WorldWideScience

Sample records for accelerator radioisotope production

  1. Production of radioisotopes using accelerators

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1990-01-01

    Accelerator produced radioisotopes find applications in many fields. Most of them are ideally suited for in-vivo studies of physiological functions. A brief review of various types of accelerators used for radioisotope production is given. The 'state of art' technology relevant to the production of radioisotopes is briefly discussed. Some of the recent advances in nuclear data measurements, target development, chemical processing and quality control are described. There appears to be a definite shift from multipurpose accelerators to dedicated machines, and greater emphasis is placed now on the production of radioisotopes with high radionuclidic purity by choosing a suitable nuclear reaction in a proper energy range. (author)

  2. Linear accelerator for radioisotope production

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-μA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-μA beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons

  3. Radioisotope production with electron accelerators

    International Nuclear Information System (INIS)

    Brinkman, G.A.

    1978-01-01

    The production of radio isotopes with electron accelerators proceeds mainly by secondary photons (bremsstrahlung), produced in an interaction between the electrons and the Coulomb field of the nuclei of a converter. The production yields depend on: the initial electron energy, the Z and thickness of the bremsstrahlung-converter, the Z, A and the thickness of the target, the geometric set up and the cross section for a particular reaction. In this article the production is only considered for thin bremsstrahlung converters in combination with an electron 'sweep' magnet. Simple formulae are given for the calculations of production yields under standard conditions with only sigmasub(q) (the cross section per equivalent quantum) and f (the fraction of the photons that hit the target) as variables and for the calculations of the dose rate at the production point. The units in which the yields are expressed in the literature (units of sigmasub(q) dose, electron beam intensity, monitor response) are discussed. (Auth.)

  4. Radio-isotope production using laser Wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-01-01

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu 61 was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator

  5. Novel production techniques of radioisotopes using electron accelerators

    Science.gov (United States)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  6. Production and utilization of radioisotopes

    International Nuclear Information System (INIS)

    Sekine, Toshiaki; Matsuoka, Hiromitsu

    1999-01-01

    A plan of developing radioisotopes with a high power proton accelerator of the Neutron Science Project is presented. The status of production and utilization of radioisotopes in Japan is briefly discussed. The radioisotopes to be produced for biomedical use are discussed together with the facility for production of those radioisotopes and for research with the products. (author)

  7. The production of cyclotron radioisotopes and radiopharmaceuticals at the national accelerator centre in South Africa

    International Nuclear Information System (INIS)

    Walt, T.N. van der

    1998-01-01

    Accelerator radioisotopes have been manufactured in South Africa since 1965 with the 30 MeV cyclotron at the Council for Scientific and Industrial Research (CSIR) in Pretoria. After its closure in 1988, the radioisotope production programme was continued at the National Accelerator Centre (NAC) with the 200 MeV separated sector cyclotron (SCC) utilizing the 66 MeV proton beam, which is shared with the neutron therapy programme during part of the week. A variety of radiopharmaceuticals, such as 18 F-FDG, 67 Ga-citrate, a 67 Ga-labelled resin. 111 In-chloride, 111 In-oxine and 111 In-labelled resin. 123 I-sodium iodide and 123 I-labelled compounds, 201 Tl-chloride, as well as the 81 Rb/ 81m Kr gas generator, are prepared for use in the nuclear medicine departments of 12 State hospitals and about 28 private nuclear medicine clinics in South Africa. A few longer-lived radioisotopes, such as 22 Na, 55 Fe and 139 Ce, are also produced for research or industrial use. A research and development programme is running to develop new production procedures to produce radioisotopes and radiopharmaceuticals, or to improve existing production procedures. As part of a programme to utilize the beam time optimally, the production of some other radioisotopes is investigated. (author)

  8. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the U.S., therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the U.S., in particular, the various aspects of the production and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the U.S., and will compare and examine the existing infrastructure in other countries for this purpose. The nature of the U.S. decisions to address many of the above-mentioned issues and an eventual plan of attack to resolve them are bound to have a world-wide impact in the radioisotope user communities. These will be discussed with a view to evaluating the best possible solutions in order to eliminate the shortage in the future supply of radioisotopes produced in high energy accelerators. (author)

  9. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose

  10. Radioisotope production

    International Nuclear Information System (INIS)

    1988-01-01

    The trial production runs started in the previous report period were continued and have been extended to 67 Ga, 81 Rb/ 81m Kr and 111 In, the production of which will be taken over from the Pretoria cyclotron at the end of this year, when that machine is scheduled to be shut down. After commissioning of the target water cooling system and the helium cooling system for beam foil windows at the beginning of this year, these production runs could also be extended to high beam currents (up to 50 μA). Test consignments of a number of products have been supplied to various potential future users, and 123 I, in the form of Na 123 I capsules as well as 123 I-sodium hippurate, and 52 Fe-citrate have actually been used with success in trial diagnostic studies on patients. A procedure for labelling IPPA and 3-IPMPA with 123 I has been developed, while initial work has also been done on the radioiodination of monoclonal antifibrine antibodies. The last major facility needed for the commencement of the routine radioisotope production programme, namely the multiple-target facility, is now ready for installation in the production vault within the next few weeks, and routine production runs are expected to start in November 1988. 4 figs., 18 refs

  11. Radioisotope detection with accelerators

    International Nuclear Information System (INIS)

    Mast, T.S.; Muller, R.A.; Tans, P.P.

    1979-12-01

    High energy mass spectrometry is a new and very sensitive technique of measuring rare radioisotopes. This paper describes the techniques used to select and identify the individual radioisotope atoms in a sample and the status of the radioisotope measurements and their applications

  12. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  13. Radioisotope Dating with Accelerators.

    Science.gov (United States)

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  14. Radioisotopes production and applications

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2015-01-01

    Application of radioisotopes for both medical and industrial applications constitutes one of the most important peaceful uses of atomic energy. The striking diffusion and the exciting perspective of radioisotope for a plethora of medical and industrial applications are mainly attributable to the penetrating and ionization properties of radiation emanating from radioisotopes. The revolutionary medical applications of radioisotopes for the diagnosis and treatment of a multitude of diseases are causing a rapid expansion of the nuclear medicine field. While the industrial uses of radioisotopes are not expanding as quickly, also require large amounts of radioisotopes. Production of radioisotopes is not only the first step, but also the most crucial for the success as well as sustainable growth of radioisotope applications. With the rapid growth and expanding areas of applications, the demands for isotopes have increased several folds. A number of radioisotopes of different physical half-life, energy of the particle or gamma emission, specific activity and chemistry are now regularly produced both at commercial centers as well as at selected nuclear science research institutes utilizing reactors and cyclotrons to meet the ever growing need

  15. Manual of radioisotope production

    International Nuclear Information System (INIS)

    1966-01-01

    The Manual of Radioisotope Production has been compiled primarily to help small reactor establishments which need a modest programme of radioisotope production for local requirements. It is not comprehensive, but gives guidance on essential preliminary considerations and problems that may be met in the early stages of production. References are included as an aid to the reader who wishes to seek further in the extensive literature on the subject. In preparing the Manual, which is in two parts, the Agency consulted several Member States which already have long experience in radioisotope production. An attempt has been made to condense this experience, firstly, by setting out the technical and economic considerations which govern the planning and execution of an isotope programme and, secondly, by providing experimental details of isotope production processes. Part I covers topics common to all radioisotope processing, namely, laboratory design, handling and dispensing of radioactive solutions, quality control, measurement and radiological safety. Part II contains information on the fifteen radioisotopes in most common use. These are bromine-82, cobalt-58, chromium-51, copper-64, fluorine-18, gold-198, iodine-131, iron-59, magnesium-28, potassium-42, sodium-24, phosphorus-32, sulphur-35, yttrium-90 and zinc-65. Their nuclear properties are described, references to typical applications are given and published methods of production are reviewed; also included are descriptions in detail of the production processes used at several national atomic energy organizations. No attempt has been made to distinguish the best values for nuclear data or to comment on the relative merits of production processes. Each process is presented essentially as it was described by the contributor on the understanding that critical comparisons are not necessary for processes which have been well tried in practical production for many years. The information is presented as a guide to enable

  16. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    Science.gov (United States)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  17. LANL Activities Supporting Electron Accelerator Production of 99Mo for NorthStar Medical Radioisotopes, LLC

    International Nuclear Information System (INIS)

    Dale, Gregory E.; Kelsey, Charles T. IV; Woloshun, Keith A.; Holloway, Michael A.; Olivas, Eric R.; Dalmas, Dale A.; Romero, Frank P.; Hurtle, Kenneth P.

    2012-01-01

    Summary of LANL FY12 Activities are: (1) Preparation, performance, and data analysis for the FY12 accelerator tests at ANL - (a) LANL designed and installed a closed-loop helium target cooling system at ANL for the FY12 accelerator tests, (b) Thermal test was performed on March 27, (c) 24 h production test to follow the accelerator upgrade at ANL; (2) Local target shielding design and OTR/IR recommendations - (a) Target dose rate and activation products were calculated with MCNPX, (b) 206 Pb(γ,2n) 204m Pb vs 204g Pb branching ratio unpublished, will measure using the LANL microtron, (c) OTR system nearing final configuration, (d) IR prototype system demonstrated during the recent thermal test at ANL; (3) Target housing lifetime estimation - Target housing material specifications and design to be finalized following the thermal test, lifetime not believed to be an issue; and (4) Target cooling system reliability - Long duration system characterizations will begin following the thermal test.

  18. Administration of radioisotope production

    International Nuclear Information System (INIS)

    1964-01-01

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  19. Administration of radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-15

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  20. Radioisotope production in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wan Awang, Wan Anuar [Medical Technology Div., Malaysian Inst. for Nuclear Technology Research (MINT) (Malaysia)

    1998-10-01

    Production of Mo-99 by neutron activation of Mo-99 in Malaysia began as early as 1984. Regular supply of the Tc-99m extracted from it to the hospitals began in early 1988 after going through formal registration with the Malaysian Ministry of Health. Initially, the weekly demand was about 1.2 Ci of Mo-99 which catered the needs of 3 nuclear medicine centres. Sensitive to the increasing demand of Tc-99m, we have producing our own Tc-99m generator from imported TeO{sub 2} because irradiation TeO{sub 2} with our reactor give low yield of I-131. We have established the production of radioisotope for industrial use. By next year, Sm-153 EDTMP will be produce after we have license from our competent authority. (author)

  1. HAC and production of radioisotopes and labelled compounds

    International Nuclear Information System (INIS)

    Nozaki, T.

    1984-01-01

    In this paper, the author reviews different methods for the production of radioisotopes and labelled compounds that make use of hot atom reactions. Subsequently he discusses the production of radioisotopes for radiopharmaceuticals; enrichment of (n,γ) products, recoil labelling and related methods (neutron reaction products, cyclotron production, excitation labelling, radiation and discharge induced labelling). The final section offers a survey of radioisotope production using accelerators. Only a selection of the various conditions used in practical RI production is considered. (Auth.)

  2. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  3. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  4. Experience utilizing a 3.7 MeV tandem cascade accelerator (TCA) for PET radioisotope production

    International Nuclear Information System (INIS)

    Welch, M.J.; Gaehle, G.; Dence, C.S.

    1994-01-01

    A 3.7 MeV TCA was installed at Washington University in the Spring of 1993 for evaluation as a PET isotope production accelerator. The accelerator was installed in a specially designed suite consisting of the accelerator room, a open-quotes hot labclose quotes and a open-quotes cold labclose quotes. The accelerator has been utilized routinely for PET isotope production since it's installation. Although the major radionuclide produced utilizing the TCA is oxygen-15, techniques for the production of fluorine-18 and nitrogen-13 have been developed. The novel techniques used to produce usable quantities of these latter two isotopes will be discussed

  5. Radioisotopes production for applications on the health

    International Nuclear Information System (INIS)

    Monroy G, F.; Alanis M, J.

    2010-01-01

    In the Radioactive Materials Department of the Instituto Nacional de Investigaciones Nucleares (ININ) processes have been studied and developed for the radioisotopes production of interest in the medicine, research, industry and agriculture. In particular five new processes have been developed in the last 10 years by the group of the Radioactive Materials Research Laboratory to produce: 99 Mo/ 99m Tc and 188 W/ 188 Re generators, the radio lanthanides: 151 Pm, 147 Pm, 161 Tb, 166 Ho, 177 Lu, 131 I and the 32 P. All these radioisotopes are artificial and they can be produced in nuclear reactors and some of them in particle accelerators. The radioisotope generators are of particular interest, as those of 99 Mo/ 99m Tc and 188 W/ 188 Re presented in this work, because they are systems that allow to produce an artificial radioisotope of interest continually, in these cases the 99m Tc and the 188 Re, without the necessity of having a nuclear reactor or an particle accelerator. They are compact systems armored and sure perfectly of manipulating that, once the radioactive material has decayed, they do not present radiological risk some for the environment and the population. These systems are therefore of supreme utility in places where it is not had nuclear reactors or with a continuous radioisotope supply, due to their time of decaying, for its cost or for logistical problems in their supply, like it is the case of many hospital centers, of research or industries in our country. (Author)

  6. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  7. Developments in radioisotope production and labelling of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1998-01-01

    Recent developments in both reactor and accelerator production of radioisotopes finding applications in nuclear medicine and in biomedical research are summarised. The priorities for the production of 48 different cyclotron radioisotopes; and for 42 reactor produced radioisotopes finding biomedical applications are identified. Each includes 5 generator systems. The rapid expansion of cyclotron based radioisotope production and automated synthesis of short-lived radiopharmaceuticals with the position-emitting radionuclides continues to gain momentum. Recent feasibility studies of the cyclotron production of 186 Re, 99m Tc and of 99 Mo are cited as examples of motivation to develop accelerator alternatives to use of nuclear reactors for medical radioisotope production. Examples of SPET and PET radiopharmaceuticals labelled with 131 I, 123 I, 124 I, 18 F, and with therapeutic radionuclides are highlighted. (author)

  8. Modern radioisotope production technologies for medicine

    International Nuclear Information System (INIS)

    Bechtold, V.; Schweickert, H.

    1989-01-01

    The advantages of the accelerator production of radioisotopes for medical purposes, are, above all, the high specific activity attainable as well as the possibility of the generation of nuclei with only a few neutrons which disintegrate due to β + emission or electron capture. It is, for example, possible to diagnostically utilize the developing long-range γ quanta by means of computerized tomography. The production of I-123 at the cyclotron of Karlsruhe (nuclear reaction, target, irradiation arrangement) as well as of ultra-pure I-123 with the help of compact cyclotrons, and the plant developed for this are described in brief. As another radioisotope which can be produced with the help of the compact cyclotron, Rb-81 is mentioned, the disintegration product Kr-81m of which is used in pulmonary diagnostics. (RB) [de

  9. Improvement of radioisotope production technology

    International Nuclear Information System (INIS)

    Li Yongjian

    1987-01-01

    The widespreading and deepgoing applications of radioisotopes results the increasing demands on both quality and quantity. This in turn stimulating the production technology to be improved unceasingly to meet the different requirements on availability, variety, facility, purity, specific activity and specificity. The major approaches of achieving these improvements including: optimizing mode of production; enhancing irradiation conditions; amelioration target arrangement; adapting nuclear process and inventing chemical processing. (author)

  10. Production yield of produced radioisotopes from 100 MeV proton beam on lead target for shielding analysis of large accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Jung, Nam Suk; Bae, O Ryun; Lee, Hee Seock [Div. of Advanced Nuclear Engineering, POSTECH, Pohang (Korea, Republic of)

    2014-11-15

    In this work, the production yield of major shielding material, a lead, was investigated using 100 MeV protons of KOMAC accelerator facility. For the analysis of the experimental data, the activity has been calculated using the FLUKA Monte Carlo code and analytical methods. The cross section data and the stopping power in the irradiated assembly were calculated by TALYS and SRIM codes in the analytical method, respectively. Consequently, the experimental production yield of produced radioisotopes was compared with the data that are based on Monte Carlo calculations and analytical studies. In this research, the {sup nat}Pb(p, x) reaction was studied using experimental measurements, Monte Carlo simulations and analytical methods. Rereading to the experimental measurements, we demonstrate that both Monte Carlo simulation and analytical methods could be useful tools for the estimation of production yield of this reaction.

  11. Production yield of produced radioisotopes from 100 MeV proton beam on lead target for shielding analysis of large accelerator

    International Nuclear Information System (INIS)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Jung, Nam Suk; Bae, O Ryun; Lee, Hee Seock

    2014-01-01

    In this work, the production yield of major shielding material, a lead, was investigated using 100 MeV protons of KOMAC accelerator facility. For the analysis of the experimental data, the activity has been calculated using the FLUKA Monte Carlo code and analytical methods. The cross section data and the stopping power in the irradiated assembly were calculated by TALYS and SRIM codes in the analytical method, respectively. Consequently, the experimental production yield of produced radioisotopes was compared with the data that are based on Monte Carlo calculations and analytical studies. In this research, the nat Pb(p, x) reaction was studied using experimental measurements, Monte Carlo simulations and analytical methods. Rereading to the experimental measurements, we demonstrate that both Monte Carlo simulation and analytical methods could be useful tools for the estimation of production yield of this reaction

  12. Particle-beam accelerators for radiotherapy and radioisotopes

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  13. Radioisotope detection with tandem electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gove, H E; Elmore, D; Ferraro, R [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Beukens, R P; Chang, K H; Kilius, L R; Lee, H W; Litherland, A E [Toronto Univ., Ontario (Canada). Dept. of Physics; Purser, K H [General Ionex Corp., Newburyport, MA (USA)

    1980-01-01

    An MP tandem Van de Graaff accelerator at the University of Rochester has been employed since May 1977 to detect /sup 14/C in terrestrial samples, /sup 36/Cl in terrestrial and extraterrestrial samples and /sup 10/Be and /sup 26/Al in samples produced by reactor and accelerator irradiation. The sample sizes ranged from about 10 to less than 1 mg and the ratio of the radioisotope to the stable isotopes approached one part in 10/sup 16/ for /sup 14/C and /sup 36/Cl and one part in 10/sup 14/ for /sup 10/Be and /sup 26/Al. /sup 14/C has been measured in a number of samples of geological and archaelogical interest. /sup 36/Cl has been measured in various groundwater samples as well as samples at Antarctic meteorites and ice. Dedicated systems for /sup 14/C dating and geological measurements based on the tandem electrostatic accelerator principle are presently under construction for laboratories in the U.S.A., U.K. and Canada.

  14. Radioisotope detection and dating with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T S; Muller, R A [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1980-07-01

    The status of the new technique of high energy mass spectrometry is reviewed. This sensitive method of measuring isotope concentrations has been applied to the detection of rare radioisotopes used for age estimation. The techniques used to select and identify the individual radioisotope atoms in a sample are described and then the status of the radioisotope measurements and their applications is reviewed.

  15. Present status of OAP radioisotope production

    International Nuclear Information System (INIS)

    Charoen, Sakda

    2006-01-01

    Radioisotope Production Program (RP), Office of Atoms for Peace (OAP) is a non-profit government organization which responsible for research development and service of radioisotopes. Several research works on radioisotope production have been carried on at OAP. The radioisotope products of successful R and D have been routinely produced to supply for medical, agriculture and research application. The main products are 131 I (solution and capsule), 131 I-MIBG, 131 I-Hippuran, 153 Sm-EDTMP, 153 Sm-HA, and 99m Tc-radiopharmaceutical kits to serve local users. Radioisotopes are very beneficial for science and human welfare so as almost of our products and services are mainly utilized for medical purpose for both diagnosis and therapy. OAP has a policy to serve and response to that community by providing radioisotopes and services with high quality but reasonable price. This policy will give the opportunity to the community to utilize these radioisotopes for their healthcare. (author)

  16. Construction Status of the Beamline for Radio-Isotope Production in the Korea Multi-purpose Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. H.; Yoon, S. P.; Seol, K. T.; Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The 100-MeV beamline consist of 5 target room, a TR 103 as one of these is operating beamline, and a TR 101 as the other beamline is under construction as shown in Fig. 1. The TR 101 as beamline target room will be used for the high value-added medical isotope production and increased utilization of the proton accelerator. The optical system of the beamline consisted of dipole and quadrupole, and it included beam position monitor (BPM) and current transformer (CT) for beam diagnostics. The beamline was inserted into the carbon block and the aluminum collimator, the end of pipe as beam window was used for the aluminum to reduce the radioactive of materials. The target transfer equipment is being installed for RI production. The RI Beamline was aligned using the laser tracker, and vacuum leak was not detected by the helium leak detector. This facility is expected to the high value-added medical isotope production and increased utilization of the proton accelerator.

  17. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  18. Production of radioisotopes for medical use

    International Nuclear Information System (INIS)

    Ido, Tatsuo

    1977-01-01

    As problems in the process of production of short-lived radioisotopes for medical use and in clinical application of them, the following three items were mentioned: 1. separation and purification in a short time, 2. devices to decrease exposure dose in workers, and 3. preservation of radiochemical purity and chemical purity, and avoidance of mixture of impurities. In consideration of these problems, an outline of on-line production system of radioactive gases (from irradiation by accelerated particles to separation, purification, and administration of them), which was exploited in National Institute of Radiological Sciences, was described. Production of 13 NH 3 , the aqueous solution of 18 F, and 123 I was also given an outline. Simultaneous production method of many nuclides by means of laminated target and compounds labelled with positron emitter were also described. (Tsunoda, M.)

  19. Radioisotopes In Animal Production Research

    International Nuclear Information System (INIS)

    Eduvie, L.O.

    1994-05-01

    Animal productivity may be measured among others, in terms of two important physiological processes of reproduction and growth each of which involves a number of integrated disciplines. Both physiological processes are controlled by interactions of genotype and environment. Reproduction essentially involves complex physiological processes controlled by secretions of endocrine glands known as hormones. On the other hand growth is determined largely by availabilty of essential nutrients. In order to achieve good reproductive and growth rates adequate and constant nutrition for livestock include pasture, cereals, tubers and their by-products as well as industrial by-products. While reproduction is essential to provide the required number and replacement of livestock, growth guarantees availability of meat. Another aspect of livestock production is disease control. An animal needs a good health to adequately express its genetic make up and utilize available nutrition. Research in animal production is aimed at improving all aspects of productivity of livestock which include reproduction, growth, milk production, egg production, good semen etc. of livestock. In order to achieve this an understanding of the biochemical and physiological processes occurring in the animal itself, and in the feedstuff fed to the animal as well as the aetiology and control of diseases affecting the animal among other factors, is desirable. A number of methods of investigation have evolved with time. These include colorimetry, spectrophotometry, chromatography, microscopy and raidoisotopic tracer methods. While most of these methods are cumbersome and use equipment with low precision, radioisotopic tracer methods utilize equipment with relatively high precision

  20. Radioisotope handling facilities and automation of radioisotope production

    International Nuclear Information System (INIS)

    2004-12-01

    If a survey is made of the advances in radioisotope handling facilities, as well as the technical conditions and equipment used for radioisotope production, it can be observed that no fundamental changes in the design principles and technical conditions of conventional manufacture have happened over the last several years. Recent developments are mainly based on previous experience aimed at providing safer and more reliable operations, more sophisticated maintenance technology and radioactive waste disposal. In addition to the above observation, significant improvements have been made in the production conditions of radioisotopes intended for medical use, by establishing aseptic conditions with clean areas and isolators, as well as by introducing quality assurance as governing principle in the production of pharmaceutical grade radioactive products. Requirements of the good manufacturing practice (GMP) are increasingly complied with by improving the technical and organizational conditions, as well as data registration and documentation. Technical conditions required for the aseptic production of pharmaceuticals and those required for radioactive materials conflicting in some aspects are because of the contrasting contamination mechanisms and due consideration of the radiation safety. These can be resolved by combining protection methods developed for pharmaceuticals and radioactive materials, with the necessary compromise in some cases. Automation serves to decrease the radiation dose to the operator and environment as well as to ensure more reliable and precise radiochemical processing. Automation has mainly been introduced in the production of sealed sources and PET radiopharmaceuticals. PC controlled technologies ensure high reliability for the production and product quality, whilst providing automatic data acquisition and registration required by quality assurance. PC control is also useful in the operation of measuring instruments and in devices used for

  1. The production and application of radioisotopes

    International Nuclear Information System (INIS)

    O'Neill, W.P.; Evans, D.J.R.

    1987-01-01

    This paper outlines the historical evolution of radioisotopes from first concepts and discoveries to significant milestones in their production and the development of applications throughout the world. Regarding production, it addresses the methods that have been used at various stages during this evolution outlining the important findings that have led to further developments. With respect to radioisotope applications, the paper addresses the development of markets in industry, medicine, and agriculture and comments on the size of these markets and their rate of growth. Throughout, the paper highlights the Canadian experience and it also presents a Canadian view of emerging prospects and a forecast of how the future for radioisotopes might develop. (author)

  2. Radioisotope production at PUSPATI - five year programme

    International Nuclear Information System (INIS)

    Yusof Azuddin Ali; Abdul Rahman Mohamad Ali.

    1983-01-01

    Most of the basic laboratory facilities for radioisotopes production at PUSPATI will be commissioned by September 1983. Work on setting up of production and dispensing facilities is in progress as the nuclides being worked on are those that are commonly used in medical applications, such as Tc-99m, I-131, P-32 and other nuclides such as Na-24 and K-42. Kits for compounds labelled with Tc-99m such as Stannous Pyrophosphate, Sulfur Colloid and Stannous Glucoheptonate are being prepared. The irradiation facilities available now for radioisotope production at the PUSPATI TRIGA Reactor include a central thimble (flux density 1 x 10 13 n.cm -2 S -1 ) and a rotary specimen rack (flux density 0.2 x 10 13 n.cm -1 S -1 ). Irradiation schedules and target handling techniqes are discussed. Plans for radioisotope production at PUSPATI over the period of 1983-1987, based on present demand for radioisotope, are also explained. (author)

  3. Production of radioisotopes with BR2 facilities

    International Nuclear Information System (INIS)

    Fallais, C.J.; Morel de Westfaver, A.; Heeren, L.; Baugnet, J.M.; Gandolfo, J.M.; Boeykens, W.

    1978-01-01

    After a brief account on the isotopes production evolution in the industrialized countries the irradiation devices and the types of standardized capsules used in the BR2 reactor are described as well as the thermal neutron flux. Production of most important radioisotopes like 131 Iodine, 60 Cobalt, 192 Iridium and 99 Molybdenum and their main utilizations (uses)are described. The mean specific activities and the limit of use for different radioisotopes are reported. (A.F.)

  4. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  5. Production of Radioisotopes in Pakistan Research Reactor: Past, Present and Future

    International Nuclear Information System (INIS)

    Mushtaq, A.

    2013-01-01

    Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programs. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. The availability of short-lived radionuclides from radionuclide generators provides an inexpensive and convenient alternative to in-house radioisotope production facilities such as cyclotrons and reactors. The reactor offers large volume for irradiation, simultaneous irradiation of several samples, economy of production and possibility to produce a wide variety of radioisotopes. The accelerator-produced isotopes relatively constitute a smaller percentage of total use. (author)

  6. Development of radioisotope production in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G [Philippine Nuclear Research Institute, Quezon (Philippines)

    1998-10-01

    The Philippine Nuclear Research Institute (PNRI) started its activities on radioisotope production more than three decades ago, when the Philippine Research Reactor (PRR-1) started operating at its full rated power of 1 MW. Since then, several radionuclides in different chemical forms, were routinely produced and supplied for use in nuclear medicine, industry, agriculture, research and training, until the conversion of the PRR-1 to a 3 MW TRIGA type reactor. After the criticality test of the upgraded reactor, a leak was discovered in the pool liner. With the repair of the reactor still ongoing, routine radioisotope production activities have been reduced to dispensing of imported bulk {sup 131}I. In the Philippines, radioisotopes are widely used in nuclear medicine, with {sup 131}I and {sup 99m}Tc as the major radionuclides of interest. Thus the present radioisotope production program of PNRI is directed to meet this demand. With the technical assistance of the International Atomic Energy Agency (IAEA), PNRI is setting up a new {sup 131}I production facility. The in-cell equipment have been installed and tested using both inactive and active target, obtained from BATAN, Indonesia. In order to meet the need of producing {sup 99}Mo-{sup 99m}Tc generators, based on low specific activity reactor-produced {sup 99}Mo, research and development work on the preparation of {sup 99m}Tc gel generators is ongoing. (author)

  7. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  8. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described

  9. Historical sketch of the discovery, production, and application of radioisotopes

    International Nuclear Information System (INIS)

    Williams, C.

    1975-01-01

    The Joliot-Curies made the first artificial radioisotope ( 30 P) by bombarding aluminum with alpha particles. The development of the cyclotron and other high-energy particle accelerators in the early 1930's led to the production of numerous radioisotopes in measurable quantities. By the beginning of the 1950's, with the abundant neutron fluxes available at the U. S. Atomic Commission reactors, radioisotopes of many species really became abundant. Naturally occurring radioactive lead had been used very sparingly as tracers as far back as 1918 in determining chemical solubility and in 1923 in plant uptake from lead solutions. Now many new uses were developed and tested as tracers in medical diagnosis, agricultural, and industrial chemical and metallurigical processes. Many therapeutic applications were tested. The industrial labs developed thickness and level gauges for control of various manufacturing processes. Cobalt gamma-ray irradiators were developed for medical therapy and have also been used for sterilization of surgical instruments and materials, for food preservation, and for initiation of certain chemical reactions. The most significant development in the 1960's was the rapidly increasing role of private industry in taking over the development, production, sales, as well as research, into new methods of production and applications of radioisotopes

  10. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  11. Structure and manual of radioisotope-production data base, ISOP

    International Nuclear Information System (INIS)

    Hata, Kentaro; Terunuma, Kusuo

    1994-02-01

    We planned on collecting the information of radioisotope production which was obtained from research works and tasks at the Department of Radioisotopes in JAERI, and constructed a proto-type data base ISOP after discussion of the kinds and properties of the information available for radioisotope production. In this report the structure and the manual of ISOP are described. (author)

  12. Development of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, H.; Kato, H.; Umezawa, H.

    1992-01-01

    Since 1962, we have been developing methods and technology for producing a wide variety of processed radioisotopes and sealed radiation sources by using the JAERI's reactors, JRR-2, JRR-3, JRR-4 and JMTR, and providing the products to domestic users. At present, 29 nuclides and 31 products are on our list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short-lived nuclides are being produced regularly for distribution, but most of the rest are produced upon request. The radiation sources of Co-60 needles and Ir-192 pellets for industrial use and Gd-153 pellet, 7 kinds of Ir-192 and Au-198 grain for medical applications are produced and distributed routinely. (author)

  13. Medical radioisotope production - the Australian experience

    Energy Technology Data Exchange (ETDEWEB)

    Druce, M. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1996-12-31

    The Australian government, through its instrumentality, the Australian Nuclear Science and Technology Organization (ANSTO), owns and operates a 10-MW Dido-class research reactor at Lucas Heights on the southern outskirts of Sydney. This is the only operating nuclear reactor in Australia. It was built in 1958 and has a maximum flux of 1 x 10{sup 14} n/cm{sup 2}{center_dot}s. ANSTO also jointly owns and operates a 30-MeV IBA negative ion cyclotron at Camperdown in central Sydney, which began operation in 1992. ANSTO is predominantly a research organization; however, radioisotopes are commercially produced through Australian Radioisotopes (ARI), an ANSTO business entity. Seventy-four people are employed by ARI, which is a vertically integrated organization, i.e., everything from target preparation to sale of products is undertaken.

  14. Present status of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, Hisamichi

    1994-01-01

    Since 1962, the technology for producing a wide variety of processed radioisotopes and sealed radiation sources has been developed by using the reactors, JRR-1, JRR-2, JRR-3, JRR-4 and JMTR, and the products have been offered to domestic users. At present, 31 products of 29 nuclides are on the list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short lived nuclides are produced for regular distribution, but the rest are produced upon request. The radiation sources of Co-60 needles for industrial use, Ir-192 pellets for the nondestructive inspection of pipelines, Gd-153 pellets for the diagnosis of born mineral and seven kinds of brachy therapy Ir-192 and Au-198 grains are produced and distributed regularly. The organic compounds labeled with H-3 and C-14 are widely used. In fiscal year 1992, 34 batches and total amount 12 TBq of processed radioisotopes and 100 batches, 1.2 PBq of radiation sources were produced as scheduled. The development of the techniques for producing the sources emitting high energy β ray used for the diagnosis and treatment of cancer is in progress. The method of producing new isotopes is developed. (K.I.)

  15. Recent progress in radioisotope production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    So, Le Van [Radioisotope Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    This is a report on the recent progress in radioisotope production in Vietnam. Using a nuclear research reactor of 500 KW with continuous operation cycles of 100 hours a month, the production of some important radioisotopes used in nuclear medicine and research was routinely carried out. More than 80 per cent of irradiation capacity of reactor for radioisotope production were exploited. The radioactivity of more than 150 Ci of {sup 131}I, {sup 99}Mo-{sup 99m}Tc, {sup 32}P, {sup 51}Cr, {sup 153}Sm, {sup 46}Sc, {sup 192}Ir was produced annually. Radiopharmaceuticals such as {sup 131}I-Hippuran and in-vivo Kits for {sup 99m}Tc labelling were also prepared routinely and regularly. More than 10 in-vivo Kits including modern radiopharmaceuticals such as HmPAO kit were supplied to hospitals in Vietnam. The research on the improvement of dry distillation technology for production of {sup 131}I was carried out. As a result obtained a new distillation apparatus made from glass was successfully put to routine use in place of expensive quartz distillation furnace. We have also continued the research programme on the development of {sup 99m}Tc generators using low power research reactors. Gel technology using Zr- and Ti- molybdate gel columns for {sup 99m}Tc generator production was developed and improved continually. Portable {sup 99m}Tc generator using Zr-({sup 99}Mo) molybdate gel column and ZISORB adsorbent column for {sup 99m}Tc concentration were developed. The ZISORB adsorbent of high adsorption capacity for {sup 99}Mo and other parent radionuclides was also studied for the development purpose of alternative technology of {sup 99m}Tc and other different radionuclide generator systems. The studies on the preparation of therapeutic radiopharmaceuticals labelling with {sup 153}Sm and {sup 131}I such as {sup 153}Sm-EDTMP, {sup 131}I-MIBG were carried out. (author)

  16. Recent progress in development of radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Byung Mok [HANARO Center, Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-10-01

    The Korea multipurpose research reactor, HANARO(Hi-flux Advanced Neutron Application Reactor) is designed and constructed to obtain high density neutron flux (max. 5x10{sup 14} n/cm{sup 2}{center_dot}sec) with relatively low thermal output (30 MW) in order to utilize for various studies such as fuel and material test, radioisotope production, neutron activation analysis, neutron beam experiment, neutron transmutation doping, etc. HANARO has 32 vertical channels (3 in-core, 4 out-core, 25 reflector) and 7 horizontal channels. KAERI has constructed 4 concrete hot cells for production of Co-60, Ir-192, etc. and 6 lead hot cells for production of medical RIs(I-131, Mo-99, etc.). Other 11 lead hot cells will be completed by Feb. 1998 for production of Sm-153, Dy-165, Ho-166, etc. Clean room facilities were installed for production of radiopharmaceuticals. (author)

  17. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    Science.gov (United States)

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  18. A Review of the Production of ''Special'' Radioisotopes

    International Nuclear Information System (INIS)

    Stang, L.G. Jr.

    1963-01-01

    Six useful characteristics of radioisotopes and advantages which may be taken of them are cited briefly, with examples. The Information Sheet announcing this Seminar listed four advantages of short-lived over long-lived isotopes. Two other reasons why owners of small research reactors should concern themselves with short half- life isotopes are economy and particular suitability for production, the latter being due to the pronounced effect of half-life on the net rate of production. Besides short half-life, type and energy of emitted radiation should be of concern to producers of isotopes. Nine advantages of a nuclear reactor over a particle accelerator for radioisotope production are outlined. Following this general orientation, a survey of unusual or less frequently used production techniques is presented. These include: (n, p) reactions and secondary reactions such as (t, n) and (t, p) induced by thermal neutrons, various techniques for obtaining useful fluxes of fast neutrons with which to effect other reactions, recoil techniques including classic Szilard-Chalmers reactions, use of charged wires to collect short-lived daughters of gaseous parents, parent-daughter milking system, parasitic irradiations, possible use of ''knocked- on'' protons or deuterons (from the moderator) as a means of effecting reactions such as (p,n), (d,n), etc. and the possible use of circulating ''loops'' in reactors with which to utilize the radiation from ultra-short-lived radioisotopes such as Ag 110 , In 114 , 116 , Dy 155m , etc. Although not a production technique, the possibility of using certain stable isotopes (e. g. of silver) as tracers which can be readily detected via subsequent activation is mentioned. Production figures for Brookhaven's ''special'' radioisotopes are cited to show differences in long- and short-term fluctuations among these isotopes, which are also compared as a class to those in heavier demand supplied by Oak Ridge. Present production methods of all

  19. Radioisotope production and distribution in Australia

    International Nuclear Information System (INIS)

    Brough, J.

    1986-01-01

    The high quality of radioactive products and services, provided by the Commercial Products Unit of Australian Atomic Energy Agency for industrial and medical applications are discussed. The production program has changed from research driven to being market driven. The Commission in fact not only manufactures radioisotopes and radiopharmaceuticals but also acts as a Centralized Dispensing Service for over sea products. The advantages associated with centralize distribution are discussed. The delivery arrangements and the existed problems are explained. With the unique experience, assistance and advice are provided for many years now to Nuclear Energy Unit at PUSPATI via staff training programs and many visits by the Commission staff to assist in the commissioning of the facilities in which enables PUSPATI to provide Malaysia and surrounding neighbour countries (on a smaller scale) with the similar type of service that the Commission does within Australia. (A.J.)

  20. Technical and economical availability of radioisotopes production in Brazil

    International Nuclear Information System (INIS)

    Lima, J.O.V.

    1981-10-01

    The technical and economical availability of radioisotopes production in Brazil by a low power research reactor, are done. The importance of radioisotope utilization and controled radiations, in areas such as medicine, industry and cost evaluation for the production in nuclear reactors. In the cost evaluation of a radioisotope production reactor, the studies developed by the Department of Nuclear Engineering of Universidade Federal de Minas Gerais - DEN/UFMG were used. The information analysis justify the technical and economical availability and the necessity of the radioisotopes production in Brazil. (E.G.) [pt

  1. Production and application of radioisotopes in Asian Countries

    International Nuclear Information System (INIS)

    He Youfeng

    1997-01-01

    Production and application of radioisotopes in some Asian countries including Bangladesh, India, Indonesia, Iran, Japan, Republic of Korea, Malaysia, Pakistan, Philippines, Thailand, Uzbekistan, and Viet Nam are introduced

  2. Potential medical applications of the plasma focus in the radioisotope production for PET imaging

    International Nuclear Information System (INIS)

    Roshan, M.V.; Razaghi, S.; Asghari, F.; Rawat, R.S.; Springham, S.V.; Lee, P.; Lee, S.; Tan, T.L.

    2014-01-01

    Devices other than the accelerators are desired to be investigated for generating high energy particles to induce nuclear reaction and positron emission tomography (PET) producing radioisotopes. The experimental data of plasma focus devices (PF) are studied and the activity scaling law for External Solid Target (EST) activation is established. Based on the scaling law and the techniques to enhance the radioisotopes production, the feasibility of generating the required activity for PET imaging is studied. - Highlights: • Short lived radioisotopes for PET imaging are produced in plasma focus device. • The scaling law of the activity induced with plasma focus energy is established. • The potential medical applications of plasma focus are studied

  3. Radioisotope production by reactors and cyclotrons in Japan

    International Nuclear Information System (INIS)

    Murakami, Yukio

    1978-01-01

    Present status of radioisotope production in Japan and the increasing demand from various fields are generally reviewed. Future problems associated with the shortage of economical supply are also discussed. The first half of this report is devoted to general review of the increasing demand for various radioisotopes from increasing number of users. The present status and future trends of the distribution of users of specific radioisotopes and their demands are shown. The remaining half of this report reviews the production with reactors and cyclotrons. The Japanese reactors producing radioisotopes are limited to low flux (10 13 ) research reactors at JAERI. Some problems associated with the improvement of availability and with the organizational structure are discussed. As for the production with cyclotrons, available facilities and the method of production are explained in detail. For clinical use, especially for the production of short lived radioisotopes, the advantage of a small special purpose cyclotron at each medical organization is emphasized. (Aoki, K.)

  4. Energy-Recovery Linacs for Commercial Radioisotope Production

    International Nuclear Information System (INIS)

    Johnson, Rolland Paul

    2016-01-01

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  5. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  6. Status on the compilation of nuclear data for medical radioisotopes produced by accelerators

    International Nuclear Information System (INIS)

    Gandarias-Cruz, D.; Okamoto, K.

    1988-10-01

    The status of data on excitation functions and thick target yields for medical radioisotopes produced by accelerators is summarized. Most of the information was extracted from the compiled data in EXFOR (EXCHANGE FORMAT) which is a common format used by the co-operating nuclear data centres in the world. The nuclear decay mode, half-life, production method, Q-value, maximum cross-section value and the energy at this maximum, are tabulated. For some commonly used reactions, the available excitation functions are plotted in graph. (author). 353 refs

  7. Radiation protection programme for a radioisotope production facility

    International Nuclear Information System (INIS)

    Makgato, Thutu Nelson

    2015-02-01

    The present project reviews reactor based radioisotope production facilities. An overview of techniques and methodologies used as well as laboratory facilities necessary for the production process are discussed. Specific details of reactor based production and processing of more commonly used industrial and pharmaceutical radioisotopes are provided. Ultimately, based on facilities and techniques utilized as well as the associated hazard assessment, a proposed radiation protection programme is discussed. Elements of the radiation protection programme will also consider lessons from recent incidents and accidents encountered in radioisotope production facilities. (au)

  8. Radioisotope production with a medical cyclotron

    International Nuclear Information System (INIS)

    Silvester, D.J.

    1974-01-01

    The cyclotron of Hammersmith hospital in England was completed and started the operation in 1955. The feature is in its design operable at high beam current, reaching 500μA in internal beam and 300μA in external beam. In 1960's, twelve nuclides of radioactive pharmaceuticals were produced with the cyclotron. C-11, N-13 and O-15 have been used in the form of radioactive gases such as CO or H 2 O to test lung functions. F-18 has been used for bone scanning. K-43 is employed in the research of electrolyte balancing together with Na-24 and Br-77. Fe-52 is utilized in iron ion researches as a tracer. Cs-129 is highly evaluated as an isotope for imaging cardiac clogging part. Radioisotopes must be much more used in the examination of in vivo metabolic function. For this purpose, peculiarly labelled compounds should be further developed. It is welcome that the persons paying attention to the medical prospect of cyclotrons are increasing. The author hopes to continue his endeavour to find new products made with the cyclotron for human welfare. (Wakatsuki, Y.)

  9. Radioisotope production in the I. Ph. P. E. cyclotron for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, N.N.; Dmitriyev, P.P.; Konjakhin, N.A.; Ognev, A.A. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.)

    1982-01-01

    The production methods for seven radioisotopes, Ga-67, Sr-85, Pd-103, In-111, Tm-167, Hg-197 and Pb-203, by using a classical 1.5m cyclotron in the Institute of Physics and Power Engineering, Obninsk, USSR, are described. At present, more than 50 cyclotrons in different countries are used for the production of radioisotopes applied to medicine. Radioisotopes are produced with the cyclotron in the I.Ph.P.E. in the form of irradiated targets, which are delivered to Moscow radiopharmaceutical factory, where radiopharmaceuticals are produced on the base of these targets. The cyclotron is operated in two regimes providing the acceleration of protons, deuterons and alpha -particles. Two types of target assemblies are used for irradiation, the one is intended for the internal beam, and the other is for the external beam. The reactions used for the production of seven radioisotopes described above, the types of targets, particle energy, respective irradiated materials, beam current, thick target yield and the amount of respective radioisotopes produced per year are reported. Metals have large heat conductivity, therefore the use of metal targets increases beam current, and increases the production rate of radioisotopes.

  10. Production and application of radioisotopes - a Canadian perspective

    International Nuclear Information System (INIS)

    O'Neill, W.P.; Evans, D.J.R.

    1988-01-01

    This paper outlines the historical evolutions of radioisotopes from first concepts and discoveries to significant milestones in their production and the development of applications throughout the world. Regarding production, it addresses the methods that have been used at various stages during this evolution outlining the important findings that have led to further developments. With respect to radioisotope applications, the paper addresses the development of markets in industry, medicine, and agriculture and comments on the size of these markets and their rate of growth. Throughout, the paper highlights the Canadian experience and it also presents a Canadian view of emerging prospects and a forecast of how the future for radioisotopes might develop

  11. KAERI's challenge to steady production of radioisotopes and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Park, J.H.; Han, H.S.; Park, K.B.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) is a national organization in Korea, and has been doing many research and development works in radioisotope production and applications for more than 30 years. Now KAERI regularly produces radioisotopes (I-131, Tc-99m, Ho-166) for medical use and Ir-192 for industrial use. Various I-131 labeled compounds and more than 10 kinds of Tc-99m cold kits are also produced. Our multi-purpose reactor, named HANARO, has been operative since April of 1995. HANAKO is an open tank type reactor with 30 MW thermal capacity. This reactor was designed not only for research on neutron utilization but for production of radioisotopes. KAERI intended to maximize the radioisotope production capability. For this purpose, radioisotope production facilities (RIPF) have been constructed adjacent to the HANARO reactor building. There are four banks of hot cells equipped with manipulators and some of the hot cells were installed according to the KGMP standards and with clean rooms. In reviewing our RI production plan intensively, emphasis was placed on the development of new radiopharmaceuticals, development of new radiation sources for industrial and therapeutic use, and steady production of selected radioisotopes and radiopharmaceuticals. The selected items are Ho-166 based pharmaceuticals, fission Mo-99/Tc-99m generators. solution and capsules of I-131, and Ir-192 and Co-60 for industrial use. The status and future plan of KAERI's research and development program will be introduced, and will highlight programs for steady production. (author)

  12. Studies on the production and application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Kim, J. R.; Yoon, B. M.; Bang, H. S.; Shin, B. C.; Cho, W. K.; Park, U. J.; Park, C. D.; Lee, Y. G.; Suh, C. H.; Shin, H. Y.; Kim, D. S.; Hong, S. B.; Jun, S. S.; Min, E. S.; Jang, K. D.; Kim, J. K.; Kim, S. J.; Yang, S. Y.; Yang, S. H.; Chun, K. J.; Kang, H. Y.; Suh, K. S.; Goo, J. H.; Chung, S. H.; Lee, J. C.; Choi, J. L.; Lee, H. Y.; Bang, K. S.

    1997-09-01

    To produce radioisotopes utilizing the research reactor `HANARO`, development of RI production process, target fabrication, preparation of devices and tools for RI process, preparation of production facility for radiopharmaceuticals, test production for the established process, etc. have been carried out, respectively. Production processes for various kinds of radionuclides were developed and the settled methods were applied to test production using `HANARO`. The results of developed process are as follows: (1) I-131 dry distillation method. (2) Large scale production of Ir-192 sources (3) P-32 production process by distillation under reduced pressure (4) Cr-51 production process using enriched target. To irradiate the target for RI production in `HANARO`, target for neutron irradiation, loading/unloading devices, working table in service pool, remote handling tools, shield cask for irradiated target transfer, etc. were designed and fabricated. The function test of prepared targets and the safety analysis of shielding casks were carried out. License for practical use of the prepared casks were obtained from Ministry of Science and Technology. For production of medical radioisotopes, their production facilities were designed in detail and were installed in RIPF (Radioisotope Production Facility), with full reflection of the basic concept of the good manufacturing practice for radiopharmaceuticals. The constructed GMP facilities have started to be operated after authorization since Jun., 1997. Results of this study will be applied to mass production of radioisotopes in `HANARO` and are to contribute the advance of domestic medicine and industry related to radioisotopes. (author). 7 refs., 7 tabs., 4 figs.

  13. Studies on the production and application of radioisotopes

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Kim, J. R.; Yoon, B. M.; Bang, H. S.; Shin, B. C.; Cho, W. K.; Park, U. J.; Park, C. D.; Lee, Y. G.; Suh, C. H.; Shin, H. Y.; Kim, D. S.; Hong, S. B.; Jun, S. S.; Min, E. S.; Jang, K. D.; Kim, J. K.; Kim, S. J.; Yang, S. Y.; Yang, S. H.; Chun, K. J.; Kang, H. Y.; Suh, K. S.; Goo, J. H.; Chung, S. H.; Lee, J. C.; Choi, J. L.; Lee, H. Y.; Bang, K. S.

    1997-09-01

    To produce radioisotopes utilizing the research reactor 'HANARO', development of RI production process, target fabrication, preparation of devices and tools for RI process, preparation of production facility for radiopharmaceuticals, test production for the established process, etc. have been carried out, respectively. Production processes for various kinds of radionuclides were developed and the settled methods were applied to test production using 'HANARO'. The results of developed process are as follows: 1) I-131 dry distillation method. 2) Large scale production of Ir-192 sources 3) P-32 production process by distillation under reduced pressure 4) Cr-51 production process using enriched target. To irradiate the target for RI production in 'HANARO', target for neutron irradiation, loading/unloading devices, working table in service pool, remote handling tools, shield cask for irradiated target transfer, etc. were designed and fabricated. The function test of prepared targets and the safety analysis of shielding casks were carried out. License for practical use of the prepared casks were obtained from Ministry of Science and Technology. For production of medical radioisotopes, their production facilities were designed in detail and were installed in RIPF (Radioisotope Production Facility), with full reflection of the basic concept of the good manufacturing practice for radiopharmaceuticals. The constructed GMP facilities have started to be operated after authorization since Jun., 1997. Results of this study will be applied to mass production of radioisotopes in 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes. (author). 7 refs., 7 tabs., 4 figs

  14. Economic Contributions of Radioisotope Production Reactor in Korea

    International Nuclear Information System (INIS)

    Nam, Ji Hee; Kim, Seung Su; Moon, Kee Whan

    2010-01-01

    Radioisotopes (RIs) have been used extensively in the fields of industrial, the agricultural, and the medical applications. Especially the deficiency of radioisotopes such as Mo-99 and I-131 in the medical applications recently is becoming the main issue in our society. Radioisotope with the characteristics of public goods in some aspects is mainly playing as the intermediate inputs or goods in the process of the industrial production, with being expected to produce the economic benefits by creating the new demand in the market or enlarging the value added for the related goods and services. In this study, the contribution effects for Korean economy by the construction and operation of the reactor for radioisotope production would be evaluated the effects produced by the activities such as a RI supplies into domestic industry, the RI exports, the neutron transmutation doping services called NTD, and the exports of RI production reactors

  15. Cyclotron for industrial production of radioisotopes: relevants characteristics

    International Nuclear Information System (INIS)

    Lima, Wanderley de

    1997-01-01

    The industrial production of radioisotopes requests cyclotrons with easy maintenance services, high productivity and low operation costs. To obtain this performance the experts on the have achieved excellent results, taking advantage of modern resources in calculation and modeling. Only by the maximum exploitation of the azimutal variation of the magnetic field, a physical concept introduced in 1967 with the isocronous cyclotrons, it was possible to construct cyclotrons with only 30% of the electrical consumption required by the former cyclotrons. On the other hand, the acceleration of negative ions enable the 100% accelerated beam utilization, without internal energy dissipation, obtaining beam intensities up to 1mA in continuous running which represents an increased factor of 15. Other construction parameters were optimized aiming at reliability and reduction in the components activation. Concerning energy consumption and the beam intensity supplied, a present cyclotron with 30 MeV and 300μA of protons current is 15 times more efficient than its precedent. (author). 6 refs., 1 fig., 2 tabs

  16. Current utilization of research reactor on radioisotopes production in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yishu [Nuclear Power Institute of China, Chengdu (China)

    2000-10-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, {gamma}-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, {sup 90}Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  17. Current utilization of research reactor on radioisotopes production in China

    International Nuclear Information System (INIS)

    Liu Yishu

    2000-01-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, γ-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, 90 Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  18. The Texas A&M Radioisotope Production and Radiochemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, Gamal [Texas A & M Univ., College Station, TX (United States)

    2016-08-31

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using (a) a subcritical aqueous target system and (b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011; due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  19. The Texas A&M Radioisotope Production and Radiochemistry Program

    International Nuclear Information System (INIS)

    Akabani, Gamal

    2016-01-01

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostics and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn-62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and, due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  20. The Texas A&M Radioisotope Production and Radiochemistry Program

    International Nuclear Information System (INIS)

    Akabani, Gamal

    2016-01-01

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using (a) a subcritical aqueous target system and (b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011; due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  1. The Texas A&M Radioisotope Production and Radiochemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, Gamal [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering. Dept. of Veterinary Integrative Biosciences

    2016-10-28

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostics and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn-62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and, due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  2. Production ampersand marketing of radioisotopes: A vital market for rare earths ampersand specialty metals

    International Nuclear Information System (INIS)

    Fox, C.J.

    1996-01-01

    Isotopes that spontaneously emit alpha (α) or beta (β) particles, or gamma rays (γ), are said to be radioactive. The emission process, called open-quotes decay,close quotes is precisely what makes radioactive isotopes, known as open-quotes radioisotopes,close quotes useful in a variety of applications, including nuclear medicine, commercial sterilization, manufacturing, geophysics, agriculture, and research programs in these and various other fields. Until 1960, radioisotope production was limited to government-owned nuclear reactors and particle accelerators in universities and government laboratories, primarily because the enormous cost of building these facilities could only be supported by government budgets. During this time, a few private companies managed to secure commercial rights to exploit the production capabilities of these facilities. Today, these companies and a few government agencies still provide the basis of global commercial radioisotope supply

  3. Facilities for the production and processing of radioisotopes

    International Nuclear Information System (INIS)

    Fourie, P.J.

    1980-01-01

    Radioisotopes which are used in South Africa are produced in the nuclear reactor SAFARI 1 of the AEB and the CSIR cyclotron in Pretoria or are being imported from various overseas manufactures. The safe and efficient production and use of radioisotopes is possible when being handled by sufficiently trained personnel using special designed equipment and facilities. The Isotope Production Centre is situated next to the reactor and waste treatment buildings. New production facilities shielded with lead and equipped with remote handling equipment are being erected and will be commissioned early during 1980 [af

  4. Study on application of radiation and radioisotopes -Development of the radioisotope production facilities for the HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Bok; Woo, Jong Sub; Kang, Byung Woi; Baek, Sam Tae; Jeong, Un Soo; Park, Yong Chul; Jeon, Young Keon; Chang, Chun Ik; Lee, Bong Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-08-01

    Development and construction of the lead hot cell for radioisotope production and related facility. 1. Fabrication and installation of the lead H/C system. 2. Development and installation of the hydraulic transfer system. 3. Development of the radiation monitoring system. 4. Fabrication and installation of the fire extinguishing system in the H/C. 5. Fabrication and installation of the fume hood. 4 tabs.,10 figs. (Author).

  5. Accelerator Production of Isotopes for Medical Use

    Science.gov (United States)

    Lapi, Suzanne

    2014-03-01

    The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.

  6. Solid targets for production of radioisotopes with cyclotron

    International Nuclear Information System (INIS)

    Paredes G, L.; Balcazar G, M.

    1999-01-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  7. Radioisotope production at the cyclotron in Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Silva, A.G. da; Lemos, O.F.; Britto, J.L.O. de; Osso, J.A.; Bastos, M.A.V.; Braghirolli, A.M.S.; Chamma, D.F.S.; Newton, G.W.A.; Weinreich, R.

    1982-01-01

    A radioisotope production laboratory has been installed at Instituto de Engenharia Nuclear in Rio de Janeiro. It is intended primarily for processing short-lived radioisotopes produced by a multiparticle, variable energy, isochronous, compact CV-28 Cyclotron and for preparation of radiopharmaceuticals and labelled molecules. Carrier-free iodine-123, indium-111, thalium-201, bromine-77 and gallium-67 with high purity have been produced. An irradiated target transport system has been built. Special targets that can dissipate high surface power densities are being developed. Each radioisotope is processed in a remotely controlled cell equiped with electric and pneumatic systems as well as manipulators ans tongs. Quality control is achieved by atomic absorption spectrophotometry, spot tests, gamma-ray spectroscopy and thin-layer chromatography. Biological tests in mice have confirmed the good quality of the radiopharmaceuticals. (Author) [pt

  8. A radioisotope production cyclotron designed to minimize dose

    International Nuclear Information System (INIS)

    Szlavik, F.F.; Moritz, L.E.

    1992-01-01

    This paper describes a radioisotope production cyclotron which has been designed to minimize the dose to personnel during operation and maintenance. The design incorporates lessons learned from the operation of a CP42 cyclotron and has resulted in a reduction of the dose by a factor of more than 10. (author)

  9. Status and prospects on radioisotope production in Korea

    International Nuclear Information System (INIS)

    Han, H. S.; Cho, W. K.; Park, U. J.; Hong, Y. D.; Park, K. B.

    2002-01-01

    In Korea, radioisotopes has been produced using small-sized research reactors (TRIGA Mark II, III) from 1961 to 1995. The Korea Atomic Energy Research Institute (KAERI) completed the High-flux Advanced Neutron Application Reactor (HANARO) in 1995 and a radioisotope production facilities (RIPF) in 1997. Medical and industrial radionuclides such as 131 I, 99m Tc, 166 Ho, 192 Ir and 60 Co, are routinely produced utilizing HANARO. Several hundreds kilo curies of these nuclides were supplied to domestic users in 2001. The Korea Cancer Center Hospital (KCCH) first installed a cyclotron (MC-50) for neutron therapy and RI production in 1984. At present, the cyclotron routinely produced radionuclides such as 201 TI, 67 Ga, 123 I and 18 F. Also, it is capable of producing several radionuclides, including 111 In, 51 Cr, 124 I, 54 Mn, 22 Na, etc. Baby cyclotrons were installed in Seoul National University Hospital, Sam sung Medical Center and Asan Medical Center. The main purpose of the introduction of baby cyclotrons was to produce short-lived positron emitters such as 18 F, 15 O and 11 C for PET. Radioisotope production facilities were imported and installed as subsidiaries of cyclotron. In Korea, more than 60 kinds of radioisotopes are currently used in the field of their applications and most of them are imported form foreign vendors. For the quality assurance of final products such as radiopharmaceuticals and industrial sources, facilities for production should be installed and maintained in accordance with regulation rules and also the production system should be operated under quality management system. Since 1992 the Korean government has been encouraging Mid and Long Term Nuclear R and D Programs to enhance capability in nuclear technology development. In order to actively promote the utilization, research and development of technology applying radiation and RI, the Korean government established 'a comprehensive promotion plan for utilization, research and development

  10. Prospective production of radioisotopes and radiopharmaceuticals in divisions of IPPE

    International Nuclear Information System (INIS)

    Terentyev, G.O.

    2001-01-01

    The first reason to commence the work on production of radioisotope production in IPPE, was the requirement of Russia medicine for original generators of technetium. The essential extension of their production in conditions of Moscow city has met the declaiming of the Moscow urban authorities. The important moment was that, in IPPE were objective possibilities to deployment the production of radioisotope production. Nowadays, nomenclature of the radioisotopes which have been produced in IPPE, constitutes 29 positions. The profile of production of radioisotope production was generated also. Restricted possibilities of the ray base, from one side, and the needs(requirement) of domestic medicine with other, in main have spotted this profile. The raw isotopes constitute a minority - on sales volumes ∼ 20 % (in main abroad), the defining part is constituted the form ready for the use by ∼ 80 % (in main in Russia). All 'know-how' is conditionally possible to divide into 3 categories: Base. It is technologies provided with an operating production sector, guaranteeing stable on quality production having a rather wide seller's market; Perspective. It is those technologies, in which the main stages of RESEARCH and DEVELOPMENT are fulfilled with positive result, but the working sites yet are not generated, and on the market are delivered only some samples of production. Are guessed RESEARCH AND DEVELOPMENT on perfecting the technology; Preparative. The technology, on which there are no regular orders, is not required of an individual working site. Sometimes it is rather precision operations, bound with usage of unique raw material, with a very stiff price of production. (authors)

  11. Radioisotope Production Plan and Strategy of Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This reactor will be located at Kijang, Busan, Korea and be dedicated to produce mainly medical radioisotopes. Tc-99m is very important isotope for diagnosis and more than 80% of radiation diagnostic procedures in nuclear medicine depend on this isotope. There were, however, several times of insecure production of Mo-99 due to the shutdown of major production reactors worldwide. OECD/NEA is leading member countries to resolve the shortage of this isotope and trying to secure the international market of Mo-99. The radioisotope plan and strategy of Kijang Research Reactor (KJRR) should be carefully established to fit not only the domestic but also international demand on Mo-99. The implementation strategy of 6 principles of HLG-MR should be established that is appropriate to national environments. Ministry of Science, ICT and Future Planning and Ministry of Health and welfare should cooperate well to organize the national radioisotope supply structure, to set up the reasonable and competitive pricing of radioisotopes, and to cope with the international supply strategy.

  12. Production of radioisotopes within a plasma focus device

    International Nuclear Information System (INIS)

    Angeli, E.; Tartari, A.; Frignani, M.; Molinari, V.; Mostacci, D.; Rocchi, F.; Sumini, M. . E-mail address of corresponding author: domiziano.mostacci@mail.ing.unibo.it

    2005-01-01

    In recent years, research conducted in the US and in Italy has demonstrated production of radioisotopes in Plasma Focus (PF) devices, and particularly, on what could be termed 'endogenous' production, to wit, production within the plasma itself, as opposed to irradiation of targets. This technique relies on the formation of localized small plasma zones characterized by very high densities and fairly high temperatures. The conditions prevailing in these zones lead to high nuclear reaction rates, as pointed out in previous work by several authors. Further investigation of the cross sections involved has proven necessary to model the phenomena involved. In this paper, the present status of research in this field is reviewed, both with regards to cross section models and to experimental production of radioisotopes. Possible outcomes and further development are discussed. (author)

  13. Production capabilities in US nuclear reactors for medical radioisotopes

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted

  14. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  15. Occupational radioprotection in the cyclotron laboratory radioisotope production at IEN

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Teixeira, M.V.; Santos, I.H.T.; Pujol Filho, S.V.

    1990-07-01

    The Cyclotron of the Instituto de Engenharia Nuclear is operated mainly for radioisotope production, neutron production studies and irradiation damage analysis. The risks associated to the activities developed in these laboratories are exposition to beta, neutron and gama radiation and contamination. The radioprotection program adapted are presented briefly and the results of the air and surface contamination analysis, liquid efluents and dose equivalent of the workers in 1988 are shown. (author) [pt

  16. Radioisotope tracer study in an aniline production reactor

    International Nuclear Information System (INIS)

    Pant, H.J.; Yelgoankar, V.N.; Mendhekar, G.N.

    1995-01-01

    A radioisotope tracer study was carried out in an aniline production reactor to investigate the cause of poor heat transfer from tube side to shell side in an aniline production (ANPO) reactor. The results of the study indicated that more than 50% of the shell volume was reduced due to deposition of the process material (i.e. fouling) on the shell walls and may be the cause of poor heat transfer in the reactor. (author). 2 refs., 2 figs

  17. Production, control and utilization of radioisotopes including radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.

    1985-05-01

    From April 29th to May 5th, 1984 27 participants from 21 developing countries stayed within an IAEA Study Tour ('Production, Control and Utilization of Radioisotopes including Radiopharmaceuticals') in the GDR. In the CINR, Rossendorf the reactor, the cyclotron, the technological centre as well as the animal test laboratory were visited. The participants were made familiar by 10 papers with the development, production and control of radiopharmaceuticals in the CINR, Rossendorf. (author)

  18. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-01-01

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand

  19. A compact and high current FFAG for the production of radioisotopes for medical application

    CERN Document Server

    Bruton, David; Edgecock, Rob; Seviour, Rebecca; Johnstone, Carol

    2017-01-01

    A low energy Fixed Field Alternating Gradient(FFAG)accelerator has been designed for the production of radioisotopes. Tracking studies have been conducted using the OPAL code, including the effects of space charge. Radioisotopes have a wide range of uses in medicine, and recent disruption to the supply chain has seen a renewed effort to find alternative isotopes and production methods. The design features separate sector magnets with non-scaling, non-linear field gradients but without the counter bends commonly found in FFAG’s. The machine is isochronous at the level of 0.3% up to at least 28MeV and hence able to operate in Continuous Wave (CW) mode. Both protons and helium ions can be used with this design and it has been demonstrated that proton beams with currents of up to 20 mA can be accelerated. An interesting option for the production of radioisotopes is the use of a thin internal target. We have shown that this design has large acceptance, ideal for allowing the beam to be recirculated through t...

  20. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    Science.gov (United States)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  1. Radioisotopes production for applications on the health; Produccion de radioisotopos para aplicaciones en la salud

    Energy Technology Data Exchange (ETDEWEB)

    Monroy G, F.; Alanis M, J., E-mail: fabiola.monroy@inin.gob.m [ININ, Departamento de Materiales Radiactivos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the Radioactive Materials Department of the Instituto Nacional de Investigaciones Nucleares (ININ) processes have been studied and developed for the radioisotopes production of interest in the medicine, research, industry and agriculture. In particular five new processes have been developed in the last 10 years by the group of the Radioactive Materials Research Laboratory to produce: {sup 99}Mo/{sup 99m}Tc and {sup 188}W/{sup 188}Re generators, the radio lanthanides: {sup 151}Pm, {sup 147}Pm, {sup 161}Tb, {sup 166}Ho, {sup 177}Lu, {sup 131}I and the {sup 32}P. All these radioisotopes are artificial and they can be produced in nuclear reactors and some of them in particle accelerators. The radioisotope generators are of particular interest, as those of {sup 99}Mo/{sup 99m}Tc and {sup 188}W/{sup 188}Re presented in this work, because they are systems that allow to produce an artificial radioisotope of interest continually, in these cases the {sup 99m}Tc and the {sup 188}Re, without the necessity of having a nuclear reactor or an particle accelerator. They are compact systems armored and sure perfectly of manipulating that, once the radioactive material has decayed, they do not present radiological risk some for the environment and the population. These systems are therefore of supreme utility in places where it is not had nuclear reactors or with a continuous radioisotope supply, due to their time of decaying, for its cost or for logistical problems in their supply, like it is the case of many hospital centers, of research or industries in our country. (Author)

  2. Charged particle radioisotope production at Instituto de Engenharia Nuclear - IEN

    International Nuclear Information System (INIS)

    Lemos Junior, O.F.

    1992-05-01

    A variable energy isochronous cyclotron (CV-28) was installed in 1974 at the Instituto de Engenharia Nuclear in Rio de Janeiro, with the purpose, among others, of irradiating suitable targets to produce radioisotopes for medical diagnostic studies. This papers is an overview of the work done in the last two decades and reports the present status on the production of iodine-123 and gallium-67. (author)

  3. Operation status and prospect of radioisotope production facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Minjin; Jung, H.S.

    2012-01-01

    At the RIPF at HANARO, Radioisotopes for industrial and medical purpose are produced and research and development for various radioisotopes are carried out. Major products include Ir-192 for NDT, I-131 for treatment and diagnosis of thyroid cancer, Mo-99/Tc-99m Generator for imaging diagnosis of cancer. Production of radioisotope and radiopharmaceutical is being increased every year. Due to world-wide unstableness in the supply of Mo-99, a technology to produce (n,γ)Mo-99 generator at HANARO had been developed as a short term countermeasure. It will be available by the end of 2012. As a long term countermeasure, we are trying to build a new fully dedicated isotope reactor that will produce Fission Mo-99. At present, utilization of RIPF at HANARO is being increased. However when the construction of a new dedicated isotope reactor is completed in 2016, the role of the existing facility and new facility should be established accordingly so that none of the facilities are idling. In the near future, when the prospect of a utilization plan is completed, we expect an opportunity to present the result. (author)

  4. Comparison of the production of medical radioisotopes on reactor and cyclotron

    International Nuclear Information System (INIS)

    Vucina, J.; Vuksanovic, Lj.; Dobrijevic, R.; Karanfilov, E.

    1997-01-01

    The production of radioisotopes for nuclear-medical applications can be performed either on nuclear reactor or on cyclotron. According to the nuclear reactions applied the radioisotopes of different physical characteristics can be produced. In the paper a comparison of the radioisotopes production given. Compared are the main steps in the production: choice of the nuclear reaction, targetry, irradiation and radiochemical separations performed on the irradiated target to isolate the desired radioisotope. The main characteristics of the produced radioisotopes are given and discussed. (author)

  5. The Radioisotopes production in tunisia, presentation of the CNSTN project

    International Nuclear Information System (INIS)

    Ounalli, Leila

    2013-01-01

    radioisotopes production are much sought worldwide. There is a universal lack of these specialists. Regarding this situation, there is an urgency to collect the right conditions which allow the organization of a Master's degree in radio-pharmacy, radio-biology and radiochemistry. The projects of complementarities between Arab countries via the Arabic Agency of the Atomic Energy, the collaboration with the International Atomic Energy Agency and the Technical French Cooperation of the Atomic Energy Commission are useful to combine efforts for better training of the staff. (Author)

  6. Design study and heat transfer analysis of a neutron converter target for medical radioisotope production

    International Nuclear Information System (INIS)

    Masoud Behzad; Sang-In Bak; Seung-Woo Hong; Jong-Seo Chai; Yacine Kadi; Claudio Tenreiro; University of Talca, Talca

    2014-01-01

    A worldwide challenge in the near future will be to find a way of producing radioisotopes in sufficient quantity without relying on research reactors. The motivation for this innovative work on targets lies in the accelerator-based production of radioisotopes using a neutron converter target as in the transmutation by adiabatic resonance crossing concept. Thermal analysis of a multi-channel helium cooled device is performed with the computational fluid dynamics code CFX. Different boundary conditions are taken into account in the simulation process and many important parameters such as maximum allowable solid target temperature as well as uniform inlet velocity and outlet pressure changes in the channels are investigated. The results confirm that the cooling configuration works well; hence such a solid target could be operated safely and may be considered for a prototype target. (author)

  7. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  8. Medical Radioisotope Production in a Power-Flattened ADS Fuelled with Uranium and Plutonium Dioxides

    Directory of Open Access Journals (Sweden)

    Gizem Bakır

    2016-01-01

    Full Text Available This study presents the medical radioisotope production performance of a conceptual accelerator driven system (ADS. Lead-bismuth eutectic (LBE is selected as target material. The subcritical fuel core is conceptually divided into ten equidistant subzones. The ceramic (natural U, PuO2 fuel mixture and the materials used for radioisotope production (copper, gold, cobalt, holmium, rhenium, thulium, mercury, palladium, thallium, molybdenum, and yttrium are separately prepared as cylindrical rods cladded with carbon/carbon composite (C/C and these rods are located in the subzones. In order to obtain the flattened power density, percentages of PuO2 in the mixture of UO2 and PuO2 in the subzones are adjusted in radial direction of the fuel zone. Time-dependent calculations are performed at 1000 MW thermal fission power (Pth for one hour using the BURN card. The neutronic results show that the investigated ADS has a high neutronic capability, in terms of medical radioisotope productions, spent fuel transmutation and energy multiplication. Moreover, a good quasiuniform power density is achieved in each material case. The peak-to-average fission power density ratio is in the range of 1.02–1.28.

  9. Aspects of occupational radioprotection in laboratories for radioisotopes production

    International Nuclear Information System (INIS)

    Fajardo, Patricia Wieland; Santos, Ilka Helena Taam.

    1990-10-01

    Some aspects of the radiation protection program implemented in the radioisotope production laboratories at the Nuclear Engineering Institute (IEN), are presented. This program evolves external and internal monitoring, radiation level measurements, and surface and air contamination monitoring. Comparing the results obtained in 1987, 1988 and 1989 with the corresponding limits established by Brazilian National Nuclear Energy Commission, it can be seen that the radiation protection program is suitable for those places with high risks of radiation contamination. (author). 2 refs., 2 figs., 2 tabs

  10. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-05-01

    Medical applications of nuclear radiation are of considerable interest to the IAEA. Cyclotrons and accelerators, available in recent years in an increasing number of countries, are being used for the production of radioisotopes for both diagnostic and therapeutic purposes. The physical basis of this production is described through interaction of charged particles, such as protons, deuterons and alphas, with matter. These processes have to be well understood in order to produce radioisotopes in an efficient and clean manner. In addition to medical radioisotope production, reactions with low energy charged particles are of primary importance for two major applications. Techniques of ion beam analysis use many specific reactions to identify material properties, and in nuclear astrophysics there is interest in numerous reaction rates to understand nucleosynthesis in the Universe. A large number of medically oriented cyclotrons have been running in North America, western Europe and Japan for more than two decades. In recent years, 30-40 MeV cyclotrons and smaller cyclotrons (E p < 20 MeV) have been installed in several countries. Although the production methods are well established, there are no evaluated and recommended nuclear data sets available. The need for standardization was thus imminent. This was pointed out at three IAEA meetings. Based on the recommendations made at these meetings, the IAEA decided to undertake and organize the Co-ordinated Research Project (CRP) on Development of Reference Charged Particle Cross-Section Database for Medical Radioisotope Production. The project was initiated in 1995. It focused on radioisotopes for diagnostic purposes and on the related beam monitor reactions in order to meet current needs. It constituted the first major international effort dedicated to standardization of nuclear data for radioisotope production. It covered the following areas: Compilation of data on the most important reactions for monitoring light ion

  11. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-01-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ''neutron rich'' and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail

  12. Research reactor production of radioisotopes for medical use

    International Nuclear Information System (INIS)

    Mani, R.S.

    1985-01-01

    More than 70% of all radioisotopes applied in medical diagnosis and research are currently produced in research reactors. Research reactors are also an important source of certain radioisotopes, such as 60 Co, 90 Y, 137 Cs and 198 Au, which are employed in teletherapy and brachytherapy. For regular medical applications, mainly 29 radionuclides produced in research reactors are used. These are now produced on an 'industrial scale' by many leading commercial manufacturers in industrialized countries as well as by national atomic energy establishments in developing countries. Five main neutron-induced reactions have been employed for the regular production of these radionuclides, namely: (n,γ), (n,p), (n,α), (n,γ) followed by decay, and (n, fission). In addition, the Szilard-Chalmers process has been used in low- and medium-flux research reactors to enrich the specific activity of a few radionuclides (mainly 51 Cr) produced by the (n,γ) reaction. Extensive work done over the last three decades has resulted in the development of reliable and economic large-scale production methods for most of these radioisotopes and in the establishment of rigorous specifications and purity criteria for their manifold applications in medicine. A useful spectrum of other radionuclides with suitable half-lives and low to medium toxicity can be produced in research reactors, with the requisite purity and specific activity and at a reasonable cost, to be used as tracers. Thanks to the systematic work done in recent years by many radiopharmaceutical scientists, the radionuclides of several elements, such as arsenic, selenium, rhenium, ruthenium, palladium, cadmium, tellurium, antimony, platinum, lead and the rare earth elements, which until recently were considered 'exotic' in the biomedical field, are now gaining attention. (author)

  13. Studies of radioisotope production with an AVF cyclotron in TIARA

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    The production of radioisotopes to be used mainly for nuclear medicine and biology is studied with an AVF cyclotron in TIARA. A production method of no-carrier-added {sup 186}Re with the {sup 186}W(p,n){sup 186}Re reaction has been developed; this product may be used as a therapeutic agent in radioimmunotherapy due to the adequate nuclear and chemical properties. For the study of the function of plants using a positron-emitter two-dimensional imaging system, a simple method of producing the positron emitter {sup 18}F in water was developed by taking advantage of a highly-energetic {alpha} beam from the AVF cyclotron. (author)

  14. Automatized target devices for radioisotope production at the RITs cyclotron

    International Nuclear Information System (INIS)

    Bogdanov, P.V.; Ivanov, V.V.; Karasev, B.G.

    1981-01-01

    An automation target device intended for isotope production on the internal beam of the RITs cyclotron is decribed. The target device comprises the following main units: target head, vacuum lock, charging device, transport system for bringing the target for charging; mechanism of target discharge transport device, control interlocking and signalling control system of target radiation power. The automation target device permits radioisotope production on the cyclotron in commercial scales with automation substitution of irradiated targets. The time of substitution of one of six targets makes up only 5 min. The time of charging a new group of targets to the charge device - 60 min. Contact of the personnel with irradiated targets is practically excluded and the necessity of entering the cyclotron room for maintenance of the plant is reduced to the minimum [ru

  15. Revisiting homogeneous suspension reactors for production of radioisotopes

    International Nuclear Information System (INIS)

    Pasqualini, E.E.

    2010-01-01

    Some 50 years ago in Geneva Conferences I, II and III (1955. 1958 and 1964) on the Peaceful Uses of Atomic Energy, and also in Vienna Symposium on Reactor Experiments (1961), several papers where presented by different countries referring to advances in homogeneous suspension reactors. In particular the Dutch KEMA Suspension Test Reactor (KSTR) was developed, built and successfully operated in the sixties and seventies. It was a 1MWth reactor in which a suspension (6 microns spheres) of mixed UO 2 /ThO 2 in light water was circulated in a closed loop through a sphere-shaped vessel. One of the basic ideas on these suspension reactors was to apply the fission recoil separation effect as a means of purification of the fuel: the non-volatile fission products can be adsorbed in dispersed active charcoal and removed from the liquid. Undoubtedly, this method can present some advantages and better yields for the production of Mo-99 and other short lived radioisotopes, since they have to be extracted from a liquid in which practically no uranium is present. Details are mentioned of the different aspects that have been taken into account and which ones could be added in the corresponding actualization of suspension reactors for radioisotope production. In recent years great advances have been made in nanotechnology that can be used in the tailoring of fuel particles and adsorbent media. Recently, in CNEA Buenos Aires, a new facility has been inaugurated and is being equipped and licensed for laboratory experiments and preparative synthesis of nuclear nanoparticles. RA-6 and RA-3 experimental reactors in Argentina can be used for in-pile testing. (author)

  16. Improvement of animal production through research using radioisotopes and radiation

    International Nuclear Information System (INIS)

    1976-01-01

    High birth rates coupled with greater longevity continue to increase the.world's population, especially in the less developed countries. The prevention of undernutrition and ultimately starvation will only be averted by increased food production and more efficient use of that food. At the same time people who have largely subsisted upon plant food diets and whose standards of living are rising, want to increase the use of animal products in order to upgrade their diets. To provide this high quality food animal scientists must find ways of increasing the supply especially in the less developed countries. Since most of the available pasture lands are presently being fully utilized or overgrazed, improved efficiency of the present herds and use of agroindustrial wastes are the only methods left to increase production significantly. The use of radioisotopes and radiation in research are making major contributions to the understanding of the processes necessary to achieve better animal production. In order to provide a forum for exchange of information in this field, the FAO/IAEA Joint Division of Atomic Energy in Food and Agriculture organized an international symposium, held in Vienna, from 2?6 February, on the use of nuclear techniques in animal production. Among the topics discussed at the symposium were: Soil-plant-animal relations regarding minerals, Trace elements in animal nutrition, Calcium, phosphorus and magnesium metabolism, Protein (nitrogen) metabolism - ruminants Protein (nitrogen) metabolism - non-ruminants Nuclear techniques in the control of parasitic infections Animal endocrinology with special emphasis on radioimmunoassays

  17. Improvement of animal production through research using radioisotopes and radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    High birth rates coupled with greater longevity continue to increase the.world's population, especially in the less developed countries. The prevention of undernutrition and ultimately starvation will only be averted by increased food production and more efficient use of that food. At the same time people who have largely subsisted upon plant food diets and whose standards of living are rising, want to increase the use of animal products in order to upgrade their diets. To provide this high quality food animal scientists must find ways of increasing the supply especially in the less developed countries. Since most of the available pasture lands are presently being fully utilized or overgrazed, improved efficiency of the present herds and use of agroindustrial wastes are the only methods left to increase production significantly. The use of radioisotopes and radiation in research are making major contributions to the understanding of the processes necessary to achieve better animal production. In order to provide a forum for exchange of information in this field, the FAO/IAEA Joint Division of Atomic Energy in Food and Agriculture organized an international symposium, held in Vienna, from 2?6 February, on the use of nuclear techniques in animal production. Among the topics discussed at the symposium were: Soil-plant-animal relations regarding minerals, Trace elements in animal nutrition, Calcium, phosphorus and magnesium metabolism, Protein (nitrogen) metabolism - ruminants Protein (nitrogen) metabolism - non-ruminants Nuclear techniques in the control of parasitic infections Animal endocrinology with special emphasis on radioimmunoassays.

  18. Cyclotron production of molecules labelled with short-lived radioisotopes β+ emitters (15O, 13N, 11C) and their clinical uses

    International Nuclear Information System (INIS)

    Bougharouat, B.

    1981-01-01

    Clinical use of three short-lived radioisotopes: 15 O, 13 N and 11 C is studied on two complementary aspects. A production and purification system is realized; detection instruments in medical use are studied. The production of labelled molecules with the three radiotracers 15 O, 13 N, 11 C from the target bombardment with charged and accelerated particles was studied [fr

  19. Production of radioisotopes by 1.5 m cyclotron and their utilization

    International Nuclear Information System (INIS)

    Niu Fang

    1987-01-01

    Radioisotopes characterized by nuclear property and uses can be produced on the accelerator, especially those playing an important role in scientific researches and biomedical uses. The status of Radioisotopes produced by 1.5 m cyclotron and their applications in our institute are summarized in this paper. The details of preparation and the results of use for radioactive sources, radiochemicals, radiopharmaceuticals of 57 Co, 109 Cd, 68 Ge- 68 Ga, and 167 Tm are given respectively. (author)

  20. Medical radioisotopes production at the isochronous cyclotron in Alma-Ata

    International Nuclear Information System (INIS)

    Arzumanov, A.A.; Batischev, V.N.; Gladun, V.K.; Kochetkov, V.L.

    1988-01-01

    High efficiency cyclotron operations (up to 5200 hours of beam time a year) considerably increased the possibility to perform both fundamental and applied scientific work. There appeared possibility to accelerate protons in a wide energy range from 6 to 30 MeV and realize correspondingly the nuclear reactions up to (A, 3n). This paper reports that among different applied tasks performed at the cyclotron the special program of cyclotron production of short-lived medical radioisotopes iodine-123, thallium-201, cadmium-109 in the first place and some others to satisfy clinic needs of Alma-Ata and its region has special importance. In accordance with this program the preparation to produce iodine-123 is being held and regular production of Thallium chloride, thallium-201 pharmaceptical is started

  1. Economical and technical feasibility study of some radioisotopes production for medical application

    International Nuclear Information System (INIS)

    Souza, A.L.A.B. de.

    1985-01-01

    The economical and technical feasibility study of the production in reactors of some radioisotopes most used in medicine, are presented. The clinical applications of each radioisotope as well as its radioactive concentrations and specific activities are related. Irradiation procedures based in the foregoing data are given. Part of the study is dedicated to quality control. (M.A.C.) [pt

  2. High purity materials as targets for radioisotope production: Needs ...

    Indian Academy of Sciences (India)

    Unknown

    lity of high purity target materials, natural or enriched, are crucial for any successful radioisotope pro- gramme. Selection ... and blockages detection in buried pipelines are rendered ..... from reputed international suppliers with analysis report.

  3. Transmission factors for neutrons produced by radioisotopes production used in PET

    International Nuclear Information System (INIS)

    Hernandez G, D.; Cruzate, J.A.

    1996-01-01

    The dose transmission factor for normal concrete and the neutrons produced in the 18 O(p,n) 18 F and 13 C(p,n) 13 N reactions are presented in this paper. These transmission factors permit to simplify the calculation of the necessary accelerator shielding to be used in the radioisotope production for positron emission tomography. The energy distributions of the neutrons resulting from the irradiation of thick targets, with 10 to 13 MeV protons, were determined using the thin target cross sections, the energy loss per path length and the energy balance of the reaction (Q-equation). The one dimensional discrete ordinate transport code ANISN and the conversion coefficients from fluence to dose, presented in the ICRP Publication 51 were employed to obtain the transmission factors. (authors). 12 refs., 3 figs., 2 tabs

  4. Licensing of digital Instrumentation and Control in Radioisotope Production Facility

    International Nuclear Information System (INIS)

    Abdel-Aziz, L.Kh.; Lashin, R.; Mostafa, W.

    2012-01-01

    In spite of the rapid development of digital I and C systems in all major industries, it has for several reasons been slower in nuclear power plants. The most important reason is that only a few new plants have been ordered worldwide during the last ten years. A second reason is connected to the efforts needed in providing adequate evidence that the digital I and C system can be used in safety and safety related applications. This issue is connected to the effort needed in obtaining adequate assurance that the digital I and C will fulfill its intended function and contain no unintended function in all possible operational states during its entire life cycle. This paper presents an acceptance criteria for licensing a digital instrumentation and control system in a Radioisotope Production Facility(1), which is under commissioning. The acceptance criteria ensure that the I and C systems are designed to reach the highest degree of reliability with respect to the function they perform, operators will have clear and accessible availability to data on every plant parameter, and also ensure that the safety objectives have been covered

  5. Productivity of a nuclear chemical reactor with gamma radioisotopic sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  6. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  7. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2002-01-01

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  8. Summary report of the consultants' meeting on nuclear data for production of therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Haight, R.C.; Paviotti-Corcuera, R.

    2002-04-01

    This report summarizes the presentations, recommendations and conclusions of the Consultants' Meeting on Nuclear Data for Production of Therapeutic Radioisotopes. The purpose of this meeting was to discuss scientific and technical matters related to the subject and to advise the IAEA Nuclear Data Section (NDS) on the need and possible formation of a Coordinated Research Programme (CRP). Accurate and complete knowledge of nuclear data are essential for the production of radionuclides for therapy to achieve the specific activity and purity required for efficient and safe clinical application. The Consultants recommended updating and completing the data for production of radionuclides that are recognized to be important in therapy. In addition, the consultants recommend investigating other radionuclides that have a potential interest and for which there exists a medical rationale for therapeutic use. To date no serious effort has been devoted to evaluation of nuclear data for the reactor and accelerator production of therapeutic radionuclides. The IAEA is in the unique and privileged position to address this important public health related problem. Therefore, the consultants highly recommend the formation of a CRP with the title: 'Nuclear Data for Production of Therapeutic Radionuclides.' (author)

  9. Nuclear data for the production of radioisotopes in fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cheng, E.T.; Schenter, R.E.; Mann, F.M.; Ikeda, Y.

    1991-01-01

    The fusion materials irradiation facility (FMIF) is a neutron source generator that will produce a high-intensity 14-MeV neutron field for testing candidate fusion materials under reactor irradiation conditions. The construction of such a facility is one of the very important development stages toward realization of fusion energy as a practical energy source for electricity production. As a result of the high-intensity neutron field, 10 MW/m 2 or more equivalent neutron wall loading, and the relatively high-energy (10- to 20-MeV) neutrons, the FMIF, as future fusion reactors, also bears the potential capability of producing a significant quantity of radioisotopes. A study is being conducted to identify the potential capability of the FMIF to produce radioisotopes for medical and industrial applications. Two types of radioisotopes are involved: one is already available; the second might not be readily available using conventional production methods. For those radioisotopes that are not readily available, the FMIF could develop significant benefits for future generations as a result of the availability of such radioisotopes for medical or industrial applications. The current production of radioisotopes could help finance the operation of the FMIF for irradiating the candidate fusion materials; thus this concept is attractive. In any case, nuclear data are needed for calculating the neutron flux and spectrum in the FMIF and the potential production rates of these isotopes. In this paper, the authors report the result of a preliminary investigation on the production of 99 Mo, the parent radioisotope for 99m Tc

  10. Current status of production and research of radioisotopes and radiopharmaceuticals in Indonesia

    International Nuclear Information System (INIS)

    Soenarjo, Sunarhadijoso; Tamat, Swasono R.

    2000-01-01

    The use of radioactive preparation in Indonesia has sharply increased during the past years, indicated by increase of the number of companies utilizing radioisotopes during 1985 to 1999. It has been clearly stressed in the BATAN's Strategic Plan for 1994-2014 that the production of radioisotopes and radiopharmaceuticals is one of five main industrial fields within the platform of the Indonesian nuclear industry. Research programs supporting the production of radioisotopes and radiopharmaceuticals as well as development of production technology are undertaken by the Research Center for Nuclear Techniques (RCNT) in Bandung and by the Radioisotope Production Center (RPC) in Serpong, involving cooperation with other research center within BATAN, universities and hospitals as well as overseas nuclear research institution. The presented paper describes production and research status of radioisotopes and radiopharmaceuticals in Indonesia after the establishment of P.T. Batan Teknologi in 1996, a government company assigned for activities related to the commercial application of nuclear technology. The reviewed status is divided into two short periods, i.e. before and after the Chairman Decree No. 73/KA/IV/1999 declaring new BATAN organizational structure. Subsequent to the Decree, all commercial requests for radioisotopes and radiopharmaceuticals are fulfilled by P.T. Batan Teknologi, while demands on novel radioactive preparations or new processing technology, as well as research and development activities should be fulfilled by the Center for the Development of Radioisotopes and Radiopharmaceuticals (CDRR) through non-commercial arrangement. The near-future strategic research programs to response to dynamic public demand are also discussed. The status of research cooperation with JAERI (Japan) is also reported. (author)

  11. Current status of production and research of radioisotopes and radiopharmaceuticals in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soenarjo, Sunarhadijoso; Tamat, Swasono R. [Center for Development of Radioisotopes and Radiopharmaceuticals, National Nuclear Energy Agency (BATAN), Kawasan Puspiptek, Serpong, Tangerang (Indonesia)

    2000-10-01

    The use of radioactive preparation in Indonesia has sharply increased during the past years, indicated by increase of the number of companies utilizing radioisotopes during 1985 to 1999. It has been clearly stressed in the BATAN's Strategic Plan for 1994-2014 that the production of radioisotopes and radiopharmaceuticals is one of five main industrial fields within the platform of the Indonesian nuclear industry. Research programs supporting the production of radioisotopes and radiopharmaceuticals as well as development of production technology are undertaken by the Research Center for Nuclear Techniques (RCNT) in Bandung and by the Radioisotope Production Center (RPC) in Serpong, involving cooperation with other research center within BATAN, universities and hospitals as well as overseas nuclear research institution. The presented paper describes production and research status of radioisotopes and radiopharmaceuticals in Indonesia after the establishment of P.T. Batan Teknologi in 1996, a government company assigned for activities related to the commercial application of nuclear technology. The reviewed status is divided into two short periods, i.e. before and after the Chairman Decree No. 73/KA/IV/1999 declaring new BATAN organizational structure. Subsequent to the Decree, all commercial requests for radioisotopes and radiopharmaceuticals are fulfilled by P.T. Batan Teknologi, while demands on novel radioactive preparations or new processing technology, as well as research and development activities should be fulfilled by the Center for the Development of Radioisotopes and Radiopharmaceuticals (CDRR) through non-commercial arrangement. The near-future strategic research programs to response to dynamic public demand are also discussed. The status of research cooperation with JAERI (Japan) is also reported. (author)

  12. Radiation and radioisotopes in fruits and vegetable production and preservation

    International Nuclear Information System (INIS)

    Chapke, V.G.

    1975-01-01

    Use of radioisotopes is being made in the mutation breeding in obtaining the varieties resistant to certain diseases and pests. Nirale and Gour (1973) found that there is an average 50 percent increase in yield of chilli, onion and lettuse, with low doses of x-ray irradiation. radiotracers show that P and K are more rapidly absorbed through leaves than roots. This technique is useful in deciding economic use of fertilizers and micronutrients. The ultraviolet light inactivates some viruses in plants. The radiation processing of foods minimises the packing costs. (author)

  13. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  14. Production of Radioisotopes and Radiopharmaceuticals at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Duong Van Dong; Pham Ngoc Dien; Bui Van Cuong; Mai Phuoc Tho; Nguyen Thi Thu; Vo Thi Cam Hoa

    2014-01-01

    After reconstruction, the Dalat Nuclear Research Reactor (DNRR) was inaugurated on March 20th, 1984 with the nominal power of 500 kW. Since then the production of radioisotopes and labelled compounds for medical use was started. Up to now, DNRR is still the unique one in Vietnam. The reactor has been operated safely and effectively with the total of about 37,800 hrs (approximately 1,300 hours per year). More than 90% of its operation time and over 80% of its irradiation capacity have been exploited for research and production of radioisotopes. This paper gives an outline of the radioisotope production programme using the DNRR. The production laboratory and facilities including the nuclear reactor with its irradiation positions and characteristics, hot cells, production lines and equipment for the production of Kits for labelling with 99m Tc and for quality control, as well as the production rate are mentioned. The methods used for production of 131 I, 99m Tc, 51 Cr, 32 P, etc. and the procedures for preparation of radiopharmaceuticals are described briefly. Status of utilization of domestic radioisotopes and radiopharmaceuticals in Vietnam is also reported. (author)

  15. Studies on the production and application of radioisotopes -Studies on application of radiation and radioisotopes-

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Park, Kyung Bae; Chung, Yong Sam; Chung, Young Ju; Bang, Hong Sik; Han, Hyun Soo; Shin, Byung Chul; Park, Choon Deuk; Han, Kwang Hee; Shin, Hun Young; Park, Woong Woo; Kim, Dong Soo; Kim, Jin Kyung; Kim, Seung Jun

    1994-07-01

    To increase the production of RI and labelled compounds utilizing the Korea Multipurpose Research Reactor (KMRR), development of P-32 production process, devices and tools of neutron irradiation use, GMP facilities of radiopharmaceuticals, Dy-165/Ho-166 macroaggregate of radiation synovectomy use for rheumatoid archritis have been carried out, respectively. To utilize NAA in analysis of environmental samples, experimental studies on air borne samples have also been carried out. An efficient P-32 production process obtaining high recovery of >98% with sufficiently high radionuclidic purity of >99% has been established through reaction 32 S(n,p) 32 P and subsequent reduced pressure distillation purification. Various capsules, loading/unloading device for capsule/rigs, cole-welder for capsules, checking instrument for capsule sealing, working table/tools, transfer cask for the irradiated targets, etc. have been developed. To maintain cleanliness inside of hot cells, a modification has been proposed, and a two door type autoclave usable in GMP facility has been prepared. An efficient way of preparation of the Dy-165/Ho-166 macroaggregate of radiation synovectomy use as well as its clinical application scheme has been developed. A suitable process of environmental sample analyses has been established by carrying out NAA of standard/reference samples as well as airborne dust samples. (Author)

  16. Production and chemical separation of 48 V radioisotope

    International Nuclear Information System (INIS)

    Szucs, Z.; Dudu, D.; Cimpeanu, C.; Luca, A.; Duta, E.; Sahagia, M.

    2003-01-01

    The positron emitter 48 V isotope (T 1/2 =16 d, γ-lines: 511 keV (100%), 983.5 (100%), 1312 (97.6%)) is of interest in several fields of science. This is valid for transmitting scans in the validation process of PET-camera by positron emission. It can be used as an industrial monitoring isotope by its γ-photons having high energy and intensity. Also, it is suitable for biological study since it is the only radioisotope of the biological trace element vanadium which can be a radiotracer due to its longer half-life. The 48 V was produced by nat Ti (d,xn) 48 V nuclear reaction in the U-120 cyclotron with activity of 6 mCi. The energy of irradiating beam was 13 MeV, its intensity was 5 μA and the metallic Ti target dimensions were 16 x 11 x 2 mm. For target cooling, the water circulation in the back side was used. After 3 cooling days, only 48 V, and some 46 Sc (T 1/2 = 84 d), produced by the side nuclear reaction 48 Ti (d,α) 46 Sc were found in the target. For the preparation of 48 V source, the Ti target was dissolved in HF and sulfuric acid. The ion exchange separation was developed for both dissolving methods. The dissolution of the chemically resistant Ti target is so violent in concentrated (3.5 % m/m) HF, that it is necessary to be carried out in polyethylene tube in order to avoid the splash of the dissolved target. An anion exchange column, Dowex 1-8 (size 100-200 mesh, length 12 cm, ID 10 mm, treated 1 day earlier, prepared fresh), was used for separation in HF media. The reduced ionic form of Ti bonds to resin, therefore the dissolved target was saturated with sulfur-dioxide produced in the Kipp-equipment by the following chemical reaction: Na 2 SO 3 + 2 HCl → 2 NaCl + H 2 SO 3 . The treated solution was diluted to a concentration of 2 mol/l of HF and the same concentration of the HF was used as an eluent for separation. Flow rate of the elution was 1 ml/min. The eluate was cooled fractionally. The fractions were measured by γ-spectrometry, which

  17. submitter Development of a Superconducting Magnet for a Compact Cyclotron for Radioisotope Production

    CERN Document Server

    Garcia-Tabares, Luis; Calero, Jesus; Gutierrez, Jose L; Munilla, Javier; Obradors, Diego; Perez, Jose M; Toral, Fernando; Iturbe, Rafael; Minguez, Leire; Gomez, Jose; Rodilla, Elena; Bajko, Marta; Michels, Matthias; Berkowitz, Daniel; Haug, Friedrich

    2016-01-01

    The present paper describes the development process of a low critical temperature superconducting magnet to be installed in a compact cyclotron producing single-dose radioisotopes for clinical and preclinical applications. After a brief description of the accelerator, the magnet development process is described, starting from the magnetic, mechanical, quench, and thermal calculations, continuing with the designing process, particularly the support structure of the magnet and the cryogenic supply system, to finish with the fabrication and the first tests than have been performed.

  18. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  19. Solid targets for production of radioisotopes with cyclotron; Blancos solidos para produccion de radioisotopos con ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [Instituto Nacional de Investigaciones Nucleares, Direccion de Investigacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  20. Basic Research and Feasibility Study of Radioisotope Production using 100 MeV Proton Beam

    International Nuclear Information System (INIS)

    Yoo, K. H.; Yoon, K. S.; Cho, W. J.; Park, S. I.; Han, H. S.; Yang, S. D.; Jeon, K. S.; Kim, J. H.; Yang, T. K.

    2010-04-01

    Results of the project are various nuclei, such as 82 Rb, 68 Ga, 67 Cu, 22 Na and so on, can be produced by irradiating 100 MeV proton beam, by irradiating proton beam to the nat Ga target, the 68 Ge, mother nucleus of positron emitting 68 Ga, is produced based on the nat Ga(p,x) 68 Ge reaction, the target system for the high-energy of proton beam can produce more than 2 species of radioisotope at the same time by employing tandem targets, 68 Ge/ 68 Ga generator, 82 Sr(25.34d)/ 82 Rb generator - 67 Cu production method, 70 Zn electroplating technology based on the electrochemistry, the container, whose weight is about 3 ton, is made by depleted uranium and because of the unstable situation for the supply and demand of reactor produced radioisotope, the need for the cyclotron produced radioisotopes is dramatically increased all over the world.

  1. 77 FR 21592 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Science.gov (United States)

    2012-04-10

    ... Licensing of Non-Power Reactors: Format and Content,'' for the production of radioisotopes and NUREG-1537, Part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors... by searching on http://www.regulations.gov under Docket ID NRC-2011-0135. You may submit comments by...

  2. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Science.gov (United States)

    2011-10-13

    ..., Research and Test Reactors Projects Branch, Division of Policy and Rulemaking, Office of Nuclear Reactor... NUCLEAR REGULATORY COMMISSION [NRC-2011-0135] Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim...

  3. Twenty years of radioisotope production from Institute of Atomic Energy reactors

    International Nuclear Information System (INIS)

    Lun, Xiao

    1980-01-01

    The heavy water reactor in People's Republic of China went critical in November, 1958, and the radioisotope development work began since then. The thermal power of the reactor was 7 MW, and the maximum thermal neutron flux was 1.2 x 10 14 n/cm 2 /sec. Since 1967, it was operated at 10 MW. The first radioisotope product was 24 Na, using Na 2 CO 3 as a target, while the first chemically processed product was an electroplated reference source of 60 Co. The first processed radiochemical was the carrier-free H 2 SO 4 of 35 S. Since then, 131 I and 32 P for medical uses, colloidal 198 Au, colloidal Cr 32 PO 4 , chemicals containing 203 Hg, organic compounds labelled with 125 I, 131 I, 3 H and 14 C and smoke detectors have been produced to date. In addition, 22 Na, 54 Mn, 57 Co, 88 Y, 109 Cd have been prepared from a cyclotron. Now about 140 kinds of products can be supplied, and 60% of the users are the hospitals with nuclear medicine department. The present status of the kinds and production figures of nuclear medicines, radiopharmaceuticals, labelled compounds, radiation sources, and some works in progress are reported. General aspects of the application of radioisotopes in China are also described. Radioisotopes have been applied to agriculture, industry, medicine, and sciences such as physics, chemistry, biology and geography. (Wakatsuki, Y.)

  4. Economic Feasibility Study for the Utilization of Egyptian Reactor (ETRR-2) in Radioisotope Production

    International Nuclear Information System (INIS)

    El-Kolaly, M; El-Gameel, E.A.

    2011-01-01

    The present study was carried out to discus the economic feasibility study of local radioisotope production in Egyptian Atomic Energy Authority. This study was divided into three sections; the first section included the marketing study which based on the expectation of the local demand and surplus production to export from 99 Mo production. The second section discussed the financial analysis and provided a model for calculating the cost per operation hour and per curie from production. The financial analysis discussed the profitable analysis and project sensitivity to change in cost and revenue. The third section discussed the effect of this project on the national return as the national income, employment, social rate of return and trade balance. This study was carried out according to the method adopted by the International Bank for Development taking into consideration the impact of applying radioisotope production technology on the society.

  5. Experiences in radioisotope production in the German Democratic Republic with special reference to radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.

    1988-01-01

    Radioisotope production has been carried out in the German Democratic Republic for 30 years. Based on a 10 MW research reactor, a cyclotron and certain irradiation facilities at units of national nuclear power stations, a widespread assortment of radioisotopes is produced with emphasis to radiopharmaceuticals as the main materials. Domestic production covers the national demand in these products where the production is technologically feasible under our conditions. A complete supply of the users in the country (more than 7000 licences) is accomplished by an intense co-operation with neighbouring countries, including mutual assistance in reactor shut down periods and supply with special radioactive materials and products. International co-operation within the framework of the IAEA takes place, mainly as scientific and technological assistance to many developing countries. (author)

  6. Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioisotopes

    International Nuclear Information System (INIS)

    2008-09-01

    Technetium-99m ( 99m Tc), the daughter of Molybdenum-99 ( 99 Mo), is the most commonly used medical radioisotope in the world. It accounts for over twenty-five million medical procedures each year worldwide, comprising about 80% of all radiopharmaceutical procedures. 99 Mo is mostly prepared by the fission of uranium-235 targets in a nuclear reactor with a fission yield of about 6.1%. Currently over 95% of the fission product 99 Mo is obtained using highly enriched uranium (HEU) targets. Smaller scale producers use low enriched uranium (LEU) targets. Small quantities of 99 Mo are also produced by neutron activation through the use of the (n, γ) reaction. The concept of a compact homogeneous aqueous reactor fuelled by a uranium salt solution with off-line separation of radioisotopes of interest ( 99 Mo, 131 I) from aliquots of irradiated fuel solution has been cited in a few presentations in the series of International Conference on Isotopes (ICI) held in Vancouver (2000), Cape Town (2003) and Brussels (2005) and recently some corporate interest has also been noticeable. Calculations and some experimental research have shown that the use of aqueous homogeneous reactors (AHRs) could be an efficient technology for fission radioisotope production, having some prospective advantages compared with traditional technology based on the use of solid uranium targets irradiated in research reactors. This review of AHR status and prospects by a team of experts engaged in the field of homogeneous reactors and radioisotope producers yields an objective evaluation of the technological challenges and other relevant implications. The meeting to develop this report facilitated the exchange of information on the 'state of the art' of the technology related to homogeneous aqueous solution nuclear reactors, especially in connection with the production of radioisotopes. This publication presents a summary of discussions of a consultants meeting which is followed by the technical

  7. The MAPLE-X concept dedicated to the production of radio-isotopes

    International Nuclear Information System (INIS)

    Heeds, W.

    1985-06-01

    MAPLE is a versatile new Canadian multi-purpose research reactor concept that meets the nuclear aspirations of developing countries. It is planned to convert the NRX reactor at Chalk River Nuclear Laboratories into MAPLE-X as a demonstration prototype of this concept and thereafter to dedicate its operation to the production of radio-isotopes. A description of MAPLE-X and details of molybdenum-99 production are given

  8. Radiation protection in cyclotron and radioisotope production laboratories of IEN - (Instituto de Engenharia Nuclear - CNEN)

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Silva, J.J.G.

    1988-01-01

    The Cyclotron at Instituto de Engenharia Nuclear is used for the radioisotope production, neutron production and irradiation damages analysis, etc. The risks associated with the operation and maintenance of cyclotron and the neutron radiation of wide energy spectrum, external and internal contamination. A summary of the radioprotection program for these areas are show and the results obtained from the air and surface analysis, liquid efluents and equivalentes doses of workers of the several activities are given. (Author) [pt

  9. Internal dosimetry from IPEN workers involved in the medical radioisotopes production

    International Nuclear Information System (INIS)

    Cesar, R.B.P.; Mesquita, C.H. de

    1988-01-01

    The internal dose from IPEN workers involved in the medical radioisotopes products is related. In the workers population, six groups were classified: development and research, routine production, quality control, package, radioprotection supervision and maintenance. The internal doses were calculated according to the methodology described by the ICRP-30, using resuls from a whole-body counter. The results described were obtained from 970 whole-body radioactivity measurements during the last three years (1985 a 1987). (author) [pt

  10. An INVAP perspective on the production of medical radioisotopes: past and present

    International Nuclear Information System (INIS)

    Salvatore, M.

    2009-01-01

    This presentation gives a perspective on medical radionuclide production methods from INVAP, Argentina. INVAP is a company headquartered in Argentina and is involved amongst other activities in nuclear, medical and scientific equipment. It describes INVAP's involvement in research reactor projects in a number of countries around the world. The paper describes a number of turn-key facilities for the production of radioisotopes for medicine, industry and research activities.

  11. Radioisotope production experience at the Cintichem 5-MW research reactor

    International Nuclear Information System (INIS)

    McGovern, J.J.

    1993-01-01

    The Cintichem radiochemical production facility was constructed in the late 1950s and became operational in October of 1961. The facility was originally designed and constructed by Union Carbide Corporation for research and development of nuclear technology with the ultimate objective of exploiting it commercially. Research projects were conducted in the fields of direct energy conversion for the production of electric power and chemical synthesis, neutron spectrometry, nuclear fuel cycle development, and radiochemical production. Radiochemical production for medical applications was the only development project that was successfully commercialized

  12. Production expansion continues to accelerate

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production

  13. Impact of chemistry on production and utilization of radioisotopes and related products

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The year 2011, declared as the International Year of Chemistry (IYC), commemorates the centenary of the award of Nobel Prize in Chemistry to Madam Curie for her pioneering work on the discovery of Radium and Polonium. Her invaluable discovery and her other research pursuits, as well as other subsequent discoveries in nuclear sciences, including by her daughter and son-in-law - Irene Curie and Frederic Joliot - who in 1935 discovered the phenomenon of artificially induced radioactivity (that later bagged the Nobel Prize), led to several noteworthy applications. The author, as a member of 'Indian radioisotope family' and the DAE programmes on radioisotopes and related radiation technology since August 1972, narrates in this article a series of select chemistry-related milestones that enabled vital developments in the production of isotope products and their applications. Ingenious and often simple chemistry-based solutions instituted by the researchers stand out in the enormous progress achieved over the years and highly significant practical applications rendered a reality. Appropriate examples can be cited from both the Indian scenario and international developments over the past nearly four decades. The long list will include inter alia the following: change of eluent from dilute nitric acid to normal saline to obtain medical-grade pertechnetate from molybdate adsorbed an acidic alumina (ushering in 99m Tc generators for (radio)pharmacy use); premixing a reducing agent like stannous chloride with ligand and freeze-drying the mixture - 'lyophilised kit' - (providing an easy access to 99m Tc radiopharmaceuticals); introduction of an iodine atom in place of an aryl hydrogen as a non-isotopic label in organic compound of interest (birth of radioiodinated compounds for biomedical use); bifunctional chelates designed to link radiometals with biological or pharmaceutical compound (radiolabeled biological analogues for medical use); nucleophilic substitution by fluoride

  14. Modelling study on production cross sections of {sup 111}In radioisotopes used in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Ayhan; Korkut, Turgay [Sinop Univ. (Turkey). Faculty of Engineering; Yigit, Mustafa [Aksaray Univ. (Turkey). Faculty of Science and Arts; Tel, Eyyup [Osmaniye Korkut Ata Univ. (Turkey). Faculty of Science and Arts

    2015-07-15

    Radiopharmaceuticals are radioactive drugs used for diagnosis or treatment in a tracer quantity with no pharmacological action. The production of radiopharmaceuticals is carried out in the special research centers generally using by the cyclotron systems. Indium-111 is one of the most useful radioisotopes used in nuclear medicine. In this paper, we calculated the production cross sections of {sup 111}In radioisotope via {sup 111-114}Cd(p,xn) nuclear reactions up to 60 MeV energy. In the model calculations, ALICE/ASH, TALYS 1.6 and EMPIRE 3.2 Malta nuclear reaction code systems were used. The model calculation results were compared to the experimental literature data and TENDL-2014 (TALYS-based) data.

  15. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1991-09-01

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG ampersand G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref

  16. Operational aspects of the radiological control in a radioisotopes plant production

    International Nuclear Information System (INIS)

    Corahua, A.

    1996-01-01

    The purpose of this paper is to inform about the results obtained in the control operations carried out by the radioprotection area of the radioisotopes plant production during 1994 and then were compared with the limits established by the regulations of radiological radioprotection. In the general inter-texture of the activities that are developed in the radioisotopes plant production, the carried out controls are: area monitoring, air monitoring, personnel monitoring, monitoring in the expedition of radioactive material and monitoring and control in the evacuation of solid and liquid wastes. The result obtained in the present paper states that the doses received by the exposed occupationally staff are below the allowed limits. (author). 3 refs

  17. Fixing tools of targets for radioisotope production in the RA10

    International Nuclear Information System (INIS)

    Peirone, M.; Coleff, A.; Chasseur, A.

    2012-01-01

    The RA-10 project is about the design and construction of a reactor for radioisotopes production and scientific research in the nuclear area. Most of the reactor design comes from INVAP SE, however some of the design job was performed in CNEA, i.e. the so called Outer Core Experimental Devices (DEEN) and their interfaces with the Reflector Tank were designed in CNEA and the documentation of the basic design was recently released (author)

  18. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes

    International Nuclear Information System (INIS)

    Basile, D.; Birattari, C.; Bonard, M.; Salomone, A.; Goetz, L.; Sabbioni, E.

    1981-01-01

    Many arsenic radionuclides have come to be used as tracers in biology and in the study of environmental pollution of both water and soil. In nuclear medicine, radioactive 74 As has been employed as a positron emitter for the localization of brain tumors, cerebral occlusive vascular lesions, arterious-venous malformations, etc. The aim of the work described was to study the excitation functions for the production of the arsenic radioisotopes from targets of natural germanium via nuclear reactions (p, xn). (author)

  19. Research on methods of radioisotope production in CEFR

    International Nuclear Information System (INIS)

    Yu Hong

    2003-01-01

    The methods of isotope production in CEFR (China Experimental Fast Reactor) and the preliminary design of isotope assembly were introduced briefly in the paper. Isotope 32 P, 33 P, 35 S and 89 Sr can be produced in core area and 14 C, 51 Cr and 60 Co can be produced in radial shield area in CEFR with special isotope assembly. (author)

  20. Present situation of the production and use of radioisotopes in France

    International Nuclear Information System (INIS)

    Fisher, Charlie

    1974-01-01

    As the sole large scale producer of radioisotopes in France, the Commissariat a l'Energie Atomique is keeping up pace with all developments in medical, biological and industrial areas. This production will reach the turnover close to 40 million F in 1973. About 65% of the products will go to medical market, 10% to biology and the remaining 25% to industry. As medical products, many radioisotopes are used for in-vivo diagnosis, while radioimmunology techniques are well known in in-vitro diagnosis. There has been very few noticeable development in therapeutics. Also there is steadily increasing demand for 14 C, 3 H and 13 C-labelled materials which are used to study metabolism of natural substances and drugs. The industrial utilization of radioisotopes in France is developed by CEA as well as several industrial companies. Trend must be analyzed for the different segments of the market which includes tracer utilization, instrumentation, large source technology such as sterilization of medical supplies, activation analysis and isotopic generators. (Wakatsuki, Y.)

  1. Radioisotope production for medical and non-medical application at the Nuclear Energy Unit (UTN)

    International Nuclear Information System (INIS)

    Mohamad Awang; Zulkifli Mohamad Hashim; Yusof Azuddin Ali

    1986-01-01

    Radioisotopes are produced by using a low power research reactor, TRIGA MARK II situated at UTN. Products intended for use as radiopharmaceuticals undergo a more stringent precaution. The solvent extraction technique used to separate 99 m TC from the radioactive solution of Potassium molybdate (K 2 99 Mo0 4 ) is explained in detail. The specific activity of 99Mo obtained at a neutron flux of 2.5 x 10 12 n/cm 2 , s ranges from 1.75 mCi 99 Mo/g MoO 3 to 6.25 mCi 99 Mo/g MoO 3 . However, the specific activity of 99 Mo obtained could be increased by a factor of 6 using the central thimble facility. There are 14 radioisotopes being currently produced. Commonly used cold kits for 99m TC labelling are also produced. Sn-MDP kit for bone scintigraphy is prepared under aseptic environment and freeze-drived. Products are terminally sterilized using γ-irradiation. Uptake studies done on laboratory animals indicate good bone uptake. A few radioisotopes and radiopharmaceuticals products to be produced by UTN in future are reviewed. (author)

  2. Review of Compact Commercial Accelerator Products and Applications.

    Science.gov (United States)

    Jongen, Y.

    1997-05-01

    Historically, particle accelerators were developed initially for nuclear, then for particle physics research. From this research resulted applications of accelerators in the field of medicine and industry. These application-oriented accelerators are generally built commercially, and they often emphasize other qualities than the accelerators for research. The research applications frequently require energies or beam qualities at the limit of the existing technologies. They offer the largest flexibility in term of particles and beam properties, but are more complex, more expensive and often require large and highly qualified staff to operate and maintain them. In contrast, most applications are done with low to moderate energy protons or electrons, but often with large average beam power. The accelerators are generally specialized for a specific application, and are therefore very simple and inexpensive to operate. The author will review some applications in the field of medicine, such as the production of radio-isotopes for medical diagnostic or the production of electrons, protons or fast neutron beams for cancer therapy. In the industrial field, high power electron beam are used for sterilization and for the modification of materials. Log No. 1001

  3. Production of radioisotopic gamma radiation sources in JAERI

    International Nuclear Information System (INIS)

    Katoh, Hisashi; Kogure, Hiroto; Suzuki, Kyohei

    1980-04-01

    The present state of production of gamma radiation sources in Japan Atomic Energy Research Institute (JAERI) is described. Sources of 192 Ir, 60 Co and 170 Tm for industrial and 198 Au and 192 Ir for medical applications are produced and delivered routinely by JAERI. Prefabricated assembly targets are irradiated in JRR-2, JRR-3, JRR-4 or JMTR. The irradiated targets are disassembled in a heavy density concrete cave or a lead-shielded cell, depending on the level of radioactivity. The yield of radioactivity in each target is measured with the aid of an ionization chamber. Where necessary, irradiated targets are encapsulated hermetically in capsules of aluminium, stainless steel or other material. The yield of radioactivity is estimated in relation with the burn-up of target nuclide and product nuclide. (author)

  4. Development of the radioisotope production facility for the HANARO

    International Nuclear Information System (INIS)

    Lee, Ji Bok; Wu, J. S.; Baik, S. T.

    1998-06-01

    Hot cell and related facilities were developed in the RI production building of the HANARO. 1. development of concrete H/C and related components 2. development of lead H/C and related components 3. development of the hydraulic transfer system 4. development of radiation monitoring system 5. development of purification system for Co-60 storage pool 6. development of the fire fighting system for H/C 7. development of the experimental equipment. (author). 15 figs

  5. Radioisotope production with CV-28 in Rio de Janeiro

    International Nuclear Information System (INIS)

    Braghirolli, A.M.; Britto, J.L.Q. de; Bastos, M.A.V.; Aleixo, L.C.M.

    2001-01-01

    Since Brazil's nuclear program began in the seventies with the construction of Angra dos Reis Nuclear Plant, Brazilians have been excluded from participation in this technological process, primarily due to the political events of that time. This exclusivity has resulted in a major segment of the current population being unaware of the wide range of applications and benefits of nuclear technology. In the past few decades, Brazil has invested little in the development of its own nuclear technology. The progress that has been achieved is the result of the research and hard work of dedicated professionals who have struggled to bridge this technological gap since the 1970's. EEN-lnstitute of Nuclear Engineering is one of the research niches in the country that, in spite of the monopoly of knowledge, bureaucracy and insufficient resources, has been carrying out nuclear engineering projects and products. Nowadays, these are extremely useful to society in the most diverse market segments. For the past three years, IEN has invested R$ 2 million in adapting its facilities aiming at producing iodine-123 ultra-pure. In 1998 it started producing this cyclotron radiopharmaceutical in large scale, thus giving new directions to nuclear medicine in Brazil. The present policy of the IEN, regarding priorities and Institute's goals for the coming years has been defined. The Institute will concentrate its efforts on technological research, that is, identify the country's needs in nuclear engineering and providing society with methodologies, products and services that can effectively contribute to improve life quality in Brazil. The lEN's policy has been committed to quality, deadlines, costs and results as well as to research work based on the population's needs and aimed at meeting them efficiently. Several projects have been given priority, and great effort has been aimed at optimizing human and financial resources

  6. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    Science.gov (United States)

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chemical Process for Treatment of Tellurium and Chromium Liquid Waste from I-131 Radioisotope Production

    International Nuclear Information System (INIS)

    Zainus-Salimin; Gunandjar; Dedy-Harsono; Hendro; Sugeng-Purnomo; Mohammad-Faruq; Zulfakhri

    2000-01-01

    The I-131 radioisotope is used in nuclear medicine for diagnosis and therapy. The I-131 radioisotope is produced by wet distillation at Bandung Nuclear Research Center and generated about 4,875 Itr of liquid waste containing 2,532.8 ppm of tellurium and 1,451.8 ppm chromium at pH 1. Considering its negative impact to the environment caused by toxic behaviour of tellurium and chromium, it is necessary to treat chemically that's liquid waste. The research of chemical treatment of tellurium and chromium liquid waste from I-131 radioisotope production has been done. The steps of process are involved of neutralisation with NaOH, coagulation-flocculation process for step I using Ca(OH) 2 coagulant for precipitation of sulphate, sulphite, oxalic, chrome Cr 3+ , and coagulation-flocculation process for step II using BaCI 2 coagulant for precipitation of chrome Cr 6+ and tellurium from the supernatant of coagulation in step I. The best result of experiment was achieved at 0.0161 ppm of chromium concentration on the supernatant from coagulation-flocculation of step I using 3.5 g Ca(OH) 2 for 100 ml of liquid waste, and 0.95 ppm of tellurium concentration on the final supernatant from coagulation-flocculation by of step II using 0.7 g BaCI 2 for supernatant from coagulation of step I. (author)

  8. Utilization of the Dalat Research Reactor for Radioisotope Production, Neutron Activation Analysis, Research and Training

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Duong Van Dong; Cao Dong Vu; Nguyen Xuan Hai

    2013-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW pool type reactor loaded with a mixed core of HEU (36% enrichment) and LEU (19.75% enrichment) fuel assemblies. The reactor is used as a neutron source for the purposes of radioisotopes production, neutron activation analysis, basic and applied research and training. The reactor is operated mainly in continuous runs of 108 hours for cycles of 3–4 weeks for the above mentioned purposes. The current status of safety, operation and utilization of the reactor is given and some aspects for improvement of commercial products and services of the DNRR are also discussed in this paper. (author)

  9. Production of radioisotopes at the Boris Kidric Institute of Nuclear Sciences at Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Teofilovski, C.

    1969-01-01

    The investigations in order to master the production of radioisotopes were commenced simultaneously with the beginning of RA nuclear reactor construction at Vinca, in 1956. A new organization division - Laboratory for chemistry of high activity accepting beside other problems also the programme for mastering the regular production of radioactive material was formed in 1959. Various problems during the realization of this programme have been solved, starting with the staff training for work with radioactive material on the high level activity (to 7500 Ci/source), construction and equipment of the laboratory area for safe work, up to development of the whole series of chemical-technological procedures and techniques for regular production of various radioactive products, as well as the methods for their chemical, radiometric and pharmaceutical control. Owing to the successful realization of this programme, the Institute 'Boris Kidric' supplies to-day regularly 110 organizations in the country with various radioactive products, applied in medicine, industry and research. The annual product of the radioactive solutions of radioisotopes J-131, Au-198, P-32, S-35 etc., amounts to about 75 Ci, radiographic sources Ir-192 and Co-60 to 2000 Ci and Co-60 sources for teletherapy and the other applications to many thousand curies (author) [sr

  10. Application of radioisotope methods of investigation and control techniques in tube production

    International Nuclear Information System (INIS)

    Chizh, V.A.; Drabkin, L.A.

    1975-01-01

    Various spheres of radioactive isotopes application of closed and open type in tube production are described. Due to the usage of radioactive indicator method in combination with physicochemical methods and metallography new data are obtained in the theory and practice of tube centrifugal casting, rolling and pressing. Adsorption properties of lubricants and element distribution in the joint weld region of the big diameter tubes are investigated. The application of radioactive isotopes as ionizing radiation source made it possible to develop some radioisotope methods and instruments for tube wall thickness and the wall thickness difference control. Short characteristics of such instruments are given

  11. Evaluation of Radioisotope Production Process of 153Sm and 153Sm-EDTMP Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kadarisman; Sri Hastini; Yayan Tahyan; Abidin; Dadang Hafid; Enny Lestari

    2007-01-01

    Experiments on the process of 153 Sm radioisotope and labeling of 153 Sm-EDTMP radiopharmaceuticals were carried out. This experiments included preparation of Sm 2 O 3 target, dissolution of post irradiation, determination of radioactivity concentration of 153 Sm radioisotope, radionuclide purity, EDTMP labeling, determination of radiochemical purity and pH. In these experiments the total radioactivity 153 Sm product is round about 2845.83 mCi to 36963.31 mCi, or with the radioactivity concentration between 474 mCi/ml to 6160.55 mCi/ml in the SmCl 3 solution form, each its volume is 6.0 ml, and the samarium content is 5.76 mg/ml, and the radionuclide purity of 153 Sm is 100 %. All of the 153 Sm- EDTMP radiopharmaceuticals product are fulfilled requirements the radioactivity concentration, Sm content, radiochemical purity and pH. The radioactivity concentration of 153 Sm-EDTMP radiopharmaceuticals is 37.50 mCi/ml (minimum) to 283.50 mCi/ml (highest). The pH 7.5 were 8 products, and the rest are pH 8.5. Radiochemical purity of 153 Sm-EDTMP are round about 90.00 % to 99.44 %. (author)

  12. Evaluation of the OSCAR-4/MCNP calculation methodology for radioisotope production in the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Karriem, Z.; Zamonsky, O.M.

    2014-01-01

    The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)

  13. Quantitative radioisotope measurements with the NSF-Arizona regional accelerator facility

    International Nuclear Information System (INIS)

    Zabel, T.H.; Damon, P.E.; Donahue, D.J.; Jull, A.J.T.

    1983-01-01

    Results of tests on the tandem accelerator mass spectrometer (TAMS) at the University of Arizona are presented. These results demonstrate: (a) measurements of 14 C/ 13 C ratios with precisions of a few percent can be made in a period of one to several hours; (b) measurements with precisions of 0.5% have been made in which the uncertainties were mainly statistical and in which contributions to the uncertainty of machine fluctuations were negligible; (c) precise measurements of the ratio of 14 C/ 13 C in samples of N.B.S. oxalic acid and of 1890 wood are consistent with the accepted value of that ratio; (d) the real signal from a 44,000 year old sample is equal to the background rate produced from a dead carbon sample. In addition, results of some measurements on archaeological samples are presented

  14. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  15. Modernization of the Radioisotopes Production Laboratory of the La Reina Nuclear Center in Chile: Incorporating advanced concepts of safety and good manufacturing practices

    International Nuclear Information System (INIS)

    Lagos Espinoza, Silvia

    2014-01-01

    A radioisotopes and radiopharmaceuticals production laboratory was established in Chile in the 1960s for research activities. From 1967 until January 2012, it was dedicated to the manufacturing of radioisotopes and radiopharmaceuticals for medical diagnosis and treatment purposes. In 2012, modernization of the facility’s design and technology began as part of the IAEA technical cooperation project, Modernizing the Radioisotopes Production Laboratory of La Reina Nuclear Centre by Incorporating Advanced Concepts of Safety and Good Manufacturing Practices, (CHI4022)

  16. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  17. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  18. Investigation of the radionuclide inventory and the production yields of the target stacks at the PEFP radioisotope production facility

    International Nuclear Information System (INIS)

    Yoon, Sang-Pil; Hong, In-Seok; Cho, Yong-Sub

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) will construct a radioisotope production facility by using the nuclear reaction between the 100-MeV proton beam and the solid target. For investigating the radionuclide inventory and the production yield of the radioisotope production facility, we have optimized the thickness of the prototype target stacks by using a SRIM calculation. The target stacks consist of RbCl encapsulated in inconel alloy, Zn metal, and Ga metal encapsulated in niobium. Typical beam parameters were 300 μA and 95 hours. An inventory of all generated radionuclide activities is mandatory in order to prepare the operation scenario and design the hot cell. The Monte Carlo code MCNPX was used to investigate what radionuclide is generated. The obtained radionuclide inventory indicated that about 100 radionuclides were generated and that the total radioactivity of the irradiated target stacks was 1324.1 Ci at the end of the bombardment. The production yields of Sr-82, Cu-67, and Ge-68 were 3.79 Ci, 2.74 Ci, and 1.23 Ci at the end of the bombardment.

  19. Radioactive wastes from Angra-1 plant and radioisotope production to medical and industrial uses

    International Nuclear Information System (INIS)

    Meldonian, Nelson L.; Mattos, Luis A.T. de

    1997-01-01

    Based on false premises, critics point of view have frequently lead part of Brazilian public opinion to impeach the validity of nuclear energy applications.The critics allege that social implications discredit those applications. In this context, treated as if not known theirs diverse characteristics, great noise has been created about radioactive wastes related to diverse nuclear industry processes. Due to the great misunderstanding on the subject, this paper presents the characteristics and destinations of radioactive wastes related to nucleoelectric generation and to radioisotopes production in Brazil. Even so someone could point out that those characteristics are diverse, we discuss in a comparative way the benefits of those two kinds of nuclear applications. (author). 5 refs., 6 tabs

  20. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  1. Production and radiochemical separation of 203Pb radioisotope for nuclear medicine

    International Nuclear Information System (INIS)

    Szuecs, Z.; Takacs, S.; Andrasi, D.; Kovacs, B.

    2012-01-01

    Complete text of publication follows. The heavy metal pollution due to their industrial production, waste repository or accident as the cyanide spill in river Tisza in 2002, increase the scientific interest for using an ideal trace isotope for monitoring these type of events. The lead is one of the most toxic and commonly used heavy metal, its poisoning is often deadly because very difficult to recognize and identify. The neuro-scientific study of biodegradation effect of lead could be an impressive scientific field of application of 203 Pb radioisotope. However the targeted radionuclide therapy especially the α-emitting radioisotope therapy is also strongly interested to find an ideal tracer for the 213 Bi and 212 Pb therapy. Therefore the 203 Pb is a potential radioisotope for this role due to its radiation behaviour and as heavy metal element. The 203 Tl(p,n) 203 Pb nuclear reaction was chosen for the production. The irradiation was done at the compact cyclotron of Atomki with proton beam 14.5 MeV energy and beam current of 7 μAs. The thickness of the target material was 840 μm, the irradiation time was 3 hours and the produced activity was 40 MBq at EOB. It corresponds to 1.87 MBq/μAh physical yield of the reaction which correlating with the cross section curve. A new technique was developed for target preparation. The metal Tl was pressed into a copper backing and covered with a HAWAR foil with thickness of 11 μm. The covering foil saved the surface of the Tl from the oxidation and also transferred the dissipating heat to the cooling He gas. The back side of the target was cooled with pressured cold water. The irradiated Tl target was pressed out from the copper backing, which had only the thickness of 0.2 mm. Then the Thallium was dissolved in nitric acid. The excess acid was evaporated slowly. The nitrate form was transferred to chloride form by 8 mol/dm 3 HCl and the Thallium was kept in 3+ oxidation stage by hydrogen peroxide. The separation was

  2. Transmutation of fission products through accelerator

    International Nuclear Information System (INIS)

    Nakamura, H.; Tani, S.; Takahashi, T.; Yamamura, O.

    1995-01-01

    The transmutation of fission products through particle accelerators has been studied under the OMEGA program. The photonuclear reaction has also been investigated to be applied to transmuting long-lived fission products, such as Cesium and Strontium, which have difficulties on reaction with neutrons due to its so small cross section. It is applicable for the transmutation if the energy balance can be improved with a monochromatic gamma rays in the range of the Giant Dipole Resonance generated through an excellent high current electron linear accelerator. The feasibility studies are being conducted on the transmutation system using it through an electron accelerator. (authors)

  3. Stabilization and shutdown of Oak Ridge National Laboratory's Radioisotopes Production Facility

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1992-01-01

    The Oak Ridge National Laboratory (ORNL) has been involved in the production and distribution of a variety of radioisotopes for medical, scientific and industrial applications since the late 1940s. Production of these materials was concentrated in a number of facilities primarily built in the 1950s and 1960s. Due to the age and deteriorating condition of these facilities, it was determined in 1989 that it would not be cost effective to upgrade these facilities to bring them into compliance with contemporary environmental, safety and health standards. The US Department of Energy (DOE) instructed ORNL to halt the production of isotopes in these facilities and maintain the facilities in safe standby condition while preparing a stabilization and shutdown plan. The goal was to place the former isotope production facilities in a radiologically and industrially safe condition to allow a 5-year deferral of the initiation of environmental restoration (ER) activities. In response to DOE's instructions, ORNL identified 17 facilities for shutdown, addressed the shutdown requirements for each facility, and prepared and implemented a three-phase, 4-year plan for shutdown of the facilities. The Isotopes Facilities Shutdown Program (IFSP) office was created to execute the stabilization and shutdown plan. The program is entering its third year in which the actual shutdown of the facilities is initiated. Accomplishments to date have included consolidation of all isotopes inventory into one facility, DOE approval of the IFSP Environmental Assessment (EA), and implementation of a detailed management plan for the shutdown of the facilities

  4. Treatment of Radioactive Waste Generated from the Production of Molybdenum-99 Radioisotope

    International Nuclear Information System (INIS)

    Aisyah; Herlan Martono

    2007-01-01

    The 99 Mo is produced as the parent radionuclide for 99m Tc radioisotope which is used as medical radiodiagnostic for certain disease. In Indonesia 99 Mo is produced by irradiating target of high enriched U in the reactor. The characteristics of radioactive waste from the production of 99 Mo depend on the U enrichment of the target and the irradiation time. The characteristic of the radioactive waste can be directly determined by laboratory analysis or by ORIGEN 2 code. Producing 99 Mo from high enriched uranium target will produce radioactive waste containing 235 U, 238 U and fission product, while from low enriched uranium target will produce radioactive waste containing large amount of 239 Pu. Plutonium-239 is a long half life actinide that need to be separated from the fission product due to a different treatment is required. The fission product, after it is allowed to decay then needs to be categorized as low or medium level waste, while 239 Pu are categorized as transuranic waste. The disposal of low and medium level waste are stored in near surface disposal, while the disposal of transuranic waste is stored in a geologic formation. (author)

  5. Radio-isotope production scale-up at the University of Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Nickles, Robert Jerome [Univ of Wisconsin

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing

  6. Production and world-wide distribution of radioisotopes and allied products from NTP at Pelindaba, South Africa

    International Nuclear Information System (INIS)

    Louw, P.A.

    2001-01-01

    Nuclear Technology Products (NTP) a business division of the South African Nuclear Energy Corporation Ltd. (NECSA) is today a leading supplier of a range or radioisotope and supporting products to markets throughout the world. To achieve this status in the face of large technological, logistical and business barriers to entry has required the development of integrated and effective processes from a diverse and unconsolidated range of expertise and other resources. The various facilities and competencies established at NECSA over a period of 40 years had as their objective the accomplishment of strictly non-commercial strategic imperatives. Major emphasis was placed at Pelindaba on development of the capability to beneficiate the country's resources of uranium which are extracted as a by-product of gold mining. Fuel enrichment processes (using a method unique to NECSA) and nuclear fuel fabrication facilities were developed and commissioned during the period 1975 - 1990 and substantial quantities of enriched and depleted uranium material was produced. A small amount of locally produced, highly enriched fuel has been used to power the 20 MW SARARI -1 Research Reactor at Pelindaba which has been in operation since 1965. Major political and economic changes affecting South Africa gave rise, in the late 1980s, to the necessity for a fundamental strategic reorientation of NECSA. Over a period of time the fuel enrichment and fabrication programmes were terminated and ever greater emphasis was placed on development of businesses from established, diverse facilities and competencies with the objective of promoting increased financial independence and long term viability for the organisation. It was at this time that NTP the business responsible for production and marketing of radiation-based products at NECSA, was established. The various developments which facilitated the capacity of NTP to accede to its current position as a significant and growing provider of

  7. A novel approach to the production of medical radioisotopes: the homogeneous SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2015-01-01

    In 2009, the unexpected 15-month outage of the Canadian NRU nuclear reactor resulted in a sudden 30% world shortage, with higher shortages experienced in North America than in Europe. Commercial radioisotope production is from just eight nuclear reactors, most being aging systems near the end of their service life. This paper proposes a more efficient production and distribution model. Tc-99m unit doses would be distributed to regional hospitals from ten integrated 'industrial radiopharmacies', located at existing licensed nuclear reactor sites in North America. At each site, one or more 20 kW Homogeneous SLOWPOKE nuclear reactors would deliver 15 litres of irradiated aqueous uranyl sulfate fuel solution daily to industrial-scale hot cells, for extraction of Mo-99; and the low-enriched uranium would be recycled. Purified Mo-99 would be incorporated in large Mo-99/Tc-99m generators for extraction of Tc-99m five days a week; and each automated hot-cell facility would be designed to load up to 7,000 Tc-99m syringes daily for road delivery to all of the nuclear medicine hospitals within a 3-hour range. At the current price of $20 per unit dose, the annual gross income from 10 sites would be approximately $360 million. The Homogeneous SLOWPOKE reactor evolved from the inherently safe SLOWPOKE-2 research reactor, with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors at the end-of-core life, enabling them to continue their primary missions of research and education, together with full time commercial radioisotope production. The Homogeneous SLOWPOKE reactor was modelled using both deterministic and probabilistic reactor simulation codes. The homogeneous fuel mixture is a dilute aqueous solution of low-enriched uranyl sulfate containing approximately 1 kg of U-235. The reactor is controlled by mechanical absorber rods in the beryllium reflector. Safety analysis was carried out for both normal operation and transient conditions. The most severe

  8. A novel approach to the production of medical radioisotopes: the homogeneous SLOWPOKE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [retired, Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Royal Canadian Navy, Ottawa, Ontario (Canada)

    2015-03-15

    In 2009, the unexpected 15-month outage of the Canadian NRU nuclear reactor resulted in a sudden 30% world shortage, with higher shortages experienced in North America than in Europe. Commercial radioisotope production is from just eight nuclear reactors, most being aging systems near the end of their service life. This paper proposes a more efficient production and distribution model. Tc-99m unit doses would be distributed to regional hospitals from ten integrated 'industrial radiopharmacies', located at existing licensed nuclear reactor sites in North America. At each site, one or more 20 kW Homogeneous SLOWPOKE nuclear reactors would deliver 15 litres of irradiated aqueous uranyl sulfate fuel solution daily to industrial-scale hot cells, for extraction of Mo-99; and the low-enriched uranium would be recycled. Purified Mo-99 would be incorporated in large Mo-99/Tc-99m generators for extraction of Tc-99m five days a week; and each automated hot-cell facility would be designed to load up to 7,000 Tc-99m syringes daily for road delivery to all of the nuclear medicine hospitals within a 3-hour range. At the current price of $20 per unit dose, the annual gross income from 10 sites would be approximately $360 million. The Homogeneous SLOWPOKE reactor evolved from the inherently safe SLOWPOKE-2 research reactor, with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors at the end-of-core life, enabling them to continue their primary missions of research and education, together with full time commercial radioisotope production. The Homogeneous SLOWPOKE reactor was modelled using both deterministic and probabilistic reactor simulation codes. The homogeneous fuel mixture is a dilute aqueous solution of low-enriched uranyl sulfate containing approximately 1 kg of U-235. The reactor is controlled by mechanical absorber rods in the beryllium reflector. Safety analysis was carried out for both normal operation and transient conditions. The most severe

  9. IPENS's social role in scientific and technological development of radioisotope and radiopharmaceutical production - (1950 -1980)

    International Nuclear Information System (INIS)

    Gordon, Ana Maria P.L.

    2009-01-01

    Some facts and figures are present in the existent interaction between the Instituto de Pesquisas Energeticas e Nucleares (IPEN) and the medical community. Among other characteristics, the IPEN has a permanent seat in the Biology and Nuclear Medicine Society and, the present Radiopharmacy Center, has had the continuous concern, since the Instituto de Energia Atomica (IEA) creation until today (2009), to perform an excellent approach with the medical faculty. In the past, some physicians would complete their courses in Europe and in the United States of America, and there noticed the importance of radioisotopes applications in medicine, mainly, in the beginning of these activities, with the I-131. Returning to Brazil, they requested that the former IEA, today IPEN researchers used the research reactor IEA-R1, installed in Sao Paulo, at Universidade Sao Paulo (USP) campus, for radioisotopes production. Then, in the late 1959, the first production line from the I-131 took place. The IPEN starts to accomplish what was planned as one of its targets, at the act of its official creation on August 31, 1956. From 1961 on, there was a continuous flux of I-131 and other radiopharmaceuticals production. The recovery and analysis of these happenings, in the Brazilian society cultural historic context, were partially published in different previous works. Nevertheless, history is dynamic and gains new interpretations, in the present research, from the reading of novel research sources, both primary and secondary, not explores so far - reports, interviews with IPEN researchers and papers published or divulged in meetings, either scientific or bureaucratic. This research is part of project supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), with the aim, among others, of contributing for the analysis of the transformations occurred in all of the IPEN research lines, plus the social role of this institution for science and technology development. The

  10. Specific features of the desion of a cyclotron for radioisotope production

    International Nuclear Information System (INIS)

    Akulova, N.V.; Bogdanov, P.V.; Ivanov, V.V.

    1979-01-01

    Results of development of an isochronous cyclotron for commercial production of Co 57 and Ga 67 isotopes are described. The accelerator is intended for proton acceleration up to 25 MeV at 1000-1500 mA intensity of inner beam and 200 mA intensity of external beam. An axial ion source with a hot cathode will be used in the cyclotron. Outer diameter of armour type electromagnet is 3130 mm, mass - 75 t, diameter of poles-150 cm and mean induction of magnetic field in a working gap amounts to 12 kgs. Accelerating chamber vessel is made of steel in the form of thick-wall hollow cylinder having 3130 mm outer diameter, 330 mm thickness and 380 mm height. Resonance system represents a quarter-wave line operating on 16.6 MHZ-frequency. Vacuum system is designed to produce and maintain residual pressure of 6.7x10 -4 Pa and 2.7x10 -3 Pa in the accelerating chamber which can be provided with two NDM-2 ion-getter pumps with an arc evaporator. The suggested constructive solution for electromagnet, accelerating chamber of the cyclotron and pumping system permitted to arrange the accelerator on the whole and to considerably decrease the level of ionizing radiations inside the chamber [ru

  11. Evaluation of the population dose due to the gaseous emission of a radioisotopes production unit

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Jacomino, V.M.F.; Sordi, G.-M.A.A.

    1990-05-01

    In order to control the emission of gaseous radioactive iodine from the unit responsible for the production of radioisotopes of IPEN-CNEN/SP, a discharge monitoring is carried out. In 1988 an activity of 65 GBq of I-131 was discharged to the environment. Based upon this value and the site analysis, the effective equivalent dose in the general public was evaluated for normal operation and for an incidental discharge. The evaluation was carried out by using a diffusion atmospheric model, 500 to 7000 m away from the discharge point and using 8 different wind direction sectors. The critical group was identified as being the people who lives 3000 m far from the discharge point, in the diffusion sector NW. The dose evaluated at this point is 10 9 times lower than the annual dose limit for individual of the public, according to Radiological Protection Standards. The derived limit for discharge of iodine was also evaluated and it was concluded that the IPEN-CNEN/SP can increase their production up to a level which results in an annual discharge of 1,5 x 10 12 of I-131. (author) [pt

  12. Production and supply of radioisotopes with reactors in north america and europe current status and future prospects

    International Nuclear Information System (INIS)

    Trevena, I.

    1994-01-01

    Reactors have played a key pole in the production of radioactive isotopes for medical applications for the past 50 years. This paper reviews current and future capabilities for the production and supply of radioactive isotopes used in nuclear medicine. It focuses primarily on the supply of fission product molybdenum-99, which is used to produce technetium-99m, the radioisotope most widely employed in nuclear medicine procedures. The significant infrastructure required for the production and supply of molybdenum-99 is detailed, and the capabilities of the major commercial suppliers in North America and Europe are discussed. Plans for increasing production capabilities in the future are also reviewed. (author)

  13. Routes for the production of isotopes for PET with high intensity deuteron accelerators

    Science.gov (United States)

    Arias de Saavedra, F.; Porras, I.; Praena, J.

    2018-04-01

    Recent advances in accelerator science are opening new possibilities in different fields of physics. In particular, the development of compact linear accelerators that can provide charged particles of low-medium energy (few MeV) with high current (above mA) allows for the study of new possibilities in neutron production and for new routes for the production of radioisotopes. Keeping in mind how radioisotopes are actually produced in dedicated facilities, we have performed a study of alternative reactions to produce PET isotopes induced by low-energy deuterons. We have fitted the EXFOR cross sections data, used the fitted values of the stopping power by Andersen and Ziegler and calculated by numerical integration the production rate of isotopes for charged particles up to 20 MeV. The results for deuterons up to 3 MeV are compared with the ones from cyclotrons, which are able to provide higher energies to the charged projectiles but with lower intensities. Our results indicate that using linear accelerators may be a good alternative for producing PET isotopes, reducing the problem of neutron activation.

  14. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  15. Assessment of the radiological control at the IPEN radioisotope production facility

    International Nuclear Information System (INIS)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Rodrigues, Demerval L.; Campos, Daniela; Nogueira, Paulo R.; Damato, Sandra R.; Pecequilo, Brigitte R.

    2014-01-01

    The main objective of this work is to evaluate the 2013 annual radiological control results in the radiopharmaceuticals areas of the Instituto de Pesquisas Energeticas e Nucleares, IPEN/SP, and the environmental radiological impact, resulting from the practices there performed. The current evaluation was performed through the analysis of the results obtained from occupational and environmental monitoring with air samplers and TL dosimeters. All monitoring results were compared with the limits established by national standards. The radionuclides detected by air sampling (in charcoal and paper filters) at the workplace during radioisotope production were 131 I, 99m Tc and 99 Mo, with activities concentrations values below the annual limits values. For the radioactive gaseous releases (Bq/m 3 ), the activities concentrations also remained below the maximum permissible values, excepting to 125 I release due to an unusual event occurred in a researcher laboratory, but the radiological impact to environmental was no significant. The occupational monitoring assessment was confirmed by the Environmental Radiological Monitoring Program results with air samplers and TL dosimeters. The mean annual background radiation at IPEN in 2013, according to the Environmental Radiological Monitoring Program results was 1.06 mSv. y -1 , below the ICRP 103 recommended limit of 20 mSv.y -1 for workers. (author)

  16. Present status of research on Re-186 radiopharmaceuticals at Radioisotope Production Center

    Energy Technology Data Exchange (ETDEWEB)

    Mutalib, A [Radioisotope Production Center, National Atomic Energy Agency Kawasan PUSPIPTEK, Serpong (Indonesia)

    1998-10-01

    Rhenium shows a close chemical similarity to technetium and is suitable for radiotherapy because the {beta}-emitting radionuclides {sup 186}Re (t{sub 1/2} 90 h, E{sub {beta}} = 1.1 MeV, E{sub {gamma}} = 137 keV) and {sup 188}Re (t{sub 1/2} = 17 h, E{sub {beta}} = 2.1 MeV). The {gamma}-emission associated with decay of {sup 186}Re is also useful in scintigraphy. The research on {sup 186}Re radiopharmaceuticals at Radioisotope Production Center has been carried out since April 1997. Interest in radioimmunotherapy (RIT) led us to the development of labeling antibodies with rhenium isotopes. Although there are several methods for coupling radiometal to antibody, we prefer an indirect labeling method in which a bifunctional chelating agent is used for coupling of {sup 186}Re to monoclonal antibodies. In this report we outline the study on the preparation of {sup 186}Re DMSA-TFP as precursor for labeling with monoclonal antibody. (author)

  17. Assessment of the radiological control at the IPEN radioisotope production facility

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.C.G.G.; Sanches, M.P.; Rodrigues, D.L.; Campos, D.; Nogueira, P.R.; Damatto, S.R.; Pecequilo, B.R.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The main objective of this work is to evaluate the 2013 annual radiological control results in the radiopharmaceuticals areas of the Nuclear and Energy Research Institute, IPEN/SP, Brazil and the environmental radiological impact, resulting from the practices there performed. The current evaluation was performed through the analysis of the results obtained from occupational and environmental monitoring with air samplers and TL dosimeters. All monitoring results were compared with the limits established by national standards. The radionuclides detected by air sampling (in activated carbon cartridges and filter paper) at the workplace during radioisotope production were {sup 131}I, {sup 99m}Tc and {sup 99}Mo, with activities concentrations values below the annual limits values. For the radioactive gaseous releases (Bq/m{sup 3} ), the activities concentrations also remained below the maximum admissible values, excepting to {sup 125}I release due to an unusual event occurred in a researcher laboratory, but the radiological impact to environmental was no significant. The occupational monitoring assessment was confirmed by the Environmental Radiological Monitoring Program results with air samplers and TL dosimeters. The mean annual background radiation at IPEN in 2013, according to the Environmental Radiological Monitoring Program results was 1.06 mSv. y{sup -1} , below the ICRP 103 recommended limit of 20 mSv.y{sup -1} for workers. (author)

  18. Preliminary definition of the design of a nuclear reactor for research and radioisotope production using natural uranium and heavy water

    International Nuclear Information System (INIS)

    Llagostera Beltran, J.I.

    1982-01-01

    A study was conducted about the evolution of the Brazilian importations of radioisotopes, from the beginning of the 70's since they have been increasingly used in the Country. In view of the limited production capacity of radioactive isotopes now existing in Brazil, a nuclear reactor type (natural uranium and heavy water) was defined, for research and production of radioisotopes, wich, besides providing, at least partially, the Brazilian needs of said isotopes, permits a large national participation in its project, construction and operating maintenance. The processes for heavy water production have been analyzed and it could be detected what is the best alternative for the production thereof, in low scale, in Brazil. The options concerning the definition of the main components of the reactor were justified and its most important features were determined, in relation to the neutronic and thermal aspects, being so defined its most significant parameters. The annual quantities were estimated, in terms of total and specific activity, for the radioisotopes that could be obtained by means of the proposed reactor, which, by now, are participating, to a large extent, in the total of Brazilian importation of radioactive isotopes. (Author) [pt

  19. ''Small'' accelerator, radionuclide and radiopharmaceutical production

    International Nuclear Information System (INIS)

    Ruth, T.J.; Wolf, A.P.

    1978-01-01

    The scope of this discussion is limited to the proton/deuteron accelerators capable of producing the positron emitting isotopes carbon-11, nitrogen-13, oxygen-15, and fluorine-18. Attention is focussed on the production process from the selection of the target gas to the synthesis of the desired radiopharamaceutical

  20. Development of indigenous technology at CNEN in the fields of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear techniques

    International Nuclear Information System (INIS)

    Mafra, O.

    1990-01-01

    The main objectives of the program developed at CNEN in the field of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear technique are described. (E.G.) [pt

  1. 99Mo production by 100Mo(n,2n)99Mo using accelerator neutrons

    International Nuclear Information System (INIS)

    Sato, Nozomi; Kawabata, Masako; Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Kin, Tadahiro; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Minato, Futoshi; Iwamoto, Osamu; Iwamoto, Nobuyuki; Hashimoto, Shintaro

    2013-01-01

    We proposed a new route to produce a medical radioisotope 99 Mo by the 100 Mo(n,2n) 99 Mo reaction using accelerator neutrons. A high-quality 99 Mo with a minimum level of radioactive waste can be obtained by the proposed reaction. The decay product of 99 Mo, 99m Tc, is separated from 99 Mo by the sublimation method. The proposed route could bring a major breakthrough in the solution of ensuring a constant and reliable supply of 99 Mo. (author)

  2. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on radioisotope production and radiation technology contributing to better health care and a cleaner environment

    International Nuclear Information System (INIS)

    2012-01-01

    Radioisotope and radiation technology finds numerous applications in a wide variety of fields, most importantly in medicine, industry, agriculture and the environment. However, in order to take full advantage of the benefits offered by this technology, it is essential to provide the necessary infrastructure as well as qualified personnel. The IAEA strives to promote worldwide availability of products and facilities in order to offer the benefits of radioisotope products and radiation technology to developing countries. In particular, the IAEA helps Member States to achieve self-sufficiency in the production of radioisotopes and radiopharmaceuticals, strengthen quality assurance practices and regulatory compliance as well as facilitate human resources development. The multipronged need based approach includes providing advice, assistance and capacity building support for: Development, production and quality assurance of reactor and accelerator based medical isotopes and radiopharmaceuticals for both the diagnosis and treatment of diseases, especially cancer; Establishment of irradiation facilities and utilization of gamma radiation, electron beam and X ray technology for varied applications, including tackling pollutants, wastewater treatment, sterilization of medical products, disinfestation of food grains, and synthesis and characterization of advanced materials; Application of radiation and isotopes in industrial process management.

  3. Impurity production and acceleration in CTIX

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  4. Production, Characterization, and Acceleration of Optical Microbunches

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Christopher M.S. [Stanford Univ., CA (United States)

    2008-06-20

    Optical microbunches with a spacing of 800 nm have been produced for laser acceleration research. The microbunches are produced using a inverse Free-Electron-Laser (IFEL) followed by a dispersive chicane. The microbunched electron beam is characterized by coherent optical transition radiation (COTR) with good agreement to the analytic theory for bunch formation. In a second experiment the bunches are accelerated in a second stage to achieve for the first time direct net acceleration of electrons traveling in a vacuum with visible light. This dissertation presents the theory of microbunch formation and characterization of the microbunches. It also presents the design of the experimental hardware from magnetostatic and particle tracking simulations, to fabrication and measurement of the undulator and chicane magnets. Finally, the dissertation discusses three experiments aimed at demonstrating the IFEL interaction, microbunch production, and the net acceleration of the microbunched beam. At the close of the dissertation, a separate but related research effort on the tight focusing of electrons for coupling into optical scale, Photonic Bandgap, structures is presented. This includes the design and fabrication of a strong focusing permanent magnet quadrupole triplet and an outline of an initial experiment using the triplet to observe wakefields generated by an electron beam passing through an optical scale accelerator.

  5. Extension of the irradiation system at TIARA for production of radioisotopes to be used in plant physiology

    International Nuclear Information System (INIS)

    Ishioka, N.S.; Watanabe, S.; Fujimaki, S.; Sakamoto, K.; Matsuhashi, S.

    2005-01-01

    A target irradiation system for radioisotope production at the TIARA AVF cyclotron facility has been improved for extending physiological studies of plants. Experiments using a position imaging technique require a variety of positron-emitting radioisotopes and their labelled compounds. Therefore, a compact revolver equipped with six target cambers for gas and liquid targets were newly constructed, in addition to the original target irradiation system consisting of two solid target chambers and one gas target chamber, placed on the movable table. The control system was also reconstructed with a local area network for communication between the control station beside the irradiation port and the hot laboratory. Use of this system enables us to produce routinely positron-emitting tracers for plant physiology. (author)

  6. Regulations of 1 March 1983 relating to production, imports and sales of radioisotopes

    International Nuclear Information System (INIS)

    1983-01-01

    These regulations were issued by the Ministry of Health and Social Affairs, pursuant to the Act of 19th June 1938 on the use of radium and X-rays etc. The Regulations came into force on the date they were issued. They apply to radioisotopes used for industrial, commercial, agricultural, medical and scientific purposes. (NEA) [fr

  7. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  8. Automatic system of production, transfer and processing of coin targets for the production of metallic radioisotopes

    Science.gov (United States)

    Pellicioli, M.; Ouadi, A.; Marchand, P.; Foehrenbacher, T.; Schuler, J.; Dick-Schuler, N.; Brasse, D.

    2017-05-01

    The work presented in this paper gathers three main technical developments aiming at 1) optimizing nuclide production by the mean of solid targets 2) automatically transferring coin targets from vault to hotcell without human intervention 3) processing target dilution and purification in hotcell automatically. This system has been installed on a ACSI TR24 cyclotron in Strasbourg France.

  9. Tritium production distribution in the accelerator production of tritium device

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1997-11-01

    Helium-3 ( 3 He) gas is circulated throughout the accelerator production of tritium target/blanket (T/B) assembly to capture neutrons and convert 3 He to tritium. Because 3 He is very expensive, it is important to know the tritium producing effectiveness of 3 He at all points throughout the T/B. The purpose of this paper is to present estimates of the spatial distributions of tritium production, 3 He inventory, and the 3 He FOM

  10. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Universitaria CEP: 05508-000- Sao Paulo-SP (Brazil)

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  11. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    International Nuclear Information System (INIS)

    Moore, J.P.

    2000-01-01

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL

  12. Production and quality control of 66 Ga as a PET radioisotope

    International Nuclear Information System (INIS)

    Rowshanfarzad, P.; Jalilian, A. R.; Akhlaghi, M.; Sabet, M.

    2004-01-01

    Background: 66 Ga (t 1/2 =9.49 h, β + : 4.153 MeV, γ: 511, 834, 1039, 2752 keV) has a wide range of applications in different fields of medical sciences. Production of 66 Ga became one of our main interests, according to its increasing applications in nuclear medicine, particularly in PET imaging. Materials and Methods: 66 Zn (p,n) 66 Ga reaction was determined as the best choice for the production of 66 Ga, according to the present facilities and conditions. The bombardment was performed by 15 MeV protons in Cyclone 30-IBA accelerator with a current intensity of 180 μA for 67 min. ALICE nuclear code and SRIM nuclear program were used to determine the optimum energy and target thickness. Targets were prepared by electroplating of 66 Zn (>95%) on a copper backing. Chemical processing was performed by a no carrier added method consisting of ion exchange chromatography and liquid-liquid extraction. Anion exchange chromatography was used for the recovery of target material. Quality control of the product was carried out in two steps of chemical and radionuclidic purity control. Results: the activity of 66 Ga was 2.41 Ci at the end of bombardment and the production yield was 12.04 mCi/μAh. The chemical separation yield was 93% and the yield of chemical recovery of the target material was 97%. Quality control tests showed a radionuclidic purity of more than 97% and the amounts of chemical impurities were in accordance with standard levels. Discussion: Our production yield was comparable with previous reports given in the literature. The chemical separation method used in this research was simple and brought up acceptable results. So, this process can be considered as one of the best choices for the production of 66 Ga

  13. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed

  14. Particle production and survival in muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Noble, R.J.

    1992-06-01

    Because of the relative immunity of muons to synchrotron radiation, the idea of using them instead of electrons as probes in high-energy physics experiments has existed for some time, but applications were limited by the short muon lifetime. The production and survival of an adequate supply of low-emittance muons will determine the available luminosity in a high-energy physics collider. In this paper the production of pions by protons, their decay to muons and the survival of muons during acceleration are studied. Based on a combination of the various efficiencies, the number of protons needed at the pion source for every muon required in the final high-energy collider is estimated.

  15. Light weight radioisotope heater unit (LWRHU) production for the Cassini mission

    International Nuclear Information System (INIS)

    Rinehart, G.H.

    1997-01-01

    The Light-Weight Radioisotope Heater Unit (LWRHU) is a [sup 238]PuO[sub 2] fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. The heat sources are required to maintain the temperature of specific components within normal operating ranges. The heat source consists of a hot- pressed [sup 238]PuO[sub 2] fuel pellet, a Pt-3ORh vented capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 180 heat sources, 157 of which will be used on the Cassini mission

  16. Production and Use of Short-Lived Radioisotopes from Reactors. Vol. II. Proceedings of a Seminar on the Practical Applications of Short-Lived Radioisotopes Produced in Small Research Reactors

    International Nuclear Information System (INIS)

    1963-01-01

    There are many radioisotope applications in which it is important that the radiation should rapidly fall to an insignificant level once the initial intense activity has served its purpose. Such applications include diagnostic tests in medicine, where it is essential to reduce the radiation dose to the patient to a minimum, non-destructive testing methods which must be applied without contaminating the material or product concerned, and repeated routine tests which are possible only if the residual activity from the previous test is negligible. All these applications call for radionuclides whose half- lives are measured in hours or even minutes. Similarly, in the new but increasingly important technique of activation analysis, whereby the quantities of elements present in a material can be determined by irradiating the material in a reactor and assaying the radionuclides produced, the latter are mainly short-lived and must be measured immediately. While the production of long-lived radionuclides can most economically be left to the large reactors at the main radioisotope centres, short-lived isotopes must be produced, or materials activation performed, in a reactor at or near the place of intended use or analysis; this, then, represents one of the most important uses for the large number of small reactors which have been installed in recent years, or will come into operation in the near future, in many parts of the world. Since in many countries the new problems of producing, separating and applying short-lived radioisotopes are being faced for the first time, the International Atomic Energy Agency believed it would be valuable to survey the state of the art by convening an international Seminar on Practical Applications of Short-lived Radioisotopes produced in Small Research Reactors at its Vienna headquarters in November, 1962. This Seminar provided an opportunity for the producers and users of short-lived radioisotopes from many countries to meet and discuss the

  17. Production and Use of Short-Lived Radioisotopes from Reactors. Vol. II. Proceedings of a Seminar on the Practical Applications of Short-Lived Radioisotopes Produced in Small Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-03-15

    There are many radioisotope applications in which it is important that the radiation should rapidly fall to an insignificant level once the initial intense activity has served its purpose. Such applications include diagnostic tests in medicine, where it is essential to reduce the radiation dose to the patient to a minimum, non-destructive testing methods which must be applied without contaminating the material or product concerned, and repeated routine tests which are possible only if the residual activity from the previous test is negligible. All these applications call for radionuclides whose half- lives are measured in hours or even minutes. Similarly, in the new but increasingly important technique of activation analysis, whereby the quantities of elements present in a material can be determined by irradiating the material in a reactor and assaying the radionuclides produced, the latter are mainly short-lived and must be measured immediately. While the production of long-lived radionuclides can most economically be left to the large reactors at the main radioisotope centres, short-lived isotopes must be produced, or materials activation performed, in a reactor at or near the place of intended use or analysis; this, then, represents one of the most important uses for the large number of small reactors which have been installed in recent years, or will come into operation in the near future, in many parts of the world. Since in many countries the new problems of producing, separating and applying short-lived radioisotopes are being faced for the first time, the International Atomic Energy Agency believed it would be valuable to survey the state of the art by convening an international Seminar on Practical Applications of Short-lived Radioisotopes produced in Small Research Reactors at its Vienna headquarters in November, 1962. This Seminar provided an opportunity for the producers and users of short-lived radioisotopes from many countries to meet and discuss the

  18. Production of medical radioisotope 153Sm in the Tehran Research Reactor (TRR) through theoretical calculations and practical tests

    International Nuclear Information System (INIS)

    Forughi, Sh.; Hamidi, S.; Khalafi, H.; Sheibani, Sh.; Shahidi, A.

    2013-01-01

    Highlights: ► Production of 153 Sm isotope by neutron activation in a nuclear reactor was studied. ► Optimal parameters for weight and irradiation time were found. ► This study led to an empirical correction factor (kf). ► Kf enhanced the production procedure of the 153 Sm radioisotope. ► The results led to nearly 60% decrease in the amount of material used in the production process. - Abstract: The feasibility of producing 2000–3000 mCi 153 Sm by irradiation of 152 Sm in 5 MW TRR was studied via TRR core simulation. In this study the cross-section of 152 Sm (n,γ) 153 Sm reaction from ENDF/B library was used. The effective activation cross section for production of 153 Sm is obtained using the neutron spectra in different irradiation channel of the core. The activity of the simulated samples is calculated using the obtained fluxes and cross sections. Then samples were prepared and irradiated under different conditions and fluxes. The final production’s specific activity was measured by the standard dose calibrator ISOMED 1010. By comparison of the theoretical calculations and actual measurements, an empirical correction factor (K f ) was obtained, which is helpful in production procedure of the 153 Sm radioisotope. The optimal weight of the samples and irradiation time was studied according to the flux calculations based on the location of the sample and saturated activity calculation. In order to test the proposed conditions, samples were prepared and were irradiated under the proposed conditions. According to the compared results with the initial irradiation condition, the new proposed sample which weighed 4 mg of Sm 2 O 3 is acceptable for the labeling, therefore this study led to nearly 60% decrease in the amount of material used in the production process

  19. Alpha Beam Energy Determination Using a Range Measuring Device for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Yong; Kim, Byeon Gil; Hong, Seung Pyo; Kim, Ran Young; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    The threshold energy of the {sup 209}Bi(α,3n){sup 210} At reaction is at about 30MeV. Our laboratory suggested an energy measurement method to confirm the proton-beam's energy by using a range measurement device. The experiment was performed energy measurement of alpha beam. The alpha beam of energy 29 MeV has been extracted from the cyclotron for the production of {sup 211}At. This device was composed of four parts: an absorber, a drive shaft, and a servo motor and a Faraday cup. The drive shaft was mounted on the absorber and connects with the axis of the servo motor and rotates linearly and circularly by this servo motor. A Faraday cup is for measuring the beam flux. As this drive shaft rotates, the thickness of the absorber varies depending on the rotation angle of the absorber. The energy of the alpha particle accelerated and extracted from MC-50 cyclotron was calculated with the measurement of the particle range in Al foil and using ASTAR, SRIM, MCNPX software. There were a little discrepancy between the expected energy and the calculated energy within the 0.5MeV error range. We have a plan to make an experiment with various alpha particle energies and another methodology, for example, the cross section measurement of the nuclear reaction.

  20. Radioisotope method for characterization of vegetable tannins, extracted from waste of forestry production in Cuba

    International Nuclear Information System (INIS)

    Santana Romero, J.L.; Martinez Luzardo, F.; Codorniu Hernandez, E.; Vargas Guerra, L.; Melo Cala, P.; Garcia Guillen, M.; Isaac Olive, K.; Estevez, P.; Roque Cordoba, A.; Benitez, M.

    2002-01-01

    Vegetable tannins are polyphenolic plants secondary metabolites, widely distributed in all parts of trees and herbs. The role of these substances in many metabolic processes is very important. Vegetable tannins have been implicated as probable antinutritional factors, decreasing the assimilation of diet protein assimilation by cattle. On the other hand, protective antioxidant and antimutagenic properties have been ascribed for these compounds. Characterization of vegetable tannins is important in order to find new sources of natural raw materials with medical and pharmaceutical applications. Protein precipitation capacity as a function of pH, competitive protein and ADN binding assays and the determination of tannins concentration are described. Radioisotope labeled protein and tannins were used in all of the determinations. (author)

  1. The production of accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1993-01-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL

  2. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  3. Production of radioisotopes by cyclotron at the Instituto de Engenharia Nuclear - an evaluation of the present stage of development

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Britto, J.L.Q. de; Osso Junior, J.A.; Bastos, M.A.V.; Braghirolli, A.M.S.; Chamma, D.F.S.; Silva, A.G. da

    1984-01-01

    Since 1974 a variable energy isochronous cyclotron (CV-28) is operating at Instituto de Engenharia Nuclear in Rio de Janeiro, with the main purpose of producing radioisotopes for medical diagnosis. To accomplish this, besides the conventional chemical laboratories and related facilities, hot chemistry laboratories with their specific equipment and remote handling devices had to be designed and constructed at this Institute, and are still being developed, due to a lack of engineering companies working in this field. Other equipment, intrinsically related to cyclotrons like high power density target holders, collimators etc. were also conceived and constructed. Among the produced raioisotopes, high purity gallium-67 and indium-111 have been periodically sent to hospitals and some efforts are still being made in order to improve and simplify the chemical processing as well as the operational procedures. Some work has also been devoted to the development and improvement of methods for the production of iodine-123, bromine-77 and thallium-201. (Author) [pt

  4. Irradiation facilities for the production of radioisotopes for medical purposes and for industry at the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Hieronymus, W.

    2007-01-01

    In 1955, the Government of the German Democratic Republic initiated radioisotope production. With that decision, the following plants received their go ahead: - Research reactor with its user facilities; - Cyclotron with its specific facilities; - Institute for radiochemistry; - Library, lecture hall, workshops and administration buildings supporting the necessary scientific and administrative environment. The Zentralinstitut fuer Kerntechnik (ZfK), also known as the Central Institute for Nuclear Technology, was founded at Rossendorf near Dresden, Germany, to house all those plants. The Rossendorf Research Reactor (RFR) was constructed in 1956-1957. That endeavour was enabled by the technological support of the former USSR under a bilateral agreement which included the delivery of a 2 MW research reactor of the WWR-S design

  5. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Bryce A. [Univ. of New Mexico, Albuquerque, NM (United States)

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  6. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2008-04-01

    The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  7. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M. [Austin and Repatriation Medical Centre, Melbourne, VIC (Australia). Centre for Positron Emission Tomography

    1997-10-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient`s body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t,{sub 1/2}=2min), nitrogen-13 (t{sub 1/2}= 10 min), carbon-11 (t{sub 1/2}=20 min) and fluorine-18 (t{sub 1/2}= 110 min). These radiopharmaceuticals include [{sup 15}O]oxygen, [{sup 15}O]carbon monoxide, [{sup 15}O]carbon dioxide, [{sup 15}O]water, [{sup 13}N]ammonia, [{sup 11}C]flumazenil, [{sup 11}C]SCH23390, [{sup 18}F]fluoromisonidazole and [{sup 18}F]fluoro-deoxy-glucose ([{sup 18}F]FDG). In addition, since the half life of [{sup 18}F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [{sup 18}F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [{sup 18}F]thymidine analog to measure cell proliferation and a [{sup 11}C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors) 23 refs., 2 tabs.

  8. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M.

    1997-01-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient's body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t, 1/2 =2min), nitrogen-13 (t 1/2 = 10 min), carbon-11 (t 1/2 =20 min) and fluorine-18 (t 1/2 = 110 min). These radiopharmaceuticals include [ 15 O]oxygen, [ 15 O]carbon monoxide, [ 15 O]carbon dioxide, [ 15 O]water, [ 13 N]ammonia, [ 11 C]flumazenil, [ 11 C]SCH23390, [ 18 F]fluoromisonidazole and [ 18 F]fluoro-deoxy-glucose ([ 18 F]FDG). In addition, since the half life of [ 18 F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [ 18 F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [ 18 F]thymidine analog to measure cell proliferation and a [ 11 C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors)

  9. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  10. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  11. Accelerator production of tritium authorization basis strategy

    International Nuclear Information System (INIS)

    Miller, L.A.; Edwards, J.; Rose, S.

    1996-01-01

    The Accelerator Production of Tritium (APT) project has proposed a strategy to develop the APT authorization basis and safety case based on DOE orders and fundamental requirements for safe operation. The strategy is viable regardless of whether the APT is regulated by DOE or by an external regulatory body. Currently the operation of Department of Energy (DOE) facilities is authorized by DOE and regulated by DOE orders and regulations while meeting the environmental protection requirements of the Environmental Protection Agency (EPA) and the states. In the spring of 1994, Congress proposed legislation and held hearings related to requiring all DOE operations to be subject to external regulation. On January 25, 1995, DOE, with the support of the White House Council on Environmental Quality, created the Advisory Committee on External Regulation of Department of Energy Nuclear Safety. This committee divided its recommendations into three areas: (1) facility safety, (2) worker safety, and (3) environmental protection. In the area of facility safety the committee recommended external regulation of DOE nuclear facilities by either the Nuclear Regulatory Commission (NRC) or a restructured Defense Nuclear Facilities Safety Board (DNFSB). In the area of worker safety, the committee recommended that the Occupational Safety and Health Administration (OSHA) regulate DOE nuclear facilities. In the environmental protection area, the committee did not recommend a change in the regulation by the EPA and the states of DOE nuclear facilities. If these recommendations are accepted, all DOE nuclear facilities will be impacted to some extent

  12. Abstracts of the third conference on radioisotopes and their applications

    International Nuclear Information System (INIS)

    2002-10-01

    The Third Uzbekistan Conference on radioisotopes and their applications was held on 8-10 October, 2002 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 80 talks were presented in the meeting

  13. Abstracts of the second conference on radioisotopes and their applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The Second Uzbekistan Conference on radioisotopes and their applications was held on 3-5 October, 2000 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 80 talks were presented in the meeting. (A.A.D.)

  14. Production of radioisotopes at the Boris Kidric Institute of Nuclear Sciences at Vinca, Yugoslavia; Proizvodnja radioaktivnih izotopa

    Energy Technology Data Exchange (ETDEWEB)

    Teofilovski, C [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1969-07-01

    The investigations in order to master the production of radioisotopes were commenced simultaneously with the beginning of RA nuclear reactor construction at Vinca, in 1956. A new organization division - Laboratory for chemistry of high activity accepting beside other problems also the programme for mastering the regular production of radioactive material was formed in 1959. Various problems during the realization of this programme have been solved, starting with the staff training for work with radioactive material on the high level activity (to 7500 Ci/source), construction and equipment of the laboratory area for safe work, up to development of the whole series of chemical-technological procedures and techniques for regular production of various radioactive products, as well as the methods for their chemical, radiometric and pharmaceutical control. Owing to the successful realization of this programme, the Institute 'Boris Kidric' supplies to-day regularly 110 organizations in the country with various radioactive products, applied in medicine, industry and research. The annual product of the radioactive solutions of radioisotopes J-131, Au-198, P-32, S-35 etc., amounts to about 75 Ci, radiographic sources Ir-192 and Co-60 to 2000 Ci and Co-60 sources for teletherapy and the other applications to many thousand curies (author) [Serbo-Croat] Paralelno sa pocetkom izgradnje nuklearnog reaktora RA u Vinci 1956. godine zapoceta su istrazivanja u oblasti osvajanja proizvodnje radioizotopa. 1958. god. formirana je nova organizaciona jedinica - Laboratorija za hemiju visoke aktivnosti, koja je, pored ostalog, prihvatila i program osvajanja redovne proizvodnje radioaktivnog materijala. U toku realizacije programa reseni su raznovrsni problemi pocev od pripreme kadrova za rad sa radioaktivnim materijalom na visokom nivou aktivnosti (do 7500 Ci/izvor), izgradnje i opremanja laboratorijskog prostora za bezbedan rad, do razvoja citavog niza hemijsko-tehnoloskih postupaka i

  15. Research trends in radioisotopes: a scientometric analysis

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Bhanumurthy, K.; Ramamoorthy, N.

    2014-01-01

    Radioisotopes or radionuclides are radioactive forms of elements and are usually produced in research reactors and accelerators. They have wide ranging applications in healthcare, industry, food and agriculture, and environmental monitoring. Following over five decades of vast experience accumulated, radioisotope technology has developed to a high degree of sophistication and it is estimated that about 200 radioisotopes are in regular use. This paper attempts to highlight the publication status and growth of radioisotope research across the world and make quantitative and qualitative assessment by way of analyzing the following features of research output based on Web of Science database during the period 1993-2012. (author)

  16. Thyroid Dose Estimation Using WBC and I-131 Concentration in Working Area of Radioisotope Production at Normal Operation; Perkiraan Dosis Thyroid Melalui Pengukuran WBC dan Perhitungan dengan Konsentrasi I-131 Di Daerah Kerja Pada Operasi Normal Produksi Radioisotop

    Energy Technology Data Exchange (ETDEWEB)

    Tedjasari, R S; Lubis, E [Radioactive-Waste Management Technology Centre, National Atomic Energy Agency of Indonesia(Indonesia)

    1996-07-01

    Thyroid dose estimation at Radioisotope Production Centre workers using WBC and calculation based on I-131 concentration in working area has been done. The aim of this research is to get the relation between WBC result and calculation using I-131 concentration in working area. The result indicates differences in a range of 3,2% to 53,2%. These differences caused of parameters which influence the calculation are not accurate. These results also indicate that dose estimation using WBC is relatively batter and more accurate but need to have certain information about time of intake.

  17. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  18. Radioisotopes and radiopharmaceuticals catalogue

    International Nuclear Information System (INIS)

    2002-01-01

    The Chilean Nuclear Energy Commission (CCHEN) presents its radioisotopes and radiopharmaceuticals 2002 catalogue. In it we found physical characteristics of 9 different reactor produced radioisotopes ( Tc-99m, I-131, Sm-153, Ir-192, P-32, Na-24, K-42, Cu-64, Rb-86 ), 7 radiopharmaceuticals ( MDP, DTPA, DMSA, Disida, Phitate, S-Coloid, Red Blood Cells In-Vivo, Red Blood Cells In-Vitro) and 4 labelled compounds ( DMSA-Tc99m, DTPA-Tc99m, MIBG-I131, EDTMP-Sm153 ). In the near future the number of items will be increased with new reactor and cyclotron products. Our production system will be certified by ISO 9000 on March 2003. CCHEN is interested in being a national and an international supplier of these products (RS)

  19. Radioisotope camera

    International Nuclear Information System (INIS)

    Tausch, L.M.; Kump, R.J.

    1978-01-01

    The electronic ciruit corrects distortions caused by the distance between the individual photomultiplier tubes of the multiple radioisotope camera on one hand and between the tube configuration and the scintillator plate on the other. For this purpose the transmission characteristics of the nonlinear circuits are altered as a function of the energy of the incident radiation. By this means the threshold values between lower and higher amplification are adjusted to the energy level of each scintillation. The correcting circuit may be used for any number of isotopes to be measured. (DG) [de

  20. Americium-241 radioisotope thermoelectric generator development for space applications

    International Nuclear Information System (INIS)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal

    2013-01-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  1. Americium-241 radioisotope thermoelectric generator development for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal, E-mail: rma8@le.ac.uk [University of Leicester, (United Kingdom); and others

    2013-07-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  2. Preparing for Harvesting Radioisotopes from FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Peaslee, Graham F. [Hope College, Holland, MI (United States); Lapi, Suzanne E. [Washington Univ., St. Louis, MO (United States)

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In the standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.

  3. 78 FR 15009 - Consideration of Withdrawal From Commercial Production and Distribution of the Radioisotope...

    Science.gov (United States)

    2013-03-08

    ... DEPARTMENT OF ENERGY Consideration of Withdrawal From Commercial Production and Distribution of... its consideration of DOE withdrawal from the commercial production and distribution of germanium-68... Statement of Policy, referenced above. In summary, DOE's evaluation will include consideration of: a...

  4. Manual for reactor produced radioisotopes

    International Nuclear Information System (INIS)

    2003-01-01

    Radioisotopes find extensive applications in several fields including medicine, industry, agriculture and research. Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programmes. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. Specifications for final products and testing procedures for ensuring quality are also an essential part of a radioisotope production programme. The International Atomic Energy Agency (IAEA) has compiled and published such information before for the benefit of laboratories of Member States. The first compilation, entitled Manual of Radioisotope Production, was published in 1966 (Technical Reports Series No. 63). A more elaborate and comprehensive compilation, entitled Radioisotope Production and Quality Control, was published in 1971 (Technical Reports Series No. 128). Both served as useful reference sources for scientists working in radioisotope production worldwide. The 1971 publication has been out of print for quite some time. The IAEA convened a consultants meeting to consider the need for compiling an updated manual. The consultants recommended the publication of an updated manual taking the following into consideration: significant changes have taken place since 1971 in many aspects of radioisotope production; many radioisotopes have been newly introduced while many others have become gradually obsolete; considerable experience and knowledge have been gained in production of important radioisotopes over the years, which can be preserved through compilation of the manual; there is still a need for a comprehensive manual on radioisotope production methods for new entrants to the field, and as a reference. It was also felt that updating all the subjects covered in the 1971 manual at a time may not be practical considering the

  5. Validation of FLUKA calculated cross-sections for radioisotope production in proton-on-target collisions at proton energies around 1 GeV

    CERN Document Server

    Felcini, M

    2006-01-01

    The production cross-sections of several radioisotopes induced by 1 GeV protons impinging on different target materials have been calculated using the FLUKA Monte Carlo and compared to measured cross-sections. The emphasis of this study is on the production of alpha and beta/gamma emitters of interest for activation evaluations at a research complex, such as the EURISOL complex, using several MW power proton driver at an energy of 1 GeV. The comparisons show that in most of the cases of interest for such evaluations, the FLUKA Monte Carlo reproduces radioisotope production cross-sections within less than a factor of two with respect to the measured values. This result implies that the FLUKA calculations are adequately accurate for proton induced activation estimates at a 1 GeV high power proton driver complex.

  6. Determination of the optimal conditions for simultaneous production of 73SE and 75SE radioisotopes in a 30 MeV cyclotron

    International Nuclear Information System (INIS)

    Pejman Rowshanfazad; Amirreza Jalilian; Mahsheed Sabet

    2004-01-01

    Purpose: 73 Se and 75 Se radioisotopes are widely used in medicine, industry and agriculture. 75 Se is used in high activity brachytherapy (1), assessment of pancreatic exocrine function (2, 3), study of bile acids and evaluation of illeal function (4, 5, 6), industrial radiography (7, 8) and as a tracer in the assessment of chemical, biochemical, biophysical processes, metabolic research and agricultural studies. 73 Se is used in pancreas scanning (9), hyperthyroidism diagnosis(10), adrenal scanning (11), tumor detection (12, 13, 14), detection of brain dopamine receptors (15), parathyroid tumor detection (10) and detection of brain blood flow (16). These radioisotopes were selected to be produced in the country according to their wide range of applications. The idea of simultaneous production of 73 Se and 75 Se arouse after the completion of primary studies. Important physical characteristics of these radioisotopes are shown in table l. Methods: 1 Selection of the Best Reaction. Various nuclear reactions which may be used for the production of 73 Se and 75 Se are shown in table 2 (17, 18, 19). Among the above reactions, those which use α and 3 He as the projectile particles were discarded since high energy and high intensity beams of α and 3 He are not available in the country at present. Those reactions which used 74 Se and 76 Se as the target material could not be used, since these isotopes have low isotopic values (0.87% and 9.02% respectively), and their chemical separation processes are difficult, expensive and time-taking, due to the equal chemical properties of the product and the target material (20). Thus 75 As(p, n) 75 Se seemed to be the most appropriate reaction for the production of 75 Se. The 75 As(d, 4n) 73 Se reaction is not as suitable as 75 As(p, 3n) 73 Se, because of the lower radionuclidic purity of the product (18). Thus the best reaction for the production of 73 Se was determined to be 75 As(p, 3n) 73 Se. There was no need for an isotopic

  7. Accelerator business in Japan expanding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  8. 78 FR 1848 - Plutonium-238 Production for Radioisotope Power Systems for National Aeronautics and Space...

    Science.gov (United States)

    2013-01-09

    ...: Notice of Intent to Prepare a Supplement Analysis; Notice of Cancellation of an Environmental Impact Statement. SUMMARY: The Department of Energy (DOE) issued the Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production...

  9. Production and post acceleration scheme for spiral

    International Nuclear Information System (INIS)

    Bibet, D.

    2001-01-01

    SPIRAL, the R.I.B. facility of GANIL uses heavy ion beams to produce radioactive atoms inside a thick target. Atoms are ionised in a compact permanent magnet ECR ion source. The compact cyclotron CIME accelerates the radioactive ions in an energy range from 1.7 to 25 MeV/u. The cyclotron acts as a mass separator with resolving power of 2500. Plastic scintillator and silicon detectors are used to tune the machine at a very low intensity. An overview of the facility, stable beam tests results and the R and D program will be presented. (authors)

  10. Management system in the dose assessment due to the intake of "1"3"1I in occupationally exposed workers (OEW) in a radioisotope production plant

    International Nuclear Information System (INIS)

    Koga, Roberto; Jara, Raul; Defilippi, Luis; Osores, Jose

    2015-01-01

    This article presents the evaluation and management processes due to the incorporation of "1"3"1I in occupationally exposed workers (OEW) of a Radioisotope Production Plant by in vivo measurement of the retained activity of this radionuclide in thyroid. The procedures for the occupational control of the OWE were established, including intermediate checks and calibration of the equipment according to the NTP ISO/IEC 17025:2006 standard. (author)

  11. B cell increases and ex vivo IL-2 production as secondary endpoints for the detection of sensitizers in non-radioisotopic local lymph node assay using flow cytometry.

    Science.gov (United States)

    Jung, Kyoung-Mi; Jang, Won-Hee; Lee, Yong-Kyoung; Yum, Young Na; Sohn, Soojung; Kim, Bae-Hwan; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min

    2012-03-25

    Non-radioisotopic local lymph node assay (LLNA) using 5-bromo-2'-deoxyuridine (BrdU) with flow cytometry (FCM) is gaining attention since it is free from the regulatory issues in traditional LLNA (tLLNA) accompanying in vivo uses of radioisotope, (3)H-thymidine. However, there is also concern over compromised performance of non-radioisotopic LLNA, raising needs for additional endpoints to improve the accuracy. With the full 22 reference substances enlisted in OECD Test Guideline No. 429, we evaluated the performance of LLNA:BrdU-FCM along with the concomitant measurements of B/T cell ratio and ex vivo cytokine production from isolated lymph node cells (LNCs) to examine the utility of these markers as secondary endpoints. Mice (Balb/c, female) were topically treated with substances on both ears for 3 days and then, BrdU was intraperitoneally injected on day 5. After a day, lymph nodes were isolated and undergone FCM to determine BrdU incorporation and B/T cell sub-typing with B220+ and CD3e+. Ex vivo cytokine production by LNCs was measured such as IL-2, IL-4, IL-6, IL-12, IFN-γ, MCP-1, GM-CSF and TNFα. Mice treated with sensitizers showed preferential increases in B cell population and the selective production of IL-2, which matched well with the increases in BrdU incorporation. When compared with guinea pig or human data, BrdU incorporation, B cell increase and IL-2 production ex vivo could successfully identify sensitizers with the accuracy comparable to tLLNA, suggesting that these markers may be useful for improving the accuracy of LLNA:BrdU-FCM or as stand-alone non-radioisotopic endpoints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Automation drying unit molybdenum-zirconium gel radioisotope production technetium-99M for nuclear medicine

    International Nuclear Information System (INIS)

    Chakrova, Y.; Khromushin, I.; Medvedeva, Z.; Fettsov, I.

    2014-01-01

    Full text : Since 2001 the Institute of Nuclear Physics of the Republic of Kazakhstan has began production of radiopharmaceutical based on technetium-99m from irradiated reactor WWR-K of natural molybdenum, which allows to obtain a solution of technetium-99m of the required quality and high volume activity. In 2013 an automated system is started, which is unique and urgent task is to develop algorithms and software in Python, as well as the manufacture of certain elements of technological systems for automated production

  13. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  14. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    International Nuclear Information System (INIS)

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-01-01

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of 18 F labeled FDG, operation and radiation monitoring experience are included. We conclude that 18 FDG CT-PET is the most effective technique for patient diagnosis

  15. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2002 Through September 30, 2003

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.

    2004-05-18

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2003. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  16. Radioisotopes and their applications in highway testings

    International Nuclear Information System (INIS)

    Saxena, S.C.

    1974-01-01

    Applications of radioisotopes in highway testing are described. Radioisotopic methods have been used to determine : (1) moisture and density of soil and base materials for compaction control, (2) magnesium oxide content of cement, (3) permeability of bituminous coverings and (4) field density of freshly laid hot bituminous concrete surface. Possible uses of nuclear explosives for production of aggregates and of radioisotopes for determination of deflection in the design of flexible pavements are indicated. (M.G.B.)

  17. Process analysis of the technology for the production of graphite electrodes by the aid of radioisotopes

    International Nuclear Information System (INIS)

    Wagner, K.

    1986-01-01

    Products of technical carbon are made of cokes of different origin, ash content and grain size and of different binders (pitch, tar). For the full understanding of the technical carbon production process analyses are necessary. Investigations were performed by aid of the radioindicator method. One coke component was labelled by 140 La. From the specific radioactivity of samples of a 36 ton mixed coke charge it could be shown that some of the technological steps, i.e. mixing at the coke storage place, calcination, milling, sieving, and mixing with the binder give good mixing effects. Continuous radioactivity measurements (on stream) of the coke mixture showed different streaming velocities of the coke through the furnaces and the furnace chambers, i.e. charges of different composition following each other are mixed together over some hours. (author)

  18. Lutetium-177 - Broad Production Capabilities are Expected to Stimulate Clinical Applications of this Important Therapeutic Radioisotope

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2009-01-01

    Lutetium-177 (Lu-177) is of broad interest for therapeutic applications where the deposition of localized radiation can benefit from the limited soft tissue penetration of the 0.497 MeV beta particle (max. = 2.76 mm). Examples of Lu-177 therapeutic strategies include treatment of small SS2/SS5-expressing tumors with targeted peptides and radiosynovectomy. Emission of a 208 keV gamma photon (11 %) allows imaging for evaluation of localization and biokinetics, and for targeting applications, correlation of uptake with therapeutic response. A broad spectrum of research reactors with even modest thermal neutron flux (e.g. > 1 x 10 14 ) can produce carrier-added Lu-177 with sufficient specific activity (SA) > 10 Ci/mg Lu by the 'direct' approach by irradiation of Lu-176. For low SA applications, thermal flux of > 10 13 in low-medium flux reactors provides sufficient SA (> 0.5 mCi Lu-177/mg) for preparation of Lu-EDTMP for synovectomy. Although relative Lu-177m/Lu-177 activity levels from 'direct' production can be very low (> 10 -5 ), the Lu-177m impurity levels can present an issue with radioactive waste storage requirements at some institutions. The alternative 'indirect' approach using decay of reactor produced ytterbium-177 available from by neutron irradiation of enriched Yb-176 targets provides no-carrier-added (nca) Lu-177 (theoretical SA = 109 Ci/mg Lu). Purification of the microscopic levels of nca Lu-177 from macroscopic Yb levels at the high multi Curie production level is a more challenging approach, since production yields are relatively low even at high thermal flux (e.g. 2 x 10 15 neutrons/cm 2 /sec). In addition, high mass Lu/Yb separation is especially time consuming, can generate significant waste, and the relatively expensive Yb-176 target material (> 97%, ∼ $ 20/mg) must be recovered, re-purified and used for subsequent target preparation. However, a number of effective methods for the Lu/Yb separation and Yb recovery have been reported, and even

  19. Feasibility study for production of I-131 radioisotope using MNSR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elom Achoribo, A.S., E-mail: achoribo@yahoo.fr [Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon Accra (Ghana); Akaho, Edward H.K. [Ghana Atomic Energy Commission, P.O. Box LG80, Legon Accra (Ghana); Nyarko, Benjamin J.B.; Osae Shiloh, K.D. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon Accra (Ghana); Odame Duodu, Godfred [Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon Accra (Ghana); Gibrilla, Abass [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon Accra (Ghana)

    2012-01-15

    A feasibility study for {sup 131}I production using a Low Power Research Reactor was conducted to predict the yield of {sup 131}I by cyclic activation technique. A maximum activity of 5.1 GBq was achieved through simulation using FORTRAN 90, for an irradiation of 6 h. But experimentally only 4 h irradiation could be done, which resulted in an activity of 4.0 Multiplication-Sign 10{sup 5} Bq. The discrepancy in the activities was due to the fact that beta decays released during the process could not be considered. - Highlights: Black-Right-Pointing-Pointer For a high irradiation time, the neutron flux will give high activity. Black-Right-Pointing-Pointer For maximum number of irradiation that can be done a maximum activity could be obtained. Black-Right-Pointing-Pointer An idea on how to maximize the activity (recommendation).

  20. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.

    2005-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  1. Homogeneous Slowpoke reactor for the production of radio-isotope: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busetta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2006-09-15

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous react will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB(r). It was found that it is needed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  2. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  3. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2006-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  4. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.W.

    2006-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  5. Effects of admixture gas on the production of {sup 18}F radioisotope in plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Talaei, Ahmad [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research School, A.E.O.I., 14155-1339 Tehran (Iran, Islamic Republic of); Sadat Kiai, S.M., E-mail: sadatkiai@yahoo.co [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research School, A.E.O.I., 14155-1339 Tehran (Iran, Islamic Republic of); Zaeem, A.A. [Department of Physics, Khaje Nasir University of Technology (K.N. Toosi), 1541846911 Tehran (Iran, Islamic Republic of)

    2010-12-15

    In this article, the effect of admixture gas on the heating and cooling of pinched plasma directly related to the enhancement or reduction of {sup 18}F production through the {sup 16}O({sup 3}He, p){sup 18}F is considered in the plasma focus devices. It is shown that by controlling the velocity of added Oxygen particles mixed with the working helium gas into the plasma focus chamber, one can increase the current and decrease the confinement time (plasma heating) or vice verse (plasma cooling). The highest level of nuclear activities of {sup 18}F was found around 16% of the Oxygen admixture participation and was about 0.35 MBq in the conditions of 20 kJ, 0.1 Hz and after 2 min operating of Dena PF. However, in the same condition, but for the frequency of 1 Hz, the level of activity increased up to 3.4 MBq.

  6. Updating the procedure for metaiodobenzylguanidine labelling with iodine radioisotopes employed in industrial production.

    Science.gov (United States)

    Franceschini, R; Mosca, R; Bonino, C

    1991-01-01

    The classical procedure used for the preparation of [125I]- and [131I]metaiodobenzylguanidine (MIBG) is the solid-phase isotopic exchange between MIBG and radioiodide. This reaction requires 1.5 hours at 160 degrees C to obtain maximum total labelling yields of 75-80%. Recently, the importance of rapid procedures for the preparation of 123I-MIBG has been highlighted. A highly efficient procedure for the industrial production of 123I-MIBG using ascorbic acid, tin sulfate and copper sulfate pentahydrate in 0.01 M sulfuric acid is reported. Sequential radio-TLC analysis of the labelling mixture shows that the labelling yield reaches 98% within 45 min at 100 degrees C. The specific activity of the 123I-MIBG produced in this manner is on the order of 100 Ci/mmol.

  7. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  8. Shielding calculations by using the analytic methods : Application to the radio-isotopes production in the CENM reactor

    International Nuclear Information System (INIS)

    Elmorabit, A.; Labrim, H.

    2010-01-01

    Full text: this work is part of developing an analytical method for solving the neutrons transport equation in improving the treatment of the anisotropy of neutron scattering through heterogeneous shielding. We also develop the tools necessary for the formation of multigroup libraries (cross section) with the best choice of the weighting function. Among the radioprotection problems of radioisotopes production experiments in the research reactor core is mainly the photons gamma generation produced by radiative capture: activation of samples and their capsules. So, in order to review the safety of operating personnel and the public is essential to quantify the neutrons flux and gamma photons produced. In this study a numerical methods is used in two different Fortran program to solve the neutron transport problem and to determine the neutron and photon flux. This program based on the Monte Carlo method: the neutron is born with a unit statistical weight, this corrected after each imposed scattering event during its whole history within the shield. The final neutron statistical weight is used in an appropriate estimator to determine the searched response. The generated gamma rays by neutron capture are calculated of different isotopes, and then the equivalent dose rate is evaluated in biological tissue for different neutron source energies. We have identified and studied the choice of the best weighting function to calculate a library of multigroup cross sections self protected by using the energy weighting function. A Fortran program is used as a mathematical tool to solve the neutron slowing down equation in infinite homogeneous medium for different dilutions. We determined the energetic flux distribution and the effective integrals. The results of both calculations are in a good agreement; the relative error is less than 0.5%.

  9. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-12-31

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents {sup 153}Sm EDTMP and {sup 186}Re/{sup 188}Re HEDP, as well as in the use of {sup 186}Re, {sup 177}Lu, {sup 166}Ho, and {sup 105}Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, {sup 90}Y-labeled glass microspheres for the treatment of liver tumors, a product ({sup 90}Y Therasphere{trademark}) which is currently an approved drug in Canada. MURR has also pioneered the development of {sup 188}W/{sup 188}Re and {sup 99}Mo/{sup 99m}Tc gel generators, which make the use of low specific activity {sup 188}W and {sup 99}Mo practical for such isotope generators.

  10. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-01-01

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents 153 Sm EDTMP and 186 Re/ 188 Re HEDP, as well as in the use of 186 Re, 177 Lu, 166 Ho, and 105 Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, 90 Y-labeled glass microspheres for the treatment of liver tumors, a product ( 90 Y Therasphere trademark) which is currently an approved drug in Canada. MURR has also pioneered the development of 188 W/ 188 Re and 99 Mo/ 99m Tc gel generators, which make the use of low specific activity 188 W and 99 Mo practical for such isotope generators

  11. The production of radioisotopes for medical applications by the adiabatic resonance crossing (ARC) technique

    CERN Document Server

    Froment, P; Delbar, T; Ryckewaert, G; Tilquin, I; Vervier, J

    2002-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) technique has been proposed by Rubbia (Resonance enhanced neutron captures for element activation and waste transmutation, CERN-LHC/97-0040EET, 1997; TARC collaboration, Neutron-driven nuclear transmutation by adiabatic resonance crossing, CERN-SL-99-036EET, 1999; Abanades et al., Nucl. Instr. and Meth. A 487 (2002) 577) for element activation and waste transmutation. We investigate the possibility to use this technique for the industrial production of **9**9Mo and **1**2**5Xe by resonance neutron capture in **9**8Mo and **1**2**4Xe, respectively. Their daughters, i.e. **9**9**mTc and **1**2**5I, are widely used in medical applications. The high neutron flux needed is produced by bombarding a thick Be target with 65 or 75 MeV proton beam (few microamperes). This target is placed at the centre of a large cubic lead assembly (1.6 m side, purity: 99.999%). The neutrons are progressively slowed down by elastic scattering on lead, and their energies "scan" t...

  12. Does new product growth accelerate across technology generations?

    NARCIS (Netherlands)

    S. Stremersch (Stefan); E. Muller (Erwin); R. Peres (Renana)

    2010-01-01

    textabstractThe academic literature on the growth acceleration of new products presents a paradox. On the one hand, the diffusion literature concludes that more recently introduced products show faster diffusion than older ones. On the other hand, technology generation literature argues that growth

  13. Production of neutrons in particle accelerators: a PNRI safety concern

    International Nuclear Information System (INIS)

    Garcia, Corazon M.; Cayabo, Lynette B.; Artificio, Thelma P.; Melendez, Johnylen V.; Piquero, Myrna E.; Parami, Vangeline K.

    2002-09-01

    In the safety assessment made for the first cyclotron facility in the Philippines, that is the cyclotron in the P.E.T. (Positron Emission Tomography) center of the St. Luke's Medical Center, the concern on the production of neutrons associated with the operation of particle accelerators has been identified. This takes into consideration the principles in the operation of particle accelerators and the associated production of neutrons resulting from their operation, the hazards and risks in their operation. The Bureau of Health Devices and Technology (BHDT) of the Department of Health in the Philippines regulates and controls the presently existing six (6) linear accelerators distributed in different hospitals in the country, being classified as x-ray producing devices. From the results of this study, it is evident that the production of neutrons from the operation of accelerators, produces neutrons and that activation due to neutrons can form radioactive materials. The PNRI (Philippine Nuclear Research Institute) being mandated by law to regulate and control any equipment or devices producing or utilizing radioactive materials should take the proper steps to subject all accelerator facilities and devices in the Philippines such as linear accelerators under its regulatory control in the same manner as it did with the first cyclotron in the country. (Author)

  14. Computational investigation of 99Mo, 89Sr, and 131I production rates in a subcritical UO2(NO32 aqueous solution reactor driven by a 30-MeV proton accelerator

    Directory of Open Access Journals (Sweden)

    Z. Gholamzadeh

    2015-12-01

    Full Text Available The use of subcritical aqueous homogenous reactors driven by accelerators presents an attractive alternative for producing 99Mo. In this method, the medical isotope production system itself is used to extract 99Mo or other radioisotopes so that there is no need to irradiate common targets. In addition, it can operate at much lower power compared to a traditional reactor to produce the same amount of 99Mo by irradiating targets. In this study, the neutronic performance and 99Mo, 89Sr, and 131I production capacity of a subcritical aqueous homogenous reactor fueled with low-enriched uranyl nitrate was evaluated using the MCNPX code. A proton accelerator with a maximum 30-MeV accelerating power was used to run the subcritical core. The computational results indicate a good potential for the modeled system to produce the radioisotopes under completely safe conditions because of the high negative reactivity coefficients of the modeled core. The results show that application of an optimized beam window material can increase the fission power of the aqueous nitrate fuel up to 80%. This accelerator-based procedure using low enriched uranium nitrate fuel to produce radioisotopes presents a potentially competitive alternative in comparison with the reactor-based or other accelerator-based methods. This system produces ∼1,500 Ci/wk (∼325 6-day Ci of 99Mo at the end of a cycle.

  15. Radioisotope techniques in oil wells

    International Nuclear Information System (INIS)

    Jain, Prabuddha

    1998-01-01

    Radioisotope techniques are quite useful in oil exploration and exploitation. Nuclear logging offers a way of gathering information on porosity, permeability, fluid saturations, hydrocarbon types and lithology. Some of the interesting applications in well drilling are determining depth of filtrate invasion, detection of lost circulation, drill-bit erosion control; primary cement measurements and well completions such as permanent tubular markers, perforation position marking, detection of channeling behind casing and gravel pack operations. Radioisotopes have been successfully used in optimizing production processes such as production profiling injection profiling, corrosion measurements and well to well tracer tests. (author)

  16. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technical Program Tasks for October 1, 2005 through September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-04-02

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  17. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Programs Tasks for October 1, 2005, through September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  18. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2005 THROUGH SEPTEMBER 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2007-04-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  19. Application of radiation and radioisotopes in life science

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2005-01-01

    Radiation and Radioisotopes have been played an important role in the wide range of life science, from the field study, such as fertilizer or pesticide development or production of new species, to gene engineering researches. Many mutants through radiation have been provided to the market and the usage of radioactive tracers was an effective tool to study plant physiology. It has been granted that the contribution of radioisotopes has been accelerated the development of the gene engineering technology, which is now overwhelming all the other usages of radiation or radioisotopes. However, because of the difficulty to get social acceptance for gene modified plants, the orientation of the life science is now changing towards, so called ''post genome era''. Therefore, from the point of radiation or radioisotope usage, new application methods are needed to develop new type of researches. We present how (1) neutron activation analysis, (2) neutron radiography and (3) positron emission tomography are promising to study living plant physiology. Some of these techniques are not necessarily new methods but with a little modification, they show new aspects of plant activity. (author)

  20. Linear accelerator for production of tritium: Physics design challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Lawrence, G.P.; Bhatia, T.S.; Billen, J.H.; Chan, K.C.D.; Garnett, R.W.; Guy, F.W.; Liska, D.; Nath, S.; Neuschaefer, G.; Shubaly, M.

    1990-01-01

    In the summer of 1989, a collaboration between Los Alamos National Laboratory and Brookhaven National Laboratory conducted a study to establish a reference design of a facility for accelerator production of tritium (APT). The APT concept is that of a neutron-spallation source, which is based on the use of high-energy protons to bombard lead nuclei, resulting in the production of large quantities of neutrons. Neutrons from the lead are captured by lithium to produce tritium. This paper describes the design of a 1.6-GeV, 250-mA proton cw linear accelerator for APT.

  1. Activity calculation of radioisotopes in HFETR

    International Nuclear Information System (INIS)

    Liu Shuiqing

    1996-12-01

    The activity calculating method and formulas of seven kinds of radioisotopes for High Flux Engineering Test REactor (HFETR) are given. The perturbation of targets to neutron fluence rate is considered while targets are put into the neutron fluence rate field of reactor core. All perturbing factors of seven kinds of radioisotopes being used in HFETR are presented. After considering the perturbation, the calculating accuracy of radioisotope activity has been raised 10%. The given method and formulas have ended the history of all activities estimated by experiences, except for that of 60 Co, in the radioisotope production of HFETR. The conclusions are also useful and instructive for the production of radioisotopes in HFETR. (8 tabs.)

  2. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  3. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1996-01-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs

  4. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    International Nuclear Information System (INIS)

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983

  5. The Calculation of Self-Disposal Date by Analyzing the Radioactive Contamination of Air Filters Disused in Radioisotope Production Facility

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Lee, Bu Hyung; Kwon, Soo Il

    2016-01-01

    The aim of the study is to decrease the diffusion of air contamination which occurred in radiation work places handle radioisotope under the permissible level. Accordingly, we replaced used air filter with a new one at the appropriate time , and computed disposal dates for disposing used air filters by calculate radioactive contamination. Air filter contaminated by radioactivity is possible to be self-disposed on condition that all detected nuclides is below permissible level according to Nuclear Safety and Security Commission (NSSC) notification No. 2014-003. Radioisotope, produced by 30, 50 MeV cyclotron and carried from other institutions, is used to treat patients, diagnose diseases, and research technology in Korea Institute of Radiological and Medical Sciences (KIRAMS). With unsealed sources generate radioactive contamination in air, it is important to use fume hood or hot cell. The accurate date needs to be calculated by the equation for calculation of self disposal date. If disposal date is in 1000 days, disposal for external institution is required. With increasing the number of medical institute which was related to use the radioisotopes, the importance of radioactive safety management was increased. As disposing radioactive waste, in particular, is the procedure of inspecting for releasing radioactive waste to outside, appropriate action and continuous research are required at a radioactive safety management.

  6. Synthesis and granulation of a titanosilicate with adsorption capacity for Cs to be used for treating de ILLW of the Ezeiza Radioisotope Production Plant

    International Nuclear Information System (INIS)

    Curi, Rodrigo; Bianchi, Hugo L; Luca, Vittorio

    2012-01-01

    The sitinakite structured titanosilicate is widely used for treating ILLW thanks to its capacity for adsorbing both Cs-137 and Sr-90. Its effectiveness lies in its incredibly high selectivity for such radioisotopes, which makes it useful in complex isotope solutions and even in strong acid and alkaline conditions. In Argentina, an off-the-shelve titanosilicate was used in Ezeiza's radioisotope production plant. Because of commercial restrictions, it is no longer available so an inhouse production is being developed. The aim of this project consists of the following: 1. Synthesis of titanosilicate and structural characterization 2. Adsorption kinetics of Cs + 3. Upscale of the synthesis process 4. Assessment of the influence of synthesis temperature and time on product crystallinity 5. Measurement of adsorption capacity of commercial titanosilicates IE910, IE911 and novel RC15H 6. Separative performance column essay and breakthrough plot 7. Chemical and radiolysis resistance of the adsorbent powder binder Polyacrylonitrile (PAN) in contact with the actual waste Throughout this work we have studied the optimum synthesis conditions capable of rendering a sitinakite structured titanosilicate, assessed its Cs + adsorption kinetics, adsorption capacity, crystal phase and purity via DRX, particle size with Laser Light Scattering technique. We have also conducted column breakthrough experiments and tried the chemical and radiolysis resistance of the final product (author)

  7. Indigenous development of TBq levels of "1"7"7Lu radioisotope production at RPhD for nuclear medicine applications - a successful venture

    International Nuclear Information System (INIS)

    Chakraborty, Sudipta; Vimalnath, K.V.; Dash, Ashutosh

    2017-01-01

    Lutetium-177 ("1"7"7Lu) has emerged as a potential radionuclide during last decade for the development of radionuclide therapy owing to its favorable nuclear decay characteristics (T_1_/_2=6.65 d, E_β_(_m_a_x) = 0.497 MeV, E_γ = 113 keV (6.4%) and 208 keV (11%)). The long half-life of this promising radioisotope offering distinct logistical advantage and feasibility of its large-scale production in medium flux Dhruva research reactor contributed to its success story

  8. Use of radioisotopes in Japan

    International Nuclear Information System (INIS)

    Foeldiak, G.

    1974-01-01

    A survey of the following general data on the use of radioisotopes in Japan is given (from the material of the 11th Japan Conference on Radioisotopes): 1. number of the organizations using radioactive isotopes, grouped according to special working fields and instruments; 2. amount of the unsealed sources (Ci) used in the different special working fields in 1971, 4. amount of the sealed sources (Ci) used between 1966 and 1971. 5. number of the institutions using sealed sources, grouped according to special working fields (March, 1972), 6. number of the accelerators applied, grouped according to special working fields (March, 1972), 7. number of the nuclear instruments in the education and research institutes (March, 1972), 8. amount of the collected radioactive waste material between 1960 and 1971 (number of containers). (K.A.)

  9. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  10. Status of the LCLS-II Accelerating Cavity Production

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Ed [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Marhauser, Frank [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fitzpatrick, Jarrod A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Preble, Joe [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, Katherine M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Grimm, C. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burrill, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gonnella, Daniel [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-05-01

    Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.

  11. Application of radioisotopes in pharmaceutical research

    International Nuclear Information System (INIS)

    Khujaev, S.

    2004-01-01

    Full text: To use of radioisotopes in the processes of receiving radiopharmaceutical diagnostic means it is widely know [1]. Radioactivity labeled chemical compounds, pharmacological kinetics of which allows one solving a concrete diagnostic problem in an organism are used in radio pharmaceutics. In spite of this choice of the radioisotope, possessing the most favorable nuclei-physical characteristics for it to be detected and minimization of beam loadings, be of great importance. Development of a method of introduction of a radioisotope also has important value, as it is included into chemical structure of a radiopharmaceutical preparation. One more way of use of radioisotopes in pharmaceutics is their use as a radioactive mark at a stage of creation of a new medical product. And in this case, all those moments, which are listed above, take place. Preparations labeling by radioisotopes are used basically for their studying pharmacological kinetics. In Institute of nuclear physics AS RU, in recent years, works are done on studying pharmacological kinetics of some new medical products, which have been synthesized in the Tashkent pharmaceutical institute. These preparations are on the basis of microelements with a complex set of properties possessing expressed biological activity and have great value in pharmaceutical science of Republic of Uzbekistan. Reception of labeled compounds of all preparations was carried out by a method of introduction of a radioisotope at a stage of their synthesis. The work presents the results of researches on synthesis and study of pharmacological kinetics of radioactively labeled preparations - PIRACIN, labeled by radioisotope 69m Zn; FERAMED, labeled by radioisotope 59 Fe; COBAVIT, labeled by radioisotope 57 Co; VUC, labeled by radioisotope 57 Co

  12. Study of solid target preparation for developing I-124, Pd-103, Cu-64 radioisotopes based cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hong; Park, Hyun; Lee, Ji Sub; Lee, Dong Hoon; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Choi, Hee Dong [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    The decay characteristics of I-124, Pd-103 and Cu-64 radioisotopes produced by cyclotron have considered useful agents for diagnostic imaging or therapy. Numbers of radioisotopes used in medical applications or promised for development are produced with solid targets. The aims of developing solid targets are to obtain large quantities of radionuclides from accelerators. The scope of the study is to develop optimized target system and chemical procedures of these radioisotopes. In order to increase the availability of the radionuclides, the investigation for the design of the solid target and different procedures yielding efficient production of high specific activity will be carrying. In this work, we will present the issue of the primary target design concept.

  13. Feasibility studies on the production of essential radioisotopes (24Na and 32P) using the Ghana Miniature Neutron Source Reactor (GHARR-1)

    International Nuclear Information System (INIS)

    Dotse, S.C.

    2012-01-01

    Feasibility studies on the production of 32 P and 24 Na using a Miniature Neutron Source Reactor named Ghana Research Reactor-1 (GHARR-1) has been conducted. A theoretical model of the cyclic activation technique was developed for the simulation of specific activities under varying parameters. Specific activity values estimated for four cycles of irradiation with activation parameters falling within the specifications of the reactor were experimentally validated. Experimented results were compared to those theoretically estimated for both 24 Na and 32 P. Experimented specific activity values for both radioisotopes generally fell below their theoretical values but recorded activity build-ups from one cycle to the other. The 24 Na nuclide showed a regular pattern for the increase in specific activity from one cycle to the next with an average percentage difference of experimented to theoretical value of 19%. The 32 P nuclide showed an irregular pattern for the increase in specific activity from one cycle to the next with an average percentage difference of experimental to theoretical value of 11%. The specific activities experimentally attained, with reference to activity levels used for various applications in agriculture and industry suggests the cyclic activation technique can be used for the production of radioisotopes of appreciable activities using low power research reactors, which are characterised with limited excess core reactivity and cannot sustain long periods of irradiation. (au)

  14. Technology benefits resulting from accelerator production of tritium

    International Nuclear Information System (INIS)

    1998-01-01

    One of the early and most dramatic uses of nuclear transformations was in development of the nuclear weapons that brought World War II to an end. Despite that difficult introduction, nuclear weapons technology has been used largely as a deterrent to war throughout the latter half of the twentieth century. The Accelerator Production of Tritium (APT) offers a clean, safe, and reliable means of producing the tritium (a heavy form of hydrogen) needed to maintain the nuclear deterrent. Tritium decays away naturally at a rate of about 5.5% per year; therefore, the tritium reservoirs in nuclear weapons must be periodically replenished. In recent years this has been accomplished by recycling tritium from weapons being retired from the stockpile. Although this strategy has served well since the last US tritium production reactor was shut down in 1988, a new tritium production capability will be required within ten years. Some benefits will result from direct utilization of some of the APT proton beam; others could result from advances in the technologies of particle accelerators and high power spallation targets. The APT may save thousands of lives through the production of medical isotopes, and it may contribute to solving the nation's problem in disposing of long-lived nuclear wastes. But the most significant benefit may come from advancing the technology, so that the great potential of accelerator applications can be realized during our lifetimes

  15. Radioisotope Gauges

    International Nuclear Information System (INIS)

    Tominaga, Hiroshi

    1980-01-01

    A survey was made by Japan Atomic Industrial Forum, Inc., in August, 1979, on the uses of isotope-equipped measuring instruments in private industrial enterprises by sending questionnaires to 1372 enterprises using sealed radiation sources. The results are described. i.e. usage of isotope-equipped measuring instruments, the economic effects, and problems for the future, and also the general situation in this field. Such instruments used are gas chromatography apparatus, thickness, level and moisture gauges, sulfur analyzer, etc. Except the gas chromatography, the rest are mostly incorporated in automatic control systems. As the economic effects, there are the rises in productivity, quality and yield and the savings in materials, energy and manpower. While they are used to great advantage, there are still problems occasionally in measuring accuracy and others. (J.P.N.)

  16. Practical applications of short-lived radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    The advantages of the use of short-lived radioisotopes in agriculture, food industry and medicine as well as some industrial uses are discussed. Methods for isotope production in small research reactors and laboratories are presented

  17. First research co-ordination meeting on development of reference charged particle cross section data base for medical radioisotope production. Summary report

    International Nuclear Information System (INIS)

    Oblozinsky, P.

    1996-03-01

    The present report contains the summary of the First Research Co-ordination Meeting on ''Development of Reference Charged Particle Cross Section Data Base for Medical Radioisotope Production'', held at the IAEA Headquarters, Vienna, from 15 to 17 November 1995. The project focuses on monitor reactions and production reactions for gamma emitters and positron emitters induced with light charged particles of incident energies up to about 100 MeV. Summarized are technical discussions and the resulting work plan of the Coordinated Research Programme, including actions and deadlines. Attached are an information sheet on the project, the agenda and a list of participants of the meeting. Also attached is brief information on the adjacent Consultant's Meeting on ''Automated Synthesis Systems for the Cyclotron Production of 18 F and 123 I and their Labeled Radiopharmaceuticals''. (author)

  18. The radioisotopes and radiations program

    International Nuclear Information System (INIS)

    1982-01-01

    This program of the National Atomic Energy Commission of Argentina refers to the application and production of radionuclides, their compounds and sealed sources. The applications are carried out in the medical, agricultural, cattle raising and industrial areas and in other engineering branches. The sub-program corresponding to the production of radioactive materials includes the production of radioisotopes and of sealed sources, and an engineering service for radioactive materials production and handling facilities. The sub-program of applications is performed through several groups or laboratories in charge of the biological and technological applications, intensive radiation sources, radiation dosimetry and training of personnel or of potential users of radioactive material. Furthermore, several aspects about technology transfer, technical assistance, manpower training courses and scholarships are analyzed. Finally, some legal aspects about the use of radioisotopes and radiations in Argentina are pointed out. (M.E.L.) [es

  19. Studies on application of radiation and radioisotopes

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Lee, Ji Bok; Lee, Yeong Iil; Jin, Joon Ha; Beon, Myeong Uh; Park, Kyeong Bae; Han, Heon Soo; Jeong, Yong Sam; Uh, Jong Seop; Kang, Kyeong Cheol; Cho, Han Ok; Song, Hui Seop; Yoon, Byeong Mok; Jeon, Byeong Jin; Park, Hong Sik; Kim, Jae Seong; Jeong, Un Soo; Baek, Sam Tae; Cho, Seong Won; Jeon, Yeong Keon; Kim, Joon Yeon; Kwon, Joong Ho; Kim, Ki Yeop; Yang, Jae Seung; No, Yeong Chang; Lee, Yeong Keun; Shin, Byeong Cheol; Park, Sang Joon; Hong, Kwang Pyo; Cho, Seung Yeon; Kang, Iil Joon; Cho, Seong Ki; Jeong, Yeong Joo; Park, Chun Deuk; Lee, Yeong Koo; Seo, Chun Ha; Han, Kwang Hui; Shin, Hyeon Young; Kim, Jong Kuk; Park, Soon Chul; Shin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek; Park, Eung Uh; Kim, Dong Soo; Jeon, Sang Soo

    1993-05-01

    With the completion of construction of KMRR, the facility and technology of radiation application will be greatly improved. This study was performed as follows; (1) Studies on the production and application of radioisotopes. (2) The development of radiation processing technology. (3) The application of Irradiation techniques for food preservation and process improvement. (4) Studies on the radiation application for the development of genetic resources (5) Development of the radioisotope (RI) production facilities for Korea Multipurpose Research Reactor (KMRR)

  20. Transport of radioisotopes

    International Nuclear Information System (INIS)

    Aoki, Shigefumi

    1978-01-01

    Presently the amount of radioisotopes increased very much and the application spread to wide fields in Japan. Since facilities using radioisotopes are distributed to every place in the country, every transport means such as airplanes, automobiles, railways, ships and mail are employed. The problems in the transport of radioisotopes include too much difference in the recognition of criticality among the persons concerning the transportation and treatment, knowledges of shielding and energy difference in the types of radiation and handling of sealed and unsealed sources and the casks for transport. IAEA established the latest regulation on the package of radioisotopes in 1973, and in Japan, the related regulations will be revised according to the IAEA's regulation in near future. The present status in the inspection at the time of shipment, supervision, and the measures to the accidents are described for the transport means of airplanes, ships and automobiles. Finally, concerning the insurance for cargo, the objects of the insurance for radioisotopes include either the radioisotopes contained in casks for transportation or radioisotopes only. Generally, radioisotopes are accepted in all-risk condition including casks and limited to the useful radioisotopes for peaceful use. (Wakatsuki, Y

  1. Agricultural application of radioisotopes

    International Nuclear Information System (INIS)

    Agrawal, H.M.

    2001-01-01

    The radiations and isotopic tracers laboratory (R.I.T.L.) is duly approved B-class laboratory for handling radioactivity and functions as a central research facility of our university which has played a very significant role in ushering green revolution in the country. Radiolabelled fertilizers, insecticides and isotopes mostly supplied by Board of Radiation and Isotope Technology, (BRIT) Department of Atomic Energy (DAE) are being used in our university for the last three decades to study the uptake of fertilizers, micro nutrients, photosynthesis and photorespiration studies in different crop plants, soil-water-plant relations and roots activity, pesticides and herbicides mode of action, plants physiology and microbiology. Main emphasis of research so far has been concentrated on the agricultural productivity. The present talk is an attempt to highlight the enormous potential of radioisotopes to evolve better management of crop system for eco-friendly and sustainable agriculture in the next century. (author)

  2. Investigation of the production of cobalt-60 via particle accelerator

    Directory of Open Access Journals (Sweden)

    Artun Ozan

    2017-01-01

    Full Text Available The production process of cobalt-60 was simulated by a particle accelerator in the energy range of 5 to 100 MeV, particle beam current of 1 mA, and irradiation time of 1 hour to perform yield, activity of reaction, and integral yield for charged particle-induced reactions. Based on nuclear reaction processes, the obtained results in the production process of cobalt-60 were also discussed in detail to determine appropriate target material, optimum energy ranges, and suitable reactions.

  3. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2009-04-01

    The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  4. Packaging and transport of radioisotopes

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1976-01-01

    The importance of radioisotope traffic is emphasized. More than a million packages are being transported each year, mostly for medical uses. The involvement of public transport services and the incidental dose to the public (which is very small) are appreciably greater than for movements connected with the nuclear fuel cycle. Modern isotope packages are described, and an outline given of the problems of a large radioisotope manufacturer who has to package many different types of product. Difficulties caused by recent uncoordinated restrictions on the use of passenger aircraft are mentioned. Some specific problems relating to radioisotope packaging are discussed. These include the crush resistance of Type A packages, the closure of steel drums, the design of secure closures for large containers, the Type A packaging of liquids, leak tightness criteria of Type B packages, and the use of 'unit load' overpacks to consign a group of individually approved packages together as a single shipment. Reference is made to recent studies of the impact of radioisotope shipments on the environment. Cost/benefit analysis is important in this field - an important public debate is only just beginning. (author)

  5. Twenty years of Korea radioisotope association history

    International Nuclear Information System (INIS)

    2005-09-01

    This contents has two parts. The first part describes the present and post of Korea radioisotope association which are about the foundation of the association, organization, main projects and vision of the association. The second part is about the use and the prospect of radiation and radioisotope in Korea, which shows the plan of expansion of use of radiation and radioisotope, the prospect and present condition in fields such as medical, industry and farming, product and distribution, research and development of human resources, system and management of safety of radiation.

  6. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  7. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  8. Cost-benefit aspects of radioisotope methods

    International Nuclear Information System (INIS)

    Jankowski, L.

    1986-01-01

    The cost-benefit relations in the complex application of radioisotpe techniques increased in the last years to up to 1/10 to 1/15. The most essential cause of this trend is the increase of the capacity of production processes, controlled and automatized by means of radioisotopes, and the solution of qualitatively new technological problems of a high economic relevance. A collection of statistical data about the expediture and benefit of different radioisotopes techniques is presented. (author)

  9. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  10. Radioisotopes for therapy: an overview

    International Nuclear Information System (INIS)

    Venkatesh, Meera

    2006-01-01

    Radionuclides made great impact in the history of nuclear sciences both at the end of 19th century with the discoveries of Becquerel and madame Curie and later in 1934, when Frederic Joliet and Irene Curie demonstrated the production of the first artificial radioisotopes, 30 P, by bombardment of 27 Al by alpha particles. The subsequent invention of cyclotron and setting up of nuclear reactor opened the floodgate for production of artificial radionuclides. Currently, majority of radionuclides are made artificially by transforming a stable nuclide into an unstable state and thus far over 2500 radionuclides have been produced artificially. Use of radionuclides in various fields immediately followed their production and last century has witnessed tremendous growth in the applications of radiation and radioisotopes, in diverse fields such as medicine, industry, agriculture, food preservation, water resource management, environmental studies, etc. While radiation and radioisotopes are used both for diagnosis as well as for therapy in the field of medicine, therapeutic applications are among the earliest, which began as an empirical science in the beginning and developed into a well structured modality with time. (author)

  11. Accelerator Production of Tritium Programmatic Environmental Impact Statement Input Submittal

    International Nuclear Information System (INIS)

    Miller, L.A.; Greene, G.A.; Boyack, B.E.

    1996-02-01

    The Programmatic Environmental Impact Statement for Tritium Supply and Recycling considers several methods for the production of tritium. One of these methods is the Accelerator Production of Tritium. This report summarizes the design characteristics of APT including the accelerator, target/blanket, tritium extraction facility, and the balance of plant. Two spallation targets are considered: (1) a tungsten neutron-source target and (2) a lead neutron-source target. In the tungsten target concept, the neutrons are captured by the circulating He-3, thus producing tritium; in the lead target concept, the tritium is produced by neutron capture by Li-6 in a surrounding lithium-aluminum blanket. This report also provides information to support the PEIS including construction and operational resource needs, waste generation, and potential routine and accidental releases of radioactive material. The focus of the report is on the impacts of a facility that will produce 3/8th of the baseline goal of tritium. However, some information is provided on the impacts of APT facilities that would produce smaller quantities

  12. Proton-fission for the accelerator production of Mo-99

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Jungerman, J.A.; Castaneda, C.M.

    1993-01-01

    The production of Mo-99 (66.0 h) via de U-238(p,f) Mo-99 fission reaction is proposed as a non-reactor source of this essential precursor of 6.6-h Tc-99m, an isotope of wide use of diagnostic nuclear medicine applications. Measurements of the total excitation function for the U-238(p,f) reaction indicated a maximum and fairly constant cross section of 1.4 barns at > 30 MeV. Combining the advances of high-current (mA) H-accelerators with dual beam (dual target) operation, and assuming a 5% fission yield, estimates of Mo-99 reaches 5 to 14 Ci/h at 1 mA. The proton fission production of Mo-99 appears to more advantageous than the reactor produced via evaporation neutron-induced fission. An accelerator method could allow securing ample supply of Mo-99 independently of the current scarce reactor operation, while also simplifying the associated waste management problems as well as some of the environmental concerns

  13. Radiological Hazard of Spallation Products in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-01-01

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs

  14. Investigation of 123I production using electron accelerator

    International Nuclear Information System (INIS)

    Avetisyan, Albert; Avagyan, Robert; Dallakyan, Ruben; Avdalyan, Gohar; Dobrovolsky, Nikolay; Gavalyan, Vasak; Kerobyan, Ivetta; Harutyunyan, Gevorg

    2017-01-01

    The possibility of 123 I isotope production with the help of the high-intensity bremsstrahlung photons produced by the electron beam of the LUE50 linear electron accelerator at the A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute [YerPhI]) is considered. The production method has been established and shown to be successful. The 124 Xe(γ,n) 123 Xe → 123 I nuclear reaction has been investigated and the cross-section was calculated by nuclear codes TALYS 1.6 and EMPIRE 3.2. The optimum parameter of the thickness of the target was determined by GEANT4 code. For the normalized yield of 123 I, the value of 143 Bq/(mg·μA·h) has been achieved.

  15. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  16. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  17. Economical Radioisotope Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Almost all robotic space exploration missions and all Apollo missions to the moon used Radioisotopic Thermoelectric Generators (RTGs) to provide electrical power to...

  18. Materials technology for accelerator production of fissile isotopes

    International Nuclear Information System (INIS)

    Horak, J.A.

    1978-02-01

    The materials used for the accelerator production of fissile isotopes must enable the facility to achieve maximum fuel production at a minimum cost. Neutron production in the target would be maximized by use of thorium cooled with Pb--56 percent Bi or with sodium. The thorium should be ion-plated with approximately 1 mil of nickel or stainless steel for retention of fission products. The target container will have to be replaced at frequent intervals because of the copious quantities of neutronically produced helium and hydrogen in the container. Replacement would coincide with shutdown of the facility for the removal of the fissile material produced. If sodium is used to cool both the target and fertile blanket, a simple basket-type target container could be used. This would greatly reduce radiation effects in the target container. Type 316 stainless steel or V--20 wt percent Ti should perform satisfactorily as a target container. The fertile blanket should be 233 Th or 238 U that is coated with approximately 1 mil of nickel or stainless steel and cooled with sodium. The blanket container could be an austenitic stainless steel such as type 304 or 316; some ferritic alloys may also provide a satisfactory blanket container. 31 references

  19. Radioisotopes in industry

    International Nuclear Information System (INIS)

    Popple, B.N.

    1977-01-01

    The author explains clearly what is radiography, enumerates four major factors in considering a practical source to use namely half-life, penetrating power, half value layer and specific activity and also the advantages and disadvantages in using isotopes. Common radioisotopes used in industrial radiography are iridium, cesium, cobalt and thulium. Main uses of the radioisotopes are for radiographic testing like welding castings, forgoings etc.; thickness, level or density measurement and tracing. (RTD)

  20. Highly Productive Application Development with ViennaCL for Accelerators

    Science.gov (United States)

    Rupp, K.; Weinbub, J.; Rudolf, F.

    2012-12-01

    The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support

  1. Production of 123I for medical use with small accelerators

    International Nuclear Information System (INIS)

    Beyer, G.J.; Pimentel, G.; Solin, O.; Heselius, S.J.; Taka, T.

    1988-01-01

    The possibilities of 123 I production with small accelerators are discussed. Among the possible nuclear reactions the 122 Te(d,n) 123 I and the 123 Te(p,n) 123 I reaction are of particular interest for those institutions, who do not run a cyclotron with particle energies for protons above 18-20 MeV. The use of TeO 2 as target material is advantaged over Te. The 123 I preparations contain resonable amounts of 130 I and 124 I. The most 'dangerous' impurity is 130 I due to its high energy gamma radiation. Nevertheless, high quality imagings may be obtained using medium or high energy collimators loosing some of the advantages of 123 I. The proposed approach is the only way to make 123 I available for a number of institutions or countries running small cyclotrons and for which commercial 123 I is difficult or impossible to obtain for economical or geographical reasons. (author)

  2. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1982

    International Nuclear Information System (INIS)

    Richards, M.P.

    1983-08-01

    The radioisotope production and distribution activities by facilities at Argonne National Laboratory, Pacific Northwest Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and UNC Nuclear Industries, Inc. are listed. The information is divided into five sections: isotope suppliers, facility, contacts, and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customs numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1982

  3. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  4. Radioisotopic control and automation of food mills

    International Nuclear Information System (INIS)

    Pertsovskij, E.S.; Sakharov, Eh.V.; Dolinin, V.A.

    1980-01-01

    Domestic and foreign experience in application of radioisotope devices to process control in fool industry, is described. The diagrams of devices to block and account the production in systems of process monitoring and control are considered. The methods of determining chemical composition of substances are discussed, as sell as the devices used for those purposes and based on recording β-and γ-radiation absorption by substance. The methods for determining dust and smoke content in premises using radioisotope devices. Level indicators, moisture gages and densitimeters usedf ctol level humidity, density and concentration of food products in the process of production are described [ru

  5. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  6. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  7. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  8. Plasma production for electron acceleration by resonant plasma wave

    International Nuclear Information System (INIS)

    Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-01-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  9. Plasma production for electron acceleration by resonant plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  10. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  11. List of ERDA radioisotope (customers with summary of radioisotope shipments FY 1975

    International Nuclear Information System (INIS)

    Simmons, J.L.; Gano, S.R.

    1976-01-01

    The twelfth edition of the ERDA radioisotope customer list has been prepared at the request of the Division of Biomedical and Environmental Research. The purpose of this document is to list the FY 1975 commercial radioisotope production and distribution activities of USERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, United Nuclear Inc., Idaho Operations Office, Hanford Engineering Development Laboratory, Mound Laboratory, Oak Ridge National Laboratory, and Savannah River Plant

  12. List of ERDA radioisotope customers with summary of radioisotope shipments, FY 1976

    International Nuclear Information System (INIS)

    Simmons, J.L.

    1977-03-01

    The thirteenth edition of the ERDA radioisotope customer list has been prepared at the request of the Office of Program Coordination, Office of the Assistant Administrator. The purpose of the document is to list the FY 1976 commercial radioisotope production and distribution activities of ERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and United Nuclear Industries, Inc

  13. Radiation protection and dosimetry problems around medium energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, R; Pavlovic, S; Markovic, S [Inst. of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In the Institute of Nuclear Sciences `VINCA`, the Accelerator Installation `TESLA`, which is an ion accelerator facility consisting of an isochronous cyclotron `VINCY`, a heavy ion source, a D{sup -} / H{sup -} ion source, three low energy and five high energy experimental channels is now under construction. The Tesla Accelerator Installation should by the principal facility for basic and applied research in physics, chemistry, biology, and material science, as well as for production of radioisotopes, medical diagnostics and therapy with radioisotopes and accelerated particle beams. Some problems in defining radiation protection and safety programme, particularly problems in construction appropriate shielding barriers at the Accelerator Installation `TESLA` are discussed in this paper. (author) 1 fig., 9 refs.

  14. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  15. TESLA accelerator installation

    International Nuclear Information System (INIS)

    Neskovic, N.; Ostojic, R.; Susini, A.; Milinkovic, Lj.; Ciric, D.; Dobrosavljevic, A.; Brajuskovic, B.; Cirkovic, S.; Bojovic, B.; Josipovic, M.

    1992-01-01

    The TESLA accelerator Installation is described. Its main parts are the VINCY Cyclotron, the multiply charged heavy-ion mVINIS Ion Source, and the negative light-ion pVINIS Ion Source. The Installation should be the principal installation of a regional center for basic and applied research in nuclear physics, atomic physics, surface physics and solid state physics, for production of radioisotopes, for research and therapy in nuclear medicine. The first extraction of the ion beam from the Cyclotron is planned for 1995. (R.P.) 3 refs.; 1 fig

  16. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  17. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  18. Actual and future situations of the use of radioisotopes

    International Nuclear Information System (INIS)

    Paredes G, L.C.

    2005-01-01

    It is anticipated to medium term, an increase in the demand of the radioisotopes for medicine, industry and research, as well as the application of new radioisotopes derived from the development of new radiopharmaceuticals products for diagnosis and therapy applications. The personal and clinical dosimetry will have to be prepared for the new challenges. (Author)

  19. Radioisotopic indicators in microbiology

    International Nuclear Information System (INIS)

    Isamov, N.N.

    1976-01-01

    The book comprises data obtained by the laboratory of radiobiology (Uzbek Research Veterinary Institute) for 15 years and sums up data of domestic and foreign scientists; it discusses problems of the utilization of radioactive isotopes of sulphur, cadmium, phosphorus and other chemical elements by microorganisms; indicates the specificity of the utilization of radioisotopes in microbiology. The influence is considered of external factors on the inclusion of radioisotopes into microorganisms, methods are discussed of obtaining labelled microorganisms and their antigens, radioactivity of bacteria is considered as affected by the consistency and composition of the nutritive medium and other problems

  20. Radioisotope clocks in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, R E.M. [Oxford Univ. (UK). Research Lab. for Archaeology

    1979-09-06

    Methods of absolute dating which use the rate of disintegration of a radioactive nucleus as the clock, are reviewed. The use of the abundant radioisotopes (/sup 40/K, Th and U) and of the rare radioisotopes (/sup 14/C, /sup 10/Be, /sup 26/Al, /sup 32/Si, /sup 36/Cl, /sup 41/Ca, /sup 53/Mn) is discussed and radiation integration techniques (fission track dating, thermoluminescence and related techniques) are considered. Specific fields of use of the various methods and their accuracy are examined.

  1. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  2. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979

  3. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  4. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  5. Radioisotope Power Supply, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  6. Flow distribution in the accelerator-production-of-tritium target

    International Nuclear Information System (INIS)

    Siebe, D.A.; Spatz, T.L.; Pasamehmetoglu, K.O.; Sherman, M.P.

    1999-01-01

    Achieving nearly uniform flow distributions in the accelerator production of tritium (APT) target structures is an important design objective. Manifold effects tend to cause a nonuniform distribution in flow systems of this type, although nearly even distribution can be achieved. A program of hydraulic experiments is underway to provide a database for validation of calculational methodologies that may be used for analyzing this problem and to evaluate the approach with the most promise for achieving a nearly even flow distribution. Data from the initial three tests are compared to predictions made using four calculational methods. The data show that optimizing the ratio of the supply-to-return-manifold areas can produce an almost even flow distribution in the APT ladder assemblies. The calculations compare well with the data for ratios of the supply-to-return-manifold areas spanning the optimum value. Thus, the results to date show that a nearly uniform flow distribution can be achieved by carefully sizing the supply and return manifolds and that the calculational methods available are adequate for predicting the distributions through a range of conditions

  7. Development and selection of fungal and bacterial mutants using ionizing radiation and radioisotopes for improved enzyme production (cellulase and coagulase)

    International Nuclear Information System (INIS)

    Markov, K.I.

    1975-01-01

    Ultraviolet and gamma radiations, chemical mutagens, and combinations of chemical and physical mutagens were used in order to obtain mutants of Bacillus mesentericus and Trichoderma viridae with a higher production of coagulase and cellulase, respectively. It was possible to isolate mutant strains, with enzyme activity increased by a factor of 2 and 3

  8. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  9. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  10. Radioisotopes in Industry

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Philip S. [Oak Ridge National Laboratory; Fuccillo, Jr., Domenic A. [Oak Ridge National Laboratory; Gerrard, Martha W. [Oak Ridge National Laboratory; Lafferty, Jr., Robert H. [Oak Ridge National Laboratory

    1967-05-01

    Radioisotopes, man-made radioactive elements, are used in industry primarily for measuring, testing and processing. How and why they are useful is the subject of this booklet. The booklet discusses their origin, their properties, their uses, and how they may be used in the future.

  11. Radio-isotope generator

    International Nuclear Information System (INIS)

    Benjamins, H.M.

    1983-01-01

    A device is claimed for interrupting an elution process in a radioisotope generator before an elution vial is entirely filled. The generator is simultaneously exposed to sterile air both in the direction of the generator column and of the elution vial

  12. Radioisotope thermoelectric generators for implanted pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Pustovalov, A.A.; Bovin, A.V.; Fedorets, V.I.; Shapovalov, V.P.

    1986-08-01

    This paper discusses the development and application of long-life lithium batteries and the problems associated with miniature radioisotope thermoelectric generators (RITEG) with service lives of 10 years or longer. On eof the main problems encountered when devising a radioisotope heat source (RHS) for an RITEG is to obtain biomedical /sup 238/PuO/sub 2/ with a specific neutron yield of 3.10/sup 3/-4.10/sup 3/ (g /SUP ./ sec)/sup -1/, equivalent to metallic Pu 238, and with a content of gamma impurities sufficient to ensure a permissible exposure a permissible exposure does rate (EDR) of a mixture of neutron and gamma radiation. After carrying out the isotope exchange and purifying the initial sample of its gamma impurity elements, the authors obtain biomedical Pu 238 satisfying the indicated requirements king suitable for use in the power packs of medical devices. Taking the indicated specifications into account, the Ritm-1o and gamma radioisotope heat sources were designed, built, tested in models and under natural conditions, and then into production as radioisotope thermoelectric generators designed to power the electronic circuits of implanted pacemakers. The Ritm-MT and Gemma radioisotope thermoelectric generators described are basic units, which can be used as self-contained power supplies for electronic equipment with power requirements in the micromilliwatt range.

  13. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  14. Productivity of a nuclear chemical reactor with gamma radioisotopic sources; Rendimiento de un reactor quimico-nuclear con fuentes radioisotopicas gamma

    Energy Technology Data Exchange (ETDEWEB)

    Anguis T, C

    1975-07-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  15. Industrial and medical applications of accelerators with energies less than 20 MeV

    International Nuclear Information System (INIS)

    Duggan, J.L.

    1983-01-01

    In this paper the medical and industrial application of small accelerators is reviewed. Most of the material is taken from the Seventh Conference on the Application of Accelerators in Research and Industry, which was held in Denton, Texas in November of 1982. The areas covered include medical linacs, cyclotron design and production of medical radioisotopes, radiation processing, ion implantation for the metallurgical and semiconductor industries, oil and mineral exploration, trace, surface and bulk analysis, and unique accelerators for all of the above applications

  16. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope.

    Science.gov (United States)

    Wester, Dennis W; Steele, Richard T; Rinehart, Donald E; DesChane, Jaquetta R; Carson, Katharine J; Rapko, Brian M; Tenforde, Thomas S

    2003-07-01

    A major limitation on the supply of the short-lived medical isotope 90Y (t1/2 = 64 h) is the available quantity of highly purified 90Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1,500 Ci of 90Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90Sr immobilized on stainless steel filters for future use.

  17. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope

    International Nuclear Information System (INIS)

    Wester, D.W.; Steele, R.T.; Rinehart, D.E.; DesChane, J.R.; Carson, K.J.; Rapko, B.M.; Tenforde, T.S.

    2003-01-01

    A major limitation on the supply of the short-lived medical isotope 90 Y (t 1/2 =64 h) is the available quantity of highly purified 90 Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1500 Ci of 90 Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137 Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90 Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90 Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90 Sr immobilized on stainless steel filters for future use

  18. On the study of proton-irradiated Tellurium targets relevant for production of medical radioisotopes 123I and 124I

    International Nuclear Information System (INIS)

    Imam Kambali; Hari Suryanto; Daya Agung Sarwono; Cahyana Amiruddin

    2014-01-01

    The energy loss distribution and range of energetic proton beams in tellurium (Te) target have been simulated using the Stopping and Range of Ion in Matter (SRIM 2013) codes. The calculated data of the proton's range were then used to determine the optimum thickness of Te targets for future production of 123 I and 124 I from 123 Te(p,n) 123 I, 124 Te(p,n) 124 I and 124 Te(p,2n) 123 I nuclear reactions using the BATAN's Cs-30 cyclotron. It was found that for an incidence angle of 0° with respect to the target normal, the optimum thickness of 123 Te and 124 Te targets for 123 I production should be 644 µm and 1.8 mm respectively, whereas a 649 µm thick 124 Te target would be Required for 124 I production. In addition, the thickness should be decreased with increasing incidence angle. The EOB yield could theoretically reach up to 13.62 Ci of 123 I at proton energy of 22 Me V and beam current of 30 µA if the 124 Te is irradiated over a period of 3 hours. The theoretical EOB yield is comparable to the experimental data with accuracy within 10%. (author)

  19. Developing an environmental compliance program for accelerator production of tritium

    International Nuclear Information System (INIS)

    Reynolds, R.W.; Roberts, J.S.; Dyer, K.W.; Shedrow, C.B.; Sheetz, S.O.; England, J.L.

    1998-01-01

    This paper addresses the development of an environmental program for a large proposed federal project currently in the preliminary design phase, namely, the accelerator production of tritium (APT) for the US Department of Energy (DOE). This project is complicated not only by its size ($3.5 to $4.5 billion) but also by its technical complexity and one-of-a-kind nature. This is further complicated by the fact that government projects are driven by budgets subject to public pressures and annual Congressional fiscal considerations, whereas private companies are driven by profits. The measure of success for a federal project such as the APT is based on level of public support, not profits. Finally, there are not too many equivalent environmental programs that could be used as models, and benchmarking is nearly impossible. Forming an environmental program during the conceptual design phase of this large federal project included the formation of a core environmental working group (EWG). The group has membership from all major project organizations with a charter formally recognized by the project director. The envelope for traditional environmental work for the APT project has been stretched to include teaming with management in the establishment of project goals and direction. The APT EWG was set up organizationally to include several subgroups or teams that do the real work of assessing, establishing the regulatory framework, and then developing a compliance program. Setting aside the organizational difficulties of selecting the right team leads and members, each team was tasked with developing a charter, plan, and schedule. Since then, each team has developed an appropriate level of supporting documentation to address its particular issues and requirements

  20. 38 years of collaboration and friendship between Germany (east) and Cuba in the field of radioisotope production

    International Nuclear Information System (INIS)

    Novotny, Dieter; Wagner, Gerhard; Thieme, Stefan; Novotny, Holger

    2016-01-01

    Nowadays the Centro de Isotopos (CENTIS) is the most complex radioactive facility in Cuba. Today its 20th anniversary is celebrated and one can look back on a very special collaboration which was also contributing to this story of success. The relationship between Cuba and Germany was present from the former times with much scientific exchange and friendship, including the older and successive the younger generations as well. Within the latest projects an electrochemical 90 Sr/ 90 Y generator was installed at CENTIS and a production facility for 99 Mo/ 99 mTc generators is now under construction. (author)

  1. Radioisotope battery for particular application

    International Nuclear Information System (INIS)

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  2. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  3. Alpha radioisotopes Ac-225 and Bi-213: a production and labelling of antibodies and peptides for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: In various preclinical and clinical works the potential of the alpha emitters {sup 225}Ac and {sup 213}Bi as therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases was demonstrated. Both alpha emitters are available with high specific activity from established radionuclide generators. Their favorable chemical and physical properties have led to the conduction of a large number of preclinical studies and several clinical trials, demonstrating the feasibility, safety and therapeutic efficacy of targeted alpha therapy with {sup 225}Ac and {sup 213}Bi. This presentation will give an overview about the methods for the production of {sup 225}Ac and {sup 213}Bi, the {sup 225}Ac/{sup 213}Bi radionuclide generator systems, labelling of peptides and antibodies with {sup 225}Ac and {sup 213}Bi and relevant in vivo and in vitro works. (author)

  4. Application of radioisotopes in entomology

    International Nuclear Information System (INIS)

    Saour, G.

    1995-01-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are: 3 H, 14 Ca, 32 P, 35 S, 38 Cl. Other radioisotopes contributing to studies on insects are: 198 Au, 134 Cs, 131 I, 86 Rb, 65 Zn, 59 Fe, 45 Ca, 24 Na, 22 Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs

  5. Application of radioisotopes in entomology

    Energy Technology Data Exchange (ETDEWEB)

    Saour, G [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-10-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are:{sup 3}H, {sup 14}Ca, {sup 32}P, {sup 35}S, {sup 38}Cl. Other radioisotopes contributing to studies on insects are: {sup 198}Au, {sup 134}Cs, {sup 131}I, {sup 86}Rb, {sup 65}Zn, {sup 59}Fe, {sup 45}Ca, {sup 24}Na, {sup 22}Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs.

  6. Survey of industrial radioisotope savings

    International Nuclear Information System (INIS)

    1965-01-01

    Only three decades after the discovery of artificial radioactivity and two after radioisotopes became available in quantity, methods employing these as sources or tracers have found widespread use, not only in scientific research, but also in industrial process and product control. The sums spent by industry on these new techniques amount to millions of dollars a year. Realizing the overall attitude of industry to scientific progress - to accept only methods that pay relatively quickly - one can assume that the economic benefits must be of a still larger order of magnitude. In order to determine the extent to which radioisotopes are in daily use and to evaluate the economic benefits derived from such use, IAEA decided to make an 'International Survey on the Use of Radioisotopes in Industry'. In 1962, the Agency invited a number of its highly industrialized Member States to participate in this Survey. Similar surveys had been performed in various countries in the 1950's. However, the approaches and also the definition of the economic benefits differed greatly from one survey to another. Hence, the Agency's approach was to try to persuade all countries to conduct surveys at the same time, concerning the same categories of industries and using the same terms of costs, savings, etc. In total, 24 Member States of the Agency agreed to participate in the survey and in due course they submitted contributions. The national reports were discussed at a 'Study Group Meeting on Radioisotope Economics', convened in Vienna in March 1964. Based upon these discussions, the national reports have been edited and summarized. A publication showing the administration of the Survey and providing all details is now published by the Agency. From the publication it is evident that in general the return of technical information was quite high, of the order of 90%, but, unfortunately the economic response was much lower. However, most of the reports had some bearing on the economic aspects

  7. Radioisotope applications in industry and environment: Indian scenario

    International Nuclear Information System (INIS)

    Pant, H.J.

    2016-01-01

    Applications of radioisotopes and radiation technology in industry, medicine and agriculture form an important part of India's programme of using nuclear technology for societal benefits. Radioisotope production in India started on a modest scale soon after 1 MW APSARA reactor at Trombay, Mumbai became critical in 1956. The scope of activities expanded thereafter. With the commissioning of 40 MW CIRUS reactor in 1960, the setting up of modern radioisotope processing laboratories in late sixties and the production of cobalt-60 in power reactors in megacurie quantities in late seventies made India self-sufficient in radioisotope production. The radioisotope production received a major boost in 1985 with the commissioning of high flux 100 MW DHRUVA reactor, which provided opportunity to extend the range of radioisotopes available in the country both in quantity as well in specific activity. The CIRUS reactor has been shutdown in year 2010 and 1 MW APSARA reactor is presently being upgraded to 5 MW. Today, The DHRUVA reactor operating at its full capacity is being used for production of 100 different radioisotopes those are used in industry, agriculture and medicine. (author)

  8. Robotics development for the accelerator production of tritium

    International Nuclear Information System (INIS)

    Ward, C.R.

    2000-01-01

    The Accelerator Production of Tritium (APT) has been proposed as the source of tritium for the United States in the next century. The APT will accelerate protons that will strike replaceable tungsten target modules. The tungsten target modules generate neutrons that interact with blanket modules and other modules where 3 He gas is turned into tritium. The target and blanket modules are predicted to require replacement every one to ten years, depending on their location. The target modules may weigh as much as 85 tons (77 metric tons) each. All of the modules will be contained in a target/blanket vessel, which is in a shielded facility. The spent modules will be radioactive, so that remote replacement of the modules will be required. The modules will be 27 feet (8.23 m) high and the top of the modules, where most of the remote operations will occur, will be approximately 20 feet (6.1 m) down into the target/blanket vessel. The immense weights of the modules, the long reaches required and the requirement for completely remote operation of at least part of the operation, make this a unique and challenging task. Initially, manual fastening and unfastening of the jumper flanges on the modules as well as manual valve operation was proposed followed by remote replacement of the modules. This manual/remote operation was demonstrated with a computer-generated, dynamic, 3-D simulation. After review of the simulation, this operation was changed to be a complete remote operation. Complete remote operation brought about the concept of a remotely operated bridge crane and a remotely operated, bridge-mounted, manipulator to perform the entire replacement operation. A second simulation showed the intended operation of the remote concept and was instrumental in developing the requirements for the equipment and end effectors for this concept. The concept included development of end effectors for the following tasks: flange nut fastening and unfastening, flange lifting and latch

  9. Industrial radioisotope economics. Findings of the study group

    International Nuclear Information System (INIS)

    1965-01-01

    Within twenty years of the availability of radioisotopes in quantity the use of these as tracers has been widely applied in scientific research and in industrial process and product control. Industry spends millions of dollars on these new techniques. Since the overall attitude of industry is to favour methods that involve rapid financial returns the economic benefits must be considerable. In promoting the peaceful uses of atomic energy, the IAEA is actively interested in the international exchange of experience in all applications of radioisotopes. This has been demonstrated by a number of scientific conferences where new results of direct importance to the industrial use of radioisotopes have been presented. In 1963 the IAEA also published literature survey on radioisotope applications described in the scientific literature up to 1960, classified according to industry. However, the available scientific literature was found insufficient to determine the extent of the use of radioisotopes and the economic benefits derived from it. Therefore, further fact-finding efforts were necessary. The IAEA thus decided to carry out an International Survey on the Use of Radioisotopes in Industry. In 1962 the IAEA's highly industrialized Member States Were invited to participate in the Survey; 25 declared their willingness to do so and in due course submitted their national reports. These included information on how radioisotopes were used by industry in each country and indicated the size and form of the economic advantages, primarily in terms of savings made by industry. The findings from the Survey were discussed at a Study Group Meeting on Radioisotope Economics, held in Vienna in March 1964. Forty participants from 22 countries were nominated for this Study Group. The program of the meeting was divided in three parts: (1) experience of the International Survey on the use of radioisotopes in industry; (2) present use of radioisotopes, technical and economic aspects; (3

  10. Special scientific programme on use of high energy accelerators for transmutation of actinides and power production

    International Nuclear Information System (INIS)

    1994-09-01

    Various techniques for the transmutation of radioactive waste through the use of high energy accelerators are reviewed and discussed. In particular, the present publication contains presentations on (i) requirements and the technical possibilities for the transmutation of long-lived radionuclides (background paper); (ii) high energy particle accelerators for bulk transformation of elements and energy generation; (iii) the resolution of nuclear energy issues using accelerator-driven technology; (iv) the use of proton accelerators for the transmutation of actinides and power production; (v) the coupling of an accelerator to a subcritical fission reactor (with a view on its potential impact on waste transmutation); (vi) research and development of accelerator-based transmutation technology at JAERI (Japan); and (vii) questions and problems with regard to accelerator-driven nuclear power and transmutation facilities. Refs, figs and tabs

  11. NTP Radioisotopes SOC Ltd

    International Nuclear Information System (INIS)

    Letule, T.

    2017-01-01

    NTP Radioisotopes SOC Ltd, a wholly owned subsidiary of the South African Nuclear Energy Corporation (NECSA). Supplies around 20% of the world's medical radioisotopes used. NTP is a pioneer in the introduction and growth of nuclear medicine as in South Africa. Nuclear medicine is the medical specialty that involves the use of radioactive isotopes in the diagnosis and treatment of diseases. Nuclear medicine contributes to enhancing the lives of the society. There is a compelling need for nuclear medicine to be promoted and utilized in the rest of Africa, due to the increasing prevalence of cancer. Cancer is rapidly becoming a public health crisis in low-income and middle-income countries. In sub-Saharan Africa, patients often present with advanced disease

  12. Charged particle accelerators for practice

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1988-01-01

    Characteristics of some accelerators operating in the world are given, capabilities of accelerator technique are demonstrated. Examples of wide application of accelerators in radiation-chemical technology as well as for defectoscopy of massive metal products and impurity ion implantation when producing semiconductor elements are presented. Works on nuclear filter production are characterized by high efficiency. Wide application of synchrotron radiation is described. Various accelerators can be applied during element analysis in geology, metallurgy, ecology. Application of accelerators ''in particular, cyclotrons for radioisotope production as well as in radiotherapy in medicine appears to be important. An isochronous cyclotron with controlled ion energy, at which applied works concerning a number of considered trends in the field of radiation physics and radiation physical metallurgy, element analysis, radiation resistance of electronic circuits and components are conducted, is in operation at the IYaPh of the Kazakh Academy of Sciences. Production of tallium-201 for cardiologic invstigations deserves a special attention. An electrostatic heavy ion accelerator which allows one to produce the beams of accelerated ions of elements from hydrogen to uranium is under commissioning

  13. Radioisotope laboratory in Turkey

    International Nuclear Information System (INIS)

    1961-01-01

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies

  14. Radioisotopes for medical applications

    International Nuclear Information System (INIS)

    Carr, S.

    1998-01-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country's main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community

  15. Radioisotope laboratory in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies.

  16. Radioisotopes for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division

    1998-03-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country`s main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community 2 tabs., 1 fig.

  17. Radiation protection at radioisotope processing facilities

    International Nuclear Information System (INIS)

    Hillier, L.R.; Decaire, R.

    2002-01-01

    MDS Inc. is Canada's largest diversified health and life sciences company and provides health care services and products to prevent, diagnose and treat disease. MDS Nordion Inc. is a subsidiary of MDS Inc. and is located in Ottawa, Ontario. It provides much of the world's supply of radioisotopes used in nuclear medicine primarily to diagnose, but also to treat disease. MDS Nordion is composed of three major production divisions at its Ottawa location and serves customers in three major markets. These are primarily: radioisotopes used in nuclear medicine (Nuclear Medicine Division), radiation processing for sterilization of medical equipment and supplies, and food (Ion Technologies Division), and teletherapy equipment used in cancer treatment (Therapy Systems Division). MDS Nordion supplies customers in over 100 countries, exporting more than 95 percent of its product processed in Canada. Every year, 15 to 20 million diagnostic imaging tests are carried out in hospitals around the world, using radioisotopes supplied by MDS Nordion. In addition, 150 to 200 million cubic feet (that's enough to cover an entire CFL field - including the end zones - stacked over half a kilometer high) of single use medical products are sterilized using MDS Nordion supplied equipment. MDS Nordion receives medical isotopes from AECL, Chalk River Laboratories and processes the material to purify and quantify the radioisotope product. Sealed sources, comprised of cobalt 60, are supplied from CANDU reactors. Production processes include ventilated shielded cells with remote manipulators, gloveboxes and fumehoods, to effectively control the safety of the workplace and the environment, and to prevent contamination of the products. The facilities are highly regulated by the Canadian Nuclear Safety Commission (CNSC) for safety and environmental protection. Products are also regulated by Health Canada and the US-Food and Drug Administration (FDA). (author)

  18. Applications of radioisotopes in medicine

    International Nuclear Information System (INIS)

    Sivaprasad, N.

    2012-01-01

    The application of radioisotopes in medicine is many folds. They can be classified into two main groups. (a) The radioisotope tagged labeled compounds suitable for safe administration in the body for diagnosis of various diseases of vital organs such as brain, kidney, thyroid etc and for treatment known as radiotherapy (b) The sealed source of radioisotopes for utilizing the radiation emitted from the radioisotope for treatment, particularly for radiation therapy of cancer. The former application of radioisotope in the field of medicine has led to the formation of special branch of medicine termed Nuclear Medicine - the branch of medicine deals with the use of radioisotope in the from of radiopharmaceuticals for investigation, diagnosis and treatment of diseases. Radioisotopes in the form of radiolabelled compound and bio-chemicals that are pharmaceutically and radiologically safe for administration in the body for diagnosis and treatment are called radiopharmaceuticals. The radiopharmaceuticals are the results of world-wide effort to bring nuclear energy in a tangible form for diagnosis and treatment. Radioisotopes as radiopharmaceuticals thus constitute one of the key requirements for nuclear medicine investigation and radiotherapy. In the case of sealed radioisotope source the radiation emitted by the radioactive source is utilized for the treatment and this mode of treatment is called radiation therapy where no radioactive substance is administrated into the body. This does not form the part of nuclear medicine

  19. Radioisotope studies under pathologic conditions

    International Nuclear Information System (INIS)

    DeRossi; Salvatori, M.; Valenza, V.

    1987-01-01

    This article presents a general discussion on salivary pathology, before dealing with the various salivary gland diseases which can draw real advantage from radioisotope studies. Clinical problems related to the salivary glands first concern diffuse or focal glandular swelling. Focal swelling includes inflammatory or metastatic deposits in preauricular or submandibular lymph nodes, cysts, abscesses, foci of inflammation, benign and malignant neoplasms of the salivary glands themselves or of surrounding blood or lymph vessels, nerves, connective tissue, and oral mucosa. Primary tumors of the salivary glands are rare and usually benign. The combination of a systemic disease with dry mouth and dry eyes due to inflamed conjunctiva and cornea because of decreased fluid production, forms Sjogren syndrome. It may also cause diffuse glandular swelling. Chronic alcoholism, cirrhosis, diabetes mellitus, hyperlipoproteinemia, and malnutrition are other pathologic conditions sometimes associated with diffuse salivary gland swelling

  20. Radioisotopic Study of Methanol Transformation over H- and Fe-Beta Zeolites; Influence of Si/Al Ratio on Distribution of Products

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Murzin, D.Yu.

    2006-01-01

    Complete text of publication follows. The acid-basic properties of Beta zeolite can be modified by dealumination and/or ionexchange. The wide-pore H-Beta zeolite has strong Bronsted acid sites and other chemical environment which govern adsorption and conversion of methanol to dimethyl ether and hydrocarbons during catalysis [1-2]. Partly Fe-ion-exchanged Beta i.e. Fe-H-Beta zeolite keeps this behavior to a certain extent; however, the presence of Fe ions can modify the reaction pathway. In the present work, the methanol conversion was studied over H- and Fe-Beta zeolites at two different Si/Al ratios. 11 C-methanol was used to follow-up adsorption as well as desorption of methanol and its derivates. Therefore, a radioactivity detector was integrated to the gas chromatograph for exact identification of the labelled methanol and its derivates. H-Beta and Fe-Beta zeolites were applied at two different Si/Al ratios i.e. H-Beta(25) and H-Beta(300) and Fe-H-Beta(25) and Fe- H-Beta (300), respectively. A glass tube fixed-bed reactor was used as a closed static reactor. The 11 C-radioisotope (T 1/2 =20.4 min) was produced in 11 C-labelled carbon dioxide form by cyclotron. The 11 C-methanol tracer was produced by radiochemical process [3]. The mixture of 11 C-methanol and non-radioactive methanol was then introduced into zeolite by He gas flow. The volatile products of catalytic conversion of 11 C-methanol were analyzed by radio-gas chromatography (gas chromatograph with flame ionization detector (FID) coupled on-line with a radioactivity detector). The methanol conversion rate and product selectivities to dimethyl ether, hydrocarbons (methane, C 2 -C 6 olefins and paraffins), formaldehyde and carbon-oxides were measured and calculated over H- and Fe-Beta zeolites at two different Si/Al ratios at 250 and 350 deg C. Over H-Beta(25) C 2 -C 6 hydrocarbons (mostly as alkanes) with high conversion rate and some dimethyl ether were detected due to presence of strong Bronsted

  1. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  2. Development and application of industrial radioisotope instruments in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1994-09-01

    Industrial radioisotope instruments are emerging as advanced monitoring, controlling and automation tools for industries in China. Especially the on-line analysis systems based on radioisotope instruments, referred to as nucleonic control systems (NCS), have more and more important role in the modernization and optimization of industrial processes. Over nearly four decades significant progress has been made in the development and application of radioisotope instruments in China. After a brief review of the history of radioisotope instruments, the state of the art of this kind of instruments and recent examples of their applications are given. Technical and economic benefits have resulted from the industrial applications of radioisotope instruments and the sales of products of their own in marketing. It is expected that along with the high speed growth of national economy, there will be greater demand for radioisotope instruments and nucleonic control systems in Chinese industry to promote the technological transformation and progress of traditional industries and to establish high-tech industries with technology-intensive products. Sustained efforts for the research and development of radioisotope instrument should be made to up-grade domestic instruments and to satisfy the needs of the smaller scale industries more common in China for low cost systems. (1 fig., 2 tabs.)

  3. Radioisotopes as Political Instruments, 1946–1953

    Science.gov (United States)

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  4. Radioisotopes as Political Instruments, 1946-1953.

    Science.gov (United States)

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War.

  5. Small radioisotope powered batteries

    International Nuclear Information System (INIS)

    Myatt, J.

    1975-06-01

    Various methods of converting the large amounts of energy stored in radioisotopes are described. These are based on:- (a) the Seebeck effect; (b) thermionic emission of electrons from a hot body; (c) the Stirling Cycle; and (d) radiovoltaic charge separation in 'p-n' junctions. Small generators in the range 0 to 100 W(e) developed using these effects are described and typical applications for each of these systems are given. These include data collection and transmission from remote sites, implantable medical devices, lighthouses, radio beacons, and space power supplies. (author)

  6. Radioisotope relay instrument

    International Nuclear Information System (INIS)

    Pozdnyakov, V.N.; Sazonov, O.L.; Taksar, I.M.; Tesnavs, Eh.R.; Yanushkovskij, V.A.

    1974-01-01

    The paper describes a radioisotope relay device containing a radiation source, a detector, an electronic relay block with a comparative threshold mechanism. The device differs from previously known ones in that, for the purpose of increasing stability and speed of action, the electronic relay block is a separate unit and contains two threshold pulse generators which are joined up, across series-connected ''and'' and ''or'' elements, with one of the inputs of the comparative threshold mechanism, whose second input is connected with a detector and whose outputs are connected with a relay element connected by feedback with the above-mentioned ''and'' elements. (author)

  7. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  8. The efficient importation and distribution of radioisotopes. Suggestions for the most economic importation of radioisotopes

    International Nuclear Information System (INIS)

    1963-01-01

    In the course of their work in many Member States, IAEA technical assistance experts have sometimes encountered difficulties in connection with the importation of radioactive isotopes. In some countries they have been consulted as to the possible improvement of import procedures. The purpose of this publication is to summarize the experience that has been gained in the hope that it may be useful both to scientists who wish to import radioisotopes for their work and to public officials who are concerned with the administrative and financial aspects of the problem. This question is of considerable importance because many countries have only limited resources of scientific man-power and foreign exchange and hence it is essential, if these resources are to be utilized fully, that efficient importing procedures be established. Furthermore, the success or failure of technical assistance activities may depend on whether radioisotopes needed for the project can be efficiently imported. Although the data summarized in this publication are based mainly on the experience of medical users of radioisotopes, they are equally applicable to their uses in other fields such as agriculture and hydrology. This publication covers the subject of importation and distribution of radioisotopes, and concludes with a brief section on the domestic production of short-lived radioisotopes in research reactors

  9. The efficient importation and distribution of radioisotopes. Suggestions for the most economic importation of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-01

    In the course of their work in many Member States, IAEA technical assistance experts have sometimes encountered difficulties in connection with the importation of radioactive isotopes. In some countries they have been consulted as to the possible improvement of import procedures. The purpose of this publication is to summarize the experience that has been gained in the hope that it may be useful both to scientists who wish to import radioisotopes for their work and to public officials who are concerned with the administrative and financial aspects of the problem. This question is of considerable importance because many countries have only limited resources of scientific man-power and foreign exchange and hence it is essential, if these resources are to be utilized fully, that efficient importing procedures be established. Furthermore, the success or failure of technical assistance activities may depend on whether radioisotopes needed for the project can be efficiently imported. Although the data summarized in this publication are based mainly on the experience of medical users of radioisotopes, they are equally applicable to their uses in other fields such as agriculture and hydrology. This publication covers the subject of importation and distribution of radioisotopes, and concludes with a brief section on the domestic production of short-lived radioisotopes in research reactors.

  10. The Supply of Medical Radioisotopes. 2016 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2016-2021

    International Nuclear Information System (INIS)

    Charlton, Kevin; )

    2016-03-01

    Medical diagnostic imaging techniques using technetium-99m ( 99 mTc) account for approximately 80% of all nuclear medicine procedures, representing 30-40 million examinations Worldwide every year. Disruptions in the supply chain of these medical isotopes - which have half-lives of 66 hours for molybdenum-99 ( 99 Mo) and only 6 hours for 99m Tc, and thus must be produced continuously - can lead to cancellations or delays in important medical testing services. Supply reliability has been challenged over the past decade due to unexpected shutdowns and extended refurbishment periods at some of the 99 Mo-producing research reactors and processing facilities. These shutdowns have at times created conditions for extended global supply shortages (e.g. 2009-2010). At the request of its member countries, the Nuclear Energy Agency (NEA) became involved in global efforts to ensure a secure supply of 99 Mo/ 99m Tc. Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have examined the causes of supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The NEA has also reviewed the global 99 Mo supply situation periodically, to highlight periods of potential reduced supply and to underscore the case for implementing the HLG-MR policy approach in a timely and globally consistent manner. In 2012, the NEA released a 99 Mo supply and demand forecast up to 2030, identifying periods of potential low supply relative to demand. That 2012 forecast was updated with a report in 2014 that focused on the much shorter 2015-2020 period. That report was updated in 2015 with a report, '2015 Medical Isotope Supply Review: 99 Mo/ 99m Tc Market Demand and Production Capacity Projection 2015-2020' (NEA, 2015), which focused on the same period. This report updates the 2015 report, and focuses on the important 2016-2021 period. At the end of 2015, the OSIRIS reactor

  11. The Supply of Medical Radioisotopes. 2015 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2015-2020

    International Nuclear Information System (INIS)

    Charlton, Kevin; )

    2015-08-01

    Medical diagnostic imaging techniques using technetium-99m ( 99m Tc) account for approximately 80% of all nuclear medicine procedures, representing 30-40 million examinations Worldwide every year. Disruptions in the supply chain of these medical isotopes - which have half-lives of 66 hours for molybdenum-99 ( 99 Mo) and only 6 hours for 99m Tc, and thus must be produced continuously - can lead to cancellations or delays in important medical testing services. Unfortunately, supply reliability has been challenged over the past decade due to unexpected shutdowns and extended refurbishment periods at some of the mostly ageing, 99 Mo-producing research reactors and processing facilities. These shutdowns have at times created conditions for extended global supply shortages (e.g. 2009-2010). At the request of its member countries, the Nuclear Energy Agency (NEA) became involved in global efforts to ensure a secure supply of 99 Mo/ 99m Tc. Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have examined the causes of supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The NEA has also reviewed the global 99 Mo supply situation periodically, using the most up-to-date data available from supply chain participants, to highlight periods of potential reduced supply and to underscore the case for implementing the HLG-MR policy approach in a timely and globally consistent manner. In 2012, the NEA released a M o supply and demand forecast up to 2030, identifying periods of potential low supply relative to demand. That 2012 forecast was updated with a report 'Medical Isotope Supply in the Future: Production Capacity and Demand Forecast for the 99 Mo/ 99m Tc Market 2015-2020' (NEA, 2014) in 2014 that focused on the much shorter 2015-2020 period. This report updates the 2014 report, and continues to focus on the potentially critical 2015

  12. Accelerated approval of oncology products: the food and drug administration experience.

    Science.gov (United States)

    Johnson, John R; Ning, Yang-Min; Farrell, Ann; Justice, Robert; Keegan, Patricia; Pazdur, Richard

    2011-04-20

    We reviewed the regulatory history of the accelerated approval process and the US Food and Drug Administration (FDA) experience with accelerated approval of oncology products from its initiation in December 11, 1992, to July 1, 2010. The accelerated approval regulations allowed accelerated approval of products to treat serious or life-threatening diseases based on surrogate endpoints that are reasonably likely to predict clinical benefit. Failure to complete postapproval trials to confirm clinical benefit with due diligence could result in removal of the accelerated approval indication from the market. From December 11, 1992, to July 1, 2010, the FDA granted accelerated approval to 35 oncology products for 47 new indications. Clinical benefit was confirmed in postapproval trials for 26 of the 47 new indications, resulting in conversion to regular approval. The median time between accelerated approval and regular approval of oncology products was 3.9 years (range = 0.8-12.6 years) and the mean time was 4.7 years, representing a substantial time savings in terms of earlier availability of drugs to cancer patients. Three new indications did not show clinical benefit when confirmatory postapproval trials were completed and were subsequently removed from the market or had restricted distribution plans implemented. Confirmatory trials were not completed for 14 new indications. The five longest intervals from receipt of accelerated approval to July 1, 2010, without completion of trials to confirm clinical benefit were 10.5, 6.4, 5.5, 5.5, and 4.7 years. The five longest intervals between accelerated approval and successful conversion to regular approval were 12.6, 9.7, 8.1, 7.5, and 7.4 years. Trials to confirm clinical benefit should be part of the drug development plan and should be in progress at the time of an application seeking accelerated approval to prevent an ineffective drug from remaining on the market for an unacceptable time.

  13. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  14. The status of the tandem accelerator ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, J; Boldeman, J; Cohen, D; Tuniz, C; Ellis, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The ANTARES facility at the Lucas Heights Research Laboratories has now operated for 4 years. A research program in Accelerator Mass Spectrometry, lon Beam Analysis and small scale radioisotope production has been pursued. During the same period, the accelerator has been significantly upgraded from the configuration which existed at Rutgers University, NJ, USA, before shipment to Australia in 1989. AMS measurement techniques of several long lived isotopes have been developed for environmental, industry and biomedical applications. Both the experimental program and the engineering developments are discussed further.

  15. The status of the tandem accelerator ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, J.; Boldeman, J.; Cohen, D.; Tuniz, C.; Ellis, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The ANTARES facility at the Lucas Heights Research Laboratories has now operated for 4 years. A research program in Accelerator Mass Spectrometry, lon Beam Analysis and small scale radioisotope production has been pursued. During the same period, the accelerator has been significantly upgraded from the configuration which existed at Rutgers University, NJ, USA, before shipment to Australia in 1989. AMS measurement techniques of several long lived isotopes have been developed for environmental, industry and biomedical applications. Both the experimental program and the engineering developments are discussed further.

  16. Radioisotopes and radiation technology

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The field of radioisotopes and radiation processing has grown enormously all over the world with India being no exception. The chemistry and radiochemistry related inputs to the overall technology development and achievements have been, and will continue to be, of considerable value and importance in this multi-disciplinary and multi-specialty field. Harnessing further benefits as well as sustaining proven applications should be the goal in planning for the future. An objective analysis of the socio-economic impact and benefits from this field to the society at large will undoubtedly justify assigning continued high priority, and providing adequate resources and support, to relevant new projects and programmes on the anvil in the area of radioisotopes and radiation technology. It is necessary to nurture and strengthen inter-disciplinary and multi-specialty collaborations and cooperation - at both national and international level as a rule (not as exception) - for greater efficiency, cost-effectiveness and success of ongoing endeavors and future developments in this important field

  17. Safe Handling of Radioisotopes

    International Nuclear Information System (INIS)

    1958-01-01

    Under its Statute the International Atomic Energy Agency is empowered to provide for the application of standards of safety for protection against radiation to its own operations and to operations making use of assistance provided by it or with which it is otherwise directly associated. To this end authorities receiving such assistance are required to observe relevant health and safety measures prescribed by the Agency. As a first step, it has been considered an urgent task to provide users of radioisotopes with a manual of practice for the safe handling of these substances. Such a manual is presented here and represents the first of a series of manuals and codes to be issued by the Agency. It has been prepared after careful consideration of existing national and international codes of radiation safety, by a group of international experts and in consultation with other international bodies. At the same time it is recommended that the manual be taken into account as a basic reference document by Member States of the Agency in the preparation of national health and safety documents covering the use of radioisotopes.

  18. List of DOE radioisotope customers with summary of radioisotope shipments FY 1978

    International Nuclear Information System (INIS)

    Burlison, J.S.; Laidler, R.I.

    1979-05-01

    The purpose of the document is to list DOE's radioisotopes production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc

  19. Preliminary Determination of Activation Products for a Varian Truebeam Linear Accelerator.

    Science.gov (United States)

    Waller, Edward; Ram, Rohan; Steadman, Ian

    2017-09-01

    Medical linear accelerators used to treat various forms of cancers are operated at a number of different energies. A by-product of the high-energy photons produced by accelerators is activation of components within the machine itself and its surrounding bunker. The activation products pose radiological and regulatory challenges during the operation of the accelerator as well as when it is time for final decommissioning. The Varian TrueBeam is a new state-of-the-art linear accelerator now operating in the Canadian market. There is currently limited information on the production of its activation products and the resulting impacts on operation and decommissioning. In this paper, activation products in the Varian TrueBeam accelerator are experimentally determined by performing gamma spectroscopy using a portable high purity germanium detector. A total of 10 isotopes are identified for the conditions tested, which include Na, Al, Mn, Ni, Cu, Cu, Br, Sb, Sb, W. The half-lives of these isotopes range from 2.3 min to 60.2 d. These preliminary results indicate that a decommissioning case similar to other radiotherapy accelerators can be made.

  20. The safe handling of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-12-31

    A narrative account of a minor contamination accident in a laboratory is used to demonstrate the important role of radiation protection measures in radioisotope work and the necessity of giving proper regard to such measures. It is primarily directed towards the research scientists and medical workers using radioisotopes on a relatively small scale

  1. Support housing for radioisotope generation

    International Nuclear Information System (INIS)

    Fries, B.A.

    1976-01-01

    A support housing for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features countercurrent batch flow of the eluting reagent interior of the housing. 6 claims, 4 drawing figures

  2. A Review of the Production of ''Special'' Radioisotopes; La Production de Radioisotopes «Spéciaux»; ОБЗОР ПРОИЗВОДСТВА ''СПЕЦИАЛЬНЫХ'' ИЗОТОПОВ; Produccion de Radioisotopos ''Especiales''

    Energy Technology Data Exchange (ETDEWEB)

    Stang, Jr., L. G. [Brookhaven National Laboratory, Upton, NY (United States)

    1963-03-15

    Six useful characteristics of radioisotopes and advantages which may be taken of them are cited briefly, with examples. The Information Sheet announcing this Seminar listed four advantages of short-lived over long-lived isotopes. Two other reasons why owners of small research reactors should concern themselves with short half- life isotopes are economy and particular suitability for production, the latter being due to the pronounced effect of half-life on the net rate of production. Besides short half-life, type and energy of emitted radiation should be of concern to producers of isotopes. Nine advantages of a nuclear reactor over a particle accelerator for radioisotope production are outlined. Following this general orientation, a survey of unusual or less frequently used production techniques is presented. These include: (n, p) reactions and secondary reactions such as (t, n) and (t, p) induced by thermal neutrons, various techniques for obtaining useful fluxes of fast neutrons with which to effect other reactions, recoil techniques including classic Szilard-Chalmers reactions, use of charged wires to collect short-lived daughters of gaseous parents, parent-daughter milking system, parasitic irradiations, possible use of ''knocked- on'' protons or deuterons (from the moderator) as a means of effecting reactions such as (p,n), (d,n), etc. and the possible use of circulating ''loops'' in reactors with which to utilize the radiation from ultra-short-lived radioisotopes such as Ag{sup 110}, In{sup 114}, {sup 116}, Dy{sup 155m}, etc. Although not a production technique, the possibility of using certain stable isotopes (e. g. of silver) as tracers which can be readily detected via subsequent activation is mentioned. Production figures for Brookhaven's ''special'' radioisotopes are cited to show differences in long- and short-term fluctuations among these isotopes, which are also compared as a class to those in heavier demand supplied by Oak Ridge. Present production

  3. Cosmogenic radioisotopes in Gebel Kamil meteorite

    Science.gov (United States)

    Taricco, C.; Colombetti, P.; Bhandari, N.; Sinha, N.; Di Martino, M.; Vivaldo, G.

    2012-04-01

    Recently a small (45 m in diameter) and very young (radioisotope activity generated by cosmic rays in the meteoroids as they travel through the interplanetary space before falling on the Earth. From the 26Al activity measurement and its depth production profiles, we infer (i) that the radius of the meteoroid should be about 1 m, constraining to 30-40 ton the range of pre-atmospheric mass previously proposed and (ii) that the fragment should have been located deeply inside the meteoroid, at a depth > 0.7 m. The 44Ti activity is under the detection threshold of the apparatus; using the depth production profiles of this radioisotope and its half-life T1/2 = 59.2 y, we deduce an upper limit to the date of fall.

  4. The future of medical radioisotope supply

    International Nuclear Information System (INIS)

    Peykov, Pavel

    2014-01-01

    The NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have been actively examining the causes of supply shortages of the most widely used isotope in medical diagnostic imaging, technetium-99m ( 99m Tc), and its parent isotope molybdenum-99 ( 99 Mo). As a result of this examination, the HLG-MR has developed a policy approach that includes principles and supporting recommendations to address the causes of these supply shortages. Six policy principles were agreed by the HLG-MR in March 2011. These are implementation of full-cost recovery and outage reserve capacity (ORC) for 99 Mo production, a government role in the market, conversion to low-enriched uranium targets, international collaboration and periodic reviews of the supply chain. This article describes progress made in the implementation of the six principles and examines the projected global capacity for medical radioisotope production in the near future. (author)

  5. Radioisotopes in the treatment of cancer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    Radiation treatment of malignant growths is not, of course, a novel procedure; both radium implants and X-rays generated at medium voltages (up to 250 kV) have been used all over the world for many years. However, large scale production of radioisotopes in atomic reactors has made radiotherapy available for the first time in less developed areas of the world. Moreover, the treatment has been simplified and, in many cases, made more effective

  6. Environmental implications of accelerated gasohol production: preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report assesses the environmental impacts of increasing US production of fuel ethanol by 330 million gallons per year in the 1980 to 1981 time frame in order to substitute gasohol for 10% of the unleaded gasoline consumed in the United States. Alternate biomass feedstocks are examined and corn is selected as the most logical feedstock, based on its availability and cost. Three corn conversion processes that could be used to attain the desired 1980 to 1981 production are identified; fermentation plants that use a feedstock of starch and wastes from an adjacent corn refining plants are found to have environmental and economic advantages. No insurmountable environmental problems can be achieved using current technology; the capital and operating costs of this control are estimated. If ethanol production is increased substantially after 1981, the environmentally acceptable use or disposal of stillage, a liquid by-product of fermentation, could become a serious problem.

  7. Optimal subsidy policy for accelerating the diffusion of green products

    Directory of Open Access Journals (Sweden)

    Hongguang Peng

    2013-06-01

    Full Text Available Purpose: We consider a dynamic duopoly market in which two firms respectively produce green products and conventional products. The two types of product can substitute each other in some degree. Their demand rates depend on not only prices but the consumers’ increasing environmental awareness. Too high initial cost relative to conventional products becomes one of the major obstacles that hinder the adoption of green products. The government employs subsidy policy to trigger the adoption of green products. The purpose of the paper is to explore the optimal subsidy strategy to fulfill the government’s objective. Design/methodology/approach: We suppose the players in the game employ open-loop strategies, which make sense since the government generally cannot alter his policy for political and economic purposes. We take a differential game approach and use backward induction to analyze the firms’ pricing strategy under Cournot competition, and then focus upon a Stackelberg equilibrium to find the optimal subsidy strategy of the government. Findings: The results show that the more remarkable the energy or environmental performance, or the bigger the initial cost of green products, the higher the subsidy level should be. Due to the increasing environmental awareness and the learning curve, the optimal subsidy level decreases over time. Research limitations/implications: In our model several simplifying assumptions are made to keep the analysis more tractable. In particular, we have assumed only one type of green product. In reality several types of product with different energy or environmental performances exist. Our research can be extended in future work to take into account product differentiation on energy or environmental performance and devise a discriminatory subsidy policy accordingly. Originality/value: In the paper we set the objective of the government as minimizing the total social cost induced by the energy consumption or

  8. TFH-derived dopamine accelerates productive synapses in germinal centres.

    Science.gov (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G

    2017-07-20

    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  9. The application of spectrographic analysis to the radioisotope production control. II. Analysis of calcium-45, scandium-46, nickel-63, and copper-64 solutions

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1972-01-01

    Semi-quantitative and quantitative determinations of both the radioactive and the target element in each radioisotope are described. The copper-spark technique was used except for Cu determinations, that need silver or.graphite electro des. Inter-element effects and their compensation through the use of Bi, 6a, In, Ho, Pd, TI and Y as reference elements was examined. For the determination of Ca in Ca-45 samples, Ba, La, Li and Sr were also tested. Good results are achieved with Li for Ca, Y for Sc,Ti and Ni, and either In or Y for Cu and Zn. (Author) 7 refs

  10. Cardiovascular: radioisotopic angiocardiography

    International Nuclear Information System (INIS)

    Kriss, J.P.

    1975-01-01

    Radioisotopic angiocardiography, performed after the intravenous injection of 99 /sup m/Tc-labeled pertechnetate or albumin, is a simple, rapid, and safe procedure which permits identification and physiologic assessment of a wide variety of congenital and acquired cardiovascular lesions in infants and children. These include atrial and ventricular septal defect, tetralogy of Fallot, pulmonic stenosis, aortopulmonary window, transposition of the great vessels, valvular stenosis and/or insufficiency, myocardial lesions, and lesions of the great vessels. The simplicity of the procedure lends itself to repeated measurements to assess the effects of therapy or to follow the course of the disease. A wide spectrum of congenital and acquired cardiovascular diseases have been studied which have particular application to the pediatric age group. (auth)

  11. Radioisotopes in sedimentology

    International Nuclear Information System (INIS)

    Courtois, G.

    1967-01-01

    Radioisotopes have two main uses in sedimentology: they are used for the study of sediment movements in rivers and seas, and for continuous measurements of the amount of sediment suspended in a given medium. These two uses are considered in detail, and brief accounts given of some other uses. Study of sediment movements. After describing the basic technique used in sediment movement studies (injection of a labelled sediment or a simulator into the current, followed by tracking the radioactivity), the author enumerates as fully as possible the problems that can be solved with the help of this technique. Essentially, these problems fall into two groups: 1. Problems related to civil engineering works in coastal areas: the siltation of harbour channels and docks, the formation of banks and bars, the choice of sites for disposing of dredged sediment, the siting of ports, coastline protection, etc. Problems associated with civil engineering works in and near rivers; siting of the water intakes of hydroelectric and nuclear power stations, the effects of construction work on the transport of solids, the construction of dams, the protection of river banks, the construction of jetties, the siltation of lakes, etc. Problems common to these include the transport of effluent and the calibration of hydraulic models. The bibliography is based mainly on fairly recent references and on current research work. 2. Problems related to basic or applied research conducted mainly by universities and research centres: the study of the Quarternary of a particular region, pure sedimentology, the investigation of major sediment transport currents, the confirmation or refutation of transport theories, research into fundamental transport phenomena associated with channel experiments. After referring to the possible exploitation of natural tracers (contained in radioactive waste and fallout), the author discusses the technical aspects of using artificial tracers: the choice of radioisotope

  12. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  13. Generation of radioisotopes

    International Nuclear Information System (INIS)

    Panek-Finda, H.

    1984-01-01

    A method of producing radioisotopes for radiopharmaceutical applications is claimed. A physiological solution is used to elute a radioactive daughter isotope from a fission-produced parent isotope adsorbed on an adsorbent. The eluate containing the daughter isotope is purified with a cation-exchange material. In separate claims: the parent isotope is molybdenum-99; aluminium oxide which contains fully or partly hydrated manganese dioxide is used as the adsorbent for the parent isotope; a resin is used as the cation-exchange material; a strongly acid cation-exchange resin which has been neutralized is used as a resin; and a strongly acid cation-exchange resin which has been converted into the Na + , K + or NH 4 + form is used as a resin; an isotope generator system is also claimed

  14. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    International Nuclear Information System (INIS)

    TURICK, CHARLES

    2004-01-01

    to about 2-4 percent of the humic fraction of soils. Our recent work has shown that melanin production by one species of bacteria could be used by other species for metal reduction. This melanin ''sharing'' is the area of focus for this project. In addition, melanin contributes to significant increases in metal reduction by both assimilatory and dissimilatory metal reducing bacteria. Stimulation of melanin production in the subsurface offers potential for accelerating metal reduction. Another focus of this project was to determine the potential of melanin production in portions of the Tims Branch watershed as it relates to metal and radionuclide immobilization in-situ

  15. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M; Stanculescu, A [International Atomic Energy Agency, Vienna (Austria); Paver, N [University of Trieste and INFN, Trieste (Italy)

    2003-06-15

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems.

  16. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  17. Applied metrology in the production of superconducting model magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ferradas Troitino, Jose [CERN; Bestmann, Patrick [CERN; Bourcey, Nicolas [CERN; Carlon Zurita, Alejandro [CERN; Cavanna, Eugenio [ASG Supercond., Genova; Ferracin, Paolo [CERN; Ferradas Troitino, Salvador [CERN; Holik, Eddie Frank [Fermilab; Izquierdo Bermudez, Susana [CERN; Lackner, Friedrich [CERN; Löffler, Christian [CERN; Maury, Gregory [CERN; Perez, Juan Carlos [CERN; Savary, Frederic [CERN; Semeraro, Michela [CERN; Vallone, Giorgio [CERN

    2017-12-22

    The production of superconducting magnets for particle accelerators involves high precision assemblies and tight tolerances, in order to achieve the requirements for their appropriate performance. It is therefore essential to have a strict control and traceability over the geometry of each component of the system, and also to be able to compensate possible inherent deviations coming from the production process.

  18. Economic and environmental effects of accelerated tariff liberalization in the forest products sector.

    Science.gov (United States)

    D.J. Brooks; J.A. Ferrante; J. Haverkamp; I. Bowles; W. Lange; D. Darr

    2001-01-01

    This study assesses the incremental economic and environmental impacts resulting from changes in the timing and scope of forest products tariff reductions as proposed in the Accelerated Tariff Liberalization (ATL) initiative in forest products. This initiative was proposed for agreement among member countries of the World Trade Organization. The analysis of...

  19. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  20. The production of radioisotopes with a betatron using an internal bombarding technique; Production de radioisotopes par bombardement interne dans un betatron; Proizvodstvo radioizotopov s pomoshch'yu betatrona s ispol'zovaniem metoda vnutrennej bombardirovki; Obtencion de radioisotopos por bombardeo interno en el betatron

    Energy Technology Data Exchange (ETDEWEB)

    Morinaga, H [Department of Physics, Tohoku University, Sendai (Japan)

    1962-01-15

    A new technique for producing radioisotopes of high specific activity with a betatron has been developed and is being used successfully. Materials to be activated are placed inside the doughnut at the end of a blind cylinder inserted from outside; thus samples are bombarded under one atmosphere just behind the bremsstrahlung target where the radiation intensity is extremely high. The saturation activity of Cu{sup 62} produced on a small piece of copper exceeded 1 mc, and the highest specific activity obtainable was approximately 500 times that produced in a conventional arrangement. So far, this internal-target technique has been used only for nuclear spectroscopy work; eight new species of radioactive isotopes (Co{sup 63}, Ga{sup 75}, As{sup 81}, In{sup 121}, In{sup 123}, Tm{sup 173}, Tm{sup 175} and Ac{sup 231}) have been identified and several new isomers have been found. The feasibility of this bombarding technique opens neiv possibilities, since medical, industrial or research betatrons may now be used, for isotope production. Short-lived isotopes are often more convenient in various applications because of their fast decay and high-energy radiation, and they may be made readily without any special skill. (author) [French] On a mis au point et utilise avec succes line technique nouvelle pour la production de radioisotopes d'activite specifique elevee dans un betatron. Les matieres a activer sont placees a l'interieur d'un tube toroidal, a l'extremite d'un cylindre a ouverture unique introduit de l'exterieur; les echantillons se trouvent ainsi bombardes, sous une atmosphere, juste derriere la cible de rayonnement de freinage, a l'endroit ou l'intensite du rayonnement est extremement elevee. L'activite de saturation du {sup 62}Cu produite sur de petits morceaux de cuivre depassait 1 millicurie et l'activite specifique la plus elevee que l'on ait pu obtenir egalait environ 500 fois l'activite produite dans un dispositif classique. Jusqu'a present, cette technique

  1. Subsystem for control of isotope production with linear electron accelerator

    CERN Document Server

    Karasyov, S P; Uvarov, V L

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels.

  2. Subsystem for control of isotope production with linear electron accelerator

    International Nuclear Information System (INIS)

    Karasyov, S.P.; Pomatsalyuk, R.I.; Uvarov, V.L.

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels

  3. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  4. Radioisotopes - where have we got to, where are we going ?

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1986-01-01

    Rapid growth has been achieved and there are remarkable possibilities in various fields of radioisotopes and radiation. New applications in molecular biology, in nuclear medicine, and in biotechnology are opening further opportunities for the use of radioisotopes. In the industrial field too there is growth, as microprocessor techniques extend the usefulness of radioisotope methods. And radiation engineering is a success story of its own, as ever-increasing use is made of radiation processing and sterilization, and new horizons open for food irradiation. This paper begins by recalling how isotope technology developed from the research laboratory to become the industry-scale activity it is today. A section is devoted to describing the development of a new radioisotope industry during the period from the 1930s through 1960s, focusing on the growth in the areas of nuclear medicine, radiotherapy, isotope gauging and tracing, production control, industrial processing, and production of radioisotopes. After a brief review of the present it looks into the future to suggest the directions in which new developments may lie. In particular, remarkable growth is expected in such areas as molecular biology, biotechnology, radiography, gauging, process control, radiation processing, and radiation sterilization. A review is also made of the transport and disposal of radioisotopes. (Nogami, K.)

  5. Development of radioisotope preparation and application technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. [and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of {omega}-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes.

  6. Development of radioisotope preparation and application technology

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of ω-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes

  7. SRF Accelerator Technology Transfer Experience from the Achievement of the SNS Cryomodule Production Run

    CERN Document Server

    Hogan, John; Daly, Edward; Drury, Michael A; Fischer, John; Hiatt, Tommy; Kneisel, Peter; Mammosser, John; Preble, Joseph P; Whitlatch, Timothy; Wilson, Katherine; Wiseman, Mark

    2005-01-01

    This paper will discuss the technology transfer aspect of superconducting RF expertise, as it pertains to cryomodule production, beginning with the original design requirements through testing and concluding with product delivery to the end user. The success of future industrialization, of accelerator systems, is dependent upon a focused effort on accelerator technology transfer. Over the past twenty years the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has worked with industry to successfully design, manufacture, test and commission more superconducting RF cryomodules than any other entity in the United States. The most recent accomplishment of Jefferson Lab has been the successful production of twenty-four cryomodules designed for the Spallation Neutron Source (SNS). Jefferson Lab was chosen, by the United States Department of Energy, to provide the superconducting portion of the SNS linac due to its reputation as a primary resource for SRF expertise. The successful partnering with, and d...

  8. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  9. Positron production using a 1.7 MV pelletron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, K. F.; Santos, A. C. F. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Crivelli, P. [Institute for Particle Physics, ETH Zurich (Switzerland)

    2013-04-19

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the {sup 19}F(p,{alpha}e{sup +}e{sup -}){sup 16}O reaction, where the fluorine target is in the form of a CaF{sub 2} pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF{sub 2} target.

  10. Mechanisms of force production during linear accelerations in bluegill sunfish Lepomis macrochirus

    Science.gov (United States)

    Tytell, Eric D.; Wise, Tyler N.; Boden, Alexandra L.; Sanders, Erin K.; Schwalbe, Margot A. B.

    2016-11-01

    In nature, fish rarely swim steadily. Although unsteady behaviors are common, we know little about how fish change their swimming kinematics for routine accelerations, and how these changes affect the fluid dynamic forces and the wake produced. To study force production during acceleration, particle image velocimetry was used to quantify the wake of bluegill sunfish Lepomis macrochirus and to estimate the pressure field during linear accelerations and steady swimming. We separated "steady" and "unsteady" trials and quantified the forward acceleration using inertial measurement units. Compared to steady sequences, unsteady sequences had larger accelerations and higher body amplitudes. The wake consisted of single vortices shed during each tail movement (a '2S' wake). The structure did not change during acceleration, but the circulation of the vortices increased, resulting in larger forces. A fish swimming unsteadily produced significantly more force than the same fish swimming steadily, even when the accelerations were the same. This increase is likely due to increased added mass during unsteady swimming, as a result of the larger body amplitude. Pressure estimates suggest that the increase in force is correlated with more low pressure regions on the anterior body. This work was supported by ARO W911NF-14-1-0494 and NSF RCN-PLS 1062052.

  11. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    International Nuclear Information System (INIS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-01-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system

  12. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Butler, G.; Cappiello, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  13. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  14. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  15. Reviews of accelerator science and technology

    CERN Document Server

    Chou, Weiren

    2008-01-01

    Particle accelerators are a major invention of the 20th century. In the last eight decades, they have evolved enormously and have fundamentally changed the way we live, think and work. Accelerators are the most powerful microscopes for viewing the tiniest inner structure of cells, genes, molecules, atoms and their constituents such as protons, neutrons, electrons, neutrinos and quarks. This opens up a whole new world for materials science, chemistry and molecular biology.Accelerators with megawatt beam power may ultimately solve a critical problem faced by our society, namely, the treatment of nuclear waste and the supply of an alternative type of energy. There are also tens of thousands of small accelerators all over the world. They are used every day for medical imaging, cancer therapy, radioisotope production, high-density chip-making, mass spectrometry, cargo x-ray/gamma-ray imaging, detection of explosives and illicit drugs, and weapons. This volume provides a comprehensive review of this driving and fas...

  16. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  17. Radioisotope indicator, type BETA 2

    International Nuclear Information System (INIS)

    Duszanski, M.; Pankow, A.; Skwarczynski, B.

    1975-01-01

    The authors describe a radioisotope indicator, type BETA 2, constructed in the ZKMPW Works to be employed in mines for counting, checking, signalling the presence and positioning of cars, as well as monitoring the state of some other equipment. (author)

  18. New production of electric power when accelerating nuclear power phaseout

    International Nuclear Information System (INIS)

    1986-10-01

    This investigation states that it is possible to eliminate nuclear power to the beginning of the year 2000. In this case the time for planning and construction of large coal power plants with condenser turbines should be set at seven years. The production cost excluding fuel will be 0.12 to 0.19 SEK per kWh. Investment cost is estimated to 5 500 to 8 200 SEK per kW. When using wood chips the cost will be 0.30 SEK and 11 300 SEK, respectively. A large part of the increased cost will include substantial flue gas purification. The existing plant of Karlshamn should be maintained with a minimum of charges and extensions

  19. A 3He++ RFQ accelerator for the production of PET isotopes

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    1997-05-01

    Project status of the 3He ++ 10.5 MeV RFQ Linear Accelerator for the production of PET isotopes will be presented. The accelerator design was begun in September of 1995 with a goal of completion and delivery of the accelerator to BRF in Shreveport, Louisiana by the summer of 1997. The design effort and construction is concentrated in Lab G on the Fermilab campus. Some of the high lights include a 25 mA peak current 3He' ion source, four RFQ accelerating stages that are powered by surplus Fermilab linac RF stations, a gas jet charge doubler, and a novel 540 degree bending Medium Energy Beam Transport (MEBT). The machine is designed to operate at 360 Hz repetition rate with a 2.5% duty cycle. The average beam current is expected to be 150-300 micro amperes electrical, 75- 150 micro amperes particle current

  20. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  1. Technology Development for the Accelerator Production of Tritium

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1999-01-01

    The ED and D described in this report provide technical data on the performance of all critical components of the APT facility. Results are compared with requirements given. This data will be utilized to establish confidence in the design, in the predicted plant availability, and to reduce cost when the data warrants design simplification. Thus, if at a later date it is decided to build the APT plant, this will allow the facility to be built correctly the first time, on schedule, without recourse to costly over-design. It should also speed the commissioning process and ensure that full capacity production is attained on schedule. The planning process used to develop the elements of the CTP has been described. This program is expected to provide the needed data within the projected schedule and resources. Specific schedules for delivery of data and descriptions of the needed data are contained in the Design Data Needs. The total cost of the ED and D program is on the order of 10% of the project cost and is considered a very good investment. The CTP will be judged a success when the data produced warrants design simplifications that allow reduction of design margins and cost. Present day contingency estimates for the project greatly exceed 10% and it is expected that CTP data will warrant reduction of those contingencies by more than the cost of data production. Even results that do not simplify the design or reduce cost are considered very important and successful if they firmly establish performance, so that the design is validated and the cost certified within the existing contingencies. Nevertheless, there is technical risk in some APT components that warrant careful attention. It is to be expected that some results could be disappointing and may require design changes that increase cost moderately beyond the existing contingencies or cause moderate schedule slips

  2. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre-commissioning benchmarking. Gamma

  3. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Full text: Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre

  4. Industrial applications of radioisotope tracers

    International Nuclear Information System (INIS)

    Easey, J.F.

    1985-01-01

    Radioisotope tracing techniques are powerful tools for analysing the behaviour of large systems and investigating industrially or economically important processes. The results of radioisotope experiments can yield important information, for example, on parameters such as flow rates, mixing phenomena, flow abnormalities and leaks. Some examples of current AAEC research are described, covering studies on hearth drainage in blast furnaces, flow behaviour in waste-water treatment ponds, and sediment transport in marine environments

  5. Ashing vs. electric generation in accelerator driven system

    International Nuclear Information System (INIS)

    Solanilla, Roberto B.

    1999-01-01

    Accelerator Driven Systems have been conceived as an alternative for the processing of the radioactive wastes contained in spent fuel elements from nuclear power plants. These systems are formed by the coupling of a nuclear reactor - preferably a subcritical reactor - with a particle accelerator providing particles with energy in the order of the GeV. The long-lived fission products and actinides of the spent fuels are transformed by nuclear reactions in stable isotopes or in short-lived radioisotopes. The basic parameters for the electric energy production of the different systems are analysed. (author)

  6. Science opportunities at high power accelerators like APT

    International Nuclear Information System (INIS)

    Browne, J.C.

    1996-01-01

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels

  7. Potential of cyclotron based accelerators for energy production and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Stammbach, T.; Adam, S.; Fitze, H.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  8. Effect of initial longitudinal stresses on the linearity of the shape rolled products after accelerated cooling

    International Nuclear Information System (INIS)

    Shetulov, D.I.

    1991-01-01

    Consideration is given to results of investigation into effect of initial longitudinal stresses on the linearity of the shaped rolled products after accelerated cooling. Particular attention is placed on the influence of an initial stresses state of material on qualiti of heat-treated rolled products. Effect of stresses state of worked material residual bending is studed by the use of computerized simulation.Theoretical analysis of stress-strain state of shape hot-rolled products during accelerated cooling after finishing stand of rolls is developed. A residual stress-strain state of material does not affected by rolling stresses when using a rautine cooling device with rigid centering of the product under rolling. It is expected that the effect of initial stresses could be significant in the absence of a limitator for bending deformation of shaped product longitudinal axis

  9. Medical application of radioisotopes

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; Kim, E. H.

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: 1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology 4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments 5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body 6) A method to evaluate the biological effect of neutrons on tumor cells has been developed 7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography 8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer 9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease

  10. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  11. Medical application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S M; Kim, E H [and others

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: (1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology (4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments (5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body (6) A method to evaluate the biological effect of neutrons on tumor cells has been developed (7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography (8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer (9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease.

  12. Productive friction: how difficult business partnerships can accelerate innovation.

    Science.gov (United States)

    Hagel, John; Brown, John Seely

    2005-02-01

    Companies are becoming more dependent on business partners, but coordinating with outsiders takes its toll. Negotiating terms, monitoring performance, and, if needs are not being met, switching from one partner to another require time and money. Such transaction costs, Ronald Coase explained in his 1937 essay "The Nature of the Firm," drove many organizations to bring their activities in-house. But what if Coase placed too much emphasis on these costs? What if friction between companies can be productive? Indeed, as John Hagel and John Seely Brown point out, interactions between organizations can yield benefits beyond the goods or services contracted for. Companies get better at what they do--and improve faster than their competitors--by working with outsiders whose specialized capabilities complement their own. Different enterprises bring different perspectives and competencies. When these enterprises tackle a problem together, they dramatically increase the chances for innovative solutions. Of course, misunderstandings often arise when people with different backgrounds and skill sets try to collaborate. Opposing sides may focus on the distance that separates them rather than the common challenges they face. How can companies harness friction so that it builds capabilities? Start by articulating performance goals that everyone buys into. Then make sure people are using tangible prototypes to wrangle over. Finally, assemble teams with committed people who bring different perspectives to the table. As individual problems are being addressed, take care that the underpinnings of shared meaning and trust are also being woven between the companies. Neither can be dictated--but they can be cultivated. Without them, the performance fabric quickly unravels, and business partnerships disintegrate into rivalrous competition.

  13. Radioisotope applications on fluidized catalytic cracking units

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1997-01-01

    Radioisotopes are used to trace the flow of all the phases of Fluidized Catalytic Cracking process in oil refineries. The gaseous phases, steam, hydrocarbon vapour and air, are generally traced using a noble-gas isotope, 41 Ar, 79 Kr or 85 Kr. An appropriate tracer for the catalyst is produced by irradiating a catalyst sample in a nuclear reactor. The activation products, 140 La and 24 Na provide appropriate radioactive 'labels' for the catalyst, which is reinjected into the FCC. An advantage of this approach is that it facilitates the study of the behaviour of different particle size fractions. Radioisotopes as sealed sources of gamma radiation are used to measure catalyst density variations and density distributions in critical parts of the unit. An important trend in radioisotope applications is the increasing use of the information they produce as inputs to or as validation of, mathematical process models. In line with the increasing sophistication of the models, the technology is undergoing continuous refinement. Developments include the investigation of more efficient, more convenient tracers, the introduction of systems to facilitate more rapid and comprehensive data acquisition and software refinements for enhanced data analysis

  14. Preparation of an annual report for a consolidated radioisotope licence

    International Nuclear Information System (INIS)

    1985-01-01

    A consolidated radioisotope licence is a single license issued by the Atomic Energy Control Board (AECB) to an institution having many users of radioactive materials. The licence is issued when the institution has fulfilled the requirements set by the AECB and has implemented policies and procedures which will ensure the maintenance of an effective radiation safety program. The consolidated licence is retained only if the results of AECB inspections are satisfactory -- or remedial action is taken promptly -- and if the institution reports regularly about the status of its radiation safety program. One aspect of this reporting procedure is an annual report. This guide describes the information that the AECB requires in the annual report. The guide applies primarily to universities and research institutions where a wide variety of radioisotope uses take place. The guide does not affect most other institutions or facilities, either because the nature and extent of their operations with radioactive materials do not lend themselves to consolidated licensing or because they are not licensed by the Radioisotopes and Transportation Division. (For example, this guide does not apply to reactors, to accelerators, or to waste management or uranium mining or refining facilities.) The information in the annual report should be specific to the consolidated radioisotope licence. Incidents, staff exposures, and waste associated with accelerators, research reactors, and waste management facilities should be excluded from this report unless they affected activities under the consolidated licence

  15. Symposium on isotope production and applications

    International Nuclear Information System (INIS)

    1981-01-01

    This report contains the papers delivered at the symposium on isotope production and applications, held at Pelindaba, Pretoria, South Africa. The following topics were discussed: facilities for the production of radioisotopes at Pelindaba; the role of the chemist in the development and production of radioisotopic preparations; quality control of radioisotopic products; applications of radioisotopes in medicine; concepts and current status of nuclear imaging; industrial and research applications of radioisotopic tracers and radioisotopic radiation sources; radiation processing using intense radioisotopic radiation sources; a review of current and future radioisotope production activities at the Council for Scientific and Industrial Research

  16. Production and applications of quasi-monoenergetic electron bunches in laser-plasma based accelerators

    International Nuclear Information System (INIS)

    Glinec, Y.; Faure, J.; Ewald, F.; Lifschitz, A.; Malka, V.

    2006-01-01

    Plasmas are attractive media for the next generation of compact particle accelerators because they can sustain electric fields larger than those in conventional accelerators by three orders of magnitude. However, until now, plasma-based accelerators have produced relatively poor quality electron beams even though for most practical applications, high quality beams are required. In particular, beams from laser plasma-based accelerators tend to have a large divergence and very large energy spreads, meaning that different particles travel at different speeds. The combination of these two problems makes it difficult to utilize these beams. Here, we demonstrate the production of high quality and high energy electron beams from laser-plasma interaction: in a distance of 3 mm, a very collimated and quasi-monoenergetic electron beam is emitted with a 0.5 nanocoulomb charge at 170 ± 20 MeV. In this regime, we have observed very nonlinear phenomena, such as self-focusing and temporal self-shortenning down to 10 fs durations. Both phenomena increase the excitation of the wakefield. The laser pulse drives a highly nonlinear wakefield, able to trap and accelerate plasma background electrons to a single energy. We will review the different regimes of electron acceleration and we will show how enhanced performances can be reached with state-of-the-art ultrashort laser systems. Applications such as gamma radiography of such electron beams will also be discussed

  17. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn

    2015-01-01

    Decomposition of organic carbon from thawing permafrost soils and the resulting release of carbon to the atmosphere are considered to represent a potentially critical global-scale feedback on climate change1, 2. The accompanying heat production from microbial metabolism of organic material has been...... recognized as a potential positive-feedback mechanism that would enhance permafrost thawing and the release of carbon3, 4. This internal heat production is poorly understood, however, and the strength of this effect remains unclear3. Here, we have quantified the variability of heat production in contrasting...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...

  18. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  19. Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T., E-mail: sharad@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Pethe, S.N., E-mail: sanjay@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Krishnan, R., E-mail: krishnan@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N., E-mail: vnb@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2011-12-15

    For the production of a clinical 15 MeV photon beam, the design of accelerator head assembly has been optimized using Monte Carlo based FLUKA code. The accelerator head assembly consists of e-{gamma} target, flattening filter, primary collimator and an adjustable rectangular secondary collimator. The accelerators used for radiation therapy generate continuous energy gamma rays called Bremsstrahlung (BR) by impinging high energy electrons on high Z materials. The electron accelerators operating above 10 MeV can result in the production of neutrons, mainly due to photo nuclear reaction ({gamma}, n) induced by high energy photons in the accelerator head materials. These neutrons contaminate the therapeutic beam and give a non-negligible contribution to patient dose. The gamma dose and neutron dose equivalent at the patient plane (SSD = 100 cm) were obtained at different field sizes of 0 Multiplication-Sign 0, 10 Multiplication-Sign 10, 20 Multiplication-Sign 20, 30 Multiplication-Sign 30 and 40 Multiplication-Sign 40 cm{sup 2}, respectively. The maximum neutron dose equivalent is observed near the central axis of 30 Multiplication-Sign 30 cm{sup 2} field size. This is 0.71% of the central axis photon dose rate of 0.34 Gy/min at 1 {mu}A electron beam current.

  20. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    International Nuclear Information System (INIS)

    Thisgaard, H.

    2008-08-01

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development of this

  1. Accelerator based production of auger-electron-emitting isotopes for radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thisgaard, H.

    2008-08-15

    In this research project the focus has been on the identification and production of new, unconventional Auger-electron-emitting isotopes for targeted radionuclide therapy of cancer. Based on 1st principles dosimetry calculations on the subcellular level, the Auger-emitter 119Sb has been identified as a potent candidate for therapy. The corresponding imaging analogue 117Sb has been shown from planar scintigraphy and single-photon emission computed tomography (SPECT) to be suitable for SPECT-based dosimetry of a future Sb-labeled radiopharmaceutical. The production method of these radioisotopes has been developed using a low-energy cyclotron via the nuclear reactions 119Sn(p,n)119Sb and 117Sn(p,n)117Sb including measurements of the excitation function for the former reaction. Moreover, a new high-yield radiochemical separation method has been developed to allow the subsequent separation of the produced 119Sb from the enriched 119Sn target material with high radionuclidic- and chemical purity. A method that also allows efficient recovery of the 119Sn for recycling. To demonstrate the ability of producing therapeutic quantities of 119Sb and other radioisotopes for therapy with a low-energy cyclotron, two new 'High Power' cyclotron targets were developed in this study. The target development was primarily based on theoretical thermal modeling calculations using finite-element-analysis software. With these targets, I have shown that it will be possible to produce several tens of GBq of therapeutics isotopes (e.g. 119Sb or 64Cu) using the PETtrace cyclotron commonly found at the larger PET-centers in the hospitals. Finally, research in a new method to measure the radiotoxicity of Auger-emitters invitro using cellular microinjection has been carried out. The purpose of this method is to be able to experimentally evaluate and compare the potency of the new and unconventional Auger-emitters (e.g. 119Sb). However, due to experimental complications, the development

  2. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  3. An overview of computer models for pollutant transfer through the atmosphere, with special consideration for radioisotopes

    International Nuclear Information System (INIS)

    Zivanovic, M.; Djukanovic, J.; Davidovic, M.; Cekerevac, D.; Stankovic, S.

    2011-01-01

    Modern society is intrinsically connected with usage and production of radioisotopes, both for military and civilian applications. During the march of 2007, there were 443 active nuclear plants, unknown quantity of nuclear weapons and a huge number of industrial, medical and other facilities that possess and use radioisotopes for various purposes. With the widespread usage of radioisotopes, there comes a danger of accidental or planed release into the biosphere. This paper gives an overview of the models that can be used for prognosis or reconstruction of radioisotope transfer through the atmosphere in case of accidental or planned release [sr

  4. New Possibilities of the FLNR Accelerator Complex for the Production of Track Membranes

    CERN Document Server

    Oganessian, Yu T; Didyk, A Yu; Gulbekyan, G G; Kutner, V B

    2000-01-01

    The description of the main systems of modified heavy ion accelerator U-400 of the Flerov Laboratory of Nuclear Reactions is presented including the ECR ion source, system of external injection of low energy ions onto median plane. The characteristic parameters for obtaining of accelerated heavy ions from krypton ions to more heavier ones also are presented. The structure and parameters of new beam line and vacuum chamber for irradiation of polymeric and other materials on modified cyclotron U-400 are presented too. The new possibilities for the production of unique track membrane are discussed.

  5. Analytic mappings: a new approach in particle production by accelerated observers

    International Nuclear Information System (INIS)

    Sanchez, N.

    1982-01-01

    This is a summary of the authors recent results about physical consequences of analytic mappings in the space-time. Classically, the mapping defines an accelerated frame. At the quantum level it gives rise to particle production. Statistically, the real singularities of the mapping have associated temperatures. This concerns a new approach in Q.F.T. as formulated in accelerated frames. It has been considered as a first step in the understanding of the deep connection that could exist between the structure (geometry and topology) of the space-time and thermodynamics, mainly motivated by the works of Hawking since 1975. (Auth.)

  6. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  7. RSG-Gas Based Radioisotopes And Sharing Program For Regional Back Up Supply

    International Nuclear Information System (INIS)

    Soenardjo, Sunarhadijoso; Tamat, Swasono R.; Suparman, Ibon; Purwadi, Bambang

    2003-01-01

    As the owner of the reactors used for radioisotope production, BATAN needs to increase the effectiveness of the reactor operation cost that can be achieved by simultaneously exploiting all the existing irradiation facility, supported by full utilization of the radioisotopes produced. On the other hand, the domestic demand of radioisotopes is much lower than the production capability but sometimes the request is compulsory to be suspended due to reactor operation schedule. As this condition is mostly similar to that of several countries of RCA Member States, a sharing program for regional back up supply seems to be a positive thought to support expectation on the effectiveness of reactor operation cost and the continuity of radioisotope product services as well as the utilization of radioisotopes produced. Based on radioactivity achieved in each production batch at the present, 131 I, 99 Mo, 153 Sm, 125 I and 32 p radioisotopes may be offered for back up supply program. Due to consideration on conformity of user demands with reactor operation and radiochemical processing costs, the concept of back up supply program should performed first by means of full utilization of the available products and not by increasing reactor operation frequency. An information and communication network system, therefore, is absolutely needed to support information exchange between the radioisotope producer, members of back up supply program and radioisotope customers

  8. Production acceleration and injectivity enhancement using steam-propane injection for Hamaca extra-heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, J. A.; Mamora, D. D. [Texas A and M University, El Paso, TX (United States)

    2005-02-01

    The possibility of enhanced recovery in the Orinoco Belt in Venezuela, the world's largest known hydrocarbon deposit, by using propane as a steam additive, is discussed. In a laboratory study the steam-propane injection accelerated the start of oil production by 21 per cent, compared to production with steam alone. The experiments illustrated that the inclusion of even small amounts of propane has considerable beneficial effect on the rate of bitumen production. Even though total bitumen recovery and ultimate residual oil saturation did not change, the acceleration of bitumen recovery is considered to have a significant impact on the net present value of the recovery process. 17 refs., 1 tab., 13 figs.

  9. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  10. A computer study of radionuclide production in high power accelerators for medical and industrial applications

    Science.gov (United States)

    Van Riper, K. A.; Mashnik, S. G.; Wilson, W. B.

    2001-05-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  11. Estimation of exposure quantity of gamma and neutron in 13 MeV proton cyclotron for radioisotope production of 18F

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    Quantitative estimation of gamma and neutron exposure in 13 MeV proton cyclotron for radioisotope of 18 F has been done. The aim of this study is to know the exposure of gamma and neutron that will be generated by 13 MeV proton cyclotron The method that was used is the determine of gamma and neutron quantity exposure that produced by proton beam collision with matter in the cyclotron chamber and cyclotron target. The analysis result showed that the reactions occur at chamber are 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co,, while at the target is 18 O(p,n) 18 F. The calculation result of neutron flux at the chamber and the target facility are 7,34×10 7 n/cm 2 dt and 1.10×10 9 n/cm 2 dt, respectively. The gamma activity at the chamber for reaction 63 Cu(p,n) 63 Zn, 65 Cu(p,n) 65 Zn and 56 Fe(p,n) 56 Co are 3,0×10 8 Bq, 4,54×10 5 Bq and 1,13×10 9 Bq respectively, while the gamma activity at the cyclotron target is 1,84×10 8 Bq. The data can be used as a basis for designing the cyclotron radiation shielding. (author)

  12. A new radioisotope facility for Thailand

    International Nuclear Information System (INIS)

    Horlock, K.

    1997-01-01

    The Thai Office of Atomic Energy for Peace (OAEP) is planning a new Nuclear Research Centre which will be located at Ongkharak, a greenfield site some 100 km North of Bangkok. General Atomics (GA) has submitted a bid for a turnkey contract for the core facilities comprising a Reactor to be supplied by GA, an Isotope Production Facility supplied by ANSTO and a Waste Processing and Storage Facility to be supplied by Hitachi through Marubeni. The buildings for these facilities will be provided by Raytheon, the largest constructor of nuclear facilities in the USA. The proposed Isotope Facility will consist of a 3000 m 2 building adjacent to the reactor with a pneumatic radioisotope transfer system. Hot cells, process equipment and clean rooms will be provided, as well as the usual maintenance and support services required for processing radiopharmaceutical and industrial products. To ensure the highest standards of product purity the processing areas will be supplied with clean air and operated at slightly positive pressure. The radioisotopes to be manufactured include Phosphorus 32 (S-32 [n,p]P-32), I-131(Te-130 [n,g]Te-131[p]I-131) for bulk, diagnostic capsules and therapeutic capsules, Iridium 192 (Ir-191[n,g]Ir-192) wire for radiotherapy and discs for industrial radiography sources and bulk Iodine 125 (Xe-124[n,g]Xe-125[β]I-125 for radioimmunoassay. The bid includes proposals for training OAEP staff during design and development at ANSTO's radioisotope facilities, and during construction and commissioning in Thailand. The entire project is planned to take four years with commencement anticipated in early 1997. The paper will describe the development of the design of the hot-cells, process equipment, building layout and ventilation and other services

  13. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    Science.gov (United States)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  14. Influence of Intuition and Capability on Accelerated Product Development in Big-Medium Scaled Food Companies in Indonesia

    Directory of Open Access Journals (Sweden)

    Pepey Riawati Kurnia

    2013-06-01

    Full Text Available To face the pressure of competition, more and more companies perform accelerated product development by shortening the product development time so that the product will arrive at the market at the shortest time. Food industry has also performed accelerated product development. Using evolution theory, contingency theory, market-based view, and resource-based view a research model has been built. Results of the research’s initial identification show that food industry in Indonesia is in growth level towards maturity level. Meanwhile, competition in the food industry is in moderate level towards hypercompetition level. Tactics of accelerated product development often carried out is by simplifying the product development steps to eliminating the product development steps. The innovation type used is incremental innovation since it is fast and easy. Results of the research give information that intuition and capabilities are the main motivating factors for big-medium scaled food companies in Indonesia to accelerate product development.

  15. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  16. Accelerator breeder: a viable option for the production of nuclear fuels

    International Nuclear Information System (INIS)

    Grand, P.

    1983-01-01

    Despite the growing pains of the US nuclear power industry, our dependence on nuclear energy for the production of electricity and possibly process heat is likely to increase dramatically over the next few deacades. This statement dismisses fusion as being entirely too speculative to be practical within that time frame. Sometime, between the years 2000 and 2050, fissile material will be in short supply whether it is to fuel existing LWR's or to provide initial fuel inventory for FBR's. The accelerator breeder could produce the fuel shortfall predicted to occur during the first half of the 21st century. The accelerator breeder offers the only practical means today of producing, or breeding, large quantities of fissile fuel from fertile materials, albeit at high cost. Studies performed over the last few years at Chalk River Laboratory and at Brookhaven National Laboratory have demonstrated that the accelerator breeder is practical, technically feasible with state-of-the-art technology, and is economically competitive with any other proposed synthetic means of fissile fuel production. This paper gives the parameters of a nearly optimized accelerator-breeder system, then discusses the development needs, and the economics and institutional problems that this breeding concept faces

  17. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  18. X-ray production experiments on the RACE Compact Torus Accelerator

    International Nuclear Information System (INIS)

    Hammer, J.H.; Eddleman, J.L.; Hartman, C.W.; McLean, H.S.; Molvik, A.W.; Gee, M.

    1989-12-01

    The Purpose of the Compact Torus Accelerator (CTA) program at LLNL is to prove the principle of a unique accelerator concept based on magnetically confined compact torus (CT) plasma rings and to study applications. Successful achievement of these goals could lead to a high power-density driver for many applications including an intense x-ray source for nuclear weapons effects simulation and an inertial fusion driver. Fusion applications and a description of the CTA concept are included in a companion paper at this conference. This paper will describe the initial experiments on soft x-ray production conducted on the plasma Ring ACcelerator Experiment (RACE) and compare the results to modeling studies. The experiments on CT stagnation and soft x-ray production were conducted with unfocused rings as a first of CT dynamics and the physics of x-ray production. The x-ray fluences observed are consistent with expectations based on calculations employing a radiation-hydrodynamics code. We conclude with a diffusion of future x-ray production studies that can be conducted on RACE and a possible multi-megajoule upgrade

  19. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  20. Medical research with radioisotopes in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, E H [Post-graduate Medical School, Hammersmith, London (United Kingdom)

    1961-07-15

    An important program of research into the nature and causes of congenital haemolytic anaemias, notably the disease known as Mediterranean anaemia or Thalassaemia, which is a serious medical problem in the Mediterranean countries, is at present being carried out in the Department of Clinical Therapeutics of the University of Athens under a research contract awarded by the International Atomic Energy Agency. This program is concerned with diseases in which there is an inherited defect or abnormality in the production of haemoglobin, the iron-containing pigment of the red blood cells which is responsible for the carriage of oxygen in the blood. Two techniques have been widely used in the studies at the University of Athens. In the first of these, a radioisotope of iron, iron-59, is used to follow iron metabolism and haemoglobin production. Iron metabolism in the body is concerned largely with the synthesis and breakdown of haemoglobin, which consists of a protein, globin, linked to an iron containing substance, haeme. The second technique makes use of a radioisotope of chromium, chromium-51, to study the fate of the red cells in the blood. By performing simultaneous studies with iron- 59 and chromium-51, a detailed picture of haemoglobin synthesis and red cell production and destruction can be built up. Such investigations have been invaluable in establishing the characteristic patterns of different congenital haemolytic anaemias.

  1. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  2. Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.

    Science.gov (United States)

    Wei, Zhenwei; Wleklinski, Michael; Ferreira, Christina; Cooks, R Graham

    2017-08-01

    Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 10 3 and were on the order of 10 2 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h -1 were reached in a very simple experimental system that could be multiplexed to greater scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Medical Radioisotope Scanning, Vol. II. Proceedings of the Symposium on Medical Radioisotope Scanning

    International Nuclear Information System (INIS)

    1964-01-01

    Medical applications of radioisotopes continue to grow in number and importance and medical centres in almost all countries of the world are now using radioactive materials both in the diagnosis and treatment of disease. An increasing proportion of these applications involves studies of the spatial distribution of radioactive material within the human body, for which purpose highly specialized scanning methods have been elaborated. By these methods it is possible to study the position, size and functional state of different organs, to detect tumours, cysts and other abnormalities and to obtain much useful information about regions of the body that are otherwise inaccessible, except by surgery. Progress in scanning methods in recent years has been very rapid and there have been many important advances in instrumentation and technique. The development of new forms of the gamma camera and of colour-scanning techniques are but two examples of recent improvements. The production of new radioisotopes and new labelled compounds has further extended the scope of these methods. To survey these new advances the International Atomic Energy Agency held a Symposium on Medical Radioisotope Scanning in Athens from 20-24 April 1964. The scientific programme of the meeting covered all aspects of scanning methods including theoretical principles, instrumentation, techniques and clinical applications. The World Health Organization assisted in the selection of papers by providing a consultant to the selection committee. The meeting followed the earlier IAEA/WHO Seminar on Medical Radioisotope Scanning in Vienna in 1959, which was attended by 36 participants and at which 14 papers were presented. Some idea of the growth of interest in the subject may be gained from the fact that the Symposium was attended by 160 participants from 26 countries and 4 international organizations, and that 58 papers were presented. The published proceedings, comprising two volumes, contain all the

  4. Recent developments in radiation equipment and radioisotopes

    International Nuclear Information System (INIS)

    Beddoes, J.M.

    1978-09-01

    A review is given of the technology of the uses of radiation equipment and radioisotopes, in which field Canada has long been a world leader. AECL Commercial Products has pioneered many of the most important applications. The development and sale of Co-60 radiation teletherapy units for cancer treatment is a familiar example of such an application and Commercial Products dominates the world market. Another such example is the marketing of Mo-99, which is produced in the NRX and NRU reactors at Chalk River, and from which the short-lived daughter Tc-99 is eluted as required for use in in-vivo diagnosis. New products coming into use for this purpose include Tl-201, I-123, Ga-67 and In-111, all produced in the TRIUMF cyclotron in Vancouver, while I-125 continues to be in demand for in-vitro radioimmunoassays. Radioisotopes continue to play an important part in manufacturing, where their well-known uses include controlling thickness, contents, etc., in production, and industrial radiography. The application of large industrial irradiators for the sterilization of medical products is now a major world industry for which Commercial Products is the main manufacturer. Isotopes are also used in products such as smoke detectors. Isotopes continue to find extensive use as tracers, both in industrial applications and in animal and plant biology studies. Some more recent uses include pest control by the Σsterile maleΣ technique and neutron activation and delayed neutron counting in uranium assay. The review concludes with an account of the development and prospects of AECL Commercial Products. (author)

  5. Radioisotope study of Eustachian tube

    International Nuclear Information System (INIS)

    De Rossi, G.; Campioni, P.; Vaccaro, A.

    1988-01-01

    Radioisotope studies of Eustachian tube are suggested in the preoperative phase of tympanoplasty, in order to assess tubal drainage and secretion. The use of gamma camera fitted to a computer allowed the AA, to calculate some semi-quantitative parameters for an exact assessment of the radioactivity transit from the tympanic cass up to the pharyngeal cavity, throughout the Eustachian tube. (orig.) [de

  6. Radioisotopes in engineering and industry

    International Nuclear Information System (INIS)

    Castagnet, A.C.G.

    1986-01-01

    The applications of radioisotope techniques in engineering and materials quality control are shown. The inventory of mercury in electrolytical cells, the transit and residence time measurements in several processes and radiotracer control are studied. The radioactive tracers in hydrologycal problems is evaluated. (M.J.C.) [pt

  7. Radioisotopes point the way ahead

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    The use of radiochemicals as tracers in medicine is discussed, with particular reference to the choice of radioisotope to be used, its properties, quality control and its detection and measurement in tracer experiments. The development of autoradiography is discussed. (U.K.)

  8. Uses of radioisotopes in Sudan

    International Nuclear Information System (INIS)

    Elradi, E. A. M.

    2013-07-01

    In this research project, an inventory for the different radioisotopes that were imported by public and private sectors of Sudan in the period between ( 2007-2011) has been set up. These organizations import the appropriates for different but in general we classify them into these applications: Medical, Industrial, Agricultural and Research. However, each broad discipline is subdivided into subgroups. This inventory will help those who are willing to establish research reactors in Sudan on the type and power of the reactors to be purchases according to the actual needs of Sudan with forecasting of the near and for future needs. Also the expenditure that has been spent by these organizations have been estimated for most of the radioisotopes. It was observed that almost 50% of the expenditure went for the fright charges as these radioisotopes need special handling and care by installing a research reactor in Sudan, the cost of purchasing will be cut down several folds. Also it will help in availability of the radioisotopes with very short half lives (hours to days). This will be reflected in the cut down the cost of tests and provision of new tests.(Author)

  9. Product conveying system for 10 MeV electron beam accelerator for electron beam centre, Kharghar, Navi Mumbai

    International Nuclear Information System (INIS)

    Bandi, L.N.; Lavale, D.S.; Sarma, K.S.S.; Khader, S.A.; Assadullah, M.; Sabharwal, S.

    2003-01-01

    In industrial radiation processing applications using accelerators, product conveying system plays a vital role in exposing the product to high energy electron beam for imparting specified dose to the product and delivering required through puts. The speed of the conveyor corresponds to a definite time of exposure of the product in the radiation zone. Design of suitable conveyor system for a variety of products with differing dose requirements call for a conveyor with wide speed range. This paper discusses the design features of a suitable under beam conveyor system for 10 MeV, 10 kW accelerator for processing a range of products including medical and food products

  10. Radioisotope methodology course radioprotection aspects

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Caro, R.A.; Menossi, C.A.

    1996-01-01

    The advancement knowledge in molecular and cell biology, biochemistry, medicine and pharmacology, which has taken place during the last 50 years, after World War II finalization, is really outstanding. It can be safely said that this fact is principally due to the application of radioisotope techniques. The research on metabolisms, biodistribution of pharmaceuticals, pharmacodynamics, etc., is mostly carried out by means of techniques employing radioactive materials. Radioisotopes and radiation are frequently used in medicine both as diagnostic and therapeutic tools. The radioimmunoanalysis is today a routine method in endocrinology and in general clinical medicine. The receptor determination and characterization is a steadily growing methodology used in clinical biochemistry, pharmacology and medicine. The use of radiopharmaceuticals and radiation of different origins, for therapeutic purposes, should not be overlooked. For these reasons, the importance to teach radioisotope methodology is steadily growing. This is principally the case for specialization at the post-graduate level but at the pre graduate curriculum it is worthwhile to give some elementary theoretical and practical notions on this subject. These observations are justified by a more than 30 years teaching experience at both levels at the School of Pharmacy and Biochemistry of the University of Buenos Aires, Argentina. In 1960 we began to teach Physics III, an obligatory pregraduate course for biochemistry students, in which some elementary notions of radioactivity and measurement techniques were given. Successive modifications of the biochemistry pregraduate curriculum incorporated radiochemistry as an elective subject and since 1978, radioisotope methodology, as obligatory subject for biochemistry students. This subject is given at the radioisotope laboratory during the first semester of each year and its objective is to provide theoretical and practical knowledge to the biochemistry students, even

  11. Electronuclear fissile fuel production. Linear accelerator fuel regenerator and producer LAFR and LAFP

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.; Takahashi, H.; Grand, P.; Kouts, H.J.C.

    1978-04-01

    A linear accelerator fuel generator is proposed to enrich naturally occurring fertile U-238 or thorium 232 with fissile Pu-239 or U-233 for use in LWR power reactors. High energy proton beams in the range of 1 to 3 GeV energy are made to impinge on a centrally located dispersed liquid lead target producing spallation neutrons which are then absorbed by a surrounding assembly of fabricated LWR fuel elements. The accelerator-target design is reviewed and a typical fuel cycle system and economic analysis is presented. One 300 MW beam (300 ma-1 GeV) linear accelerator fuel regenerator can provide fuel for 3 to 1000 MW(e) LWR power reactors over its 30-year lifetime. There is a significant saving in natural uranium requirement which is a factor of 4.5 over the present LWR fuel requirement assuming the restraint of no fissile fuel recovery by reprocessing. A modest increase (approximately 10%) in fuel cycle and power production cost is incurred over the present LWR fuel cycle cost. The linear accelerator fuel regenerator and producer assures a long-term supply of fuel for the LWR power economy even with the restraint of the non-proliferation policy of no reprocessing. It can also supply hot-denatured thorium U-233 fuel operating in a secured reprocessing fuel center

  12. Radioisotope application to studies of copper electrolytic refining

    International Nuclear Information System (INIS)

    Shul'ts, U.; Lange, Kh.; Gajdel', B.

    1976-01-01

    Silver and selenium behaviour was studied using sup(110m)Ag and 75 Se radioisotopes in the copper electrolysis process. sup(110m)Ag and 75 Se distribution in the electrorefining products was also studied. It was found that Ag/Se mass ratio affected greatly the silver content in the copper cathode. It was found that the tracer technique made it possible to determine 0,1gSe/tCu and 1gAg/t Cu simultaneously and accurately with small material and time expenses. Using sup(110m)Ag radioisotope, the reduction in electrolyte silver content dependent on time may be determined quickly and accurately

  13. Rhenium radioisotopes for therapeutic radiopharmaceutical development

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Pinkert, J.; Kropp, J.; Lin, W.Y.; Wang, S.Y.

    2001-01-01

    Rhenium-186 and rhenium-188 represent two important radioisotopes which are of interest for a variety of therapeutic applications in oncology, nuclear medicine and interventional cardiology. Rhenium-186 is directly produced in a nuclear reactor and the 90 hour half-life allows distribution to distant sites. The relatively low specific activity of rhenium-186 produced in most reactors, however, permits use of phosphonates, but limits use for labelled peptides and antibodies. Rhenium-188 has a much shorter 16.9 hour half-life which makes distribution from direct reactor production difficult. However, rhenium-188 can be obtained carrier-free from a tungsten-188/rhenium-188 generator, which has a long useful shelf-life of several months which is cost-effective, especially for developing regions. In this paper we discuss the issues associated with the production of rhenium-186- and rhenium-188 and the development and use of various radiopharmaceuticals and devices labelled with these radioisotopes for bone pain palliation, endoradiotherapy of tumours by selective catheterization and tumour therapy using radiolabelled peptides and antibodies, radionuclide synovectomy and the new field of vascular radiation therapy. (author)

  14. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Gh; Marcuta, M [SC ICPE Electrostatica SA, Bucharest (Romania); Jipa, S [' Valahia' University, Targoviste (Romania)

    2001-07-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process.

  15. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    International Nuclear Information System (INIS)

    Marin, Gh.; Marcuta, M.; Jipa, S.

    2001-01-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process

  16. Intergrated approach to quality control procedures of radioisotopes and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohani Mohamad

    1986-01-01

    Various aspects of the quality control procedures for radioisotopes and radiopharmaceuticals have been discussed. The paper high lighted those procedures that are important in ensuring the efficacy of the product. It also gives a general idea of the various procedures that are actually carried out by the Quality Control Section. (A.J.)

  17. Optimization of periodical interrogation of transducers of radioisotope measuring systems

    International Nuclear Information System (INIS)

    Ivashchenko, A.S.; Kaznakov, V.P.; Korolev, V.M.

    1978-01-01

    Certain methods are examined of optimizing periodic interrogation of sensors connected in a definite sequence to device for data processing in a system for controlling production processes. It is shown that in designing multiinput radioisotope measurement systems with a centralized data processing, the choice of the method of organizing periodic interrogation should be made with account for the conditions existing in each specific case

  18. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production

    Science.gov (United States)

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability. PMID:26733889

  19. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production

    Directory of Open Access Journals (Sweden)

    Jean-Benoit eMORIN

    2015-12-01

    Full Text Available Recent literature supports the importance of horizontal ground reaction force (GRF production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG activity of the vastus lateralis, rectus femoris, biceps femoris and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024 between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability.

  20. Current Outlook for 99mTc Distribution Based on Electron Accelerator Production

    International Nuclear Information System (INIS)

    Benjamin L. Nelson; W. David Bence; John R. Snyder

    2007-01-01

    In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global 1999 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35 cents/mCi, the unit cost of 99mTc throughput only increased from 12.8 cents/mCi to 15.0 cents/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S