the presence of S. trifolia significantly improved the removal ratios of diesel, from 21∼36% in the control soils to 54∼85% in the planted soils. The chlorophyll content, root vitality and soluble protein content all increased at low diesel concentration, then decreased at high diesel concentration. The activities of CAT and POD exhibited peak values at 5 g·kg(-1) diesel treatment and declined at higher diesel concentrations. However, the activity of SOD kept stable at lower diesel concentration (1 and 5 g·kg(-1)), and also declined at higher diesel concentration. Collectively, S. trifolia had the ability to tolerate certain amount of diesel, but when the concentration was up to 10 g·kg(-1), the growth of S. trifolia would be restrained. The results also showed that variation of antioxidant enzyme activity was an important response in plants to diesel pollution.

  20. 40 CFR 86.336-79 - Diesel engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer...

  1. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and...

  2. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    Full Text Available Os atuais elevados preços do barril de petróleo no mercado internacional, a possibilidade de geração de postos de trabalho e renda com a conseqüente fixação do homem no campo, as excelentes e variadas condições climáticas e os tipos de relevo fazem com que o Brasil, com suas extensas áreas agricultáveis, destaque-se no cenário mundial em relação à sua grande potencialidade de geração de combustíveis alternativos. A situação ambiental faz com que o ser humano trabalhe no desenvolvimento de alternativas energéticas, destacando-se aquelas oriundas de fontes renováveis e biodegradáveis de caráter eminentemente sustentável. Assim, objetivou-se com este trabalho avaliar o desempenho de um motor ciclo diesel, funcionando em momentos distintos com diesel mineral e misturas deste com biodiesel nas proporções equivalentes a B2 (98% de diesel mineral e 2% de biodiesel, B5 (95% de diesel mineral e 5% de biodiesel, B20 (80% de diesel mineral e 20% de biodiesel e B100 (100% de biodiesel. Para a realização dos ensaios, foi utilizado um motor ciclo diesel de um trator VALMET 85 id, de 58,2kW (78 cv, de acordo com metodologia estabelecida pela norma NBR 5484 da ABNT (1985 que se refere ao ensaio dinamométrico de motores de ciclo Otto e Diesel. Concluiu-se que a potência do motor ao se utilizar biodiesel foi inferior àquela quando se utilizou diesel mineral. Observou-se que, em algumas rotações, as misturas B5 e B20 apresentaram potência igual ou até superior, em algumas situações, àquela quando se utilizou diesel mineral. A melhor eficiência térmica do motor foi verificada na rotação de 540 rpm da TDP equivalente a 1720 rpm do motor.It is considered that, in a close future, the petroleum reservations economically viable will tend to the shortage. Besides it, the exacerbated current price levels of the petroleum barrel in the international market, the possibility of employment generation and income with the consequent

  3. Radioactive waste package acceptance criteria

    International Nuclear Information System (INIS)

    Preliminary acceptance criteria have been developed for packages containing nuclear waste which must be stored or disposed of by the US Department of Energy. Acceptance criteria are necessary to ensure that the waste packages are compatible with all elements of the Waste Management System. The acceptance criteria are subject to revision since many of the constraints that will be imposed on the waste packages by the Waste Management System have either not been defined or are being revised. Delineation of the acceptance criteria will provide bases for handling, transporting and disposing of the commercial waste

  4. Tertiary fatty amides as diesel fuel substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Serdari, Aikaterini; Lois, Euripides; Stournas, Stamoulis [National Technical Univ. of Athens, Dept. of Chemical Engineering, Athens (Greece)

    2000-07-01

    This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. (Author)

  5. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    OpenAIRE

    Marcio Castellanelli; Samuel N. M. de Souza; Suedêmio L. Silva; Euro K. Kailer

    2008-01-01

    Diante da previsão de escassez do petróleo, o éster etílico (biodiesel) tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas ...

  6. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  7. Diesel vehicles shortage mobilizes the automotive industry; La penurie de diesel mobilise la filiere

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P.Y.; Deheunynck, P.Y.; Demoulin, L.

    2000-12-01

    The infatuation for diesel vehicles in Europe has led to an unexpected growth of this market. The reason is linked with the improvements made in diesel engine technology and with the rise of automotive fuel prices. Car and vehicle equipment manufacturers and sub-contractors have to increase their production and manpower and to adopt new work schedules for a better exploitation of factories capacity. However, the development of the direct injection (common-rail) technology for diesel engines requires complex and precise machining procedures that are hardly compatible with an enhanced mass production. (J.S.)

  8. Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fueled with Biodiesel and High Speed Diesel

    Directory of Open Access Journals (Sweden)

    T. Gopinathan

    2014-10-01

    Full Text Available Depleting petroleum reserves on the earth and increasing concerns about the environment leads to the question for fuels which are eco-friendly safer for human beings. The objective of present study was to investigate the effect of coating on cylinder head of a Diesel engine on the performance and emission characteristics of exhaust gases using Bio Diesel and High Speed Diesel (HSD as a fuel. In this study the effect of Tin and Hard Chrome coating on the performance and emission characteristics of diesel engine was investigated using Bio Diesel and High Speed Diesel as a fuel. For this purpose the cylinder head of the test engine were coated with a Tin and Hard Chrome of 100 µ thick by the Electroplating method. For comparing the performance of the engine with coated components with the base engine, readings were taken before and after coating. To make the diesel engine to work with Bio Diesel and High Speed Diesel a modification was done. The engine’s performance was studied for both Bio Diesel and High Speed Diesel with and without Tin, Hard Chrome coating. Also the emissions values are recorded to study the engine’s behavior on emissions. Satisfactory performance was obtained with Tin and Hard Chrome coating compared with a standard diesel engine. The brake thermal efficiency was increased up to 2.08% for High Speed Diesel with Tin coating and there was a significant reduction in the specific fuel consumption. The CO emission in the engine exhaust decreases with coating. Using Bio Diesel and High Speed Diesel fuel for a LHR diesel engine causes an improvement in the performance characteristics and significant reduction in exhaust emissions.

  9. Soft start technique for diesel generator sets

    International Nuclear Information System (INIS)

    A diesel motor in a nuclear power plant should be of a well-proven design. It is designed for long periods of trouble-free duty, but not for the frequent and rapid test starts called for by the technical specifications. In order to decrease the dynamic forces and thermal stresses, a soft-start scheme has been implemented. By limiting the fuel injection the diesel generator will reach full speed in appr. 30 seconds. The fuel limiter is a pneumatic cylinder which mechanically limits the travel of the terminal shaft of the governor. (author)

  10. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  12. Worldwide nuclear revival and acceptance

    International Nuclear Information System (INIS)

    The current status and trends of the nuclear revival in Europe and abroad are outlined. The development of public opinion in the last decade is playing an important part. This has turned from clear rejection to careful acceptance. Transparency and open communication will be important aspects in the further development of nuclear acceptance. (orig.)

  13. Acceptance conditions in automated negotiation

    NARCIS (Netherlands)

    Baarslag, T.; Hindriks, K.V.; Jonker, C.M.

    2011-01-01

    In every negotiation with a deadline, one of the negotiating parties has to accept an offer to avoid a break off. A break off is usually an undesirable outcome for both parties, therefore it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. Whe

  14. Consumer acceptance of functional foods

    DEFF Research Database (Denmark)

    Frewer, Lynn J.; Scholderer, Joachim; Lambert, Nigel

    2003-01-01

    In the past, it has been assumed that consumers would accept novel foods if there is a concrete and tangible consumer benefit associated with them, which implies that those functional foods would quickly be accepted. However, there is evidence that individuals are likely to differ in the extent t...... to ageing and over nutrition, or illnesses linked to genetic predispositions or other risk factors....

  15. Cone penetrometer acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Boechler, G.N.

    1996-09-19

    This Acceptance Test Report (ATR) documents the results of acceptance test procedure WHC-SD-WM-ATR-151. Included in this report is a summary of the tests, the results and issues, the signature and sign- off ATP pages, and a summarized table of the specification vs. ATP section that satisfied the specification.

  16. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  17. Experience with emergency diesels at the Swiss NPP Goesgen (KKG)

    International Nuclear Information System (INIS)

    The Goesgen nuclear power plant, a 970 MWe KWU pressurized water reactor, is fitted with 4 x 50 X emergency diesels and 2 x 100 % special emergency (Notstand) diesel units. Since the start-up tests of the diesels in 1977 several severe incidents occurred. As a consequence, different back-fitting actions were taken on the diesels and the emergency electrical System. The presentation will treat the following subjects: - lay-out of the onsite electrical power sources, - experiences and problems, - back-fitting measures, - periodic testing of the diesels. (author)

  18. Performance investigations of a diesel engine using ethyl levulinate-diesel blends

    Directory of Open Access Journals (Sweden)

    Zhi-wei Wang

    2012-11-01

    Full Text Available Ethyl levulinate (EL can be produced from bio-based levulinic acid (LA and ethanol. Experimental investigations were conducted to evaluate and compare the performances and exhaust emission levels of ethyl levulinate as an additive to conventional diesel fuel, with EL percentages of 5%, 10%, 15% (with 2% n-butanol, and 20% (with 5% n-butanol, in a horizontal single-cylinder four stroke diesel engine. Brake-specific fuel consumptions of the EL-diesel blends were about 10% higher than for pure diesel because of the lower heating value of EL. NOx and CO2 emissions increased with engine power with greater fuel injections, but varied with changing EL content of the blends. CO emissions were similar for all of the fuel formulations. Smoke emissions decreased with increasing EL content.

  19. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  20. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NOx to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  1. Optimisation of engine operating parameters for turpentine mixed diesel fueled DI diesel engine Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    R.Karthikeyan,

    2010-10-01

    Full Text Available In the present investigation a volatile fraction of pinus resin called Turpentine has been tried as an alternative fuel for diesel fuel. As turpentine possess moderate cetane number, the complete replacement of diesel fuel by turpentine oil is not possible. However, blending of turpentine with diesel fuel in large proportion helps to reduce the application of diesel fuel. Hence, the objective of present investigation focused on the maximum possible diesel replacement by turpentine oil. Also, the investigation fixed the optimum level of engine operating parameters suitable for the selected blend operation. As the investigation requires simultaneous optimisation of three parameters, a method called Taguchi was tried in the experiment. The primary advantage of this method is to minimize the number of trails required for the optimisation. As per the taguchi method, nine trials were experimented and the results were used for optimising parameters. In addition, an ANOVA was also performed for the operating parameters to show the percentage contribution of variance over the desired output. The results of thetaguchi experiment identified that the 40T blend (40% turpentine and 60% diesel performed better at 29°BTDC injection timing and at 180 bar injection pressure than other blends and had a capacity to cold start the engine. Using the identified optimum levels, a full range experiment was conducted for 40T blend to compare its performance andemission behaviour with standard diesel operation. The results of the full range experiment showed that the 40T blend offered approximately 2.5% higher brake thermal efficiency than diesel baseline operation without much worsening the exhaust emission.

  2. Study on Laboratory Method for Refining of SR Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    Li Junling; Zheng Tinglu; Han Zhaping

    2006-01-01

    The method for refining the straight-run diesel fuel was studied in laboratory scale in order to make the acid number of diesel fraction comply with the standard while removing the naphthenic acids contained in diesel without causing environmental pollution. After comparing the effect of refining using three solvents, the isopropyl alcohol-HOA was specified as the best solvent. Meanwhile, the relationship between the acid number of diesel fraction and the amount of solvent used and the relationship between the concentration of solvent and temperature and the stability of diesel in terms of its acid number were also investigated. Experimental results had shown that when the mass fraction of the HOA-IPA solvent was 20% at a dosage of 17 mL of the solvent and a temperature of 30℃, the acid number of the refined diesel fraction was 0.015 mg KOH/g with a good stability of acidity in the diesel traction.

  3. Production and testing of dates oil and its bio diesel

    International Nuclear Information System (INIS)

    Date palms are very famous trees in Iraq and some other countries. The date oil might use as a fuel in a compression ignition engines. Also, this oil can be used as a raw material to produce a date-bio diesel. In this paper, a new method to extract oil from dates is showed and synthesized bio diesel from this oil. Full description to extraction as well as to Transesterification methods is achieved. The main fuel properties tests are done on the oil and the date-bio diesel. The caloric values, viscosity, density, pour point, cloud point and diesel index are tested for date's oil and for its bio diesel. A comparison with diesel oil is hold to show the utility of this oil and its bio diesel for using in compression ignition engines. (author)

  4. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  5. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  6. Real Otto and Diesel Engine Cycles.

    Science.gov (United States)

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  7. Relation between climate and diesel fuel rate consumption for sugar cane agriculture

    International Nuclear Information System (INIS)

    In the present work, some results are shown of a study carried out within the ENERCLIMA project. The principal objective was to establish the relationship between diesel fuel rate consumption by agricultural equipment in activities related to sugar cane production and simple climatic variables. Through a statistical analysis, we show the possibility of obtaining statistical models of an acceptable confidence level, as applied to some of these activities, which could be used in order to plan more rationally the level of fuel consumption of the agricultural companies with access to meteorological stations located nearby

  8. Carbonyl compounds emitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile

    Science.gov (United States)

    Guarieiro, Lílian Lefol Nani; Pereira, Pedro Afonso de Paula; Torres, Ednildo Andrade; da Rocha, Gisele Olimpio; de Andrade, Jailson B.

    Biodiesel is emerging as a renewable fuel, hence becoming a promising alternative to fossil fuels. Biodiesel can form blends with diesel in any ratio, and thus could replace partially, or even totally, diesel fuel in diesel engines what would bring a number of environmental, economical and social advantages. Although a number of studies are available on regulated substances, there is a gap of studies on unregulated substances, such as carbonyl compounds, emitted during the combustion of biodiesel, biodiesel-diesel and/or ethanol-biodiesel-diesel blends. CC is a class of hazardous pollutants known to be participating in photochemical smog formation. In this work a comparison was carried out between the two most widely used CC collection methods: C18 cartridges coated with an acid solution of 2,4-dinitrophenylhydrazine (2,4-DNPH) and impinger bottles filled in 2,4-DNPH solution. Sampling optimization was performed using a 2 2 factorial design tool. Samples were collected from the exhaust emissions of a diesel engine with biodiesel and operated by a steady-state dynamometer. In the central body of factorial design, the average of the sum of CC concentrations collected using impingers was 33.2 ppmV but it was only 6.5 ppmV for C18 cartridges. In addition, the relative standard deviation (RSD) was 4% for impingers and 37% for C18 cartridges. Clearly, the impinger system is able to collect CC more efficiently, with lower error than the C18 cartridge system. Furthermore, propionaldehyde was nearly not sampled by C18 system at all. For these reasons, the impinger system was chosen in our study. The optimized sampling conditions applied throughout this study were: two serially connected impingers each containing 10 mL of 2,4-DNPH solution at a flow rate of 0.2 L min -1 during 5 min. A profile study of the C1-C4 vapor-phase carbonyl compound emissions was obtained from exhaust of pure diesel (B0), pure biodiesel (B100) and biodiesel-diesel mixtures (B2, B5, B10, B20, B50, B

  9. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  10. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  11. Public acceptance of small reactors

    International Nuclear Information System (INIS)

    The success of any nuclear program requires acceptance by the local public and all levels of government involved in the decision to initiate a reactor program. Public acceptance of a nuclear energy source is a major challenge in successful initiation of a small reactor program. In AECL's experience, public acceptance will not be obtained until the public is convinced that the specific nuclear program is needed, safe and economic and environmental benefit to the community. The title of public acceptance is misleading. The objective of the program is a fully informed public. The program proponent cannot force public acceptance, which is beyond his control. He can, however, ensure that the public is informed. Once information has begun to flow to the public by various means as will be explained later, the proponent is responsible to ensure that the information that is provided by him and by others is accurate. Most importantly, and perhaps most difficult to accomplish, the proponent must develop a consultative process that allows the proponent and the public to agree on actions that are acceptable to the proponent and the community

  12. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    Science.gov (United States)

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  13. Preparation and emission characteristics of ethanol-diesel fuel blends

    Institute of Scientific and Technical Information of China (English)

    ZHANG Run-duo; HE Hong; SHI Xiao-yan; ZHANG Chang-bin; HE Bang-quan; WANG Jian-xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  14. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    International Nuclear Information System (INIS)

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  15. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  16. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    International Nuclear Information System (INIS)

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  17. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  18. Wind power: basic challenge concerning social acceptance

    OpenAIRE

    Wolsink, M.

    2012-01-01

    This reference article gives an overview of social acceptance (acceptance by all relevant actors in society) of all relevant aspects of implementation and diffusion of wind power. In social acceptance three dimensions of acceptance are distinguished (socio-political -; community -; market acceptance) and two objects of acceptance: the application of wind power as a source of energy, and the acceptance of projects in which wind power is applied. This article explains why these two -in contrast...

  19. Performance and emissions of a diesel engine fueled by biodiesel–diesel, biodiesel–diesel-additive and kerosene–biodiesel blends

    International Nuclear Information System (INIS)

    Highlights: • Various biodiesel blends are tested in a diesel engine for performance and emissions. • A new biodiesel additive, Wintro XC 30 is studied for combustion in a diesel engine. • Kerosene–biodiesel series show improved performance and emissions at high load. • NO2 at low load condition has a significant share in total NOx for all fuels. • B5A has lower cloud point, CO and HC emissions, but improved efficiency than diesel. - Abstract: This study investigates the performance and emissions of a direct injection (DI) diesel engine with three fuel series: biodiesel–diesel, biodiesel–diesel-additive and kerosene–biodiesel. Biodiesel is produced from canola oil and the effect of a new biodiesel additive, Wintron XC 30 (2 vol.%), is examined for engine performance and emissions. Systematic tests are undertaken over different blends, such as 0, 5, 10, 20, 50 and 100 volume percent of biodiesel in biodiesel–diesel and biodiesel–diesel-additive blends, and 0, 5, 10, 20, 50 and 100 volume percent of kerosene in kerosene–biodiesel blends. Engine performance and emissions at rated engine speed of 1800 rpm under three different loading conditions (low, medium and high) are investigated. Brake specific fuel consumption (bsfc) and fuel conversion efficiency (ηf) are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx)

  20. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  1. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, Daniela; Gerecke, Andreas C.; Heeb, Norbert V. [Laboratory for Analytical Chemistry, Empa, Swiss Federal Laboratories for Materials Testing and Research, Duebendorf (Switzerland); Naegeli, Hanspeter [University of Zurich-Vetsuisse, Institute of Pharmacology and Toxicology, Zurich (Switzerland); Zenobi, Renato [ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2008-04-15

    An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX {sup registered}) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17{beta}-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 {+-} 0.31 ng E2 CALUX equivalents (E2-CEQs) per m{sup 3} of unfiltered exhaust. In filtered exhaust, we measured 0.74 {+-} 0.07 (iron-catalyzed DPF) and 0.55 {+-} 0.09 ng E2-CEQ m{sup -3} (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust. (orig.)

  2. Improvement of thermal effciency in diesel engine. Diesel engine no koritsu kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. (Isuzu Ceramics Research Inst. Co. Ltd., Kanagawa, (Japan))

    1993-04-05

    Diesel engines cause worsening air pollution due to much more discharge of nitrogen oxides than gasoline engines, however for reduction of carbon dioxide, Diesel engines consuming less fuel are better than gasoline engines for protection of the global environment. Theoretical thermal efficiency is larger as compression ratio and isochronic burnup are bigger, hence such an engine is needed that is made on the basis of a Diesel engine, whose compression ratio is twice or more larger than that of gasoline engine and which has good thermal efficiency, and reduces its nitrogen oxides by the development of the combustion technique by means of controlling combustion temperature as well as fuel equivalent ratio. With regard to the improvement of thermal efficiency of Diesel engines, it can be attained, utilizing the respective features of the antechamber-type and the direct injection-type Diesels, by burning the homogeneous mixture, whose fuel equivalent ratio is big, in the initial stage and by controlling the main combustion period in the main chamber short. inaddition, a radiation shield-type turbocompound engine has been test fabricated and rough explanations are given on its structure, its combustion and the recovery of its exhaust gas energy. 5 refs., 6 figs., 1 tab.

  3. Effect of diesel addition on the performance of cottonseed oil fuelled DI diesel engine

    Directory of Open Access Journals (Sweden)

    Leenus Jesu Martin. M, Edwin Geo. V, Prithviraj. D

    2011-03-01

    Full Text Available In this investigation the viscosity of cottonseed oil, which has been considered as an alternative fuel for the compression Ignition (C.I engine was decreased by blending with diesel. The blends of varying proportions of cottonseed oil and diesel were prepared, analyzed and compared with the performance of diesel fuel and studied using a single cylinder C.I. engine. Significant improvement in engine performance was observed compared to neat cottonseed oil as a fuel. The brake thermal efficiency, specific fuel consumption, volumetric efficiency, peak cylinder pressure, smoke, CO, HC, NO and the exhaust gas temperatures were analyzed. The tests showed increase in the brake thermal efficiencies of the engine as the amount of diesel in the blend increased. The volumetric efficiency of the engine also increased when compared with that of neat cottonseed oil and the exhaust gas temperature with the blends decreased. The smoke, CO and HC emissions of the engine ware also less with the blends. From the engine test results it has been established that 20–40% of cottonseed oil can be substituted for diesel without any engine modification as a fuel.

  4. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  5. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  6. Development of microwave-heated diesel particulate filters

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Yonushonis, T.M.; McDonald, A.C.; Wiczynski, P.D.; Haberkamp, W.C.

    1996-06-01

    Diesel engines are a prime mover of freight in the United States. Because of legislated reductions in diesel engine emissions, considerable research has been focused on the reduction of these emissions while maintaining the durability, reliability, and fuel economy of diesel engines. The Environmental Protection Agency (EPA) has found that particulate exhaust from diesel powered vehicles represents a potential health hazard. As a result, regulations have been promulgated limiting the allowable amounts of particulate from those vehicles. The 0.1 g/bhp/hr (gram per brake horsepower per hour) particulate standard that applies to heavy-duty diesels became effective in 1994. Engine manufacturers have met those requirements with engine modifications and/or oxidation catalysts. EPA has established more stringent standards for diesel-powered urban buses because of health concerns in densely populated urban areas.

  7. Formation and emission of organic pollutants from diesel engines

    International Nuclear Information System (INIS)

    The emission of soot and polycyclic aromatic hydrocarbons (PAH) from diesel engines results from the competition between oxidative and pyrolytic routes which the fuel takes in the unsteady, heterogeneous conditions of the diesel combustion process. In-cylinder sampling and analysis of particulate (soot and condensed hydrocarbon species), light hydrocarbons and gaseous inorganic species were carried out in two locations of a single cylinder direct injection diesel engine by means of a fast sampling valve in order to follow the behaviour of a diesel fuel during the engine cycle. The effect of fuel quality (volatility, aromatic content, cetane number) and air/fuel mass feed ratio on soot, PAH, and light and heavy hydrocarbons was also investigated by direct sampling and chemical analysis of the exhausts emitted from a direct injection diesel engine (D.I.) and an indirect injection diesel engine (I.D.I.)

  8. Insulated Piston Heads for Diesel Engines

    Science.gov (United States)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  9. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  10. Enhanced Component Performance Study. Emergency Diesel Generators 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2013 and maintenance unavailability (UA) performance data using Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2013. The objective is to present an analysis of factors that could influence the system and component trends in addition to annual performance trends of failure rates and probabilities. The factors analyzed for the EDG component are the differences in failures between all demands and actual unplanned engineered safety feature (ESF) demands, differences among manufacturers, and differences among EDG ratings. Statistical analyses of these differences are performed and results showing whether pooling is acceptable across these factors. In addition, engineering analyses were performed with respect to time period and failure mode. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating.

  11. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  12. Traffic, diesel and asthma : a literature review

    OpenAIRE

    Schembri, Gabriel

    2007-01-01

    This article details the major pollutants from motor vehicle exhaust, mainly particulate matter, nitrogen dioxide and polycyclic aromatic hydrocarbons. The emphasis is on motor vehicle emissions from diesel powered engines, which have become a significant source of air pollution in urban areas. The impact of motor vehicle pollutants on respiratory health is explored, and the major studies relating asthma to high volume of traffic and proximity to major traffic arteries are reviewed.

  13. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  14. Diesel Effect Problem Solving During Injection Moulding

    Directory of Open Access Journals (Sweden)

    Košík Miroslav

    2014-12-01

    Full Text Available Study describes principles of diesel effect creation during thermoplastic injection moulding as a consequence of wrong injection conditions and poor venting system design. On real example, study shows sequence of all steps to eliminate this sort of material degradation with minimal costs in phase when mould is already made. As a first, process parameters were optimized by CAE simulation to minimize cavity internal gasses creation. Finally the specific mould modifications were suggested to improve the effectiveness of venting system.

  15. Exposure Assessment of Diesel Bus Emissions

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2006-12-01

    Full Text Available The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG powered buses. Background (outside of the bus station and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform

  16. Microwave-Regenerated Diesel Exhaust Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  17. External brand extensions impact on Diesel's brand image

    OpenAIRE

    Fernandes, Miguel Pinto Valente

    2010-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics Diesel is a global urban brand that privileges individuality and irreverence. This project measures Diesel brand image within the different types of Portuguese consumers; the objective is to understand the main buying drivers and analyze the impact of brand licensing. It was concluded that Diesel global brand image is consensual amo...

  18. Study on Influence of Fuel Properties on Premixed Diesel Combustion

    OpenAIRE

    熊, 仟

    2014-01-01

    Premixed diesel combustion, as a promising combustion concept to achieve low NOx and smoke emissions as well as high thermal efficiency, is paid much attention. Sufficiently long ignition delay is required for pre-mixture preparation to avoid over-rich mixture taking part in the combustion while the maximum pressure rise rate is suppressed to a tolerance level. Therefore, the operational load range of premixed diesel combustion with diesel fuel is limited at low and medium loads by the high p...

  19. Energy Policies Cause Unexpected Diesel Shortage in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ An unprecedented diesel shortage is sweeping through Chinese cities, as numerous enterprises have to resort to diesel fuel to generate electricity to continue operation during periods of forced power outages.For example, the diesel shortage has recently paralyzed traffic on a pivotal expressway in Northwest China, with trucks waiting in long lines to fill their fuel tanks.China's Ministry of Commerce has recently required the local bureaus to ensure ample supply of fuel amid rising inflation.

  20. Wind power: basic challenge concerning social acceptance

    NARCIS (Netherlands)

    M. Wolsink

    2012-01-01

    This reference article gives an overview of social acceptance (acceptance by all relevant actors in society) of all relevant aspects of implementation and diffusion of wind power. In social acceptance three dimensions of acceptance are distinguished (socio-political -; community -; market acceptance

  1. Stochastic phonological grammars and acceptability

    CERN Document Server

    Coleman, J; Coleman, John; Pierrehumbert, Janet

    1997-01-01

    In foundational works of generative phonology it is claimed that subjects can reliably discriminate between possible but non-occurring words and words that could not be English. In this paper we examine the use of a probabilistic phonological parser for words to model experimentally-obtained judgements of the acceptability of a set of nonsense words. We compared various methods of scoring the goodness of the parse as a predictor of acceptability. We found that the probability of the worst part is not the best score of acceptability, indicating that classical generative phonology and Optimality Theory miss an important fact, as these approaches do not recognise a mechanism by which the frequency of well-formed parts may ameliorate the unacceptability of low-frequency parts. We argue that probabilistic generative grammars are demonstrably a more psychologically realistic model of phonological competence than standard generative phonology or Optimality Theory.

  2. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  3. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  4. Bio-diesel fuels production: Feasibility studies

    International Nuclear Information System (INIS)

    This paper reviews the efforts being made by Italy's national government and private industry to develop diesel engine fuels derived from vegetable oils, in particular, sunflower seed oil. These fuels are being promoted in Italy from the environmental protection stand-point in that they don't contain any sulfur, the main cause of acid rain, and from the agricultural stand-point in that they provide Italian farmers, whose food crop production capacity is limited due to European Communities agreements, with the opportunity to use their set-aside land for the production of energy crops. This paper provides brief notes on the key performance characteristics of bio-diesel fuels, whose application doesn't require any modifications to diesel engines, apart from minor adjustments to the air/fuel mix regulating system, and assesses commercialization prospects. Brief mention is made of the problems being encountered by the Government in the establishing fair bio-fuel production tax rebates which are compatible with the marketing practices of the petroleum industry. One of the strategies being considered is to use the bio-fuels as additives to be mixed with conventional fuel oils so as to derive a fuel which meets the new European air pollution standards

  5. Biodegradability of commercial and weathered diesel oils Biodegradabilidade de óleos diesel comercial e intemperizado

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2008-03-01

    Full Text Available This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 - dichlorophenol indophenol (DCPIP and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated.Este trabalho objetivou avaliar a capacidade de diferentes microrganismos em degradar óleo diesel comercial em comparação com um óleo diesel intemperizado coletado da água subterrânea em um posto de combust

  6. Performance and Emission Assessment of Multi Cylinder Diesel Engine using Surfactant Enhanced Water in Diesel Emulsion

    Directory of Open Access Journals (Sweden)

    Khan Mohammed Yahaya

    2014-07-01

    Full Text Available A four stroke, four cylinder, In-direct injection diesel engine was used to study the effect of emulsified diesel fuel with 5% water by volume on the engine performance and on the main pollutant emissions. The experiments were conducted in the speed range from 1000 to 4500 rpm at full load conditions. It was found that, in general, using emulsified fuel improves the engine performance with slight increase in emissions. While the BSFC has a minimum value for 5% water and at all rpm, the torque, the power and the BMEP are found to have maximum values under these conditions when compared conve ntional disel. CO2 was found to increase with engine speed whereas increase in CO and NOX were minimum. In this work water in diesel emulsion was prepared by a mechanical homogenizer and their physical and chemical properties were examined.

  7. Influence of hexanol-diesel blends on constant speed diesel engine

    Directory of Open Access Journals (Sweden)

    Sundar Raj Chockalingam

    2011-01-01

    Full Text Available As an attempt to suggest an alternate fuel for diesel with less emission, the effects of Diesel-hexanol blends, blended in different percentage ranging from 10%-50% by volume were experimentally investigated on a singlecylinder, water-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min and the results show improved performance with blends compared to neat fuel with substantial reductions in smoke and increase of NOx emissions. Combustion analysis show peak pressure and rate of pressure rise were increased with increase in hexanol. For this reason it is examined the use of hot exhaust gas recirculation (EGR to control NOx emissions. From the analysis of experimental findings it is revealed the use of EGR causes a sharp reduction of NOx with a slight reduction of engine efficiency which in any case does not alter the benefits obtained from the oxygenated fuel.

  8. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Energy Technology Data Exchange (ETDEWEB)

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    From the very beginning, diesel drivetrains have been important components of the BMW EfficientDynamics strategy. High levels of driving dynamics in combination with attractive fuel consumption have become features of a wide range of models. With the introduction of 2-stage turbocharging for passenger car diesel engines in 2004, BMW was able to significantly enhance the power density without increasing the number of cylinders or the cylinder capacity. In the meantime, the BMW TwinPower Turbo diesel engine variants achieve a rated power of up to 160 kW on the 2.0-litre 4-cylinder engine and 230 kW on the 3.0-litre 6-cylinder engine. In order to extend the leading position in the premium segment, a new BMW TwinPower Turbo variant has been developed. The major objectives were to achieve a range of power output, torque and comfort at least at the level of 8-cylinder competitors, but at the same time equal the lower fuel consumption and power/weight ratio that is typical for existing BMW 6-cylinder diesel engines. The new engine will be used for the first time in the emphatically sports-oriented BMW M Performance Automobiles (MPA) of the X5/X6 and 5 Series. The charging and injection technology as well as capability of high cylinder pressures in the core engine are key technologies for the enhancement of performance. The new BMW TwinPower Turbo diesel drivetrain is based on the main dimensions of the existing 3.0-litre 6-cylinder inline diesel engines. The core element of the new engine is a 2-stage turbocharging system, consisting of 3 exhaust turbochargers. A common rail injection system with a system pressure up to 2200 bar is deployed for the first time. The drive unit has been configured for a maximum cylinder pressure of 200 bar, an innovative feature is the aluminium crankcase with its screwed tension anchor connection. The cooling system contains an indirect 2-stage intercooler. The exhaust system of the new BMW diesel engine in the 5 Series is equipped as

  9. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  10. The taxation of diesel cars in Belgium – revisited

    International Nuclear Information System (INIS)

    This paper compares the current taxation of diesel and gasoline cars in Belgium with the guidelines for optimal taxation. We find that diesel cars are still taxed much less than gasoline cars, resulting in a dominant market share for diesel cars in the car stock. If the fuel tax is the main instrument to control for externalities and generate revenues, the diesel excise should be much higher than the excise on gasoline for two reasons: diesel is more polluting than gasoline and more importantly, through the better fuel efficiency, diesel cars contribute less fiscal revenues per mile. - Highlights: ► With a correct tax system the diesel excise should be higher than that on gasoline. ► When this is difficult, the fixed annual charge should be higher for diesel cars. ► The current tax structure for gasoline and diesel cars in Belgium is suboptimal. ► It implies that CO2 emissions are reduced, but in a very cost-inefficient way

  11. Performance Test of Engine Fuelled With Diesel and Ethanol Blends.

    Directory of Open Access Journals (Sweden)

    B.K.L.Murthy

    2015-04-01

    Full Text Available Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (ICengines. As an alternative, biodegradable and renewable fuel, ethanol is receiving increasing attention. An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI diesel engine using 0% (neat diesel fuel, 10% (E10-D, 15%(E15–D, 20% (E20–D, and 25%(E25–D ethanol–diesel blended fuels. Experimental tests were carried out to study the performance of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine.

  12. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  13. Diesel emission control: Catalytic filters for particulate removal

    Directory of Open Access Journals (Sweden)

    Debora Fino

    2007-01-01

    Full Text Available The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO, hydrocarbons (HC and oxides of nitrogen (NOx. Diesel engines also produce significant levels of particulate matter (PM, which consists mostly of carbonaceous soot and a soluble organic fraction (SOF of hydrocarbons that have condensed on the soot.

  14. Current and future developments in diesel powered hovercraft

    Science.gov (United States)

    Leonard, J. C.; Stevens, M. J.; Buttigieg, J. A.

    After evaluating the development status of the application of diesel power to air-cushion vehicles (ACVs) and surface-effect ships (SESs), attention is given to the AP1-88 ACV, which is both the first and largest operational diesel-powered amphibious craft of this type. An account is given of the ACV and SES features that are dictated by the need to accommodate diesel power sources; the major advantages and disadvantages of diesel (vs gas turbine) engines are discussed. Although cost reductions are achievable against gas turbine powerplant use, lower payload fractions and slightly lower performance capabilities appear to be inescapable.

  15. Toxicity of effluents emitted by the diesel engines vehicles; Toxicite des effluents emis par les vehicules a moteur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alcon, St.

    1998-04-29

    The exhaust gases of diesel engine vehicles are atmospheric pollutants. They are characterised by a gaseous phase and a particulate phase. The diesel particulates are composed of a nucleus formed with elementary carbon, forming aggregates that absorb the organic by-products at their surface. A first part treats the effluents of diesel engine vehicles: their characteristics, the factors influencing the diesel emissions, the noxiousness of the gaseous phase, the kinetics and the metabolism of the particulate phase and analysis methods. A second part tackles the experimental toxicity of diesel effluents on insisting on the nature of exposures, the mutagenicity, the carcinogenicity, the effects on the reproduction function and immuno-toxicity. A third part is devoted to the toxicity for man with epidemiology data and some studies under controlled exposures. Then, a fourth part, explains the toxicity mechanisms and the action modes of diesel effluents on the carcinogen effects and on respiratory diseases. (N.C.)

  16. Isolation and Screening of Diesel-Degrading Bacteria from the Diesel Contaminated Seawater at Kenjeran Beach, Surabaya

    Directory of Open Access Journals (Sweden)

    Pratiwi Putri Pranowo

    2016-07-01

    Full Text Available Samples of contaminated seawater by diesel were taken at Kenjeran Beach Surabaya using aseptic technique. Isolation was conducted using serial dilution and spread method on nutrient agar (NA media. The all bacteria colony were devided in to group based on with morphological characterization and gram staining. After that, those bacterial colonies were tested individually in NA media containing different concentration of diesel (2, 4, 6, 8, and 10% for up to 7 days at 30°C. The results showed that eight bacterial strains were isolated from diesel contaminated seawater in Kenjeran Beach Surabaya. Screening on diesel showed that all the isolation bacteria were capable of degrading diesel and bacteria with code of B and E haves highly percentage growth in compared to other bacterial isolation. In conclusion, bacteria with code of B and E have potential to be used in diesel bioremediation in contaminated seawater.

  17. Experimental investigation of VOCs emitted from a DI-CI engine fuelled with biodiesel, diesel and biodiesel-diesel blend

    International Nuclear Information System (INIS)

    Experimental investigation of volatile organic compounds (VOCs) emitted by a turbocharged direct injection compression ignition (DI-CI) engine, alternatively fuelled with biodiesel and its 20% blend with diesel, revealed dominancy of diesel and biodiesel in aromatic hydrocarbons, esters other oxides, respectively, in total volatile organic compounds (TVOCs). The overall brake specific emission of VOCs increased at rated speed compared to maximum torque speed. The VOCs exhibited their maxima at low load, and minima at medium load for diesel and B100. Engines with a speed of 2300 r/min and 100% load showed a reduction in BTX emissions from B20 and B100, as compared to diesel. The sum of VOC-components of B20 and B100 reduced as compared to that of the diesel, for all the engine conditions. The mean BSE of BTX-components taken from all the engine conditions decreased with B20 and B100, relative to fossil diesel. (author)

  18. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2009-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  19. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  20. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  1. Combustion of the alternative marine diesel fuel LCO in large diesel engines; Verbrennung des alternativen Marinekraftstoffs LCO in Grossdieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Struckmeier, Daniel; Takasaki, Koji; Tajima, Hiroshi [Kyushu Univ., Fukuoka (JP). Lab. of Engine and Combustion (ECO)

    2008-11-15

    Large diesel engines represent the heart of the ships, which transport worldwide about 80% of the goods over the sea route these days. Regimentations of the IMO are planning drastic reductions of nitrogen oxide and sulfur oxide emission limitations from marine diesel engines. At the Laboratory of Engine and Combustion (ECO) of the Kyushu University in Fukuoka (Japan), experiments were carried out on a medium size, single cylinder, diesel engine with two-stroke technology in order to investigate the use of Light Cycle Oil (LCO) in large diesel engines with new combustion processes. (orig.)

  2. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    Directory of Open Access Journals (Sweden)

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  3. Acceptance and Commitment Therapy: Introduction

    Science.gov (United States)

    Twohig, Michael P.

    2012-01-01

    This is the introductory article to a special series in Cognitive and Behavioral Practice on Acceptance and Commitment Therapy (ACT). Instead of each article herein reviewing the basics of ACT, this article contains that review. This article provides a description of where ACT fits within the larger category of cognitive behavior therapy (CBT):…

  4. Nitrogen trailer acceptance test report

    International Nuclear Information System (INIS)

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0249. The equipment was tested according to WHC-SD-WM-ATP-108 Rev.0. The equipment being tested is a portable contained nitrogen supply. The test was conducted at Norco's facility

  5. Nitrogen trailer acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Kostelnik, A.J.

    1996-02-12

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0249. The equipment was tested according to WHC-SD-WM-ATP-108 Rev.0. The equipment being tested is a portable contained nitrogen supply. The test was conducted at Norco`s facility.

  6. AAL- technology acceptance through experience

    NARCIS (Netherlands)

    Huldtgren, A.; Ascencio San Pedro, G.; Pohlmeyer, A.E.; Romero Herrera, N.A.

    2014-01-01

    Despite substantial research and development of Ambient Assisted Living (AAL) technologies, their acceptance remains low. This is partially caused by a lack of accounting for users' needs and values, and the social contexts these systems are to be embedded in. Participatory design has some potential

  7. Euthanasia Acceptance: An Attitudinal Inquiry.

    Science.gov (United States)

    Klopfer, Fredrick J.; Price, William F.

    The study presented was conducted to examine potential relationships between attitudes regarding the dying process, including acceptance of euthanasia, and other attitudinal or demographic attributes. The data of the survey was comprised of responses given by 331 respondents to a door-to-door interview. Results are discussed in terms of preferred…

  8. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    Science.gov (United States)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

  9. Russia's black carbon emissions: focus on diesel sources

    Science.gov (United States)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  10. Exhaust emissions evaluation of Colombian commercial diesel fuels

    International Nuclear Information System (INIS)

    Ecopetrol, based on the results obtained in the study, The effect of diesel properties on the emissions of particulate matter (Bello et al 2000), reformulated the diesel fuel distributed in Bogota, becoming it lighter and with lower sulfur content. In order to evaluate the environmental benefits that the reformulation of diesel fuel generate in Bogota, Instituto Colombiano del Petroleo (ICP), with the assistance of emissions research and measurement division (ERMD) from environment Canada, arranged a research project to determine the changes in CO, THC, NOx, CO2 and particulate matter emissions. The research program was developed in two steps. First one, developed in Bogota, involved a fleet test with 15 public service buses that normally operate in Bogota's savannah, using a portable emissions sampling technology developed for ERMD (DOES2) and following a representative transient driving cycle. Second step, carried out in ERMD's Heavy-Duty engine emissions laboratory in Ottawa, tested a 1995 caterpillar 3406E 324/5 KW (435 HP) diesel truck engine on the same samples of Colombian diesel fuels used in the fleet tests performed in Bogota, baselining the tests with a Canadian commercial low sulfur diesel fuel. The two commercial Colombian diesel fuels used had the following properties: High Sulfur Diesel (HSD), with 3000 ppm (0,3 wt %) of sulfur and a final boiling point (FBP) of 633 K and the new reformulated diesel fuel, with 1000 ppm (0,1 wt %) of sulfur and FBP of 613 K, which is currently been distributed in Bogota. Fleet test show small reduction on CO, THC and TPM, and small increments on CO2 and NOx but with not statistically significant results, while engine testing shows a strong reduction of 40/8% in TPM when you use the new reformulated diesel fuel (0,1 wt % of sulfur) instead of high sulfur diesel

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  12. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  15. Diesel-hydraulic locomotive becomes a diesel-electric hybrid locomotive; Dieselhydraulische Lokomotive wird dieselelektrische Hybridlokomotive

    Energy Technology Data Exchange (ETDEWEB)

    Behmann, Uwe

    2013-01-15

    The operational partial load times cause a unnecessarily high fuel consumption and additional environmental pollutions in applications of shunting locomotives. High fuel consumption and additional environmental pollutions can be avoided by hybrid locomotives using a small-scale diesel engine with a generator only for the periodic charging of a large traction battery.

  16. Compact catalytic converter system for future diesel emissions standards; Kompaktes Katalysatorsystem fuer kuenftige Diesel-Emissionsnormen

    Energy Technology Data Exchange (ETDEWEB)

    Harth, Klaus [BASF Corporation, Iselin, NJ (United States)

    2012-09-15

    The Euro 6 emissions standard for diesel passenger cars will broaden the application of exhaust aftertreatment systems that use selective catalytic reduction. This will mean a further increase in the volume and complexity of the exhaust aftertreatment system. BASF has developed a compact integrated catalytic converter that combines the functions of particulate filtration and NO{sub x} reduction in a single unit. (orig.)

  17. Filtres à activité catalytique pour moteur Diesel Catalytic Activity Filters for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Goldenberg E.

    2006-11-01

    Full Text Available A partir de l'examen des normes actuelles et envisagées dans le futur pour limiter les émissions de particules Diesel, et en considérant les propriétés physico-chimiques de ces particules, cet article expose les problèmes posés par la filtration des suies Diesel et leur élimination par combustion sur les différents types de filtres actuellement retenus. La régénération des filtres par combustion catalytique du dépôt est plus particulièrement discutée. From an examination of present regulations and ones being considered for the future to limit particle emissions by diesel engines, and considering the physicochemical properties of such particles, this article describes the problems raised by filtering soot from diesel engines and eliminating it by various types of filters now used. Filter regeneration by catalytic combustion of the deposit is considered in particular.

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  19. Experimental Investigation on DI Diesel Engine Fueled with Diesel-Ethanol Emulsions

    Directory of Open Access Journals (Sweden)

    R. Parthasarathi

    2014-03-01

    Full Text Available In this study, Four different ratio of emulsified fuels are used as alternative fuels for four stroke, single cylinder, water cooled, naturally aspirated direct injection diesel engine to analyze the performance, emission and combustion characteristics, namely Specific Fuel Consumption (SFC, Brake Thermal Efficiency (BTE, Hydrocarbon (HC, Nitrogen Oxides (NOx, smoke, cylinder pressure and heat release rate and compared with diesel fuel under different load conditions with constant engine speed of 1500 rpm. The blends prepared were D80E10 (80% Diesel and 10% Ethanol, D70E20, D60E30 and D50E40 with the addition of 10% surfactant in each blend on volume basis. At full load, compared to diesel fuel, the experimental results of D50E40 blend showed 3.06% reduction in SFC, 21.3% improvement in BTE, 37.08% increase in HC, 31.1% increase in NOx and 42.3% reduction in smoke. The cylinder pressure and heat release rate of D50E40 blends is higher with increasing ethanol percentage in the blend.

  20. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called mixed diesel-gasapproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  1. Diesel Technology: Engines. Second Edition. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    This diesel technology series offers secondary and postsecondary students an opportunity for learning required skills in the diesel industry. It aligns with the medium/heavy duty truck task list developed by the National Automotive Technicians Education Foundation and used by the National Institute for Automotive Service Excellence in…

  2. 46 CFR 58.10-10 - Diesel engine installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5...

  3. Diesel Pollution Biodegradation: Synergetic Effect of Mycobacterium and Filamentous Fungi

    Institute of Scientific and Technical Information of China (English)

    YOU-QING LI; HONG-FANG LIU; ZHEN-LE TIAN; LI-HUA ZHU; YIN-GHUI WU; HE-QING TANG

    2008-01-01

    Objective To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi.Methods Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. Results From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost cornplete degradation of diesel off, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. Conclusion The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  4. Exposure to diesel exhaust linked to lung cancer in miners

    Science.gov (United States)

    In a study of non-metal miners in the United States, federal government scientists reported that heavy exposure to diesel exhaust increased risk of death from lung cancer. The research, all part of the Diesel Exhaust in Miners Study, was designed to evalu

  5. Diesel Exhaust in Miners Study: Q&A

    Science.gov (United States)

    The Diesel Exhaust in Miners Study was designed to evaluate the risk of death associated with diesel exhaust exposure, particularly as it may relate to lung cancer. The researchers observed increased risk for lung cancer death with increasing levels of ex

  6. Fractal-like dimension of nanometer Diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  7. Trimode Power Converter optimizes PV, diesel and battery energy sources

    Science.gov (United States)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  8. Urinary mutagenic activity in workers exposed to diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y. (Univ. of California, Davis (United States)); Hammond, S.K.; Woskie, S.R.; Smith, T.J. (Univ. of Massachusetts, Worcester (United States))

    1992-04-01

    The authors measured postshift urinary mutagenicity on a population of railroad workers with a range of diesel exhaust exposures. Postshift urinary mutagenicity was determined by a sensitive microsuspension procedure using Salmonella strain TA 98 {plus minus} S9. Number of cigarettes smoked on the study day and urinary cotinine were highly correlated with postshift urinary mutagenicity. Diesel exhaust exposure was measured over the work shift by constant-flow personal sampling pumps. The relative ranking of jobs by this adjusted respirable particle concentration (ARP) was correlated with relative contact the job groups have with operating diesel locomotives. After adjustment for cigarette smoking in multiple regressions, there was no independent association of diesel exhaust exposure, as estimated by ARP, with postshift urinary mutagenicity among smokers or nonsmokers. An important finding is the detection of baseline mutagenicity in most of the nonsmoking workers. Despite the use of individual measurements of diesel exhaust exposure, the absence of a significant association in this study may be due to the low levels of diesel exposure, the lack of a specific marker for diesel exhaust exposure, and/or urinary mutagenicity levels from diesel exposure below the limit of sensitivity for the mutagenicity assay.

  9. Biogas - Use in Dual Fuel Diesel Engines and Particulate Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mustafi, Nirendra N.; Raine, Robert R.; Bansal, Pradeep K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering

    2006-07-15

    Biogas is an alternative renewable gaseous fuel for diesel engines and could substitute a considerable amount of diesel fuel. The aims of this study are to review the published researches on biogas-diesel dual fuel engines and to identify future research needs. Of the engine work already published, most concerns spark-ignited engines. A detailed analysis of the previous studies on biogas-operated diesel engines is presented. Significant research gaps are noticed in the area of exhaust emissions, especially the particulate matter (PM) emissions for biogas-diesel dual fuel engines. A preliminary experiment is conducted to measure the PM emissions of a direct injection (DI) diesel engine. PM emissions are measured and analyzed by filter, light scattering photometer (LSP) and visual methods. Natural gas is used as a primary fuel. The Filter method imparts slightly higher PM emissions at high load than diesel operation. However, the LSP shows lower values for dual fuel operation. The filter appearance for dual fuel operation is found to be significantly different compared to diesel operation. This indicates a significant variation in the physical and chemical characteristics of the PM formed in both cases.

  10. Laser-based diagnostics on NO in a diesel engine

    NARCIS (Netherlands)

    Brugman, Theodorus Maria

    1999-01-01

    Of all internal combustion engines diesel engines tend to be the most efficient. However, this high efficiency is coupled with specific emissions of nitric oxides (NOx = NO and NO2) and soot. Such emissions are best fought against at their very source: the diesel combustion process itself. The objec

  11. 46 CFR 169.625 - Compartments containing diesel machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery. (a) Spaces containing machinery must be fitted with adequate dripproof ventilators, trunks,...

  12. Uso de etanol carburado en motores Diesel

    Directory of Open Access Journals (Sweden)

    Rodríguez Luis Arnoby

    1990-06-01

    Full Text Available Este trabajo se ejecutó en el Taller de Maquinaria Agrícola de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Colombia, Seccional Palmira. Un motor diesel de 2 cilindros, 1260 cm3 y relación de comprensión 23:1, fue alimentado mediante un sistema dual formado por el sistema de inyección para ACPM y un sistema de carburación para etanol y mezclas etanol-agua. En primer término se varió el avance de la inyección entre 18 y 26° APMS(Antes de Punto Muerto Superior con el fin de determinar el avance óptimo de inyección en el motor original y el motor alimentado con el sistema dual. Con base en el punto de máxima potencia, se seleccionaron 20 y 22" como avances óptimos. En la segunda prueba, al operar el motor con carga y velocidad variables y alimentarlo con cuatro combustibles (ACPM, etanol y mezclas etanol- agua con 20 y 40 % agua, se incrementaron la velocidad en 10% la potencia máxima en 6.5% ; y el torque máximo en 3.73%, desde el motor original al sistema dual alimentado con la mezcla carburada de 40% agua. La mayor sustitución de combustible se presentó a alta velocidad donde se reemplazó hasta el 32 % de ACPM por etanol. Solo a alta velocidad se justifica la sobrealimentación con etanol carburado. En este rango se presentaron aumentos de potencia, velocidad, par torsor y sustitución de combustible.This work was performed in the Agricultural Mechanics Shop of the Universidad Nacional of Colombia in Palmira. A two-cylinder, 1260 cm3 diesel engine with a compression ratio of 23:1 was fueled by a dual system formed by its injection system for diesel oil and a carburation system for ethanol and ethanol-water blends. In a first test, m e injection advance was varied between 18 and 26 o BTDC (Before Top Dead Center to determine the optimum injection advance in the original engine and the engine fueled with the dual system. According to the maximum power point, 20 and 22° BTDC were selected as the optimum

  13. Consumer acceptance of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    There was a widely held opinion during the 1970`s and 1980`s that consumers would be reluctant to purchase irradiated food, as it was perceived that consumers would confuse irradiated food with food contaminated by radionuclides. Indeed, a number of consumer attitude surveys conducted in several western countries during these two decades demonstrated that the concerns of consumers on irradiated food varied from very concerned to seriously concerned.This paper attempts to review parameters conducting in measuring consumer acceptance of irradiated food during the past three decades and to project the trends on this subject. It is believed that important lessons learned from past studies will guide further efforts to market irradiated food with wide consumer acceptance in the future. (Author)

  14. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  15. Vaccine acceptance: The UK perspective

    OpenAIRE

    Ford, John A; Mahgoub, Hamid; Shankar, Ananda Giri

    2013-01-01

    The United Kingdom has had a long history with vaccine acceptability dating back to Edward Jenner’s theory of small pox vaccination. More recently, the discredited, Wakefield study published in 1998 continues to cause MMR skepticism. In pregnant women pertussis vaccination has been considerably more successful than influenza vaccination. Influenza vaccine uptake in healthcare workers remains poor. The media, politicians, and health reforms have contributed to the mixed coverage for these vacc...

  16. Acceptability of reactors in space

    International Nuclear Information System (INIS)

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it does not appear that reactors add measurably to the risk associated with the Space Transportation System

  17. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  18. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  19. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  20. Volatilization behaviors of diesel oil from the soils

    Institute of Scientific and Technical Information of China (English)

    LI Yu-ying; ZHENG Xi-lai; LI Bing; MA Yu-xin; CAO Jing-hua

    2004-01-01

    The volatilization of diesel oil, Shengli crude oil and 90# gasoline on glass surface of petri dishes were conducted at the ambient temperature of 25℃. Diesel oil evaporates in a power manner, where the loss of mass is approximately power with time. 90# gasoline evaporates in a logarithmic with time. Where as the volatilization of Shengli crude oil fit either the logarithmic or power equation after different time, and has similar R2. And the effects of soil type and diesel oil and water content on volatilization behavior in unsaturated soil were studied in this paper. Diesel oil and water content in the soils play a large role in volatilization from soils. Appropriate water helps the wicking action but too much water stops it. The wicking action behaves differently in four different types of soils in the same volatilization experiment of 18% diesel oil content and air-dry condition.