WorldWideScience

Sample records for accelerator mass spectrometer

  1. Initial measurements with the SUERC accelerator mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart E-mail: toodeep@suerc.gla.ac.uk; Xu, Sheng; Schnabel, Christoph; Dougans, Andrew; Tait, Andrew; Kitchen, Richard; Klody, George; Loger, Roger; Pollock, Tom; Schroeder, James; Sundquist, Mark

    2004-08-01

    {sup 10}Be, {sup 14}C, {sup 36}Cl and {sup 129}I test measurements have been made with a new Pelletron-based accelerator mass spectrometer operating at up to 5.2 MV. All ion detection was with a versatile gas ionization detector. Low-background radiocarbon measurements with 2% scatter of identical samples was performed with both spectrometer ion sources. {sup 10}Be/Be backgrounds of 3 x 10{sup -15} were achieved using a gas cell adjoining the detector for {sup 10}B suppression. High sample-throughput Cl AMS with {sup 36}Cl/Cl backgrounds of 4 x 10{sup -15} was accomplished.

  2. The AMS [Accelerator Mass Spectrometer] program at LLNL

    International Nuclear Information System (INIS)

    Livermore will have an operational Accelerator Mass Spectrometer (AMS) by mid-1989 as part of its new Multi-user Tandem Laboratory. The spectrometer was designed primarily for applications in archaeology and the geosciences and was co-funded by the University of California Regents. Radiological control for personnel protection, ion sources and injection systems, the tandem and all beam handling hardware are operated with a distributed processor computer control system. The Tandem is the former University of Washington injector FN which has been upgraded with Dowlish tubes, pelletron charging and SF6 gas. Design goals for the AMS system, computer aided operation, automated measurement capability, initial results and some of our intended applications will be presented. 5 refs., 2 figs

  3. Installation of a tandem-type accelerator mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, Toshihiko; Togawa, Orihiko; Mizutani, Yoshihiko [Japan Atomic Energy Research Inst., Mutsu, Aomori (Japan). Mutsu Establishment; Kabuto, Shoji [Mutsu Marine Laboratory, Japan Marine Science Foundation, Mutsu, Aomori (Japan); Yamamoto, Tadatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    Tandem-type accelerator mass spectrometer (hereinafter referred to as Tandetron) was installed at the Ominato Facility of Mutsu Establishment, JAERI in April, 1997. The objective of its installation is to investigate the mechanism of the mixing and circulation of seawater in the ocean, by collecting seawater samples around Japan and analyzing the horizontal and vertical distributions of {sup 14}C contained in the samples. The Tandetron consists of two lines to measure isotopic ratios of carbon and those of heavier iodine. The adjustment for the carbon line was finished and the measurements of seawater samples were started. The iodine line, on the other hand, is on the final step of its adjustment and performance tests are being carried out with a TOF (Time of Flight) detector. The iodine line will be used to analyze {sup 129}I released from a spent nuclear fuel reprocessing plant and other nuclear facilities. In this report, we summarize the status of installation of the carbon and iodine lines for the Tandetron. The report describes the situations of their adjustments until now, the outline of the Tandetron, tests of measurement performance, evaluation and inspection of shielding performance, problems and their solutions, and so on. (author)

  4. The distributed control system of Shanghai mini-cyclotron accelerator mass spectrometer (SMCAMS)

    International Nuclear Information System (INIS)

    It is mainly introduced the composition, structure, hardware and software designing, function, and the method of communication between the host computer and the ADAM modules of the distributed control system on Shanghai Mini-cyclotron Accelerator Mass Spectrometer (SMCAMS). Some detail problems such as controlling the devices staying on high voltage by ADAM-4541 (RS-485 to Fiber Optic Convertor) and optical fiber are also introduced

  5. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Science.gov (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  6. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Science.gov (United States)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  7. Mass Spectrometer Studies of Ion Sources for One Shot AcceleratorTube

    Energy Technology Data Exchange (ETDEWEB)

    Brumbaugh, R.; Pon, W.; Seaman, W.; Wiegand, C.

    1951-12-12

    A simple mass spectrometer using 60 degree focusing was set up to study the (illegible) of the ions produced by various types of sources. A schematic diagram of the apparatus is shown in Fig. 1, which is to a large extent self-explanatory. The isolation transformer was simply a piece of RG (illegible) cable about three feet long and was used in order to operate the source at high accelerating voltage allowing the collector to be at essentially ground potential. The collimating slits were 0.05 (illegible) wide and were space 4 (illegible-cm?) apart. The coarse slit immediately preceding the collector cup was 0.3 (illegible) wide. The electrometer was the integrating type which indicated the potential due to the charge collected on known capacitance. The vacuum tube voltmeter indicated the potential of the 0.5 (illegible) capacitor due to the total charge reaching the slit system. It thus served as a monitor of the source output for each firing. The neon lamp was a protection for the condenser against breakdown discharges of the tube.

  8. Cyclotrons as mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  9. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  10. Magnetron mass spectrometer

    International Nuclear Information System (INIS)

    A magnetron mass-spectrometer characterized by increased sensitivity at low power is described. The mass-spectrometer contains ion source cylindrical analyzer located on its axis, ion collector and magnetic system. For decreasing consumed power the ion source is fixed at the end of the analyzer and it represents two coaXial cylinders located between plane electrodes, in one of which a ring slot takes place and the other one is connected with positive terminal of discharge voltage source. The magnetic system represents ring-form magnets fixed by similar poles to each other and separated by washers of magnetic-soft material, the washers being placed in the plane of the ion source. The analyzed ions in the described mass-spectrometer are obtained mainly at the expense of resonance recharge that increases accuracy of measurements due to decrease of fragment peak intensity

  11. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  12. Implementation of a mass spectrometer operating in the external beam of a proton accelerator. Application to the study of short-lived isotopes produced by uranium fission

    International Nuclear Information System (INIS)

    Implementation and use of a mass spectrometer operating directly in the external beam of a proton accelerator has proven to be a very fruitful way to study short-lived nuclides in both areas covered: measuring production cross sections and nuclear spectroscopy. The results obtained in this work are only a first step and can be developed in different directions in which the study was discussed and an extension to elements other than alkali may be considered. (author)

  13. High-resolving mass spectrographs and spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wollnik, Hermann, E-mail: hwollnik@gmail.com [New Mexico State University, Department of Chemistry & Biochemistry (United States)

    2015-11-15

    Discussed are different types of high resolving mass spectrographs and spectrometers. In detail outlined are (1) magnetic and electric sector field mass spectrographs, which are the oldest systems, (2) Penning Trap mass spectrographs and spectrometers, which have achieved very high mass-resolving powers, but are technically demanding (3) time-of-flight mass spectrographs using high energy ions passing through accelerator rings, which have also achieved very high mass-resolving powers and are equally technically demanding, (4) linear time-of-flight mass spectrographs, which have become the most versatile mass analyzers for low energy ions, while the even higher performing multi-pass systems have only started to be used, (5) orbitraps, which also have achieved remarkably high mass-resolving powers for low energy ions.

  14. Imaging mass spectrometer with mass tags

    Science.gov (United States)

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  15. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  16. New schemes of static mass spectrometers

    International Nuclear Information System (INIS)

    Different possibilities to increase the 'quality', or Q-quantity, of static mass spectrometers by expanding the ion beam before it enters the magnetic field are analyzed. The design of mass spectrometers using a cone-shaped achromatic prism is discussed. Different variants of achromatic mass spectrometers using electrostatic prisms and sector magnetic fields are also considered.

  17. Expansion of a shock plasma in the accelerating field of a parallel-plate capacitor in a time-of-flight mass spectrometer

    Science.gov (United States)

    Semkin, N. D.; Pomel'nikov, R. A.; Telegin, A. M.

    2014-05-01

    We have solved the problem of expansion of a multicomponent shock plasma (initiated by an impact of a fast microprojectile against a solid target) to vacuum in the electric field of a parallel-plate capacitor. The results of calculations can be used in the development of a dust impact mass spectrometer for studying the elemental composition of micrometeorites.

  18. Accelerator Mass Spectrometry (AMS) 1977-1987

    Science.gov (United States)

    Gove, H. E.; Purser, K. H.; Litherland, A. E.

    2010-04-01

    The eleventh Accelerator Mass Spectrometry (AMS 11) Conference took place in September 2008, the Thirtieth Anniversary of the first Conference. That occurred in 1978 after discoveries with nuclear physics accelerators in 1977. Since the first Conference there have now been ten further conferences on the development and applications of what has become known as AMS. This is the accepted acronym for the use of accelerators, together with nuclear and atomic physics techniques, to enhance the performance of mass spectrometers for the detection and measurement of rare long-lived radioactive elements such as radiocarbon. This paper gives an outline of the events that led to the first conference together with a brief account of the first four conferences before the introduction of the second generation of accelerator mass spectrometers at AMS 5.

  19. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory

    International Nuclear Information System (INIS)

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, δ notation. (Author)

  20. Low Power Mass Spectrometer employing TOF Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A low power Mass Spectrometer employing multiple time of flight circuits for parallel processing is possible with a new innovation in design of the Time of flight...

  1. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  2. Evaluation of Small Mass Spectrometer Systems

    Science.gov (United States)

    Arkin, C. Richard; Griffin, Timothy P.; Ottens, Andrew K.; Diaz, Jorge A.; Follistein, Duke W.; Adams, Fredrick W.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    Various mass analyzer systems were evaluated. Several systems show promise, including the Stanford Research Systems RGA-100, Inficon XPR-2, the University of Florida's Ion Trap, and the Compact Double Focus Mass Spectrometer. Areas that need improvement are the response time, recovery time, system volume, and system weight. Future work will investigate techniques to improve systems and will evaluate engineering challenges.

  3. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  4. Laser resonance ionization mass spectrometer

    International Nuclear Information System (INIS)

    The setup is elaborated for the trace detection of transuranium elements by the three-step laser resonance ionization combined with the time-of-flight mass spectrometry. The setup efficiency for detection of plutonium was measured to be about 0.5 centre dot 10-8 ion/atom, and its selectivity relative to atoms of another elements has the order of 1013 atom/atom

  5. Machined electrostatic sector for mass spectrometer

    Science.gov (United States)

    Sinha, Mahadeva P. (Inventor)

    2001-01-01

    An electrostatic sector device for a mass spectrometer is formed from a single piece of machinable ceramic. The machined ceramic is coated with a nickel coating, and a notch is etched in the nickel coating to form two separated portions. The sector can be covered by a cover formed from a separate piece of machined ceramic.

  6. Small system for tritium accelerator mass spectrometry

    Science.gov (United States)

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  7. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  8. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  9. Mass spectrometer for the analyses of gases

    International Nuclear Information System (INIS)

    A 6-in-radius, 600 magnetic-sector mass spectrometer (designated as the MS-200) has been constructed for the quantitative and qualitative analyses of fixed gases and volatile organics in the concentration range from 1 ppM (by volume) to 100%. A partial pressure of 1 x 10-6 torr in the inlet expansion volume is required to achieve a useful signal at an electron-multiplier gain of 10,000

  10. Progress with the PENTATRAP mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, Hendrik; Crespo Lopez-Urrutia, Jose; Doerr, Andreas; Eliseev, Sergey; Goncharov, Mikhail; Repp, Julia; Rischka, Alexander; Roux, Christian; Sturm, Sven; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); ExtreMe Matter Institute EMMI, Helmholtz Gemeinschaft, 64291 Darmstadt (Germany); Novikov, Yuri [PNPI, Gatchina, 188300 St. Petersburg (Russian Federation)

    2014-07-01

    The five-trap mass spectrometer PENTATRAP has been constructed and is currently being characterized at the Max-Planck-Institut fuer Kernphysik, Heidelberg. It aims for high-precision mass ratio measurements with a relative mass uncertainty of a few 10{sup -12}. Long-lived and stable, highly charged nuclides with masses up to uranium will be addressed to perform e.g. stringent tests of quantum electrodynamics and neutrino oriented mass measurements. The main part of the experiment is a stack of five cylindrical cryogenic Penning traps. An ultra-stable voltage source is required to supply the Penning trap electrodes with appropriate and stable potentials. Therefore, an elaborated source was developed and built at MPIK. Recently, first ions have been successfully trapped. Details about the progress of the installation, especially the status of the voltage source and first ion signals are presented in the talk.

  11. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  12. Recent exploits of the ISOLTRAP mass spectrometer

    CERN Document Server

    Kreim, S; Naimi, S; Blaum, K; Breitenfeldt, M; Rossel, R E; Fink, D; Stanja, J; Atanasov, D; Borgmann, Ch; Cocolios, T E; Zuber, K; Wolf, R N; George, S; Neidherr, D; Nicol, T; Rosenbusch, M; Lunney, D; Boehm, Ch; Manea, V; Herlert, A; Koester, U; Beck, D; Wienholtz, F; Kellerbauer, A; Ramirez, E Minaya; Schweikhard, L

    2013-01-01

    The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis. (C) 2013 Elsevier B.V. All rights reserved.

  13. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  14. Symposium on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base

  15. MEMS mass spectrometers: the next wave of miniaturization

    Science.gov (United States)

    Syms, Richard R. A.; Wright, Steven

    2016-02-01

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented.

  16. MEMS mass spectrometers: the next wave of miniaturization

    International Nuclear Information System (INIS)

    This paper reviews mass spectrometers based on micro-electro-mechanical systems (MEMS) technology. The MEMS approach to integration is first briefly described, and the difficulties of miniaturizing mass spectrometers are outlined. MEMS components for ionization and mass filtering are then reviewed, together with additional components for ion detection, vacuum pressure measurement and pumping. Mass spectrometer systems containing MEMS sub-components are then described, applications for miniaturized and portable systems are discussed, and challenges and opportunities are presented. (topical review)

  17. Passive neutron dosemeter-spectrometer for high-energy accelerators

    International Nuclear Information System (INIS)

    A passive neutron dosemeter-spectrometer (PNDS) with fission fragments converters is described. The results obtained show that it is a convenient and reliable instrument for neutron dose equivalent measurement in the calibration performing and response investigations of personnel dosemeters in mixed radiation fields behind accelerator shielding. Because of the possibility of neutron spectrum estimation in a wide energy range PNDS using is promissing in the neutron radiation fields research and also as an accidental neutron dosemeter. 23 refs.; 10 figs.; 4 tabs

  18. Application of a mass spectrometer as a capnograph

    Science.gov (United States)

    Elokhin, V. A.; Ershov, T. D.; Levshankov, A. I.; Nikolaev, V. I.; Elizarov, A. Yu.

    2010-12-01

    The feasibility of using a mass spectrometer for monitoring the carbon dioxide and inhalational anesthetic concentrations in the breathing circuit of an apparatus for inhalational anesthesia are demonstrated. Mass-spectrometric data for the CO2 and inhalational anesthetic concentrations are compared with related optical data. The advantages of the mass spectrometer as a capnograph over the optical spectrometer are indicated. The variation of the inhalational anesthetic content in expired air is shown to depend on the muscle relaxation efficiency.

  19. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  20. Estimation of the Beam Width in Magnetic Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    O.N. Peregudov

    2010-01-01

    Full Text Available A method for estimation of the beam width in magnetic sector mass spectrometers is proposed. This method consists in the restoration of the initial ion density distribution function in a beam cross-section before the receiving collector slit and can be used for the qualitative estimation of the mass spectrometer ion-optical scheme.

  1. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    International Nuclear Information System (INIS)

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  2. Mass spectrometer experiments for the European space probe Giotto

    Science.gov (United States)

    Neumann, G.

    The Particulate Impact Analyzer (PIA) and Neutral Mass Spectrometer (NMS) experiments to be carried on board the Giotto cometary probe are presented. The NMS is designed to determine the chemical composition of gases and ions in the coma of Halley's Comet based on the ue of two spectrometers: an electrostatic parallel-plate analyzer, and a similar analyzer coupled with a magnetic analyzer with double-focusing geometry. The sensor structure consists of a monolithic multi-rib milled body with integral fixation points, with provisions for electromagnetic and thermal isolation, and dust protection. The PIA is intended for the measurement of the physical and chemical characteristics of cometary dust particles. It is based on an instrument comprising an entrance baffle and shutter unit, a target unit at which the dust is ionized, a light flash detector marking the flash of ionization, an acceleration grid sending the ions into the time-of-flight unit, and a multiplier unit for recording the time of flight spectrum. A microprocessor-based electronics system housed in a separate case next to the sensor performs tasks of power supply, signal processing, data processing and flow control.

  3. Neuroscience and Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  4. Analysis of ion dynamics and peak shapes for delayed extraction time-of-flight mass spectrometers

    Science.gov (United States)

    Collado, V. M.; Ponciano, C. R.; Fernandez-Lima, F. A.; da Silveira, E. F.

    2004-06-01

    The dependence of time-of-flight (TOF) peak shapes on time-dependent extraction electric fields is studied theoretically. Conditions for time focusing are analyzed both analytically and numerically for double-acceleration-region TOF spectrometers. Expressions for the spectrometer mass resolution and for the critical delay time are deduced. Effects due to a leakage field in the first acceleration region are shown to be relevant under certain conditions. TOF peak shape simulations for the delayed extraction method are performed for emitted ions presenting a Maxwellian initial energy distribution. Calculations are compared to experimental results of Cs+ emission due to CsI laser ablation.

  5. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti+ and Cr+) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  6. Miniature Mass Spectrometer for Earth Science Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — By drastically reducing the physical footprint of a mass spectrometer to the size of a beverage can, Ceramitron could set a new performance/price standard in the...

  7. Quadrupole Time-of-Flight Mass Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The system generates superior quality mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data from both atmospheric pressure ionization (API) and...

  8. Mass spectrometers based on a cone-shaped acromatic prism

    International Nuclear Information System (INIS)

    We have elaborated a mass spectrometer without lenses consisting of one conic achromatic prism. It has a specific mass dispersion which is equal to 67.5 mm/m per 1% change of mass. (By specific dispersion we mean linear dispersion related to the main path.) The pass of charged particles with different emittance is investigated with the help of integrating precise equations for tracks of charged particles in natural curvilinear coordinates. We have calculated the resolving power and aberration of a mass spectrometer for different beams of particles. It is evident that the mass spectrometer is particularly effective in use when we deal with rather wide ion beams having an insignificant angular divergence in the mean plane. (orig.)

  9. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis

    NARCIS (Netherlands)

    Sysoev, A; Adamov, A; Vildanoja, J; Ketoja, RA; Kostiainen, R; Kotiaho, T

    2004-01-01

    An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility sp

  10. Double focusing mass spectrometers of second order

    International Nuclear Information System (INIS)

    The resolution of the on-line mass spectrograph is normally several hundred and this is sufficient to separate nuclei having different mass number A. If the nuclei to be analyzed have the same A but different charge number Z, they can not be separated by this amount of resolution. However, the complete separation of nuclei (both A and Z) can be possible if the resolution is raised by about hundred times, that is, up to several ten thousands. The resolving power of about 30,000 would be sufficient to resolve all nuclei far from the valley of beta-stability. Besides, the direct mass measurement of short lived nuclei would be possible with such a high resolution mass spectrograph. The determination of masses of nuclei far from beta-stability is also a very interesting and important problem. For this purpose, a mass spectrograph which can collect many ions and still has a high resolution is necessary. In order to satisfy such conditions, it is essentially necessary to realize good focusing. Therefore, the possibility of correcting for second order image aberrations of a double focusing instrument is investigated and several suitable designs are found by computer calculation

  11. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes

    DEFF Research Database (Denmark)

    Schuhmann, K.; Almeida, R.; Baumert, M.;

    2012-01-01

    polarity, and therefore it is beneficial to analyze lipid mixtures in both positive and negative modes. Hybrid LTQ Orbitrap mass spectrometers are widely applied in topdown lipidomics; however, rapid polarity switching was previously unfeasible because of the severe and immediate degradation of mass......Topdown shotgun lipidomics relies on direct infusion of total lipid extracts into a high-resolution tandem mass spectrometer and implies that individual lipids are recognized by their accurately determined m/z. Lipid ionization efficiency and detection specificity strongly depend on the acquisition...... accuracy. Here, we report on a method to rapidly acquire high-resolution spectra in both polarity modes with sub-ppm mass accuracy and demonstrate that it not only simplifies and accelerates shotgun lipidomics analyses but also improves the lipidome coverage because more lipid classes and more individual...

  12. Recent results from the Penning trap mass spectrometer ISOLTRAP

    CERN Document Server

    Blaum, Klaus; Beck, D; Bollen, Georg; Delahaye, P; Guenaut, C; Herfurth, F; Kellerbauer, Alban G; Kluge, H J; Lunney, M D; Rodríguez, D; Schwarz, S; Schweikhard, L; Weber, C; Yazidjian, C

    2004-01-01

    In the last few years a number of new scientific highlights have been obtained by ISOLTRAP, the tandem Penning trap mass spectrometer for on-line mass measurements of short-lived radionuclides. The precise determination of nuclear binding energies far from stability includes nuclei that are produced at rates of 100 ions/s and with half-lives below 100 ms. The mass resolving power reaches 10$^{7}$ and the uncertainty of the resulting mass values has been pushed down to $1 \\times 10^{-8}$. In this article recent ISOLTRAP mass measurements are summarized and the current status of ISOLTRAP is presented.

  13. Enrichment of rare isotopes using a quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    A small quadrupole mass spectrometer was operated in the static mode to enrich selected rare gas isotopes. Memory effects in the apparatus were observed and attributed to the re-emission of atoms implanted by the electron-impact ion source. Studies of the pumping mechanism led to a practical means for reducing the rate of noble gas pumping. (author)

  14. Micro mass spectrometer on a chip.

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Dolores Y.; Blain, Matthew Glenn; Fleming, James Grant

    2005-11-01

    The design, simulation, fabrication, packaging, electrical characterization and testing analysis of a microfabricated a cylindrical ion trap ({mu}CIT) array is presented. Several versions of microfabricated cylindrical ion traps were designed and fabricated. The final design of the individual trap array element consisted of two end cap electrodes, one ring electrode, and a detector plate, fabricated in seven tungsten metal layers by molding tungsten around silicon dioxide (SiO{sub 2}) features. Each layer of tungsten is then polished back in damascene fashion. The SiO{sub 2} was removed using a standard release processes to realize a free-hung structure. Five different sized traps were fabricated with inner radii of 1, 1.5, 2, 5 and 10 {micro}m and heights ranging from 3-24 {micro}m. Simulations examined the effects of ion and neutral temperature, the pressure and nature of cooling gas, ion mass, trap voltage and frequency, space-charge, fabrication defects, and other parameters on the ability of micrometer-sized traps to store ions. The electrical characteristics of the ion trap arrays were determined. The capacitance was 2-500 pF for the various sized traps and arrays. The resistance was in the order of 1-2 {Omega}. The inductance of the arrays was calculated to be 10-1500 pH, depending on the trap and array sizes. The ion traps' field emission characteristics were assessed. It was determined that the traps could be operated up to 125 V while maintaining field emission currents below 1 x 10{sup -15} A. The testing focused on using the 5-{micro}m CITs to trap toluene (C{sub 7}H{sub 8}). Ion ejection from the traps was induced by termination of the RF voltage applied to the ring electrode and current measured on the collector electrode suggested trapping of ions in 1-10% of the traps. Improvements to the to the design of the traps were defined to minimize voltage drop to the substrate, thereby increasing trapping voltage applied to the ring electrode, and to

  15. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer.

    Science.gov (United States)

    Wright, Steven; Malcolm, Andrew; Wright, Christopher; O'Prey, Shane; Crichton, Edward; Dash, Neil; Moseley, Richard W; Zaczek, Wojciech; Edwards, Peter; Fussell, Richard J; Syms, Richard R A

    2015-03-17

    Miniaturized mass spectrometers are becoming increasingly capable, enabling the development of many novel field and laboratory applications. However, to date, triple quadrupole tandem mass spectrometers, the workhorses of quantitative analysis, have not been significantly reduced in size. Here, the basis of a field-deployable triple quadrupole is described. The key development is a highly miniaturized ion optical assembly in which a sequence of six microengineered components is employed to generate ions at atmospheric pressure, provide a vacuum interface, effect ion guiding, and perform fragmentation and mass analysis. Despite its small dimensions, the collision cell efficiently fragments precursor ions and yields product ion spectra that are very similar to those recorded using conventional instruments. The miniature triple quadrupole has been used to detect thiabendazole, a common pesticide, in apples at a level of 10 ng/g. PMID:25708099

  16. Laser Proton acceleration from mass limited silicon foils

    Science.gov (United States)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  17. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    Science.gov (United States)

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  18. Preliminary results from LADEE's Neutral Mass Spectrometer (NMS)

    Science.gov (United States)

    Benna, Mehdi; Mahaffy, Paul; Hodges, Richard

    2014-05-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is a high sensitivity quadrupole mass spectrometer designed to measure the composition and variability of the tenuous lunar atmosphere. The instrument has been observing the lunar exosphere since 10/17/2013, initially from a near circular 250 km altitude orbit and since 11/11/2013 from an elliptical orbit that reaches to 30-60 km altitude near the sunrise terminator. During its first four months in orbit, the NMS instrument successfully detected exospheric helium, argon and neon and mapped their spatial and temporal variability. Furthermore, the NMS instrument was able to establish new upper limits for many other exospheric species either sputtered or thermally evolved from the lunar surface. This talk will summarize these preliminary results from the NMS measurements.

  19. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  20. Determining gaseous composition of fluid inclusions with quadrupole mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    朱和平; 王莉娟

    2002-01-01

    Quadrupole mass spectrometer (QMS) is an instrument for effectively determining gaseous composition of fluid inclusion. The gaseous component is extracted from inclusions with thermal decrepitation method and then determined with the sensitive QMS instrument. The method is characterized by high sensitivity and high accuracy with the relative standard deviation (RSD, n = 6) of less than 3%. It has been successfully used for analyzing fluid inclusions. The analytical re-sults meet the requirement of geological study.

  1. Commissioning of the AEI MS702 mass spectrometer

    International Nuclear Information System (INIS)

    The setting-up and commissioning of the AEI MS702 mass spectrometer is described. Its individual components and their use are discussed, as well as the sample preparation, analysis, and reduction of data. A comprehensive list is given of instrumental breakdowns, and the application of the technique to several matrices is outlined. Improvements and modifications to the technique, including the use of a minicomputer, are suggested

  2. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory; Espectrometro de masas Varian MAT-250. Laboratorio de isotopos estables

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, V.; Tavera D, M.L. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, {delta} notation. (Author)

  3. Method development of gas analysis with mass spectrometer

    International Nuclear Information System (INIS)

    Dissolved gas content in deep saline groundwater is an important factor, which has to be known and taken into account when planning the deep repository for the spent nuclear fuel. Posiva has investigated dissolved gases in deep groundwaters since the 1990's. In 2002 Posiva started a project that focused on developing the mass spectrometric method for measuring the dissolved gas content in deep saline groundwater. The main idea of the project was to analyse the dissolved gas content of both the gas phase and the water phase by a mass spectrometer. The development of the method started in 2003 (in the autumn). One of the aims was to create a parallel method for gas analysis with the gas chromatographic method. The starting point of this project was to test if gases could be analysed directly from water using a membrane inlet in the mass spectrometer. The main objective was to develop mass spectrometric methods for gas analysis with direct and membrane inlets. An analysis method for dissolved gases was developed for direct gas inlet mass spectrometry. The accuracy of the analysis method is tested with parallel real PAVE samples analysed in the laboratory of Insinoeoeritoimisto Paavo Ristola Oy. The results were good. The development of the membrane inlet mass spectrometric method still continues. Two different membrane materials (silicone and teflon) were tested. Some basic tests (linearity,repeatability and detection limits for different gases) will be done by this method. (orig.)

  4. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36Cl and 129I. Cosmogenic radio isotope 36Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  5. Ion mobility analyzer - quadrupole mass spectrometer system design

    Energy Technology Data Exchange (ETDEWEB)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Bocos-Bintintan, V, E-mail: cornel.cuna@itim-cj.r [Babes-Bolyai University, Faculty of Environmental Sciences, 3 Fantanele, 400294 Cluj Napoca (Romania)

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  6. Ion trap with integrated time-of-flight mass spectrometer

    CERN Document Server

    Schneider, Christian; Yu, Peter; Hudson, Eric R

    2015-01-01

    Recently, we reported an ion trap experiment with an integrated time-of-flight mass spectrometer (TOFMS) [Phys. Rev. Appl. 2, 034013 (2014)] focussing on the improvement of mass resolution and detection limit due to sample preparation at millikelvin temperatures. The system utilizes a radio-frequency (RF) ion trap with asymmetric drive for storing and manipulating laser-cooled ions and features radial extraction into a compact $275$ mm long TOF drift tube. The mass resolution exceeds $m / \\Delta m = 500$, which provides isotopic resolution over the whole mass range of interest in current experiments and constitutes an improvement of almost an order of magnitude over other implementations. In this manuscript, we discuss the experimental implementation in detail, which is comprised of newly developed drive electronics for generating the required voltages to operate RF trap and TOFMS, as well as control electronics for regulating RF outputs and synchronizing the TOFMS extraction.

  7. The high-precision Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas; Bekker, Hendrik; Blaum, Klaus; Goncharov, Mikhail; Hoekel-Schmoeger, Christian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Extreme Matter Institute EMMI, Helmholtz Gemeinschaft, Darmstadt (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey; Repp, Julia; Roux, Christian; Sturm, Sven [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Novikov, Yuri [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ulmer, Stefan [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama (Japan)

    2013-07-01

    Currently, the high-precision Penning trap mass spectrometer PENTATRAP is being built up at the Max-Planck-Institut fuer Kernphysik, Heidelberg, Germany. It aims at mass-ratio measurements of medium- to high-Z elements with uncertainties of a few parts in 10{sup 12}. Mass-ratios will be determined by the measurement of cyclotron frequency-ratios in the strong magnetic field of the trap. The experiment will host five identical cylindrical Penning traps and will allow for simultaneous cyclotron frequency determinations in all measurement traps. It will feature access to highly charged ions provided by EBITs. Measurements at PENTATRAP will contribute to various fields of physics. For example, input parameters for neutrino mass determinations will be provided with measurements of Q-values of relevant β-transitions. The current status of the experiment will be outlined in the talk.

  8. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  9. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser Plasma Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P.

    2008-05-01

    Laser-plasma-based accelerators can provide electrons over a broad energy range and/or with large momentum spread. The electron beam energy distribution can be controlled via accurate control of laser and plasma properties, and beams with energies ranging from'0.5 to 1000 MeV have been observed. Measuring these energy distributions in a single shot requires the use of a diagnostic with large momentum acceptance and, ideally, sufficient resolution to accurately measure energy spread in the case of narrow energy spread. Such a broadband single-shot electron magnetic spectrometer for GeV-class laser-plasma-based accelerators has been developed at Lawrence Berkeley National Laboratory. A detailed description of the hardware and the design concept is presented, as well as a performance evaluation of the spectrometer. The spectrometer covered electron beam energies raging from 0.01 to 1.1 GeV in a single shot, and enabled the simultaneous measurement of the laser properties at the exit of the accelerator through the use of a sufficiently large pole gap. Based on measured field maps and 3rd-order transport analysis, a few percent-level resolution and determination of the absolute energy were achieved over the entire energy range. Laser-plasma-based accelerator experiments demonstrated the capability of the spectrometer as a diagnostic and its suitability for such a broadband electron source.

  10. The five-Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Repp, Julia; Boehm, Christine; Goncharov, Mikhail; Roux, Christian; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Doerr, Andreas [Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Novikov, Yuri [St. Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Sturm, Sven [Johannes Gutenberg-Universitaet, Institut fuer Physik, 55099 Mainz (Germany); Ulmer, Stefan [Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Johannes Gutenberg-Universitaet, Institut fuer Physik, 55099 Mainz (Germany)

    2011-07-01

    Currently the new mass spectrometer PENTATRAP is being developed at the Max-Planck-Institut fuer Kernphysik in Heidelberg. Ions of interest are stable and long-lived highly charged nuclides up to uranium. PENTATRAP aims for an accuracy of few parts in 10{sup 12} for mass ratios of mass doublets and a relative uncertainty of {approx} 10{sup -11} for absolute mass ratios. The measured mass values will contribute among others to Q-value determinations of relevant {beta}-processes for neutrino physics, stringent tests of quantum electrodynamics in the regime of extreme fields, and a test of special relativity. The five-trap setup allows to choose an optimal measurement scheme for each ionic species of interest. Main features of PENTATRAP are an access to highly charged ions, highly sensitive cryogenic non-destructive detection systems, a fast exchange between different ions and a continuous monitoring of magnetic field fluctuations. This talk presents the experimental setup and the present status of the PENTATRAP experiment.

  11. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    CERN Document Server

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  12. The advantages of orthogonal acceleration in ICP time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    The OptiMass 8000 incorporates an orthogonal acceleration time-of-flight mass spectrometer. A general schematic of the instrument is given. The continuous ion beam is chopped by an orthogonal accelerator. A push out pulse supply is coupled to the accelerator for providing repetitive push-out voltages at a frequency of 30 kHz. The ion packets that are sliced out of the beam then travel within the field free space towards the SMARTGATE ion blanker. Orthogonal accelerator parameters are set to enable temporal-spatial focusing at the SMARTGATE ion blanker, so that iso-mass ion packets are resolved in time. Any ion packets of unwanted specie are ejected from the direction of travel by supplying pulsed voltages onto the deflection plates of the SMARTGATE. The ions to be measured are let through SMARTGATE and travel further down the field free space, to enter the ion reflectron. The ion reflectron increases the resolution of the mass spectrometer by means of temporal-energy focussing. After reflection, the ions travel within the field free space towards the discrete-dynode detector. In comparison to other acceleration geometries used in elemental time-of-flight mass spectrometry the OptiMass 8000 orthogonal acceleration geometry ultimately leads to superior resolution. As the energy spread is about 3 orders of magnitude lower in the time-of-flight direction for an oaTOFMS in comparison to an on-axis system, aberration acquired in the initial stages of acceleration are much lower. As a result the orthogonal acceleration scheme provides superior resolution at the first spatial focus point and the detector. The orthogonal acceleration time-of-flight analyzer of the OptiMass 8000 is able to provide resolution of at least 1800 at mass 238. (author)

  13. Multi-stage magnetic induction mass accelerator

    International Nuclear Information System (INIS)

    The magnetic induction method of mass acceleration readily lends itself to multi-staging. In the limit of many stages, such an accelerator approaches a distributed energy source system where only closing switches are necessary. We describe the design and performance of a three-stage accelerator, each driven by a separate capacitor bank. This system was modeled using a previously reported computer code. In order to do this the code was modified to calculate projectile acceleration through a succession of driver coils: Thermal conductivity and surface melting models were also added. The former is necessary due to the extended transit time through many stages. The latter is needed in anticipation of the more extreme ohmic heating when the capacitor banks are replaced by explosive-driven, magnetic flux compression generators. The performance goal of this system is to at least double the kinetic energy of a 0.3 kgm copperclad, steel projectile injected at a velocity of 300 m/sec from an explosive-driven gun. We then plan to test the system at the thermal and mechanical limit by using explosive-driven, magnetic flux compression generators as energy sources. We envision a six-stage system driven by three generators

  14. Electrical recording system for laser mass spectrometer with double focusing

    International Nuclear Information System (INIS)

    Paper describes a system to record ion currents for EMAL-2 laser mass spectrometer with double focusing. The recording system consists of an original geometry multichannel collector, a controlled multiplexer and a data entry circuit. A receiving collector represents a set of metal plates separated by insulator plates of similar thickness. The collector has 384 channels at 38.4 cm length and 0.5 mm thickness of one collector unit. Every collector is put under condenser load. To measure discharge at accumulating systems and to enter data to a computer one applies a multichannel analog-to-digital converter (ADC) and a controlled multiplexer. One elaborated a special software enabling on-line displaying of signals from ADC

  15. Chemical ionization mass spectrometer (CIMS for ambient measurements of ammonia

    Directory of Open Access Journals (Sweden)

    D. R. Benson

    2010-03-01

    Full Text Available This study describes a chemical ionization mass spectrometer (CIMS for fast response, in-situ measurements for gas phase ammonia. Protonated ethanol ions were used as the ion-molecule reaction reagent. The CIMS sensitivity was estimated to be between 4–25 Hz/pptv with 30% uncertainty. The instrument background was below 1 ppbv and at lowest was 300 pptv. The uncertainty associated with the instrumental background was less than 30 pptv under the optimized experimental conditions. The time response was less than 30 s, and the detection limit was approximately 60 pptv. This CIMS was used to measure the ambient NH3 in Kent, Ohio, for several weeks throughout three seasons. The measured ammonia mixing ratios were usually at the sub-ppbv level, and higher during the spring (200±120 pptv than in the winter (60±75 pptv and fall (150±80 pptv.

  16. Mass measurements near the $r$-process path using the Canadian Penning Trap mass spectrometer

    OpenAIRE

    Van Schelt, J.; Lascar, D.; G. Savard; Clark, J. A.; Caldwell, S.; Chaudhuri, A.; Fallis, J.; Greene, J. P.; Levand, 1 A. F.; Li, G.; Sharma, K. S.; Sternberg, M. G.; Sun, T.; Zabransky, B. J.

    2012-01-01

    The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of $\\delta m/m= 10^{-7}$ using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a $^{252}$Cf spontaneous fission source in a helium gas catcher, approach the predicted path of the astrophysical $r$ process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and ...

  17. New directions for accelerator mass spectrometry technology

    International Nuclear Information System (INIS)

    The influence on accelerator mass spectrometry (AMS) of developments in other fields is reviewed and three examples are discussed in detail. The appropriate use of electric and magnetic analysers with small AMS systems (129I, for nuclear fuel monitoring and ocean circulation tracer studies. The inclusion of gas chromatography technology extends the capability of AMS to applications which require large numbers of samples with rapid turn-around. The adaptation of chemical reaction cell technology to negative ion beams adds new isobar selection capability to AMS and will permit analyses of isotopes such as 36Cl on small AMS systems. (author)

  18. Fast mass programming controller for a supersonic gas chromatography mass spectrometer

    International Nuclear Information System (INIS)

    In a gas chromatograph mass spectrometer employing a quadrupole mass filter, molecules are ionized and transferred to a mass analyzer, where their mass to charge ratios (m/z) are measured. After the ionization step, the ions pass through a series of ion lenses that focus and guide them into the mass analyzer. The voltages on these lenses can be optimized for each specific m/z value (as the rest of the system is also optimized) to increase the number of ions reaching the mass analyzer. In certain cases, this dynamic mass-dependent optimization of the lenses can increase the signal by a factor of 2 or more. To implement this dynamic optimization, a digital circuit was developed, based on a digital signal controller and high-voltage (HV) amplifiers, that is able to optimize eight independent HV channels ranging between ±150 V at a rate of 100 µs

  19. Miniature Ion Optics Towards a Micro Mass Spectrometer

    Science.gov (United States)

    Chaudhary, Ashish

    This PhD dissertation reports the development of miniature ion optics components of a mass spectrometer (MS) with the ultimate goal to lay the foundation for a compact low-power micromachined MS (microMS) for broad-range chemical analysis. Miniaturization of two specific components a) RF ion traps and b) an ion funnel have been investigated and miniature low-power versions of these components have been developed and demonstrated successfully in lab experiments. Power savings, simpler electronics and packaging schemes required to operate the micro-scale RF cylindrical ion traps have been the key motivation driving this research. Microfabricated cylindrical ion traps (microCITs) and arrays in silicon, silicon-on-insulator and stainless steel substrates have been demonstrated and average power of as low as 55 mW for a low mass range (28 to 136 amu) and mass spectra with better than a unit-mass-resolution have been recorded. For the ion funnel miniaturization effort, simple assembly, small form factor and ease of integration have been emphasized. A simplification of the conventional 3D ion funnel design, called the planar ion funnel, has been developed in a single plate and has been tested to demonstrate ion funneling at medium vacuum levels (1E-5 Torr) using DC voltages and power less than 0.5 W. Miniaturization of these components also enables use of other novel ion optics components, packaging and integration, which will allow a new class of microMS architectures amenable for radical miniaturization.

  20. Determining gaseous composition of fluid inclusions with quadrupole mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHU; Heping

    2002-01-01

    [1]Joseph, R. G., Stephen, E. K., Factors affecting gas analysis of inclusion fluid by quadrupole mass spectrometry, Geo-chimica et Acta, 1995, 59(19): 3977-3986.[2]Masakatsu, S., Takayuki, S., Naoto, T., Analysis of fluid inclusion gases from geothermal systems, using a rapid-scanning quadrupole mass spectrometer, Eur. J. Mineral., 1992, 4: 895-906.[3]Van den Kerkhof, A. M., Isochoric phase diagrams in the systems CO2-CH4 and CO2-N2: Application to fluid inclusions, Geochimica et Cosmochimica Acta, 1990, 54: 621-629.[4]Colin, B., Michael, P. S., Mass spectrometric determination of gases in individual fluid inclusions in natural minerals, Anal. Chem., 1986, 58: 1330-1333.[5]David, I. N., Fredrick, J. S., Analysis of volatiles in fluid inclusions by mass spectrometry, Chemical Geology, 1987, 61: 1-10.[6]Yoichi, M., Ryo, K., Takayuki, S. et al., Gas composition of fluid inclusion from the Mori Geothermal Reservoir, South-western Hokkaido, Japan, Resource Geology, 1997, 47(5): 283-291.[7]Lu Huanzhang, Guo Dijiang, Progress and trends of researches on fluid inclusions, Geological Review, 2000, 46(4): 385-392.[8]Xia Xinyu, Wang Xianbin, Chen Jiangfeng, Geningjie, composition of fluid inclusions and CO2 carbon isotope of ultra-high pressure metamorphic rocks in Shuanghe area, Dabieshan Mountain, Science in China (in Chinese), Ser. D, 1999, 29(4): 314-320.

  1. Detection electronics at the Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas; Boehm, Christine; Repp, Julia; Roux, Christian; Blaum, Klaus [Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey; Goncharov, Mikhail [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Novikov, Yuri [St. Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Sturm, Sven [Johannes Gutenberg-Universitaet, Institut fuer Physik, 55099 Mainz (Germany); Ulmer, Stefan [Physikalisches Institut, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Johannes Gutenberg-Universitaet, Institut fuer Physik, 55099 Mainz (Germany)

    2011-07-01

    The ''five Penning trap'' mass spectrometer PENTATRAP is currently under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg. Measurements of masses of single stable and long lived highly charged ions with a relative uncertainty on the order of 10{sup -11} are aimed at. The experiment is based on the non-destructive detection of image currents the ion induces in the trap electrodes. Essential part of each detection circuit is an inductance, configured either as a copper wire coil or as a superconducting toroid, in both cases mounted in a copper housing. Since signals are small ({proportional_to}fA), low-noise detection electronics is needed to obtain a sufficient signal-to-noise ratio. Therefore the first amplification stage is a cryogenic GaAs amplifier. Currently, we evaluate the possible use of a SQUID based amplifier. Furthermore, an axial frequency down converter providing a high level of sideband rejection has been set up. Further details on the detection electronics mentioned above will be presented in the poster.

  2. Detection electronics at the Penning-trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas; Repp, Julia; Roux, Christian; Blaum, Klaus [Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Boehm, Christine [Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, 69120 Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); ExtreMe Matter Institute EMMI, Helmholtz Gemeinschaft, 64291 Darmstadt (Germany); Eliseev, Sergey; Goncharov, Mikhail [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Sturm, Sven [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Institut fuer Physik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Ulmer, Stefan [Atomic Physics Laboratory, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-07-01

    The five Penning-trap mass spectrometer PENTATRAP is currently being built at the Max-Planck-Institut fuer Kernphysik in Heidelberg. Measurements of masses of single stable and long lived highly charged ions with a relative uncertainty on the order of 10{sup -11} are aimed for. The experiment is based on the non-destructive detection of image currents the ion induces in the trap electrodes. Essential part of each detection circuit is a cryogenic high-Q inductance, configured either as a copper wire coil or as a superconducting toroid, in both cases mounted in a copper housing. The following amplification stages consist of cryogenic GaAs FET amplifiers, which provide high input impedances and have low input-related noise densities. With these cryogenic detection systems, the tiny image currents ({proportional_to}fA) induced by a single ion become detectable. The current status of the detection electronics as well as future perspectives are presented in the talk.

  3. Recent results from the Penning trap mass spectrometer JYFLTRAP

    International Nuclear Information System (INIS)

    Accurate mass determination employing Penning ion traps has gained increasing importance after the installation of several new on-line facilities at accelerator labs. These setups combine unique production possibilities for rare isotopes with elaborate ion-capture and manipulation techniques. Since the final commissioning of the JYFLTRAP setup at the IGISOL facility in Jyvaeskylae, the masses of more than 200 short-lived nuclides have been measured. Their knowledge applies to studies on nuclear structure, the modeling of nucleosynthesis processes, tests of the conserved vector current (CVC) hypothesis and the unitarity of the CKM matrix, and furthermore, can help to assist in ongoing searches of neutrinoless double-beta decays. This presentation focuses on recent highlights studied at JYFLTRAP

  4. Recent results from the Penning trap mass spectrometer JYFLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christine; Elomaa, Viki-Veikko; Eronen, Tommi; Hakala, Jani; Jokinen, Ari; Kankainen, Anu; Rahaman, Saidur; Rissanen, Juho; Aeystoe, Juha [Department of Physics, (YFL), University of Jyvaeskylae (Finland)

    2009-07-01

    Accurate mass determination employing Penning ion traps has gained increasing importance after the installation of several new on-line facilities at accelerator labs. These setups combine unique production possibilities for rare isotopes with elaborate ion-capture and manipulation techniques. Since the final commissioning of the JYFLTRAP setup at the IGISOL facility in Jyvaeskylae, the masses of more than 200 short-lived nuclides have been measured. Their knowledge applies to studies on nuclear structure, the modeling of nucleosynthesis processes, tests of the conserved vector current (CVC) hypothesis and the unitarity of the CKM matrix, and furthermore, can help to assist in ongoing searches of neutrinoless double-beta decays. This presentation focuses on recent highlights studied at JYFLTRAP.

  5. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  6. High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer

    CERN Document Server

    Kellerbauer, A G; Beck, D; Blaum, K; Bollen, G; Guénaut, C; Herfurth, F; Herlert, A; Kluge, H J; Lunney, D; Schwarz, S; Schweikhard, L; Weber, C; Yazidjian, C

    2007-01-01

    The atomic masses of the neutron-deficient radioactive rubidium isotopes $^{74-77,79,80,83}$Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from $1.6 \\times 10^{-8}$ to $5.6 \\times 10^{-8}$ were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide $^{74}$Rb with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these measurements for a check of the conserved-vector-current hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa matrix is discussed.

  7. Mass Spectrometer Sounding of the Turbopause Region on Commercial Vehicles

    Science.gov (United States)

    Thurairajah, B.; Bailey, S. M.; Syrstad, E. A.; Fish, C. S.; Siskind, D. E.; Russell, J. M.

    2013-12-01

    The turbopause region near 100 km remains one of the most poorly explored yet crucial regions of the upper atmosphere. In the vicinity of this altitude, the atmosphere reaches its lowest temperature and changes from being well mixed to being in diffusive equilibrium. Dynamical energy in the form of tides as well as gravity and planetary waves propagate from the lower atmosphere up to the ionosphere and thermosphere. Some energy and reactive chemical species are transported down across the turbopause to lower altitudes where the impact is significant. There is a significant dearth of composition observations near the turbopause. Few measurement techniques work well at this altitude, and it is too low for satellite orbits. Amazingly, major species with relatively large abundances such as O2, O, and CO2 are all poorly understood at these attitudes. While there are several experiments that measure temperature, the uncertainties in the temperature measurements are large because the techniques that are used rely on knowledge of CO2 or sometimes of O2. The lack of composition information thus hinders those observations that do occur near the turbopause and mesopause and leaves us with an overall poor understanding of this altitude region. We are soon to enter a new era in space exploration. Routine visits to the 100km region by commercial vehicles are on the verge of becoming a reality. The relevant organizations have expressed a willingness and even enthusiasm for including scientific instrumentation with their tourism and related commercial goals. We propose a major step forward in understanding the turbopause region by developing a mass spectrometer capable of being manifested on these commercial vehicles. Such an implantation could ultimately result in daily sounding of the turbopause region and greatly expand the database of measurements there. Our suggested instrument is a cryogenic time-of-flight mass Spectrometer. This technique has heritage, and our

  8. Reproducibility of cardioventilatory measurements using a respiratory mass spectrometer.

    Science.gov (United States)

    Narang, Indra; Rosenthal, Mark; Bush, Andrew

    2007-08-01

    The aim of this study was to assess the within subject reproducibility of cardioventilatory measurements and the maximum permitted 'normal' variability over time at rest and exercise using the respiratory mass spectrometer (RMS). Ten subjects underwent an incremental exercise test on three separate occasions utilising rebreathing (RB) and helium dilution mixed expired gas analysis (HME) functions of the RMS. Measurements included heart rate (HR), oxygen consumption (V(O2)), carbon dioxide excretion (V(VO2)), effective pulmonary blood flow (Q(eff)), stroke volume (SV), arteriovenous oxygen content difference (AVO), transfer factor (Dl(CO)), functional residual capacity (FRC), minute ventilation (VE), tidal volume (VT) and respiratory quotient (RQ). The coefficients of variation for each variable for the 10 subjects were calculated. At rest, the 90th centile variability for measured cardiopulmonary variables (RB only) was <35%. During exercise, the 90th centile for variability for measured cardiopulmonary variables for HME and RB were < or =20 and <40%, respectively. These measurements in healthy adults should inform sample size in research studies. PMID:17188945

  9. A Chemical Ionization Mass Spectrometer for ambient measurements of Ammonia

    Directory of Open Access Journals (Sweden)

    D. R. Benson

    2010-08-01

    Full Text Available This study presents a chemical ionization mass spectrometer (CIMS for fast response, in-situ measurements of gas phase ammonia (NH3. The NH3 background level detected with the CIMS ranged between 0.3–1 ppbv, with an uncertainty of 30 pptv under optimized conditions. The instrument sensitivity varied from 4–25 Hz/pptv for >1 MHz of reagent ion signals (protonated ethanol ions, with a 30% uncertainty estimated based on variability in calibration signals. The CIMS detection limit for NH3 was ~60 pptv at a 1 min integration time (3 sigma. The CIMS time response was <30 s. This new NH3-CIMS has been used for ambient measurements in Kent, Ohio, for several weeks throughout three seasons. The measured NH3 mixing ratios were usually at the sub-ppbv level and higher in spring (200 ± 120 pptv than in winter (60 ± 75 pptv and fall (150 ± 80 pptv. High emissions of SO2 from power plants in this region, and thus possible high acidity of aerosol particles, may explain these low NH3 mixing ratios in general.

  10. SCAPS, a two-dimensional ion detector for mass spectrometer

    Science.gov (United States)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40

  11. Radiocarbon dating with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) has two great advantages over conventional dating: 1) much smaller samples can be handled and 2) counting time is significantly shorter. Three examples are given for Holocene-age material from east-central Ellesmere Island. The results demonstrate the potential use of this technique as a powerful research tool in studies of Quaternary chronology. Individual fragments of marine shells as small as 0.1 g have been dated successfully at the IsoTrace Laboratory, University of Toronto. In the case of an aquatic moss from a lake sediment core, an increment 0.5 cm thick could be used instead of a 5 cm-thick slice, thus allowing a much more precise estimate of the onset of organic sedimentation

  12. Development of a Real-Time Ion Spectrometer with a Scintillator for Laser-Driven Ion Acceleration Experiments

    Institute of Scientific and Technical Information of China (English)

    XU Miao-Hua; David Neely; Paul McKenna; WANG Zhao-Hua; WEI Zhi-Yi; YAN Xue-Qing; LI Yu-Tong; LI Ying-Jun; ZHANG Jie; LI Hong-Wei; LIU Bi-Cheng; LIU Feng; SU Lu-Ning; DU Fei; ZHANG Lu; ZHENG Yi; MA Jing-Long

    2011-01-01

    A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed. The spectrometer is calibrated by protons from an electrostatic accelerator. The feasibility and reliability of the diagnostics ore demonstrated in laser-driven ion acceleration experiments performed on the XL-H laser facility. The proton spectrum extrapolated from the scintillator data is in excellent agreement with the CR39 spectrum in terms of beam temperature and the cutoff energy. This real-time spectrometer allows an online measurement of the ion spectra in single shot, which enables efficient and statistical studies and applications in high-repetition-rate laser acceleration experiments.%@@ A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feasi-bility and reliability of the diagnostics are demonstrated in laser-driven ion acceleration experiments performed on the XL-Ⅱ laser facility.The proton spectrum extrapolated from the scintillator data is in excellent agreement with the CR39 spectrum in terms of beam temperature and the cutoff energy.This real-time spectrometer allows an online measurement of the ion spectra in single shot,which enables efficient and statistical studies and applications in high-repetition-rate laser acceleration experiments.

  13. A collinear tandem time-of-flight mass spectrometer for infrared photodissociation spectroscopy of mass-selected ions

    Institute of Scientific and Technical Information of China (English)

    WANG GuanJun; CHI ChaoXian; XING XiaoPeng; DING ChuanFan; ZHOU MingFei

    2014-01-01

    An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.

  14. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Murrell, J. [Defence Science and Detection Department (Dstl), Wiltshire, UK; Despeyroux, D. [Defence Science and Detection Department (Dstl), Wiltshire, UK; Lammert, Stephen {Steve} A [ORNL; Stephenson Jr, James {Jim} L [ORNL; Goeringer, Doug [ORNL

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  15. A Micro Cylindrical Ion Trap (5-CIT) Micro Mass Spectrometer Instrument System (5MSIS) for NASA Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project aims to develop a miniature packaging platform for the integration of MEMS mass spectrometer components to form the basis of a Micro Mass Spectrometer...

  16. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  17. Plasma Desorption Mass Spectrometry using TANDEM accelerator in National Industrial Research Inst. of Nagoya

    Energy Technology Data Exchange (ETDEWEB)

    Mizota, Takeshi; Nakao, Setsuo; Niwa, Hiroaki; Saito, Kazuo [Particle Beam Sceince Laboratory, Multi-Function Material Science Department, National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    2001-02-01

    Plasma Desorption Mass Spectrometry (PDMS) analysis was studied using TANDEM accelerator. The heavy ions of MeV range emit the secondary ions of atoms, molecules, polymers and clusters from the irradiated samples without destruction. The analysis system of PDMS designed and set-up using a mass spectrometer of Time of Flight and the TANDEM accelerator. The system performance was tested for C-60 fullerene on the surface of the samples using 11.2 MeV {sup 28}Si beams produced by the TANDEM accelerator of 1.7MV. The result shows that the hydrogen and hydrocarbons can be analyzed in the range of 1amu unit. The resolution (M/{delta}M) of the Mass Spectrometry system is confirmed to be about 1000 from the separation of the 720 and 721amu peaks, which is attributed to the C-60 fullerene including {sup 13}C atoms. (H. Katsuta)

  18. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Science.gov (United States)

    Tonks, James P.; Galloway, Ewan C.; King, Martin O.; Kerherve, Gwilherm; Watts, John F.

    2016-08-01

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  19. Fundamental studies of MALDI with an orthogonal TOF mass spectrometer

    Science.gov (United States)

    Qiao, Hui

    The interaction between the matrix and analyte molecules are studied with a high resolution MALDI imaging technique in an orthogonal-injection time of flight (TOF) mass spectrometer. The analyte incorporation and distribution patterns have been clearly demonstrated. Purified protein analytes were found to be homogeneously incorporated in large single crystals of DHB and sinapinic acid matrices, with no evidence for preferred crystal faces. Segregation of some species was observed and appeared to correlate with analyte hydrophobicity, and to a lesser extent analyte mass or mobility. Similar segregation phenomena were observed with confocal laser scanning microscopy of the same analytes labeled with fluorescent dyes in 2,5-DHB single crystals. The above investigations may shed some light on optimizing sample preparation with different matrices. The influence of incident laser parameters on sensitivity in MALDI has been investigated using orthogonal-injection TOF instruments. A qualitative comparison was first made between the beam profiles obtained with a N 2 laser and a Nd:YAG laser using 2-m long optical fibers. The N 2 laser gives better sensitivity, consistent with a more uniform fluence distribution and therefore better coverage of the N2 laser profile. Most of the difference disappears when a 30-m long fiber is used or when the fibers are twisted during irradiation to smooth out the fluence distribution. In more systematic measurements, the total integrated ion yield from a single spot (a measure of sensitivity) was found to increase rapidly with fluence to a maximum, and then saturate or decrease slightly. Thus, the optimum sensitivity is achieved at high fluence. For a fluence near threshold, the integrated yield has a steep (cubic) dependence on the spot size, but the yield saturates at higher fluence for smaller spots. The area dependence is much weaker (close to linear) for fluence values above saturation, with the result that the highest integrated yields

  20. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral

    International Nuclear Information System (INIS)

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li11, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be11 was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be14, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  1. Search for doubly-charged negative ions via accelerator mass spectrometry

    International Nuclear Information System (INIS)

    The Argonne FN tandem accelerator in conjunction with an Enge split-pole magnetic spectrograph has been used as a highly sensitive mass spectrometer to search for doubly charged negative ions of 11B, 12C and 16O. No evidence for the formation of these ions in an inverted sputter source and the subsequent acceleration in the tandem has been found. The following limits for the ratio of doubly-charged to singly-charged ions were measured: X--/X- -15, 11B; -15, 12C; -14, 16O. A relatively abundant formation of the short lived, metastable He- ion in the sputter source has been observed

  2. Characterization of a time-of-flight mass spectrometer and its applications in the study of solid surfaces; Charakterisierung eines Flugzeitmassenspektrometers und seine Anwendungen in der Festkoerperoberflaechenuntersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P.

    2006-12-21

    The object and the purpose of the present work was to develop, to assemble and to start running a new TOF (time of flight) mass spectrometer for imaging SNMS analytic which is optimized for the analysis of highly molecular secondary ions. The most important purpose was the characterization of the TOF mass spectrometer. The obtained mass spectra of indium, tantalum and silver clusters reflect the excellent properties of the TOF mass spectrometer for the detection of large clusters with good detection efficiency up to masses of 16000 amu. The possibility of the deflection of selected saturated atom and cluster peaks serves for further improvement of the detection efficiency for large molecules. The accessible mass resolution was determined to be of the order of m/{delta}m=1000 in the high mass region. Numerous measurements were carried out to characterize the useful yield of this spectrometer. For a best possible adaptation of the TOF mass spectrometer for the detection of highly molecular particles, a device for post-acceleration of the detected particles by up to 10 keV were inserted directly before the MCP detector. The detection efficiency of positive secondary ions was determined for different post-acceleration voltages for the example of sputtered indium cluster ions. In addition, a new method was developed for the quantitative determination of the spectral ionization probability {alpha}{sup +}({nu}) of sputtered particles as a function of the emission velocity. The next application of the TOF mass spectrometer is the analysis of complicated organic molecules in solid state surfaces. During measurements of the photo-ionization behaviour of neutral tryptophan molecules, it was found out that a stable molecular ion signal is generated in the SNMS spectrum with h{nu}=7.9 eV can only be observed by the use of a continuous ion beam or very long (ms range) ion pulses. (orig.)

  3. Development and Deployment of Retrofit PolarisQ Ion Trap Mass Spectrometer for Isotope Ratio Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Cyril V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitten, William B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts with UF6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.

  4. Indigenous realisation of measurement electronics for ion signal from mass spectrometer

    International Nuclear Information System (INIS)

    A PC based data measurement electronics has been realised for a Faraday cup detector signal. The Faraday cup detector serves as a complementary to a Daly detector of the thermal ionisation mass spectrometer. This report discusses about its indigenous development

  5. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  6. Continuation of Mass determinations through a Double Focusing Mass Spectrometer on Line with ISOLDE

    CERN Multimedia

    2002-01-01

    In a previous experiment (1976-77) we have demonstrated the interest and feasibility of atomic mass determinations from the direct measurements of mass ratios on Rb, Cs and Fr isotopes. Masses of long series of isotopes on both side of stability were determined with an accuracy of a few tens to 300 keV (for th exotic). Interesting nuclear structure features could be observed as for example the indication for an onset of deformation, at N~=~60 for Z~=~37, which stimulated further experiments and theoretical calculations. The many mass values, until then unknown, we obtained in our experiments, gave in addition the possibility to make detailed tests of the nuclear mass predictions. Due to improvements on our mass spectrometer (better transmission and higher resolving power) and increased ISOLDE production yields, some new and valuable measurements can be performed. We plan: \\item a) to continue the measurements towards even heavier isotopes and explore the deformation regions which start at |9|7Rb and |1|4|6Cs;...

  7. A statistical investigation of the mass discrepancy-acceleration relation

    OpenAIRE

    Desmond, Harry

    2016-01-01

    We use the mass discrepancy-acceleration relation (the correlation between the ratio of dark-to-visible mass and acceleration in galaxies; MDAR) to test the galaxy-halo connection. We analyse the MDAR using a set of 14 statistics which quantify its four most important features: its shape, its scatter, the presence of a "characteristic acceleration scale," and the correlation of its residuals with other galaxy properties. We construct an empirical framework for the galaxy-halo connection in $\\...

  8. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  9. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.;

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...... response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m∕Δm > 2500. The system design...

  10. First direct mass measurements on nobelium and lawrencium with the Penning trap mass spectrometer SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Dworschak, Michael Gerhard

    2009-12-08

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt was set up for high-precision mass measurements of heavy radionuclides produced in fusion evaporation reactions and separated from the primary beam by the velocity filter SHIP. It consists of a gas stopping cell for the deceleration of the high energetic reaction products, an RFQ cooler and buncher for cooling and accumulation of the ions, and a double Penning trap system to perform mass measurements. The mass is determined by measuring the cyclotron frequency of the ion of interest in a strong homogeneous magnetic field and comparing it to the frequency of a well-known reference ion. With this method relative uncertainties in the order of 10{sup -8} can be achieved. Recently, mass measurements of the three nobelium isotopes {sup 252-254}No (Z=102) and the lawrencium isotope {sup 255}Lr (Z=103) were performed successfully. These were the first direct mass measurements of transuranium elements ever per- formed. The production rate of the atoms of interest was about one per second or less. The results of the measurements on nobelium confirm the previous mass values which were deduced from Q{sub {alpha}} values. In the case of {sup 255}Lr the mass excess value, which was previously only estimated from systematic trends, was for the first time directly measured. These results mark the first step in the exploration of the region of transuranium elements which is planned at SHIPTRAP. The main objective is to fix the endpoints of {alpha} decay chains which are originating from superheavy elements close to the predicted island of stability. (orig.)

  11. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim; Waite, J. Hunter [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Westlake, Joseph [The Johns Hopkins University Applied Physics Laboratory LLC, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Ostrom, Nathaniel; Ostrom, Peggy H. [Department of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, Michigan 48824 (United States)

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is around 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.

  12. Compact Ion and Neutral Mass Spectrometer with Ion Drifts, Temperatures and Neutral Winds

    Science.gov (United States)

    Paschalidis, Nikolaos

    2016-07-01

    In situ measurements of atmospheric neutral and ion composition and density, temperatures, ion drifts and neutral winds, are in high demand to study the dynamics of the ionosphere-theremosphere-mesosphere system. This paper presents a compact Ion and Neutral Mass Spectrometer (INMS) with impended ion drifts and temperature, and neutral winds capability for in situ measurements of ions and neutrals H, He, N, O, N2, O2. The mass resolution M/dM is approximately 10 at an incoming energy range of 0-20eV. The goal is to resolve ion drifts in the range 0 to 3000m/sec with a resolution better than 50m/sec, and neutral winds in the range of 0 to 1000m/sec with similar resolution. For temperatures the goal is to cover a dynamic range of 0 to 5000K. The INMS is based on front end optics for ions and neutrals, pre acceleration, gated time of flight, top hat ESA, MCP detectors and compact electronics. The instrument is redundant for ions and neutrals with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The ion front end includes RPA for temperature scanning and neutral front end includes angular modulation and thermionic ionization and ion blocking grids. The electronics include fast electric gating, TOF electronics, TOF binning and C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded from 0.1 to 10 sec with 1sec nominal setting. The instrument has significant onboard storage capability and a data compression scheme. The mass spectrometer version of the instrument has been flown on the Exocube mission. The instrument occupied 1.5U volume, weighed only 560 g and required nominal power of 1.6W The ExoCube mission was designed to acquire global knowledge of in-situ densities of [H], [He], [O] and H+, He+, O+ in the upper ionosphere and lower exosphere in combination with incoherent scatter radar and

  13. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H3+ formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  14. Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: drochman@bnl.gov; Haight, R.C. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: haight@lanl.gov; O' Donnell, J.M. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: odonnell@lanl.gov; Michaudon, A. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: michaudon@lanl.gov; Wender, S.A. [LANSCE-3, Los Alamos National Laboratory, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: wender@lanl.gov; Vieira, D.J. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: vieira@lanl.gov; Bond, E.M. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: bond@lanl.gov; Bredeweg, T.A. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: toddb@lanl.gov; Kronenberg, A. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: kronenberga@mail.phy.ornl.gov; Wilhelmy, J.B. [C-INC, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545 (United States)]. E-mail: j_wilhelmy@lanl.gov; Ethvignot, T. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Cha-hat tel (France)]. E-mail: thierry.ethvignot@cea.fr; Granier, T. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Cha-hat tel (France)]. E-mail: thierry.granier@cea.fr; Petit, M. [Commissariat a l' Energie Atomique, DIF/DPTA/Service de Physique Nucleaire, BP 12, 91680 Bruyeres-le-Chatel (France)]. E-mail: michael.petit@cea.fr; Danon, Y. [Rensselaer Polytechnic Institute, Troy, New York, NY 12180 (United States)]. E-mail: danony@rpi.edu

    2005-09-11

    A description is given of a lead slowing-down spectrometer (LSDS) installed at the 800-MeV proton accelerator of the Los Alamos Neutron Science Center (LANSCE). The LSDS is designed to study neutron-induced fission on actinides that can only be obtained or used in small quantities. The characteristics of this LSDS (energy-time relation, energy resolution, neutron flux) are presented through simulations with MCNPX and measurements with several different methods. Results on neutron-induced fission of {sup 235}U and {sup 239}Pu with tens of micrograms and tens of nanograms, respectively, are presented. Finally, additional MCNPX calculations have been performed to simulate the measurement of the cross-section for U235m(n,f) using different target quantities and different initial isomer-to-ground state compositions.

  15. A computer controlled mass spectrometer system for investigating the decomposition of non-metallic materials under atmospheric conditions

    Science.gov (United States)

    Thompson, J. M.

    1985-01-01

    A PDP 11/23 quadrupole mass spectrometer system was coupled to a nondiscriminating gas inlet system permitting gases at atmospheric pressure to be admitted into a high vacuum chamber containing the ion source of the mass spectrometer without separation of the gaseous components. The resolution of related software problems has resulted in a convenient computer-mass spectrometer system capable of generating masses, relative intensities and related data on the gaseous products resulting from the atmospheric thermal decomposition of nonmetallic materials.

  16. High-throughput mass-directed parallel purification incorporating a multiplexed single quadrupole mass spectrometer.

    Science.gov (United States)

    Xu, Rongda; Wang, Tao; Isbell, John; Cai, Zhe; Sykes, Christopher; Brailsford, Andrew; Kassel, Daniel B

    2002-07-01

    We report on the development of a parallel HPLC/MS purification system incorporating an indexed (i.e., multiplexed) ion source. In the method described, each of the flow streams from a parallel array of HPLC columns is directed toward the multiplexed (MUX) ion source and sampled in a time-dependent, parallel manner. A visual basic application has been developed and monitors in real-time the extracted ion current from each sprayer channel. Mass-directed fraction collection is initiated into a parallel array of fraction collectors specific for each of the spray channels. In the first embodiment of this technique, we report on a four-column semipreparative parallel LC/MS system incorporating MUX detection. In this parallel LC/MS application (in which sample loads between 1 and 10 mg on-column are typically made), no cross talk was observed. Ion signals from each of the channels were found reproducible over 192 injections, with interchannel signal variations between 11 and 17%. The visual basic fraction collection application permits preset individual start collection and end collection thresholds for each channel, thereby compensating for the slight variation in signal between sprayers. By incorporating postfraction collector UV detection, we have been able to optimize the valve-triggering delay time with precut transfer tubing between the mass spectrometer and fraction collectors and achieve recoveries greater than 80%. Examples of the MUX-guided, mass-directed fraction purification of both standards and real library reaction mixtures are presented within.

  17. High-throughput mass-directed parallel purification incorporating a multiplexed single quadrupole mass spectrometer.

    Science.gov (United States)

    Xu, Rongda; Wang, Tao; Isbell, John; Cai, Zhe; Sykes, Christopher; Brailsford, Andrew; Kassel, Daniel B

    2002-07-01

    We report on the development of a parallel HPLC/MS purification system incorporating an indexed (i.e., multiplexed) ion source. In the method described, each of the flow streams from a parallel array of HPLC columns is directed toward the multiplexed (MUX) ion source and sampled in a time-dependent, parallel manner. A visual basic application has been developed and monitors in real-time the extracted ion current from each sprayer channel. Mass-directed fraction collection is initiated into a parallel array of fraction collectors specific for each of the spray channels. In the first embodiment of this technique, we report on a four-column semipreparative parallel LC/MS system incorporating MUX detection. In this parallel LC/MS application (in which sample loads between 1 and 10 mg on-column are typically made), no cross talk was observed. Ion signals from each of the channels were found reproducible over 192 injections, with interchannel signal variations between 11 and 17%. The visual basic fraction collection application permits preset individual start collection and end collection thresholds for each channel, thereby compensating for the slight variation in signal between sprayers. By incorporating postfraction collector UV detection, we have been able to optimize the valve-triggering delay time with precut transfer tubing between the mass spectrometer and fraction collectors and achieve recoveries greater than 80%. Examples of the MUX-guided, mass-directed fraction purification of both standards and real library reaction mixtures are presented within. PMID:12141664

  18. The development of accelerator mass spectroscopy system

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, Shiro; Machida, Atsushi; Iwata, Yasunao; Tsubusaki, Yoshihiro; Tanaka, Katsuhiko; Maeda, Toyokazu; Nakajima, Takao [Kyushu Univ., Fukuoka (Japan)

    2001-02-01

    Inverse PIXE method was applied to the differentiation of Chlorine 36 and Sulfur 36. The contaminated soil from the USSR nuclear test site was measured. Terminal potential of the tandem accelerator was controlled by GVM. A new AMS system, using time-of flight method is under development. The development of beam buncher and beam chopper for the system is briefly described. (A. Yamamoto)

  19. (r) Mass Resolution versus Chamber Resolution in ALICE Dimuon Forward Spectrometer

    Institute of Scientific and Technical Information of China (English)

    WU Tao

    2007-01-01

    The precisions and its sources of spatial resolutions of tracking chambers and mass resolutions of dimuon signals in ALICE Dimuon Forward Spectrometer are explored by tracking and reconstruction of AliRoot software. The dependences of (r) mass resolution on spatial resolution of tracking chambers are presented with and without background events through simulations.

  20. Studies on reducing the scale of a double focusing mass spectrometer

    International Nuclear Information System (INIS)

    Several groups have developed miniaturized sector mass spectrometers with the goal of remote sensing in confined spaces or portability. However, these achievements have been overshadowed by more successful development of man-portable quadrupole and ion trap mass spectrometers. Despite these accomplishments the development of a reduced-scale sector mass spectrometer remains attractive as a potentially low-cost, robust instrument requiring very simple electronics and low power. Previous studies on miniaturizing sector instruments include the use of a Mattauch-Herzog design for a portable mass spectrograph weighing less than 10 kg. Other work has included the use of a Nier-Johnson design in spacecraft-mountable gas chromatography mass spectrometers for the Viking spacecraft as well as miniature sector-based MS/MS instrument. Although theory for designing an optimized system with high resolution and mass accuracy is well understood, such specifications have not yet been achieved in a miniaturized instrument. To proceed further toward the development of a miniaturized sector mass spectrometer, experiments were conducted to understand and optimize a practical, yet nonideal instrument configuration. The sector mass spectrometer studied in this work is similar to the ones developed for the Viking project, but was further modified to be low cost, simple and robust. Characteristics of this instrument that highlight its simplicity include the use of a modified Varian leak detector ion source, source ion optics that use one extraction voltage, and an unshunted fixed nonhomogeneous magnetic sector. The effects of these design simplifications on ion trajectory were studied by manipulating the ion beam along with the magnetic sector position. This latter feature served as an aid to study ion focusing amidst fringing fields as well as nonhomogeneous forces and permitted empirical realignment of the instrument

  1. Mass resolution of accelerated ions in LNR cyclotrons

    International Nuclear Information System (INIS)

    The possibiliti of separating in cyclotron accelerated ions with different mass-to-charge ratios is considered. The calculations and experiment have demonstrated that mass resolution of accelerated ions for the U-400 cyclotron is approximately 3600; for U-200 cyclotron, approximately 1500. Ion beams which have not been separated in the cyclotron may be separated during beam extraction by means of the charge exchange in thin targets

  2. A GPU Accelerated Spring Mass System for Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper; Sørensen, Thomas Sangild

    2005-01-01

    There is a growing demand for surgical simulators to dofast and precise calculations of tissue deformation to simulateincreasingly complex morphology in real-time. Unfortunately, evenfast spring-mass based systems have slow convergence rates for largemodels. This paper presents a method to accele...... accelerate computation of aspring-mass system in order to simulate a complex organ such as theheart. This acceleration is achieved by taking advantage of moderngraphics processing units (GPU)....

  3. Performance of the High Resolution, Multi-collector Helix MC Plus Noble Gas Mass Spectrometer at the Australian National University

    Science.gov (United States)

    Zhang, Xiaodong; Honda, Masahiko; Hamilton, Doug

    2016-09-01

    Performance of the Helix MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is reported. Results for sensitivity, mass discrimination and their linearity against partial pressure of noble gases, and mass resolution of the mass spectrometer are presented, and the results are compared with those of conventional noble gas mass spectrometers. The application of the five detectors on the Helix MC Plus in measuring various noble gas isotopes in multi-collector modes and the integration of the software drivers of peripheral hardware devices into the controlling program Qtegra of the mass spectrometer are discussed. High mass resolution (>1800) and mass resolving power (>8000) make this mass spectrometer unique in noble gas cosmo-geochemistry. It provides the capability to measure isobaric interference-free noble gas isotopes in multi-collector mode, significantly improves the accuracy to determine isotopic ratios, and greatly increases the efficiency of data acquisition.

  4. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    Science.gov (United States)

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  5. A cheap and compact mass spectrometer for radioactive ions based on a Wien filter

    Science.gov (United States)

    Pierret, C.; Maunoury, L.; Pacquet, J. Y.; Saint-Laurent, M.-G.; Tuske, O.

    2008-10-01

    This paper presents simulations of a mass spectrometer composed of one or two Wien filters. The ion source used is MONO1000 ECRIS. This ion source can produce singly charged ions with high efficiency, especially for gaseous materials. After extraction, the ions are mass selected and can be injected either into a beam line towards an experiment area or in an N+ charge booster. Due to its compactness and simplicity the proposed spectrometer is well adapted for preparing and analyzing radioactive beams. The simulations are based on the SIMION 3D [www.simion.com/] software.

  6. A cheap and compact mass spectrometer for radioactive ions based on a Wien filter

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, C. [CIRIL, CEA/DSM CNRS/IN2P3, Avenue Henri Becquerel, B.P. 5133, F-14070 Caen cedex 05 (France)], E-mail: Pierret@ganil.fr; Maunoury, L. [CIRIL, CEA/DSM CNRS/IN2P3, Avenue Henri Becquerel, B.P. 5133, F-14070 Caen cedex 05 (France); Pacquet, J.Y.; Saint-Laurent, M.-G. [GANIL, CEA/DSM CNRS/IN2P3, Boulevard Henri Becquerel, B.P. 55027, F-14076 Caen cedex 05 (France); Tuske, O. [CEA/Saclay, DSM/DAPNIA, 91191 Gif/Yvette (France)

    2008-10-15

    This paper presents simulations of a mass spectrometer composed of one or two Wien filters. The ion source used is MONO1000 ECRIS. This ion source can produce singly charged ions with high efficiency, especially for gaseous materials. After extraction, the ions are mass selected and can be injected either into a beam line towards an experiment area or in an N{sup +} charge booster. Due to its compactness and simplicity the proposed spectrometer is well adapted for preparing and analyzing radioactive beams. The simulations are based on the SIMION 3D [ (http://www.simion.com/)] software.

  7. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  8. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  9. High Energy Collisions on Tandem Time-of-Flight Mass Spectrometers

    Science.gov (United States)

    Cotter, Robert J.

    2013-05-01

    Long before the introduction of matrix-assisted laser desorption/ionization (MALDI), electrospray ionization (ESI), Orbitraps, and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were, nonetheless, some clear advantages for sectors over their low collision energy counterparts. Time-of-flight (TOF) mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective, we recount our own journey to produce high performance TOFs and tandem TOFs, describing the basic theory, problems, and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages, and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging, and the characterization of microorganisms.

  10. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    Science.gov (United States)

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  11. Recipe Estimation Using Mass Spectrometer and Large-Scale Data

    Science.gov (United States)

    Mamun, Al; Nakamoto, Takamichi

    An odor recorder is an instrument capable of determining the qualitative and quantitative composition of the target smell (e.g. apple), so called odor recipe. A variety of smells can be generated by blending multiple odor components; an odor recorder can reproduce smells as well as record them so that the sensor array output pattern of the blended odor can match that of the target odor. Although the range of smell to be recorded has been so far limited, this work enhances that range using mass spectrometry without GC. We previously proposed the algorithm to select appropriate odor components among huge number of candidates. Here we applied this proposed algorithm experimentally for reproducing different eight fruit flavors using odor components selected from our laboratory database, composed of recorded mass patterns of 190 components. The blended and target smells were compared using sensory test (triangle test). Sensory test revealed that the smell blended according to the estimated recipe using our proposed method was almost the same as the target one. Moreover, even if the less contributed components in mass spectra are eliminated from the estimated recipe, the flavor remains almost similar to that of the target one.

  12. A Method for Estimating Mass-Transfer Coefficients in a Biofilter from Membrane Inlet Mass Spectrometer Data

    DEFF Research Database (Denmark)

    Nielsen, Anders Michael; Nielsen, Lars Peter; Feilberg, Anders;

    2009-01-01

    A membrane inlet mass spectrometer (MIMS) was used in combination with a developed computer model to study and improve management of a biofilter (BF) treating malodorous ventilation air from a meat rendering facility. The MIMS was used to determine percentage removal efficiencies (REs) of selected...

  13. Mass spectrometric analysis of the marine lipophilic biotoxins pectenotoxin-2 and okadaic acid by four different types of mass spectrometers

    NARCIS (Netherlands)

    Gerssen, A.; Mulder, P.P.J.; Rhijn, van J.A.; Boer, de J.

    2008-01-01

    The performances of four different mass spectrometers [triple-quadrupole (TQ), time-of-flight (ToF), quadrupole ToF (Q-ToF) and ion trap (IT)] for the detection of the marine lipophilic toxins pectenotoxin-2 (PTX2) and okadaic acid (OA) were investigated. The spectral data obtained with the differen

  14. Plutonium ion emission from carburized rhenium mass spectrometer filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, J.M.; Robertson, D.M.

    1985-01-01

    Physicochemical processes important to the application of thermal emission mass spectrometry were identified and clarified. Effects of filament carbon concentration and temperature on plutonium ion emissions from a carburized rhenium filament were determined. Filament carbon concentration profoundly affected the appearance and duration of an ion signal. A useful ion signal was produced only when the carbon saturation temperature of the filament was exceeded, at which point first-order kinetics were either achieved or closely approached. This paper explains observed ion emission behavior in terms of pausible carbothermic reduction reactions and carbon diffusion processes that direct the course of those reactions. 31 references, 5 figures.

  15. Ultrasensitive resonance ionization mass spectrometer for evaluating krypton contamination in xenon dark matter detectors

    International Nuclear Information System (INIS)

    An ultrasensitive resonance ionization mass spectrometer that can be applied to evaluate krypton (Kr) contamination in xenon (Xe) dark matter detectors has been developed for measuring Kr at the parts-per-trillion (ppt) or sub-ppt level in Xe. The gas sample is introduced without any condensation into a time-of-flight mass spectrometer through a pulsed supersonic valve. Using a nanosecond pulsed laser at 212.6 nm, 84Kr atoms in the sample are resonantly ionized along with other Kr isotopes. 84Kr ions are then mass separated and detected by the mass spectrometer in order to measure the Kr impurity concentration. With our current setup, approximately 0.4 ppt of Kr impurities contained in pure argon (Ar) gas are detectable with a measurement time of 1000 s. Although Kr detection sensitivity in Xe is expected to be approximately half of that in Ar, our spectrometer can evaluate Kr contamination in Xe to the sub-ppt level

  16. A Miniature Mass Spectrometer for High-Flux Cosmic Dust Analysis

    Science.gov (United States)

    Austin, D. E.; Manning, H. L. K.; Beauchamp, J. L.

    2007-03-01

    We designed a novel mass spectrometer for in situ characterization of micro-particulates in regions of high concentration, such as a comet fly-by, planetary ring, or impact-generated plume. This device is based on novel ion optics that allow high performa

  17. Potentiality evaluation of the MAT 250 UF mass spectrometer for general analysis

    International Nuclear Information System (INIS)

    This work presents a study on the potentiality of the MAT 250 UF mass spectrometer. It was formerly used only, for uranium isotopic analysis. It will be used, flow now on, also for the analysis of other gases such as deuterium, helium and hydrogen, as well. (A.C.A.S.)

  18. MEMS Fabrication of Micro Cylindrical Ion Trap Mass Spectrometer for CubeSats Application

    Science.gov (United States)

    Zheng, Y.

    2015-10-01

    Microelectromechanical Systems (MEMS) technology is used to fabricate arrays of micro Cylindrical Ion Traps (μCIT) which are integrated into a miniaturized mass spectrometer (MS). The micro μCITs are built from silicon wafers and requires high machining precision, smooth surface, and high dimensional uniformity across the array for optimum mass spectrometer performance. In order to build these 3D miniature structures several MEMS processing techniques were explored and a process was developed and tested. By using the developed MEMS process, the required μCIT 4 x 4 arrays were fabricated. This included a chip design variation in which mechanical locking pits and posts were machined in the Ring Electrode (RE) chip and End Plate (EP) chips respectively, for self-assembly. The size of the assembled μCIT is only 12 mm x 12 mm x 1.5 mm. It is a key component for the miniature mass spectrometer. The micro cylindrical ion trap mass spectrometer has the advantages of low-power operation, simpler electronics and less-stringent vacuum system requirements. The MEMS batch production capabilities will also greatly lower the cost. It is a promising candidate for CubeSat and nanoSats applications for exploration of chemical distributions in space.

  19. Accelerator-mass spectroscopy with fully stripped 36Cl

    International Nuclear Information System (INIS)

    The Garching MP tandem-post accelerator-achromator accelerator facility was extended in such way that by it a very backgroundless accelerator mass spectroscopy with fully stripped medium heavy ions was possible. As first applications microscopical amounts of 36Cl (Tsub(1/2)= 301 000 years) were detected. The detection limit lies at 36Cl/CL=4x10-15. In first measurements the method was applied to the age determination of palaeontological samples and to the study of cosmic-radiation induced reactions in the earth crust. (orig.)

  20. Performance results of a mobile high-resolution MR-TOF mass spectrometer for in-situ analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, Wayne; Lang, Johannes [Justus-Liebig-Universitaet Giessen (Germany); Ayet San Andres, Samuel [GSI, Darmstadt (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Yavor, Mikhail [RAS St. Petersburg (Russian Federation)

    2014-07-01

    A mobile multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed which provides a mass resolving power exceeding 250,000 and sub-ppm mass accuracy in a transportable format. Thus it allows resolving isobars and enables accurate determination of the composition and structure of biomolecules. Furthermore the device offers high mass resolving MS/MS capability via selective ion re-trapping and collisional-induced dissociation (CID). An atmospheric pressure interface (API) provides for routine measurements with various atmospheric ion sources. All supply electronics, DAQ and control system are mounted with the spectrometer into a single frame with a total volume of only 0.8 m{sup 3}. With the current system many applications like waste water monitoring at hot spots, mass-based classification of biomolecules and breath analysis are possible. In addition the mass spectrometer is readily scalable and can be adopted and simplified for even more specific use like in space science for instance. A characterization and first performance results are shown, and the implementation of MS/MS in combination with CID is discussed.

  1. Frequency-swept detector for ion cyclotron resonance mass spectrometers

    Science.gov (United States)

    Wronka, J.; Ridge, D. P.

    1982-04-01

    Design, construction, performance, and use of a frequency-swept bridge detector for ion cyclotron resonance mass spectrometry are described. Special features include characterization and simple automatic correction of phase shift to allow broadband detection. The result is a detection system that may be used either at constant field or constant frequency. Drift-mode operation is simplified in that it may be satisfactorily used without the various signal modulation schemes used in previous detectors. In the trapped mode the detector may be pulsed to control the timing of ion detection. This detector makes it possible to do frequency-swept double resonance experiments which provide spectra of all the product ions of a given reactant ion. Circuit schematics and typical frequency- and field-swept spectra are shown.

  2. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    CERN Document Server

    Ohta, T; Didelez, J -P; Fujiwara, M; Fukuda, K; Kohri, H; Kunimatsu, T; Morisaki, C; Ono, S; Rouille, G; Tanaka, M; Ueda, K; Uraki, M; Utsuro, M; Wang, S Y; Yosoi, M

    2011-01-01

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  3. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    OpenAIRE

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll...

  4. Synchrotron ring as a multi-turn time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    A synchrotron ring can be used as a time-of-flight mass spectrometer under one of the two condition; a) all the particles in the ring are cooled down and have a very small momentum spread: b) the ring is tuned so as to achieve an isochronous condition for particles circulating in the ring. The methods are suited for the on-line mass measurement of short-lived nuclei which are made at an upstream production target before the injection. (author)

  5. On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer.

    Science.gov (United States)

    Bristow, Tony W T; Ray, Andrew D; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed. PMID:25106707

  6. Search for doubly-charged negative ions via accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, W.; Frekers, D.; Pardo, R.; Rehm, K.E.; Smither, R.K.; Yntema, J.L.

    1983-01-01

    The Argonne FN tandem accelerator in conjunction with an Enge split-pole magnetic spectrograph has been used as a highly sensitive mass spectrometer to search for doubly charged negative ions of /sup 11/B, /sup 12/C and /sup 16/O. No evidence for the formation of these ions in an inverted sputter source and the subsequent acceleration in the tandem has been found. The following limits for the ratio of doubly-charged to singly-charged ions were measured: X/sup - -//X/sup -/ < 1 x 10/sup -15/, /sup 11/B; < 2 x 10/sup -15/, /sup 12/C; < 2 x 10/sup -14/, /sup 16/O. A relatively abundant formation of the short lived, metastable He/sup -/ ion in the sputter source has been observed.

  7. Influence of the Ion Source Operating Conditions on the Characteristics of a Prism Mass Spectrometer With Inhomogeneous Magnetic Field

    Directory of Open Access Journals (Sweden)

    P.O. Kuzema

    2010-01-01

    Full Text Available The influence of magnetic field focusing the electron beam in ion source of mass spectrometer on the analytical characteristics of the instrument has been studied. The range of current of ion source's focusing electromagnet providing the optimal performance of the mass spectrometer has been determined.

  8. Fast magnetic peak switching for thermal ionization mass spectrometers

    International Nuclear Information System (INIS)

    Common practice in thermal ionization mass spectrometry is to make repeated and rapid comparisons between isotopes of interest by switching the magnetic deflection field sequentially between the values required to deflect each isotope through the collector slit. After each step in the field value (peak switch) it is necessary to pause before logging data, in order to allow the system response to settle to the point where it does not affect the precision of the isotopic ratio determination. The dynamics of the field stabilization system are the principle contributors to this delay period. The system characteristics applicable to a field-controlled magnet system are analyzed in this paer. Possible areas where the step response may be improved by the application of modern control theory are outlined. It is shown that any field-stabilized magnet system can be optimized for step response by the synthesis of a discrete control system. Discrete digital control, i.e. a software implementation, allows system optimization without the necessity for hardware modification, which would be difficult, expensive and possibility in some cases impractical. (orig.)

  9. Volcanic Gas Emissions Mapping Using a Mass Spectrometer System

    Science.gov (United States)

    Griffin, Timothy P.; Diaz, J. Andres

    2008-01-01

    The visualization of hazardous gaseous emissions at volcanoes using in-situ mass spectrometry (MS) is a key step towards a better comprehension of the geophysical phenomena surrounding eruptive activity. In-Situ gas data consisting of helium, carbon dioxide, sulfur dioxide, and other gas species, were acquired with an MS system. MS and global position system (GPS) data were plotted on ground imagery, topography, and remote sensing data collected by a host of instruments during the second Costa Rica Airborne Research and Technology Applications (CARTA) mission This combination of gas and imaging data allowed 3-dimensional (3-D) visualization of the volcanic plume end the mapping of gas concentration at several volcanic structures and urban areas This combined set of data has demonstrated a better tool to assess hazardous conditions by visualizing and modeling of possible scenarios of volcanic activity. The MS system is used for in-situ measurement of three-dimensional gas concentrations at different volcanic locations with three different transportation platforms, aircraft, auto, and hand carried. The demonstration for urban contamination mapping is also presented as another possible use for the MS system.

  10. Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer

    International Nuclear Information System (INIS)

    The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.

  11. Iodine-xenon studies and the relax mass spectrometer

    Science.gov (United States)

    Gilmour, J. D.; Ash, R. D.; Lyon, I. C.; Johnston, W. A.; Hutchison, R.; Bridges, J. C.; Turner, G.

    1994-07-01

    RELAX combines a resonance ionization ion source with a cryogenic sample concentrator to achieve ultrasensitivity. Gas is extracted from samples using either a continuous wave laser microprobe based on an argon-ion laser or a filament microfurnace. Recent refinements in the operating procedure have resulted in optimum sensitivities such that detection rates of 1 cps are achieved from fewer than 500 atoms. A Xe-128 spike reservoir has also been added and characterized, allowing accurate determinations of absolute amounts of gas. We have completed a preliminary study of the iodine-xenon system in samples from the Bjurbole and Parnallee meteorites. Bjurbole chondrules ranging in mass from 5.45 mg to 260 micrograms were analyzed by laser microprobe. The results from these samples are consistent with an effectively uniform formation age, suggesting that the use of Bjurbole chondrules for calibration of this chronometer can be extended to samples in this size range. Samples from two chondrules from the Parnallee meteorite have been analyzed to date. An alpha-cristobalite-bearing chondrule (designated CB1) was found to have a formation age 4.62 +/- 0.44 Ma after Bjurboele, while a porphyritic olivine macrochondrule appears to have been reset after the decay of I-129(t1/2 17 Ma). Consideration of these results alongside Ar-Ar data from the macrochondrule and whole rock samples suggests that Parnallee has a complex history: The macrochondrule underwent an early postcrystallization degassing event but appears to have been essentially unaffected by the later (1.9 Ga) partial resetting of the bulk meteorite.

  12. Penning trap mass measurements of $^{99-109}$Cd with the ISOLTRAP mass spectrometer, and implications for the rp process

    CERN Document Server

    Breitenfeldt, M; Beck, D; Blaum, K; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H-J; Kowalska, M; Lunney, D; Naimi, S; Neidherr, D; Schatz, H; Schwarz, S; Schweikhard, L

    2009-01-01

    Penning trap mass measurements on neutron-deficient Cd isotopes $^{99-109}$Cd have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all with relative mass uncertainties below $3 \\times 10^{-8}$. A new mass evaluation has been performed. The mass of $^{99}$Cd has been determined for the first time which extends the region of accurately known mass values towards the doubly magic nucleus $^{100}$Sn. The implication of the results on the reaction path of the $rp$ process in stellar X-ray bursts is discussed. In particular, the uncertainty of the abundance and the overproduction created by the $rp$-process for the mass A = 99 is demonstrated by reducing the uncertainty of the proton-separation energy of $^{100}$In $S_{p}(^{100}$In) by a factor of 2.5.

  13. A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings

    Science.gov (United States)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Sachenko, V. D.; Gall, L. N.; Zarutskii, I. V.; Gall, N. R.

    2013-05-01

    A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings based on the carbon-13 isotope breath test has been designed and constructed. Important stages of the work included (i) calculating a low-aberration mass analyzer, (ii) manufacturing and testing special gas inlet system, and (iii) creating a small-size collector of ions. The proposed instrument ensures 13C/12C isotopic ratio measurement to within 1.7‰ (pro mille) accuracy, which corresponds to requirements for a diagnostic tool. Preliminary medical testing showed that the mass spectrometer is applicable to practical diagnostics. The instrument is also capable of measuring isotopic ratios of other light elements, including N, O, B (for BF2+ ions), Ar, Cl, and S.

  14. Mobile high-resolution time-of-flight mass spectrometer for in-situ analytics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes; Ebert, Jens [II. Physikalisches Institut, JLU, Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [II. Physikalisches Institut, JLU, Giessen (Germany); GSI, Darmstadt (Germany)

    2011-07-01

    A compact multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been developed. For the first time it allows for mass measurements with a resolving power exceeding 100000 and sub ppm accuracy in a mobile device. Thus it allows to resolve isobars and enables to accurately determine the composition and structure of biomolecules. The MR-TOF-MS consists of an atmospheric pressure interface for DESI and REIMS, ion cooler, ion trap, time-of-flight analyzer, MCP detector and DAQ. Vacuum system components, power supplies as well as electronics are mounted together with the ion optical spectrometer parts on a single frame with a total volume of 0.8 m{sup 3}. Applications of the device within the AmbiProbe research program include in-situ mass spectrometry such as real-time tissue recognition in electrosurgery, identification of mycotoxins and analysis of soil samples for environmental studies.

  15. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  16. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    International Nuclear Information System (INIS)

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0–5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  17. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    Science.gov (United States)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  18. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I. [Department of Physics, Danish National Research Foundation' s Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, Building 312, DK-2800 Kgs. Lyngby (Denmark); Pedersen, T.; Hansen, O. [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark)

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

  19. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors.

    Science.gov (United States)

    Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3). PMID:22852722

  20. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  1. Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry.

    Science.gov (United States)

    Schneider, Bradley B; Covey, Thomas R; Coy, Stephen L; Krylov, Evgeny V; Nazarov, Erkinjon G

    2010-12-01

    Ion filters based on planar DMS can be integrated with the inlet configuration of most mass spectrometers, and are able to enhance the quality of mass analysis and quantitative accuracy by reducing chemical noise, and by pre-separating ions of similar mass. This paper is the first in a series of three papers describing the optimization of DMS / MS instrumentation. In this paper the important physical parameters of a planar DMS-MS interface including analyzer geometry, analyzer coupling to a mass spectrometer, and transport gas flow control are considered. The goal is to optimize ion transmission and transport efficiency, provide optimal and adjustable resolution, and produce stable operation under conditions of high sample contamination. We discuss the principles of DMS separations and highlight the theoretical underpinnings. The main differences between planar and cylindrical geometries are presented, including a discussion of the advantages and disadvantages of RF ion focusing. In addition, we present a description of optimization of the frequency and amplitude of the DMS fields for resolution and ion transmission, and a discussion of the influence and importance of ion residence time in DMS. We have constructed a mass spectrometer interface for planar geometries that takes advantage of atmospheric pressure gas dynamic principles, rather than ion focusing, to minimize ion losses from diffusion in the analyzer and to maximize total ion transport into the mass spectrometer. A variety of experimental results has been obtained that illustrate the performance of this type of interface, including tests of resistance to high contamination levels, and the separation of stereoisomers. In a subsequent publication the control of the chemical interactions that drive the separation process of a DMS / MS system will be considered. In a third publication we describe novel electronics designed to provide the high voltages asymmetric waveform fields (SV) required for these

  2. Neutrino mass and mixing, and non-accelerator experiments

    International Nuclear Information System (INIS)

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  3. Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

    CERN Document Server

    Sikler, G; Beck, D; Blaum, K; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Oinonen, M; Scheidenberger, C; Schwarz, S; Szerypo, J

    2005-01-01

    The atomic masses of $^{76,77,80,81,86,88}$Sr and $^{124,129,130,131,132}$Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. $^{76}$Sr is now the heaviest N=Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus $^{132}$Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be presented.

  4. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  5. A Compact Ion and Neutral Mass Spectrometer for the Exocube Mission

    Science.gov (United States)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.

    2014-12-01

    Demand is high for in situ measurements of atmospheric neutral and ion composition and density, not only for studies of the dynamic ionosphere-theremosphere-mesosphere system but simply to define the steady state background atmospheric conditions. The ExoCube mission is designed to acquire global knowledge of in-situ densities of [H], [He], [O] and [H+], [He+], [O+] in the upper ionosphere and lower exosphere in combination with incoherent scatter radar ground stations distributed in the north polar region. The Heliophysic Division of GSFC has developed a compact Ion and Neutral Mass Spectrometer (INMS) for in situ measurements of ions and neutrals H, He, N, O, N2, O2 with M/dM of approximately 10 at an incoming energy range of 0-50eV. The INMS is based on front end optics, post acceleration, gated time of flight, ESA and CEM or MCP detectors. The compact sensor has a dual symmetric configuration with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The neutral front end optics includes thermionic emission ionization and ion blocking grids, and the ion front end optics includes spacecraft potential compensation grids. The electronics include front end, fast gating, HVPS, ionizer, TOF binning and full bi directional C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded as fast as 10 msec per frame (corresponding to ~80 m spatial separation) in burst mode, and has significant onboard storage capability and data compression scheme. Experimental data from instrument testing with both ions and neutrals will be presented. The instrument is successfully integrated in the CubeSat and passed vibration, thermal and shock testing. The ExoCube mission is scheduled to fly in Nov 2014 in a 445 x 670 km polar orbit with the INMS aperture oriented in the ram direction. This miniaturized instrument (1

  6. The suprathermal ion mass spectrometer (SMS) onboard the Akebono (EXOS-D) satellite

    International Nuclear Information System (INIS)

    The suprathermal ion mass spectrometer (SMS) was developed to study the thermal and suprathermal ion distributions in the low altitude magnetosphere. The instrument has a mass and plasma density dynamic range sufficient to measure, on a regular basis, the major and the minor ion distribution functions at apogee as well as at perigee. The instrument is a radio frequency type mass spectrometer and has a programmable mass resolution which is independent of energy and mass selected. The present report gives measurements of the thermal ion mass composition near apogee which show that the composition varies from one dominated by H+ and O+ to one in which the density of 'minor' ions (O++, He+, N+) is comparable to or greater than that of H+ and O+. The report also prevents high time resolution mass/energy/angle observations in the topside ionospheric plasma in or near the cusp region where rapid heating of the bulk of the plasma and the formation of conic distributions is evident. These unique observations are compared with other plasma diagnostrics on the spacecraft to improve the understanding of ionospheric ion production, convection and loss processes as well as low altitude ion energization phenomena. (N.K.)

  7. Shock tube coupled to the time-of-flight mass spectrometer via a molecular beam sampling system.

    Science.gov (United States)

    Krizancic, I; Haluk, M; Cho, S H; Trass, O

    1979-07-01

    A method for continuous mass spectrometric analysis of high-temperature reacting gas mixtures is described. The apparatus consists of a unique combination of three devices: the shock tube, the time-of-flight mass spectrometer, and the supersonic molecular beam. The driven section of the shock tube constitutes the reservoir of a supersonic molecular beam by which gas is continuously extracted from the reaction zone and introduced through a two-stage high-capacity vacuum system into the ionization region of the mass spectrometer. The shock tube and the mass spectrometer are coupled at right angles to one another. This configuration avoids excessive pressure buildup in the mass spectrometer system. The apparatus has an estimated mass resolution of 100 amu, a frequency range of 10-100 kHz, and can be operated over a wide range of shock conditions during the complete high-temperature pulse. PMID:18699630

  8. Toward laser ablation Accelerator Mass Spectrometry of actinides

    Science.gov (United States)

    Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Paul, M.; Collon, P.; Deibel, C.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Fonnesbeck, J.; Imel, G.

    2013-01-01

    A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

  9. Recursive least square vehicle mass estimation based on acceleration partition

    Science.gov (United States)

    Feng, Yuan; Xiong, Lu; Yu, Zhuoping; Qu, Tong

    2014-05-01

    Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on a sphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.

  10. The ion optics of a miniature 3He/4He mass spectrometer of high resolution

    International Nuclear Information System (INIS)

    To measure the isotopic abundance ratio of 3He and 4He in samples by mass spectrometers is an important detection mean for helium isotope geochemistry research. A symmetrically arranged tandem 3He/4He mass spectrometer is described in the paper. The front stage, used to analyse 3He (including HD and H3) and 4He, is a homogeneous analysing magnet with a bending angle of 90 deg and a bending radius of 6 cm. The end stage, used to analyse 3He, HD and H3, is a non-homogeneous analysing magnet with a bending angle of 180 deg, a bending radius of 15 cm and a magnetic field gradient of 0.75. Because of the use of the non-zero second order coefficient β and curved entrance face of the later magnet for eliminating second order aberrations, the resolving power of the system is notably improved, and theoretically reaches about 3800

  11. Fabrication and testing of the recoil mass spectrometer at Bombay Pelletron

    Indian Academy of Sciences (India)

    S Nagaraj; H C Jain; P K Joshi; S D Paul; R Palit; H V Panchal; B S Naidu; A Chatterjee; A Navin

    2001-07-01

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed at the 15°S beam-line of the Pelletron at TIFR. The RMS consists of a quadrupole doublet just after the target chamber followed by an ‘electrostatic deflector’, a magnetic dipole and a second electrostatic deflector. The recoils produced in the 12C+58Ni reaction using 60 MeV 12C beam were focussed with the help of electric and magnetic fields and detected in a strip detector placed at the focal plane of the RMS. Further testing of the spectrometer to obtain mass resolution and efficiency are in progress.

  12. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.; Knyazev, Vadim D.; North, Simon W.; Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.

    2008-08-28

    We have developed a multiplexed time- and photon-energy?resolved photoionizationmass spectrometer for the study of the kinetics and isomeric product branching of gasphase, neutral chemical reactions. The instrument utilizes a side-sampled flow tubereactor, continuously tunable synchrotron radiation for photoionization, a multi-massdouble-focusing mass spectrometer with 100percent duty cycle, and a time- and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.

  13. Field test of a thermal quadrupole mass spectrometer for safeguards verification

    International Nuclear Information System (INIS)

    A thermal ionization quadrupole mass spectrometer (Finnigan MAT) was tested in the Safeguards Analytical Laboratory of the IAEA with a view to evaluating its potential field applications. Several modifications have been introduced by the manufacturer. The instrument is equipped with an electron multiplier system and a Faraday cup detector. It allows fully automated analysis. Loadings of 1 μg U and 50 ng Pu can be measured without any problem. (author)

  14. Portable gas chromatograph mass spectrometer for on-site chemical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Jeffrey S. (San Ramon, CA); Bushman, John F. (Oakley, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Livermore, CA); Eckels, Joel D. (Livermore, CA)

    2002-01-01

    A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.

  15. Performance Characteristics of a New Hybrid Triple Quadrupole Time-of-Flight Tandem Mass Spectrometer

    OpenAIRE

    Andrews, Genna L.; Simons, Brigitte L.; Young, J. Bryce; Hawkridge, Adam M.; David C Muddiman

    2011-01-01

    The TripleTOF 5600 System, a hybrid triple quadrupole time-of-flight mass spectrometer, was evaluated to explore the key figures of merit in generating peptide and protein identifications which included spectral acquisition rates, data quality, proteome coverage, and biological depth. Employing a Saccharomyces cerevisiae tryptic digest, careful consideration of several performance features demonstrated that the speed of the TripleTOF contributed most to the resultant data. The TripleTOF syste...

  16. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  17. Optimized Fast and Sensitive Acquisition Methods for Shotgun Proteomics on a Quadrupole Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Young, Clifford; Lavallee, Richard;

    2012-01-01

    (HCD) tandem mass spectra due to the parallel mode of operation, where the generation, filling, and storage of fragment ions can be performed while simultaneously measuring another ion packet in the Orbitrap mass analyzer. In this study, data-dependent acquisition methods for "fast" or "sensitive......Advances in proteomics are continually driven by the introduction of new mass spectrometric instrumentation with improved performances. The recently introduced quadrupole Orbitrap (Q Exactive) tandem mass spectrometer allows fast acquisition of high-resolution higher-energy collisional dissociation...... h of analysis time. At sample loads below 125 ng, a 156 ms HCD acquisition method improved the sensitivity, mass accuracy, and quality of data and enabled us to identify 30% more proteins and peptides than the faster scanning method. A similar effect was observed when the LC gradient was extended to...

  18. Development of a dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with Helicobacter Pylori

    Science.gov (United States)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Gall', L. N.; Sachenko, V. M.; Zarutskii, I. V.; Gall', N. R.

    2013-06-01

    A dedicated isotope mass spectrometer for the noninvasive diagnostics of humans infected with Helicobacter Pylori using the isotope respiratory test is developed. A low-aberration mass analyzer is calculated, an input system that makes it possible to eliminate the memory effects is developed, and a small-size ion detector is constructed. The mass spectrometer is created, and the tests are performed. The measurement accuracy of the 13C/12C and 16O/18O isotope ratios are 1.7 and 2.2‰, respectively. Preliminary medical tests show that the spectrometer can be employed for the desired diagnostics.

  19. Electronic Microchannel Plate Particle Detector Design for a CubeSat Time-of-Flight Reflectron Mass Spectrometer

    Science.gov (United States)

    Pyle, M. L.; Davidson, R.; Swenson, C.; Syrstad, E. A.

    2015-12-01

    Variations of gas density and composition in Earth's thermosphere and ionosphere are key indicators of interactions between different layers of Earth's atmosphere. The nature of interactions between neutral and ion species in the upper atmosphere is an active area of study in Heliophysics and there is much to learn about the dynamic relationship between the ionosphere and neutral thermosphere. Mass Spectrometers are among an array of instruments used to explore Earth's upper atmosphere and other space environments. Normally, these instruments are substantial in size and deployed on larger satellites. Data from these larger instruments generally provides information from a specific point in time at a single location. Studies of atmospheric density and composition with multiple locations for each time point could be performed by CubeSat swarms if proper instrumentation were available to fit CubeSat payload restrictions. The proposed miniaturized time-of-flight (TOF) mass spectrometer (MS) will have a mass resolution and range sufficient for measuring the composition of Earth's thermosphere and ionosphere while operating within the power and space constraints of a CubeSat. The capabilities of this instrument would potentially dramatically reduce the cost of future missions while simultaneously enhancing the science return. The design employs miniaturization of TOF-MS technology, including resolution refinement techniques used for larger instruments and standard concepts for TOF-MS components such as acceleration grids, a Bradbury-Nielsen wire gate, a gridless ion mirror, and microchannel plate detector (MCP). The quality of particle detection is known to have a significant impact on the instrument performance. A signal collector for an MCP detector is being designed to maximize the detection performance and enable the transmission of density and composition data back to Earth.

  20. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head

    International Nuclear Information System (INIS)

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  1. Preliminary description of a dedicated commercial ultra-sensitive mass spectrometer for direct atom counting of 14C

    International Nuclear Information System (INIS)

    A description is presented of a commercial, tandem-accelerator centered secondary ion double mass spectrometer dedicated to 14C/13C/12C ratio measurements. Some design philosophy of the instrument is presented and the performance is described. A scanning cesium ion source with primary beam diameters between 100 to 200 micrometers is used to produce C- beam intensities of 10 to 20μA with the intensities remaining constant to better than 0.1% per minute after the source stabilizes. For recent carbon, these currents correspond to 14C count rates from the ion source of 60 to 120 particles per second. Resolution of the first mass defining system, M/ΔM, is greater than 120 with the capability of rapid mass switching between isotopes. The measured isotopic ratios at the ion source for carbon are constant to better than 0.25%. The virtues of the 3MV parallel-fed Cockroft-Walton accelerator supply are presented. At the operating voltage of 2.5MV, the stability is better than 1:4000 with a terminal ripple 13C3+ and 12C3+ ions which originate from mass-14 molecular ions are measured to be 3.6mm away from the beam axis and so can be completely eliminated by the slits. Isotopic ratios have been measured beyond these slits, and it is shown that these ratios are constant to better than half a percent using recent samples. The final strong focusing magnet has a rejection ratio for unwanted carbon ions greater than 107

  2. Electric and magnetic field optimization procedure for Penning trap mass spectrometers

    CERN Document Server

    Beck, D; Bollen, G; Delahaye, P; George, S; Guénaut, C; Herfurth, F; Herlert, A; Lunney, D; Schweikhard, L; Yazidjian, C

    2009-01-01

    Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectrometer ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.

  3. Solid Phase Microextraction and Miniature Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, j.m.

    1999-01-26

    A miniature mass spectrometer, based on the time-of-flight principle, has been developed for the detection of chemical warfare agent precursor molecules. The instrument, with minor modifications, could fulfill many of the needs for sensing organic molecules in various Defense Programs, including Enhanced Surveillance. The basic footprint of the instrument is about that of a lunch box. The instrument has a mass range to about 300, has parts-per-trillion detection limits, and can return spectra in less than a second. The instrument can also detect permanent gases and is especially sensitive to hydrogen. In volume, the device could be manufactured for under $5000.

  4. A statistical investigation of the mass discrepancy-acceleration relation

    CERN Document Server

    Desmond, Harry

    2016-01-01

    We use the mass discrepancy-acceleration relation (the correlation between the ratio of dark-to-visible mass and acceleration in galaxies; MDAR) to test the galaxy-halo connection. We analyse the MDAR using a set of 14 statistics which quantify its four most important features: its shape, its scatter, the presence of a "characteristic acceleration scale," and the correlation of its residuals with other galaxy properties. We construct an empirical framework for the galaxy-halo connection in $\\Lambda$CDM to generate predictions for these statistics, starting with conventional correlations (halo abundance matching; AM) and introducing more where required. Comparing to the SPARC data (Lelli, McGaugh & Schombert 2016), we find: 1) The approximate shape of the MDAR is readily reproduced by AM, and there is no evidence that the acceleration at which dark matter becomes negligible has less spread in the data than in AM mocks; 2) Even under conservative assumptions, AM significantly overpredicts the scatter in the...

  5. Acceleration and Deceleration of Coronal Mass Ejection (CME) Propagation

    Science.gov (United States)

    Shen, F.; Wu, S.; Feng, X. S.; Wu, C.

    2011-12-01

    A major challenge to the space weather forecasting community is accurate prediction of coronal mass ejections (CME) induced Shock Arrival Time (SAT) at Earth's environment. In order to improve the current accuracy, it is necessary to understand the physical processes of the acceleration and deceleration of the CME propagation in the heliosphere. We present a three-dimensional (3D) magnetohydrodynamic (MHD) simulation of the evolution of two interacting CMEs in a realistic ambient solar wind for the March 28-31, 2001 event. The forces which caused the acceleration and deceleration are analyzed in detail. The force which caused the acceleration are Lorenz force and pressure gradient and the forces which caused the deceleration are aerodynamic drag and the Sun's gravity. In addition the momentum exchange between the solar wind and the moving CMEs can cause acceleration and deceleration of the CME which are now analyzed. In this specific CME event (March 28-31, 2001), we also investigate the interactions of two CMEs causing the acceleration and deceleration of the CMEs.

  6. Accelerator mass spectrometry for quantitative in vivo tracing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  7. Report of the consultants' meeting on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. Its use within the IAEA is recommended by the consultants in this meeting. The IAEA programs in which the technology would be useful and beneficial are: safeguards, physical and chemical sciences, human health, food and agriculture, radioactive waste management, radiation safety, industry and earth sciences

  8. Enhancing MALDI time-of-flight mass spectrometer performance through spectrum averaging.

    Directory of Open Access Journals (Sweden)

    Morgan Mitchell

    Full Text Available Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometers are simple and robust mass spectrometers used for analysis of biologically relevant molecules in diverse fields including pathogen identification, imaging mass spectrometry, and natural products chemistry. Despite high nominal resolution and accuracy, we have observed significant variability where 30-50% of individual replicate measurements have errors in excess of 5 parts-per-million, even when using 5-point internal calibration. Increasing the number of laser shots for each spectrum did not resolve this observed variability. What is responsible for our observed variation? Using a modern MALDI-TOF/TOF instrument, we evaluated contributions to variability. Our data suggest a major component of variability is binning of the raw flight time data by the electronics and clock speed of the analog-to-digital (AD detection system, which requires interpolation by automated peak fitting algorithms and impacts both calibration and the observed mass spectrum. Importantly, the variation observed is predominantly normal in distribution, which implies multiple components contribute to the observed variation and suggests a method to mitigate this variability through spectrum averaging. Restarting the acquisition impacts each spectrum within the electronic error of the AD detector system and defines a new calibration function. Therefore, averaging multiple independent spectra and not a larger number of laser shots leverages this inherent binning error to mitigate variability in accurate MALDI-TOF mass measurements.

  9. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    International Nuclear Information System (INIS)

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer Isoltrap at CERN-Isolde. High-precision mass measurements of neutron-rich manganese (58-66Mn) and krypton isotopes (96,97Kr) are presented, of which the 66Mn and 96,97Kr masses are measured for the first time. In particular, the mass of 97Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N=40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N=40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclear quantum shape/phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy. Another part of this work was the design of new decay spectroscopy system behind the Isoltrap mass spectrometer. The beam purity achievable with Isoltrap will allow decay studies with and β detection coupled to a tape-station. This system has been mounted and commissioned with the radioactive beam 80Rb. (author)

  10. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, Mehran, E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, PO Box 516, SE-751 20 Uppsala (Sweden); Hakansson, Karl; Possnert, Goeran [Department of Physics and Astronomy, Ion Physics, PO Box 516, SE-751 20 Uppsala (Sweden)

    2013-01-15

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for {sup 14}C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5-10 {mu}g C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  11. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2009-02-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Quadrupole Aerosol Mass Spectrometer (Q-AMS and a compact Time-of-Flight Aerosol Mass Spectrometer (c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding detection limit (DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  12. Neutral Mass Spectrometer (NMS) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

    Science.gov (United States)

    Collier, Michael R.; Mahaffy, Paul R.; Benna, Mehdi; King, Todd T.; Hodges, Richard

    2011-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results.

  13. Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.M.; Goeringer, D.E.; McLuckey, S.A.; Glish, G.L. (Oak Ridge National Laboratory, TN (United States))

    1993-01-01

    Matrix-assisted laser desorption (MALD), which has been proven to be an effective ionization technique for biological molecules, has been implemented on a quadrupole ion trap mass spectrometer (ITMS). In the instrumental configuration used for this work both the sample probe and the laser beam are brought through holes in the ring electrode, thereby enabling MALD-generated ions to expand directly into the ion trap cavity. This approach for directly introducing MALD-generated ions compliments the capabilities of the ITMS to obtain low detection limits and to perform tandem mass spectrometric analysis. For example, detection limits in the single-unit femtomole regime have been achieved for small polypeptides such as leucine enkephalin, bradykinin, and neuromedin U-8. Furthermore, structural information has been acquired via multiple stages of mass spectrometry. One limitation that currently exists is an unanticipated drop in sensitivity and resolution as the mass/charge ratio for ions exceeds 3000. 42 refs., 11 figs., 1 tab.

  14. 233U mass yield measurements around and within the symmetry region with the ILL Lohengrin spectrometer

    Science.gov (United States)

    Chebboubi, A.; Kessedjian, G.; Sage, C.; Bernard, D.; Blanc, A.; Faust, H.; Köster, U.; Litaize, O.; Mutti, P.; Serot, O.

    2016-03-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. The LPSC in collaboration with ILL and CEA has developed a measurement program on fission fragment distributions at the Lohengrin spectrometer of the ILL, with a special focus on the masses constituting the heavy peak. We will present in this paper our measurement of the very low fission yields in the symmetry mass region and the heavy mass wing of the distribution for 233U thermal neutron induced fission. The difficulty due to the strong contamination by other masses with much higher yields will be addressed in the form of a new analysis method featuring the required contaminant correction. The apparition of structures in the kinetic energy distributions and possible interpretations will be discussed, such as a possible evidence of fission modes.

  15. 36Chlorine accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator. RSP-12

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 UD Pelletron Accelerator is an ideal machine to carry out AMS studies with heavy isotopes like 36Cl and 129I. Cosmogenic radio isotope 36Cl is widely being detected using AMS as it has got applications in ground water research, radioactive waste management, atmospheric 36Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing AMS programme at 14UD Pelletron Accelerator Facility, Mumbai, a segmented gas detector developed for identification of 36Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. 36Cl measurements carried out to detect and measure the ratio of 36Cl to 35Cl in an irradiated sample and dated sample are reported in this paper

  16. Rapid Detection of Gas Hazards and Leaks with an Atmospheric Sampling, High Resolution, Mass Spectrometer with Low Pumping Requirements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Miniaturization of mass spectrometers is restricted almost exclusively by the ability of small vacuum pumps to remove gas loads during operation of the instrument....

  17. Total evaporation measurements of plutonium with a Thermal Quadrupole Mass Spectrometer (THQ)

    International Nuclear Information System (INIS)

    On site verification of isotopic distributions of samples prepared at nuclear reprocessing or fuel fabrication plants requires a measurement procedure which is as independent as possible from varying sample preparation procedures or sample concentrations. With conventional peak jumping data collection, mass fractionation effects are dependent upon the total mass of sample taken and amount of that sample evaporated. This requires the sample concentrations to be maintained in a narrow range to allow accurate correction of the fractionation. This effect can be reduced or eliminated if the ion currents or relative ion ratios are summed while the sample is totally evaporated. Measurement of the ion currents for a total evaporation of the sample using a single collector requires a mass spectrometer capable of rapidly scanning or peak jumping the isotopes of interest. This is accomplished using a quadrupole mass spectrometer. A software package written to give a special peak jumping sequence combined with incremental increases of evaporation (sample) filament current makes it possible to evaporate about 98% of the sample. The amount of Pu on the filament is 100 nanograms. Reproducibility of the 240/239 of 0.3% and accuracies of 0.2% (coefficients of variation) have been measured. The measurement is described and results of measurement of standards and actual samples are presented. (author)

  18. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator. PD-1-2

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) is an ultra sensitive means of counting individual atoms having sufficiently long half-life and available in small amount. The 14 UD Pelletron Accelerator is an ideal machine to carry out AMS studies with heavy isotopes like 36Cl and 129I. Cosmogenic radioisotope 36Cl is widely being detected using AMS as it has got applications in ground water research, radioactive waste management, atmospheric 36Cl transport mechanism studies of Arctic Alpine ice core etc . The AMS programme at the 14 UD Mumbai Pelletron Accelerator has taken off with the installation of the state of the art Terminal Potential Stabilizer setup and operation of the accelerator in Generating Volt Meter (GVM) mode. Feasibility studies have been carried out for detection/identification of 14C from a charcoal sample and 3He in natural Helium. As the primary interest of AMS programme at Mumbai Pelletron Accelerator is related to the cosmogenic nuclei, 36Cl and 129I, a segmented gas detector developed for identification of 36Cl was tested for performance. Recently a beam chopper required for this measurement has also been developed

  19. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization

    Institute of Scientific and Technical Information of China (English)

    陈洲; 佟秋男; 张丛丛; 胡湛

    2015-01-01

    Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are per-formed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Com-pared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible.

  20. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  1. Search for efficient laser resonance ionization schemes of tantalum using a newly developed time-of-flight mass-spectrometer in KISS

    Science.gov (United States)

    Mukai, M.; Hirayama, Y.; Ishiyama, H.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Watanabe, Y. X.; Kimura, S.; Ozawa, A.; Jeong, S. C.; Sonoda, T.

    2016-06-01

    The technique of laser resonance ionization is employed for an element-selective ionization of multi-nucleon transfer reaction products which are stopped and neutralized in a gas cell filled with argon gas at 50 kPa. We have been searching for efficient laser ionization schemes for refractory elements of Z = 73-78 using a time-of-flight mass-spectrometer (TOF-MS) chamber. To evaluate the isotope shift and ionization efficiency for each candidate of the ionization scheme, isotope separation using the TOF-MS was devised. The TOF-MS was designed to separate the isotopes using two-stage linear acceleration with a mass resolving power M / ΔM of >350. A mass resolving power of 250 was experimentally confirmed by measuring the TOF of laser-ionized tantalum (Z = 73) ions with mass number 181. We searched for a laser resonance ionization scheme of tantalum using the TOF-MS.

  2. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    G Raina; G U Kulkarni; R T Yadav; V S Ramamurthy; C N R Rao

    2000-04-01

    The design and fabrication of a Smalley-type cluster source in combination with a reflectron based time-of-flight (TOF) mass spectrometer are reported. The generation of clusters is based on supersonic jet expansion of the sampling plume. Sample cells for both liquid and solid targets developed for this purpose are described. Two pulsed Nd-YAG lasers are used in tandem, one (532 nm) for target vapourization and the other (355 nm) for cluster ionization. Methanol clusters of nuclearity up to 14 (mass 500 amu) were produced from liquid methanol as the test sample. The clusters were detected with a mass resolution of ~ 2500 in the R-TOF geometry. Carbon clusters up to a nuclearity of 28 were obtained using a polyimide target. The utility of the instrument is demonstrated by carrying out experiments to generate mixed clusters from alcohol mixtures.

  3. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    OpenAIRE

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spe...

  4. Attomole quantitation of protein separations with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  5. Ultra-sensitive detection of plutonium by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Cresswell, R.G.; Ophel, T.R.; Ditada, M. [Australian National Univ., Canberra, ACT (Australia). Dept. of Nuclear Physics; Day, J.P.; Clacher, A. [Manchester Univ. (United Kingdom). Dept. of Chemistry; Priest, N.D. [AEA Technology, Harwell (United Kingdom)

    1996-12-31

    On the bases of the measurements performed to date, a sensitivity of 10{sup 6} atoms is achievable with accelerator mass spectroscopy (AMS) for each of the plutonium isotopes. Not only does this open the way to the sort of study outlined, but it also makes possible other novel applications, of which two examples are given: (i)the ration of {sup 240}Pu to {sup 239}Pu as a sensitive indicator of the source of the plutonium; (ii) the biochemistry of plutonium in humans. The ultra-sensitive atom counting capability of AMS will make it possible to use the very long-lived {sup 244}Pu (8x10{sup 7}a) in human volunteer studies without any significant increase in radiation body burden. This paper will describe the AMS technique as applied to plutonium using the ANU`s 14UD accelerator, will present the results obtained to date, and will discuss the prospects for the future.

  6. High-Accuracy Mass Determination of Unstable Nuclei with a Penning Trap Mass Spectrometer.

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  7. Implementation of Ultraviolet Photodissociation on a Benchtop Q Exactive Mass Spectrometer and Its Application to Phosphoproteomics.

    Science.gov (United States)

    Fort, Kyle L; Dyachenko, Andrey; Potel, Clement M; Corradini, Eleonora; Marino, Fabio; Barendregt, Arjan; Makarov, Alexander A; Scheltema, Richard A; Heck, Albert J R

    2016-02-16

    Proteomics applications performed on the popular benchtop Q Exactive Orbitrap mass spectrometer have so far relied exclusively on higher collision-energy dissociation (HCD) fragmentation for peptide sequencing. While this fragmentation technique is applicable to a wide range of biological questions, it also has limitations, and all questions cannot be addressed equally well. Here, we demonstrate that the fragmentation capabilities of the Q Exactive mass spectrometer can be extended with ultraviolet photodissociation (UVPD) fragmentation, complete with synchronization triggering to make it compatible with liquid chromatography (LC)/tandem mass spectrometry (MS/MS) workflows. We show that UVPD not only is directly compatible with LC/MS workflows but also, when combined with these workflows, can result in higher database scores and increased identification rates for complex samples as compared to HCD methods. UVPD as a fragmentation technique offers prompt, high-energy fragmentation, which can potentially lead to improved analyses of labile post-translational modifications. Techniques like HCD result in substantial amounts of modification losses, competing with fragmentation pathways that provide information-rich ion fragments. We investigate here the utility of UVPD for identification of phosphorylated peptides and find that UVPD fragmentation reduces the extent of labile modification loss by up to ∼60%. Collectively, when integrated into a complete workflow on the Q Exactive Orbitrap, UVPD provides distinct advantages to the analysis of post-translational modifications and is a powerful and complementary addition to the proteomic toolbox. PMID:26760441

  8. In situ analysis of corrosion inhibitors using a portable mass spectrometer with paper spray ionization

    KAUST Repository

    Jjunju, Fred P M

    2013-01-01

    Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (<1 ng μL-1) and over a dynamic range of ∼5 pg μL-1 to 500 pg μL-1 (ppb). Direct detection of these compounds in complex oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL-1.© 2013 The Royal Society of Chemistry.

  9. In situ analysis of corrosion inhibitors using a portable mass spectrometer with paper spray ionization.

    Science.gov (United States)

    Jjunju, Fred P M; Li, Anyin; Badu-Tawiah, Abraham; Wei, Pu; Li, Linfan; Ouyang, Zheng; Roqan, Iman S; Cooks, R Graham

    2013-07-01

    Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (<1 ng μL(-1)) and over a dynamic range of ∼5 pg μL(-1) to 500 pg μL(-1) (ppb). Direct detection of these compounds in complex oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL(-1).

  10. Matrix-assisted ionization vacuum for high-resolution Fourier transform ion cyclotron resonance mass spectrometers.

    Science.gov (United States)

    Wang, Beixi; Tisdale, Evgenia; Trimpin, Sarah; Wilkins, Charles L

    2014-07-15

    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10(-6) mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied.

  11. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, JN [Univ. of California, Irvine, CA (United States)

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition to determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.

  12. A Rugged Miniature Mass-Spectrometer for Aqueous Geochemistry on Mars

    Science.gov (United States)

    Stockstill, K.; Anderson, F.; Pilger, E.; McMurtry, G.; French, L.

    2005-12-01

    Introduction: We are attempting to miniaturize and shock-harden an electrospray ionization rotating field mass spectrometer (ESI-RFMS) for high precision measurements of aqueous geochemistry on Mars. The design is based on a mass spectrometer system currently being used in situ in deep ocean applications (McMurtry & Smith, 2001). It has the strengths of being small, low power, low mass, requires no precision machining, and is tolerant of moderate vacuum. A prototype RFMS instrument has been shock tested to 1200 without degrading performance. ESI-RFMS is a soft-ionization technique, allowing for the measurement of molecules with large masses, and thus is an attractive experimental methodology for aqueous geochemical analysis enabling in situ measurements of potential chemical, isotopic, and biologic signatures. For example, ESI-RFMS could determine the geochemistry and origin of near-surface deposits of ice, such as those in the northern lowlands of Mars. In addition, ESI-RFMS could examine the record of aqueous alteration contained in the compositions and mineralogy of surface materials and in the compositions of liquid water and ice on Mars. Furthermore, ESI-RFMS analyses of water could detect heavy organic compounds commonly associated with life. Results: Work to date has focused on the development of a vacuum ESI-RFMS to study heavy compounds in water directly. The ESI-RFMS design concept has now been tested under a wide variety of vacuum conditions and sample delivery pressures, as well as under a wide range of electrical conditions and sample chemistries. We have also tested the RFMS mass filter using an off-the-shelf electron impact (EI) ionizer, which has proved the new RFMS concepts of mass filtering and ion beam control, as well as significant advances in noise reduction. A critical issue that evolved from this work is the importance of a well-focused beam of ions for RFMS mass filters versus other similar but less capable spectrometers like the standard

  13. Surface modifications of stainless steel to minimise contamination in mass spectrometers

    Science.gov (United States)

    Abda, J.; Douce, D.; Jones, G.; Skeldon, P.; Thompson, G. E.

    2015-12-01

    The effect of electrochemically grown and vapour deposited coatings on the build-up of contamination on stainless steel surfaces in the electrospray ionisation source of a mass spectrometer is investigated, together with their influence on the robustness of the instrument response. Quantification of the contamination build-up on flat samples, using white light interferometry, allowed the identification of the most beneficial treatments. Coating with electrochemically-grown anodic oxide and cathodic oxide films and amorphous carbon films doped with silicon or nitrogen resulted in reduced contamination compared with the uncoated stainless steel surface, and provided improved robustness of the instrument response.

  14. Isotope ratio analysis by a combination of element analyzer and mass spectrometer

    International Nuclear Information System (INIS)

    The use of stable isotope ratios of carbon, nitrogen and sulfur as analytical tool in many fields of research is of growing interest. A method has therefore been developed, consisting in essential of coupling an Elemental Analyzer with an Isotope Mass Spectrometer, which enables the gas preparation of carbon dioxide, nitrogen and sulfur dioxide from any solid or liquid sample in a fast and easy way. Results of carbon isotope measurements in food analysis are presented, whereat it is possible to check origin and treatment of sugar, oils, fats, mineral waters, spirituous liquors etc. and to detect adulterations as well. Also applications in the field of environmental research are given. (Author)

  15. Microsystem with integrated capillary leak to mass spectrometer for high sensitivity temperature programmed desorption

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Jensen, Søren; Hansen, Ole

    2004-01-01

    Temperature programmed desorption (TPD) is a method for obtaining information about quantities and binding properties of adsorbed species on a surface. A microfabricated flow system for TPD with an integrated capillary leak to a mass spectrometer is presented. The use of an integrated capillary.......5 cm2 of platinum foil gives a clear desorption peak. By using the microfabricated flow system, TPD experiments can be performed in a carrier gas with a sensitivity approaching that of TPD experiments in vacuum. ©2004 American Institute of Physics...

  16. A new tandem mass spectrometer for photofragment spectroscopy of cold, gas-phase molecular ions

    International Nuclear Information System (INIS)

    We present here the design of a new tandem mass spectrometer that combines an electrospray ion source with a cryogenically cooled ion trap for spectroscopic studies of cold, gas-phase ions. The ability to generate large ions in the gas phase without fragmentation, cool them to ∼10 K in an ion trap, and perform photofragment spectroscopy opens up new possibilities for spectroscopic characterization of large biomolecular ions. The incorporation of an ion funnel, together with a number of small enhancements, significantly improves the sensitivity, signal stability, and ease of use compared with the previous instrument built in our laboratory.

  17. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  18. Radiocarbon accelerator mass spectrometry (AMS) sample preparation laboratory in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Kita D.; Gomes, Paulo R. S.; Anjos, Roberto M. dos; Linares, Roberto; Queiroz, Eduardo; Oliveira, Fabiana M. de; Cardozo, Laio [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Carvalho, Carla R.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2011-07-01

    Full text: For decades Accelerator Mass Spectrometry has been widely used for radiocarbon measurements all over the world with application in several fields of science from archaeology to geosciences. This technique provides ultrasensitive analysis of reduced size samples or even specific compounds since sample atoms are accelerated to high energies and measured using nuclear particle detectors. Sample preparation is extremely important for accurate radiocarbon measurement and includes chemical pre-treatment to remove all possible contaminants. For beam extraction in the accelerator ion source, samples are usually converted to graphite. In this work we report a new radiocarbon sample preparation facility installed at the Physics Institute of Universidade Federal Fluminense (UFF), in Brazil. At the Nuclear Chronology Laboratory (LACRON) samples are chemically treated and converted to carbon dioxide by hydrolysis or combustion. A stainless steel based vacuum line was constructed for carbon dioxide separation and graphitization is performed in sealed quartz tubes in a muffle oven. Successful graphite production is important to provide stable beam currents and to minimize isotopic fractionation. Performance tests for graphite production are currently under way and isotopic analysis will soon be possible with the acquisition of a Single Stage AMS System by our group. The Single Stage Accelerator produced by National Electrostatic Corporation is a 250 kV air insulated accelerator especially constructed to measure the amount of {sup 14}C in small modern graphite samples to a precision of 0.3 % or better. With the installation of such equipment in the first half of 2012, UFF will be ready to perform the 14C -AMS technique. (author)

  19. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  20. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  1. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  2. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  3. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  4. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  5. Extermination Of Uranium Isotopes Composition Using A Micro Computer With An IEEE-488 Interface For Mass Spectrometer Analysis

    International Nuclear Information System (INIS)

    A mass spectrometry method can be used to make qualitative or quantitative analysis. For qualitative analysis, identification of unknown materials by a Mass Spectrometer requires definite assignment of mass number to peak on chart. In quantitative analysis, a mass spectrometer is used to determine isotope composition material in the sample. Analysis system of a Mass Spectrometer possession of PPNY-BATAN based on comparison ion current intensity which enter the collector, and have been used to analyse isotope composition. Calculation of isotope composition have been manually done. To increase the performance and to avoid manual data processing, a micro computer and IEEE-488 interface have been installed, also software packaged has been made. So that the determination of the isotope composition of material in the sample will be faster and more efficient. Tile accuracy of analysis using this program on sample standard U3O8 NBS 010 is between 93,87% - 99,98%

  6. {sup 1}4C Accelerator mass spectrometry in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Macario, K.D.; Gomes, P.R.S.; Anjos, Roberto M.; Linares, R.; Queiroz, E.A.; Oliveira, F.M.; Cardozo, L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Carvalho, C.R.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Radiocarbon Accelerator Mass Spectrometry is an ultra-sensitive technique that enables the direct measurement of carbon isotopes in samples as small as a few milligrams. The possibility of dating or tracing rare or even compound specific carbon samples has application in many fields of science such as Archaeology, Geosciences and Biomedicine. Several kinds of material such as wood, charcoal, carbonate and bone can be chemically treated and converted to graphite to be measured in the accelerator system. The Physics Institute of Universidade Federal Fluminense (UFF), in Brazil will soon be able to perform the complete {sup 14}C-AMS measurement of samples. At the Nuclear Chronology Laboratory (LACRON) samples are prepared and converted to carbon dioxide. A stainless steel vacuum system was constructed for carbon dioxide purification and graphitization is performed in sealed tubes in a muffle oven. Graphite samples will be analyzed in a 250 kV Single Stage Accelerator produced by National Electrostatic Corporation which will be installed in the beginning of 2012. With the sample preparation laboratory at LACRON and the SSAMS system, the Physics Institute of UFF will be the first {sup 14}C-AMS facility in Latin America. (author)

  7. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  8. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  9. Laser Ablation Mass Spectrometer (LAMS) as a Standoff Analyzer in Space Missions for Airless Bodies

    Science.gov (United States)

    Li, X.; Brinckerhoff, W. B.; Managadze, G. G.; Pugel, D. E.; Corrigan, C. M.; Doty, J. H.

    2012-01-01

    A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies.

  10. Feasibility of a Fieldable Mass Spectrometer FY 2015 Year-end Report

    Energy Technology Data Exchange (ETDEWEB)

    Barinaga, Charles J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hager, George J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hoegg, Edward D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carman, April J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Garret L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched uranium hexafluoride (UF6) at declared facilities by collecting a few grams of product in sample tubes that are then sent to central laboratories for processing and isotope ratio analysis by thermal ionization mass spectrometry. Analysis of results may not be available for some time after collection. In addition, new shipping regulations will make it more difficult to transport this amount of UF6 to a laboratory. The IAEA is interested in an isotope ratio technique for uranium in UF6 that can be moved to and operated at the enrichment facility itself. This report covers the tasks and activities of the Feasibility of a Fieldable Mass Spectrometer Project for FY 2015, which investigates the feasibility of an in-field isotope ratio technique— the forward deployment of a technique to the non-laboratory situation of a protected room with power and heat at the facility of interest.

  11. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction.

    Science.gov (United States)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 micros. Accordingly, the sample is under excitation in 10(-4) part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 10(10) V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the

  12. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Breitenfeldt, Martin

    2009-07-03

    In the present work, mass determinations of the eleven neutron-deficient nuclides {sup 99-109}Cd, of ten neutron-rich silver nuclides {sup 112,114-121,123}Ag, and seven neutron-rich cadmium nuclides {sup 114,120,122-124,126,128}Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of {sup 99}Cd and {sup 123}Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of {sup 100}Cd. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH{sup +}] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass {sup 96}Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of {sup 100}In were obtained. These mass measurements are an important step towards an understanding of the physics of

  13. Expert systems technology applied to instrument operation and data acquisition of a triple quadrupole mass spectrometer (TQMS)

    International Nuclear Information System (INIS)

    This presentation covers the work done at Lawrence Livermore National Laboratory by some computer programmers and analytical chemists specializing in mass spectrometry to develop an expert system for real-time tuning and optimization of operations of a triple quadrupole mass spectrometer (TQMS). This capability is important to increase the sensitivity possible for selected compounds throughout the entire mass range of the instrument, rather than settling for the traditional normalized calibration which lowers sensitivity at both ends of the mass scale

  14. Highly miniaturized laser ablation time-of-flight mass spectrometer for a planetary rover

    International Nuclear Information System (INIS)

    We report the development and testing of a highly miniaturized mass spectrometer and ion source intended to be deployed on an airless planetary surface to measure the elemental and isotopic composition of solids, e.g., rocks and soils. Our design concentrates at this stage on the proposed BepiColombo mission to the planet Mercury. The mass analyzer is a novel combination of an electrostatic analyzer and a reflectron time-of-flight design. The ion source utilizes a laser induced plasma, which is directly coupled into the mass analyzer. Laser ablation gives high spatial resolution and avoids the need for sample preparation. Our prototype instrument has a demonstrated mass resolution m/Δm full width at half maximum in excess of 180 and a predicted dynamic range of better than five orders of magnitude. We estimate that a flight instrument would have a mass of 280 g (including laser and all electronics), a volume of 84 cm3, and could operate on 3 W power

  15. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    Science.gov (United States)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  16. Systematic examination of the signal area precision of a single quadrupole enhanced low mass option (ELMO) MSQ [corrected] mass spectrometer.

    Science.gov (United States)

    Fischer, Klaus; Höffler, Susanne; Meyer, Axel

    2006-01-01

    To examine the precision of the signal area response of an enhanced low mass option (ELMO) MSQmass spectrometer, operated in the negative electrospray ionization (ESI) mode, extended tests were performed, using flow injection analysis mass spectrometry (FIA-MS). Analytes were nitrate, nitrite, malonic acid, and D,L-mandelic acid. Composition and concentration of injected samples, application of an ASRS anion suppressor and of the cone wash unit, methanol addition to the FIA flow medium, and the voltage bias of the hexapole transfer lens were test variables. Individual test cycles comprised up to 90 injections, processed within 20 h. With a few exceptions the signal response tended to decline over time leading to a loss of more than 80% of the initial signal area in extreme cases. A hexapole radio-frequency (RF) voltage bias of -0.3 V led to an overall low detector response and to high losses of sensitivity over time. Other correlations between the insufficient signal reproducibility and FIA-MS operating conditions could not be established. The test scheme gave hints how to localize the cause of the mass spectrometer malfunction. The repetition of the test scheme after remedying the detected electronic default demonstrated that relative standard deviations less than 5% can be achieved for a sequence of 30 injections if methanol is added to the FIA flow medium and if a suppressor is used. Based on these findings a recommendation is formulated to supplement current test schemes for instrument performance verification by a detector response precision criterion. PMID:16841363

  17. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Breitenfeldt, Martin

    2009-07-03

    In the present work, mass determinations of the eleven neutron-deficient nuclides {sup 99-109}Cd, of ten neutron-rich silver nuclides {sup 112,114-121,123}Ag, and seven neutron-rich cadmium nuclides {sup 114,120,122-124,126,128}Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of {sup 99}Cd and {sup 123}Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of {sup 100}Cd. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH{sup +}] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass {sup 96}Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of {sup 100}In were obtained. These mass measurements are an important step towards an understanding of the physics of

  18. Mass spectrometric analysis of the marine lipophilic biotoxins pectenotoxin-2 and okadaic acid by four different types of mass spectrometers.

    Science.gov (United States)

    Gerssen, Arjen; Mulder, Patrick; van Rhijn, Hans; de Boer, Jacob

    2008-08-01

    The performances of four different mass spectrometers [triple-quadrupole (TQ), time-of-flight (ToF), quadrupole ToF (Q-ToF) and ion trap (IT)] for the detection of the marine lipophilic toxins pectenotoxin-2 (PTX2) and okadaic acid (OA) were investigated. The spectral data obtained with the different mass spectrometric analyzers were used to propose fragmentation schemes for PTX2 in the positive electrospray mode and for OA in the negative electrospray mode. TQ data were used to obtain product ions, while ToF and Q-ToF-MS produced accurate mass data of the precursor ion and product ions, respectively. IT data provided a better understanding of the fragmentation pathways using MS(n) experiments. With respect to analytical performance, all four mass analyzers showed a good linearity (R(2) > 0.97) and repeatability (CV < 20%). Detection limits (LoDs) (S/N = 3) were the lowest on triple-quad MS: 12.2 and 2.9 pg on-column for PTX2 and OA, respectively.

  19. The application of simple mass spectrometers to planetary sub-surface sampling using penetrators

    Science.gov (United States)

    Sheridan, Simon; Morse, Andrew; Bardwell, Max; Barber, Simeon; Wright, Ian

    2010-05-01

    Ptolemy is an ion trap based gas-chromatograph isotope ratio mass spectrometer which is on-board the Rosetta Lander [Wright et al., 2006; Todd et al., 2007]. The instrument uses the principles of MODULUS (Methods of Determining and Understanding Light Elements From Unequivocal Stable Isotope Compositions [Pillinger and Wright, 1993], to enable results obtained in space to be interpreted directly in the context of terrestrial analyses of meteorites and returned samples. MODULUS typically involves use of a complex sample processing system to purify and separate individual species from a complex starting sample, allowing analysis by a relatively simple, low resolution, but stable and precise mass spectrometer instrumentation. A number of exciting future mission opportunities are arising where it is unlikely that it will be feasible to incorporate the full MODULUS-style sample processing system. Of particular interest are missions that offer the opportunity to gain access to surface and sub-surface material through the deployment of mass spectrometers from either high-speed penetrator platforms [Smith et al., 2009] or from sub-surface penetrating mole devices deployed by soft landers [Richter et al., 2003]. We will present work aimed at overcoming the resolution restrictions of ion trap mass spectrometers. It is anticipated that this will enable MODULUS style science return from relatively simple instrumentation which is compatible with the future miniaturised sampling platforms currently under consideration for Mars, asteroids, comets and planetary moons. References: Wright I. P., Barber S. J., Morgan G. H., Morse A. D., Sheridan S., Andrews D. J., Maynard J., Yau D., Evans S. T., Leese M. R., Zarnecki J. C., Kent B. J., Waltham N. R., Whalley M. S., Heys S., Drummond D. L., Edeson R. L., Sawyer E. C., Turner R. F., and Pillinger C. T. (2006). Ptolemy - an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Science Reviews, 128

  20. Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers

    Science.gov (United States)

    Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley

    2012-01-01

    A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.

  1. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    Science.gov (United States)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  2. Application of tandem accelerator mass spectrometor to the chronological study of archaeological samples on Ryukyu Islands

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Hatsuo; Higa, Kenichi; Nakai, Nobuyuki; Nakamura, Toshio.

    1987-10-01

    Along with the urbanization of rural areas on Ryukyu Islands, many shell mounds and pre-historic sites have been found in resent years. Chrological studies of shell samples from these mounds will lead to the better understanding of cultural background for the pre-historic human activities on the Ryukyu Islands. C-14 dating by beta counting is the common method to obtain the ages of the archaeological samples. It is, however, very limited in obtaining the absolute ages by the above mehtod due to the large sample sizes required and time consuming. There are many newly obtained archaeological samples left unstudied in detail. The alternate is a method called Tandem Accelerator Mass Spectrometer (AMS) installed at Nagoya University, which is composed of the tandem type accelerator to measure very low concentration of C-14 in archaeological samples. The system has been designed particularly to measure the radio-carbon and has advantages of being small sample size and very little time consuming for C-14 measurement as compared with the beta counting. It is the aim of this work to apply the above AMS for obtaining the absolute ages of the archaeological samples. The results agreed well with those estimated by the Erthenware method (relative method of dating), which ranged from 500 to 6000 y.b.p. The results may be helpful for the chronological arrangement of the samples and for the understanding of pre-historical human activities on the Ryukyu Islands.

  3. Proof-of-concept development of PXAMS (projectile x-ray accelerator mass spectrometry)

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, I.D.; Roberts, M.L.; McAninch, J.E.; Bench, G.S.

    1996-03-01

    Prior to the current work, accelerator mass spectrometry (AMS) was limited to a set of {approximately}8--10 isotopes. This limitation is caused primarily by the inability to discriminate against stable atomic isobars. An analysis scheme that combines the isotopic sensitivity of AMS with similar isobar selectivity would open a large new class of isotope applications. This project was undertaken to explore the use of characteristic x rays as a method for the detection and identification of ions,and to allow the post-spectrometer rejection of isobaric interferences for isotopes previously inaccessible to AMS. During the second half of FY94 (with Advanced Concepts funding from the Office of Non-Proliferation and National Security), we examined the feasability of this technique, which we are referring to as PXAMS (Projectile X ray AMS), to the detection of several isotopes at Lawrence Livermore National Laboratory (LLNL). In our first exploratory work, we measured the x ray yield vs energy for {sup 80}Se ions stopped in a thick Y target. These results, demonstrated that useful detection efficiencies could be obtained for Se ions at energies accessible with our accelerator, and that the count rate from target x rays is small compared to the Se K{alpha} rate. We followed these measurements with a survey of x ray yields for Z = 14-46.

  4. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    Science.gov (United States)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  5. Role of accelerator mass spectrometry in nuclear physics

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) was developed in nuclear physics laboratories and up to now all experiments were performed at these places. However, AMS is being applied to a variety of fields which have very little to do with nuclear physics. The implications are for its original field can be divided in two domains. First, there are clearly instrumental implications. The overall demand of AMS for high efficiency ion sources, great stability, flexibility, and control of the entire accelerator system is certainly beneficial for the performance of any nuclear physics program. Second, AMS can be conveniently used to determine nuclear quantities of interest when the measurements involves very low radioisotope concentrations. Examples are the half-life measurement of 32Si and the cross section measurement of the 26Mg(p,n)26Al reaction. As the overall detection efficiency will improve there are some interesting problems in nuclear physics and elementary particle physics which are tempting to try. Although most of these experiments are beyond the present capability of AMS, some general aspects are discussed in section 5

  6. Studies of Al metabolism in animal by accelerator mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    WangNa-Xiu; ZhuHan-Min; 等

    1997-01-01

    The correlation between Al metabolism and senile dementia in animal has been studied by AMS(accelerator mass spectrometry).Three groups of laboratory rats were fed with normal food.food with high Al content,and with enriched Ca and Mg together with high Al,respectively for six to eight months.Mapping test was made to recored th degree of wisdom degeneration.Half of the rats were sacrificed and Al contents in various organs were measured by atomic absorption spectroscopy.The rest were injected with 26Al,killed after 5,10,15,25,and 35d and 26Al contents measured by AMS.The distribution of Al as well as the correlation among the accumulation of 26Al,and the existed Al content and dementia was studied.

  7. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  8. Optimized electron-optical system of a static mass-spectrometer for simultaneous isotopic and chemical analysis

    Science.gov (United States)

    Gall', L. N.; Masyukevich, S. V.; Sachenko, V. D.; Gall', N. R.

    2016-01-01

    A new approach to control the linear dimensions of analytical electrophysical systems is suggested. This approach uses the lens properties of electron-optical elements with a curvilinear axis. It is shown that such an approach can be effectively applied, in particular, to synthesize ion-optical systems (IOSs) for static magnetic mass spectrometers and can be implemented owing to off-axis fundamental points, the "poles" of an electron-optical system, introduced earlier by one of the authors. The capabilities of the new approach are demonstrated with the synthesis of the IOS of a static mass spectrometer dedicated for isotopic and chemical analysis with an increased resolution. A new IOS not only provides desired high ion-optical parameters at decreased dimensions of the mass spectrometer as a whole but also makes it possible to loosen requirements for the manufacturing accuracy of IOS main elements.

  9. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    Science.gov (United States)

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; Zacny, K.; Rogacki, S.; Grubisic, A.; Cornish, T.

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  10. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers

    Science.gov (United States)

    Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.

  11. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    Science.gov (United States)

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  12. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis

    Science.gov (United States)

    Hendrickson, Christopher L.; Quinn, John P.; Kaiser, Nathan K.; Smith, Donald F.; Blakney, Greg T.; Chen, Tong; Marshall, Alan G.; Weisbrod, Chad R.; Beu, Steven C.

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 ( m/Δm 50% ) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  13. Proteomic analysis of Vibrio metschnikovii under cold stress using a quadrupole Orbitrap mass spectrometer.

    Science.gov (United States)

    Jia, Juntao; Chen, Ying; Jiang, Yinghui; Li, Zhengyi; Zhao, Liqing; Zhang, Jian; Tang, Jing; Feng, Liping; Liang, Chengzhu; Xu, Biao; Gu, Peiming; Ye, Xiwen

    2015-10-01

    Vibrio metschnikovii is a food-borne pathogen found in seafood worldwide. We studied the global proteome responses of V. metschnikovii under cold stress by nano-flow ultra-high-performance liquid chromatography coupled to a quadrupole Orbitrap mass spectrometer. A total of 2066 proteins were identified, among which 288 were significantly upregulated and 572 were downregulated. Functional categorization of these proteins revealed distinct differences between cold-stressed and control cells. Quantitative reverse transcription polymerase chain reaction analysis was also performed to determine the mRNA expression levels of seventeen cold stress-related genes. The results of this study should improve our understanding of the metabolic activities of cold-adapted bacteria and will facilitate a better systems-based understanding of V. metschnikovii.

  14. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Richard Hodges, R.; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; Holmes, Vincent; Johnson, Christopher S.; Kellogg, James; Kimvilakani, Patrick; Lefavor, Matthew; Hengemihle, Jerome; Jaeger, Ferzan; Lyness, Eric; Maurer, John; Nguyen, Daniel; Nolan, Thomas J.; Noreiga, Felix; Noriega, Marvin; Patel, Kiran; Prats, Benito; Quinones, Omar; Raaen, Eric; Tan, Florence; Weidner, Edwin; Woronowicz, Michael; Gundersen, Cynthia; Battel, Steven; Block, Bruce P.; Arnett, Ken; Miller, Ryan; Cooper, Curt; Edmonson, Charles

    2014-12-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  15. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; Holmes, Vincent; Johnson, Christopher S.; Kellogg, James; Kimvilakani, Patrick; Lefavor, Matthew; Hengemihle, Jerome; Jaeger, Ferzan; Lyness, Eric; Maurer, John; Nguyen, Daniel; Nolan, Thomas; Noreiga, Felix; Noreiga, Marvin; Patel, Kiran; Prats, Benito; Quinones, Omar; Raaen, Eric; Tan, Florence; Weidner, Edwin; Woronowicz, Michael; Gundersen, Cynthia (Inventor); Battel, Steven; Block, Bruce P.; Arnett, Ken; Miller, Ryan

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  16. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis

    DEFF Research Database (Denmark)

    Williamson, James C; Edwards, Alistair V G; Verano-Braga, Thiago;

    2016-01-01

    We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods...... on both instruments, namely label-free quantitation and stable isotope labeling using isobaric tags, for studying the heat shock response in Escherichia coli. We investigated the recently reported MS3 method on the Fusion instrument and the potential of MS3-based reporter ion isolation Synchronous...... Precursor Selection (SPS) and its impact on quantitative accuracy. We confirm that the label-free approach offers a more linear response with a wider dynamic range than MS/MS-based isobaric tag quantitation and that the MS3/SPS approach alleviates but does not eliminate dynamic range compression. We...

  17. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    Science.gov (United States)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  18. Calibration of the Quadrupole Mass Spectrometer of the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Mahaffy, P. R.; Trainer, M. G.; Eigenbrode, J. L.; Franz, H. B.; Stern, J. C.; Harpold, D.; Conrad, P. G.; Raaen, E.; Lyness, E.

    2011-01-01

    The SAM suite of instruments on the "Curiosity" Rover of the Mars Science Laboratory (MSL) is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The mission of the MSL investigations is to advance beyond the successful search for aqueous transformation in surface environments at Mars toward a quantitative assessment of habitability and preservation through a series of chemical and geological measurements. The SAM suite was delivered in December 2010 (Figure 1) to the Jet Propulsion Laboratory for integration into the Curiosity Rover. We previously outlined the range of SAM solid and gas calibrations implemented or planned and here we discuss a specific set of calibration experiments to establish the response of the SAM Quadrupole Mass Spectrometer (QMS) to the four most abundant gases in the Martian atmosphere CO2, N2, Ar, and O2, A full SAM instrument description and calibration report is presently in preparation.

  19. The role of electron scattering from registration detector in the "Troitsk nu-mass" MAC-E type spectrometer

    Science.gov (United States)

    Grigorieva, P. V.; Nozik, A. A.; Pantuev, V. S.; Skasyrskaya, A. K.

    2016-10-01

    There is a proposal to search for a sterile neutrino in a few keV mass range by the "Troitsk nu-mass" facility. In order to estimate sterile neutrino mixing one needs to make precision spectrum measurements well below the endpoint using the existing electrostatic spectrometer with a magnetic adiabatic collimation, or MAC-E filter. The expected signature will be a kink in the electron energy spectrum in tritium beta-decay. In this paper we consider the systematic effect of electron backscattering on the detector used in the spectrometer. For this purpose we provide a set of Monte-Carlo simulation results of electron backscattering on a silicon detector with a thin golden window with realistic electric and magnetic fields in the spectrometer. We have found that the probability of such an effect reaches up to 20-30%. The scattered electron could be reflected backwards to the detector by electrostatic field or by magnetic mirror. There is also a few percent probability to escape from the spectrometer through its entrance. A time delay between the scattering on the detector and the return of the reflected electron can reach a couple of microseconds in the Troitsk spectrometer. Such estimations are critical for the planning upgrades of the detector and the registration electronics. All considered effects are relevant to any MAC-E type spectrometer with solid detector.

  20. Electron-Induced Dissociation of Peptides in a Triple Quadrupole Mass Spectrometer Retrofitted with an Electromagnetostatic Cell

    Science.gov (United States)

    Voinov, Valery G.; Bennett, Samuel E.; Barofsky, Douglas F.

    2015-05-01

    Dissociation of peptides induced by interaction with (free) electrons (electron-induced dissociation, EID) at electron energies ranging from near 0 to >30 eV was carried out using a radio-frequency-free electromagnetostatic (EMS) cell retrofitted into a triple quadrupole mass spectrometer. The product-ion mass spectra exhibited EID originating from electronically excited even-electron precursor ions, reduced radical cations formed by capture of low-energy electrons, and oxidized radical cations produced by interaction with high-energy electrons. The spectra demonstrate, within the limits of the triple quadrupole's resolving power, that high-energy EID product-ion spectra produced with an EMS cell exhibit essentially the same qualitative structural information, i.e., amino acid side-chain (SC) losses and backbone cleavages, as observed in high-energy EID spectra produced with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The levels of fragmentation efficiency evident in the product-ion spectra recorded in this study, as was the case for those recorded in earlier studies with FT ICR mass spectrometers, is currently at the margin of analytical utility. Given that this shortcoming can be remedied, EMS cells incorporated into QqQ or QqTOF mass spectrometers could make tandem high-energy EID mass spectrometry more widely accessible for analysis of peptides, small singly charged molecules, pharmaceuticals, and clinical samples.

  1. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    Science.gov (United States)

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  2. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    Science.gov (United States)

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species. PMID:20194777

  3. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    F. Drewnick

    2008-10-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Q-AMS and a c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  4. Highly Sensitive 14C and 3H Quantification of Biochemical Samples Using Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ognibene, T J; Vogel, J S

    2003-10-23

    Accelerator Mass Spectrometry (AMS) is an isotope ratio mass spectrometer that quantifies low levels of rare isotopes with half-lives between 10 and 10{sup 8} years. Typical sensitivities are 10{sup 6} atoms in a milligram-sized sample. AMS was originally developed for use in the geosciences as a tool to carbon date archaeological artifacts, but has applications in many fields. In the biosciences, the extreme sensitivity of AMS is used to trace nutrients, toxins and therapeutics in humans and animals using less than {micro}g/kg doses containing between 1-100 nCi of {sup 14}C. This sensitivity is used to reduce sample size, reduce chemical exposures to environmental or physiological levels, reduce radiation exposures to subjects, and/or reduce radioactive (and ''mixed'') waste. Compared to decay counting, AMS provides for a much higher measurement throughput for low activity samples. For example, a milligram-sized sample containing 1 dpm of {sup 14}C can be measured to 3% precision in several seconds. That same sample would require approximately 1 week of decay counting to obtain similar precision.

  5. A high-resolution mass spectrometer to measure atmospheric ion composition

    Directory of Open Access Journals (Sweden)

    H. Junninen

    2010-02-01

    Full Text Available In this paper we present recent achievements on developing and testing a tool to detect the composition of ambient ions in the mass/charge range up to 2000 Th. The instrument is an Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (APi-TOF, Tofwerk AG. Its mass accuracy is better than 0.002%, and the mass resolving power is 3000 Th/Th. In the data analysis, a new efficient Matlab based set of programs (tofTools were developed, tested and used. The APi-TOF was tested both in laboratory conditions and applied to outdoor air sampling in Helsinki at the SMEAR III station. Transmission efficiency calibrations showed a throughput of 0.1–0.5% in the range 100–1300 Th for positive ions, and linearity over 3 orders of magnitude in concentration was determined. In the laboratory tests the APi-TOF detected sulphuric acid-ammonia clusters in high concentration from a nebulised sample illustrating the potential of the instrument in revealing the role of sulphuric acid clusters in atmospheric new particle formation. The APi-TOF features a high enough accuracy, resolution and sensitivity for the determination of the composition of atmospheric small ions although the total concentration of those ions is typically only 400–2000 cm-3. The atmospheric ions were identified based on their exact masses, utilizing Kendrick analysis and correlograms as well as narrowing down the potential candidates based on their proton affinities as well isotopic patterns. In Helsinki during day-time the main negative ambient small ions were inorganic acids and their clusters. The positive ions were more complex, the main compounds were (polyalkyl pyridines and – amines. The APi-TOF provides a near universal interface for atmospheric pressure sampling, and this key feature will be utilized in future laboratory and field studies.

  6. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  7. On Applicability of a Miniaturised Laser Ablation Time of Flight Mass Spectrometer for Trace Elements Measurements

    Directory of Open Access Journals (Sweden)

    Marek Tulej

    2012-01-01

    Full Text Available We present results from mass spectrometric analysis of NIST standard materials and meteoritic samples conducted by a miniaturised laser ablation mass spectrometer designed for space research. The mass analyser supports investigation with a mass resolution (/Δ ≈ 500–600 and dynamic range within seven decades. Nevertheless, to maintain an optimal spectral quality laser irradiances lower than ~1 GW/cm2 are applied so far which results in a spread of RSC values. To achieve the quantitative performance of mass analyser, various effects influencing RSC factors have to be investigated. In this paper we investigate influence of laser irradiance, sampling procedure and plasma chemistry on the quantitative elemental and isotopic analysis. The studies indicate necessity for accurate control of laser characteristics and acquisition procedure. A relatively low irradiance applied causes a negligible sample damage and allows for accumulation of large number of waveforms from one sample location. The procedure yields statistically well averaged data and allows a sensitive in-depth analysis. The quantitative analyses of isotopic composition can be performed with accuracy and precision better as 1% and 2%, for isotopic patterns of elements and clusters, respectively. The numerical integration methods would be preferred to achieve more accurate results. The measurements of Allende sample yield detection of Pb isotopic pattern, nevertheless cluster species are readily observed in spectrum and make the elemental analysis of other trace elements difficult due to isobaric interferences. These detections are of a considerable interest because of possible application of the instrument for in situ elemental and isotopic analysis and radiometric dating of solids.

  8. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed

  9. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    Science.gov (United States)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  10. Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

    CERN Document Server

    Li, Guanjia; Ma, Zhongjian; Guo, Siming; Yan, Mingyang; Shi, Haoyu; Xu, Chao

    2015-01-01

    This paper described a measurement of accelerator neutron radiation field at a transport beam line of Beijing-TBF. The experiment place was be selected around a Faraday Cup with a graphite target impacted by electron beam at 2.5GeV. First of all, we simulated the neutron radiation experiment by FLUKA. Secondly, we chose six appropriate ERNMS according to their neutron fluence response function to measure the neutron count rate. Then the U_M_G package program was be utilized to unfolding experiment data. Finally, we drew a comparison between the unfolding with the simulation spectrum and made an analysis about the result.

  11. Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator

    Indian Academy of Sciences (India)

    Christof Vockenhuber; Robin Golser; Walter Kutschera; Alfred Priller; Peter Steier; Stephan Winkler; Vitaly Liechtenstein

    2002-12-01

    A 3-MV pelletron tandem accelerator is the heart of the Vienna environmental research accelerator (VERA). The original design of the beam transport components allows the transport of ions of all elements, from the lightest to the heaviest. For light ions the suppression of neighboring masses was sufficient to measure isotopic ratios of 14C/12C and 26Al/27Al as low as 10-15 and 10Be/9Be down to 10-13. To suppress neighboring masses for the heaviest radionuclides in the energy range of 10–20 MeV, the resolution of VERA was increased both by improving the ion optics of existing elements at the injection side and by installing a new high-resolution electrostatic separator at the high-energy side. Interfering ions which pass all beam filters are identified with a Bragg-type ionization detector and a high-resolution time-of-flight system. Two ultra-thin diamond-like carbon (DLC) foils are used in the start and stop detector, which substantially reduces losses due to beam straggling. This improved set up enables us to measure even the heaviest long-lived radionuclides, where stable isobaric interferences are absent (e.g. 236U and 244Pu), down to environmental levels. Moreover, the advantage of a ‘small’ and well manageable machine like VERA lies in its higher stability and reliability which allows to measure these heavy radionuclides more accurately, and also a large number of samples.

  12. High-temperature quadrupole mass spectrometer for studying vaporization from materials heated by a CO2 laser

    International Nuclear Information System (INIS)

    To evaluate the effectiveness of mass spectrometry techniques in studying vaporization from selected materials, we designed a mass spectrometer than can be used either with a continuous wave or pulsed laser heating system or with a conventional furnace heating system. Our experimental apparatus, the components of which are described in detail, consisted of a quadrupole mass spectrometer positioned in a crossed-beam configuration, controlling electronics, a data acquisition system, a vacuum system, a cryogenic collimation system, and a laser heating system. Results of mass spectral scans taken during laser pyrolysis of polymeric materials and laser vaporization of graphite were compatible with data reported in other studies. Results of mass spectral studies of laser-induced combustion in the Ti + C system are also presented

  13. Fragmentation reactions of labeled and untabeled Rhodamine B in a high-resolution Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Clemen, Martin; Gernert, Claus; Peters, Jonathan; Grotemeyer, Jürgen

    2013-01-01

    The fragmentation reactions of Rhodamine B have been investigated by the use of electrospray ionization mass spectra in a high mass resolving ion cyclotron resonance mass spectrometer. Using high resolution, it could be shown that the loss of 44 mass units from the molecular ion is due to propane; the measured masses were inconsistent with loss of carbon dioxide. These conclusions are supported using deuterium-labeled Rhodamine B. This sample again only shows the loss of fully-deuterated propane verifying the high-resolution data. These findings illustrate very clearly that the conclusions based solely on low resolution spectra were false. The general implication on fragmentations of aromatic acids is discussed.

  14. Precision measurements with the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko; Ascher, Pauline; Borgmann, Christopher; Boehm, Christine; Eliseev, Sergey; Eronen, Tommi; George, Sebastian; Kisler, Dmitry; Naimi, Sarah [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Beck, Dietrich; Herfurth, Frank; Litvinov, Yuri; Minaya Ramirez, Enrique; Neidherr, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Breitenfeldt, Martin [Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, 3001 Heverlee (Belgium); Cakirli, Burcu [University of Istanbul, Department of Physics, 34134 Istanbul (Turkey); Cocolios, Thomas Elias [University of Manchester, Manchester (United Kingdom); Herlert, Alexander Josef [FAIR GmbH, Planckstr. 1, D-64291 Darmstadt (Germany); Kowalska, Magdalena [CERN, Geneva 23, 1211 Geneva (Switzerland); Kreim, Susanne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); CERN, Geneva 23, 1211 Geneva (Switzerland); Lunney, David; Manea, Vladimir [CSNSM-IN2P3-CNRS, 91405 Orsay Campus, Bat. 104, 108 (France); Rosenbusch, Marco; Schweikhard, Lutz; Wienholtz, Frank; Wolf, Robert [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Stanja, Juliane; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany)

    2014-07-01

    The masses of exotic nuclides are among the most important input parameters for modern nuclear theory and astrophysical models. At the high-precision Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN, a multi-reflection time-of-flight mass spectrometer (MR-ToF-MS) in combination with a Bradbury-Nielsen gate (BNG) can be used to achieve high-resolution isobar purification with mass-resolving powers of 105 in a few tens of milliseconds. Furthermore, the MR-ToF device can be used as a spectrometer to determine the masses of nuclides with very low yields and short half-lives, where a Penning-trap mass measurement becomes impractical due to the lower transport efficiency and decay losses during the purification and measurement cycles. Recent cross-check experiments show that the MR-ToF MS allows mass measurements with uncertainties in the sub-ppm range. In a first application the mass measurements of the nuclides 53,54Ca was performed, delivered with production rates as low as 10/s and half-lives of only 90(6) ms. The nuclides serve as important benchmarks for testing modern chiral effective theory with realistic 3-body forces. The contribution presents the on-line mass spectrometer ISOLTRAP focusing on the new applications, which became possible after the implementation of the MR-ToF MS into the current setup. In particular, the mass measurements of the neutron-rich calcium isotopes up to A=54 are discussed. In addition, measurements of the isotonic potassium isotopes are reported.

  15. Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions

    Directory of Open Access Journals (Sweden)

    A. M. Sage

    2007-07-01

    Full Text Available The species and chemistry responsible for secondary organic aerosol (SOA formation remain highly uncertain. Laboratory studies of the oxidation of individual, high-flux SOA precursors do not lead to particles with mass spectra (MS matching those of ambient aged organic material. And, the complexity of real organic particles challenges efforts to identify their chemical origins. We have previously hypothesized that SOA can form from the atmospheric oxidation of a large suite of precursors with varying vapor pressures. Here, we support this hypothesis by using an aerosol mass spectrometer to track the chemical evolution of diesel exhaust as it is photochemically oxidized in an environmental chamber. With explicit knowledge of the condensed-phase MS of the primary emissions from our engine, we are able to decompose each recorded MS into contributing primary and secondary spectra throughout the experiment. We find that the SOA MS becomes increasingly oxidized as a function of time, eventually reaching a final MS that closely resembles that of ambient aged organic particulate matter. This observation is consistent with the idea that lower vapor pressure, semi-volatile organic emissions can form condensable products with fewer generations of oxidation, and therefore, they form relatively less oxidized SOA very quickly.

  16. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    Science.gov (United States)

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  17. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    Science.gov (United States)

    Sigaud, L.; de Jesus, V. L. B.; Ferreira, Natalia; Montenegro, E. C.

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  18. First performance results of a mobile high-resolution MR-ToF mass spectrometer for in-situ analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Johannes; Ebert, Jens [II. Physikalisches Institut, JLU Giessen (Germany); Dickel, Timo; Plass, Wolfgang; Geissel, Hans; Haettner, Emma; Scheidenberger, Christoph [II. Physikalisches Institut, JLU Giessen (Germany); GSI, Darmstadt (Germany); Yavor, Mikhail [RAS St. Petersburg (Russian Federation)

    2012-07-01

    A mobile multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been designed, built and commissioned. While other mobile mass spectrometers are restricted to low or medium mass resolving power, this MR-TOF-MS allows for the first time for a mass resolving power exceeding 100.000 and a sub ppm accuracy in a transportable format. It can thus resolve isobars and enables to accurately determine the composition and structure of biomolecules. An atmospheric pressure interface provides compatibility to various atmospheric ion sources. The mass spectrometer part comprises an RFQ mass filter, ion cooler, ion trap, time-of-flight analyzer and detector. Supply electronics, DAQ and control system are mounted together with the spectrometer into a single frame with a total volume of only 0.8 m{sup 3}. First results with the MR-TOF-MS are presented, and an overview of envisaged life science applications is given, such as realtime tissue recognition in electrosurgery, identification of mycotoxins and analysis of soil samples for environmental studies.

  19. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2011-07-01

    Full Text Available A single particle instrument has been developed for real-time analysis of organic aerosols. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE is ranging from 0.1 to 90 % for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. Scattered light is detected by two photomultipliers and the detected signals are used to trigger a UV excimer laser (λ = 248 nm used for laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 attograms. DOP particles were also used to test the overall functioning of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first scientific application of the instrument. Single particle mass spectra are obtained with a global hit rate of 10 %. They are found to be very different from one particle to another, reflecting chemical differences of the analyzed particles, and most of the detected mass peaks are attributed to oxidized products of indene.

  20. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  1. Field testing of lake water chemistry with a portable and an AUV-based mass spectrometer.

    Science.gov (United States)

    Hemond, Harry F; Mueller, Amy V; Hemond, Michael

    2008-10-01

    Two mass spectrometers (MS) are tested for the measurement of volatile substances, such as hydrocarbons and metabolic gases, in natural waters. KOALA is a backpackable MS operated from above the water surface, in which samples are pumped through a flow cell using a syringe. NEREUS is an underwater instrument hosted by an autonomous underwater vehicle (AUV) that is linked to a communications network to provide chemical data in real time. The mass analyzers of the two MS are nearly identical cycloids, and both use flat-plate membrane inlets. Testing took place in an eutrophic, thermally stratified lake exhibiting steep chemical gradients and significant levels of methane. KOALA provided rapid multispecies analysis of dissolved gases, with a detection limit for methane of 0.1 ppm (readily extendable to 0.01 ppm) and savings of time of at least a factor of 10 compared to that of conventional analysis. The AUV-mounted NEREUS additionally provided rapid spatial coverage and the capability of performing chemical surveys autonomously. Tests demonstrated the need for temperature control of a membrane inlet when steep thermal gradients are present in a water body, as well as the benefits of co-locating all sensors on the AUV to avoid interference from chemically different waters entering and draining from the free-flooding outer hull. The ability to measure dissolved volatiles provided by MS offers potential for complementarity with ionic sensors in the study of natural waters, such as in the case of the carbonate system.

  2. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules.

    Science.gov (United States)

    Hopfgartner, Gérard; Varesio, Emmanuel; Tschäppät, Viviane; Grivet, Chantal; Bourgogne, Emmanuel; Leuthold, Luc Alexis

    2004-08-01

    Recently, linear ion traps (LITs) have been combined with quadrupole (Q), time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). LITs can be used either as ion accumulation devices or as commercially available, stand-alone mass spectrometers with MSn capabilities. The combination of triple quadrupole MS with LIT technology in the form of an instrument of configuration QqLIT, using axial ejection, is particularly interesting, because this instrument retains the classical triple quadrupole scan functions such as selected reaction monitoring (SRM), product ion (PI), neutral loss (NL) and precursor ion (PC) while also providing access to sensitive ion trap experiments. For small molecules, quantitative and qualitative analysis can be performed using the same instrument. In addition, for peptide analysis, the enhanced multiply charged (EMC) scan allows an increase in selectivity, while the time-delayed fragmentation (TDF) scan provides additional structural information. Various methods of operating the hybrid instrument are described for the case of the commercial Q TRAP (AB/MDS Sciex) and applications to drug metabolism analysis, quantitative confirmatory analysis, peptides analysis and automated nanoelectrospray (ESI-chip-MS) analysis are discussed. PMID:15329837

  3. Interlaboratory comparison for boron isotope ratio measurement with inductively coupled plasma-quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Boron isotope ratios were analyzed in seven domestic analytical labs for boric acid solutions with various compositions of boron isotope abundances, using an Inductively Coupled Plasma-Quadrupole Mass Spectrometer (ICP-QMS). Five sample solutions with different isotope abundances of 10B were prepared in the range of 10 to 20 % by mixing two boric acid solutions containing natural B and enriched 11B, respectively. Then, the 10B isotope abundances of each sample were certified by analyzing with thermal ionization mass spectrometry (TI-MS) according to ASTM-C791-04. Results obtained from each lab have indicated good coincidences with TI-MS results. Also, the relative standard deviations of results with ICP-QMS of seven analytical labs were 0.11 to 0.81 %. The measurement precision for ICP-QMS would be sufficient in terms of practical use, while taking into consideration a valid requirement required for verifying a depletion of the 10B isotope abundance in the PWR coolant, while this is greater than a nominal analytical error (relative value : 0.22 %) for TI-MS shown in ASTM-C791-04. (author)

  4. MSM, an Efficient Workflow for Metabolite Identification Using Hybrid Linear Ion Trap Orbitrap Mass Spectrometer

    Science.gov (United States)

    Cho, Robert; Huang, Yingying; Schwartz, Jae C.; Chen, Yan; Carlson, Timothy J.; Ma, Ji

    2012-05-01

    Identification of drug metabolites can often yield important information regarding clearance mechanism, pharmacologic activity, or toxicity for drug candidate molecules. Additionally, the identification of metabolites can provide beneficial structure-activity insight to help guide lead optimization efforts towards molecules with optimal metabolic profiles. There are challenges associated with detecting and identifying metabolites in the presence of complex biological matrices, and new LC-MS technologies have been developed to meet these challenges. In this report, we describe the development of an experimental approach that applies unique features of the hybrid linear ion trap Orbitrap mass spectrometer to streamline in vitro and in vivo metabolite identification experiments. The approach, referred to as MSM, utilizes multiple collision cells, dissociation methods, mass analyzers, and detectors. With multiple scan types and different dissociation modes built into one experimental method, along with flexible post-acquisition analysis options, the MSM workflow offers an attractive option to fast and reliable identification of metabolites in different kinds of in vitro and in vivo samples. The MSM workflow was successfully applied to metabolite identification analysis of verapamil in both in vitro rat hepatocyte incubations and in vivo rat bile samples.

  5. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  6. Advanced Ion Mass Spectrometer for Giant Planet Ionospheres, Magnetospheres and Moons

    Science.gov (United States)

    Sittler, EC; Cooper, JF; Paschalidis, N.; Jones, SL; Rodriguez, M.; Ali, A.; Coplan, MA; Chornay, DJ; Sturner; Bateman, FB; Andre, N.; Fedorov, A.; Wurz, P.

    2015-10-01

    The Advanced Ion Composition Spectrometer (AIMS) has been under development from various NASA sources (NASA LWSID, NASA ASTID, NASA Goddard IRADs) to measure elemental, isotopic, and simple molecular composition abundances of 1 eV/e to 25 keV/e hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ΔM ≤ 60 over a wide dynamic range of intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft with wide field-of-view capability in both cases. It will measure the ion velocity distribution functions (IVDF) for the individual ion species; ion velocity moments of the IVDF will give the fluid parameters (density, flow velocity and temperature) of the individual ion species. Outer planet mission applications are Io Observer, Jupiter Europa Orbiter/Europa Clipper, Enceladus Orbiter, and Uranus Orbiter as described in the decadal survey, but would also be valuable for inclusion on other missions to outer planet destinations such as Saturn- Titan and Neptune-Triton and for future missions to terrestrial planets, Venus and Mars, the Moon, asteroids, and comets, and of course for geospace applications to the Earth.

  7. Functional residual capacity measurements in healthy infants: ultrasonic flow meter versus a mass spectrometer.

    Science.gov (United States)

    Pillow, J J; Ljungberg, H; Hülskamp, G; Stocks, J

    2004-05-01

    Accurate, reproducible and portable bedside monitoring of lung volume could potentially facilitate the early recognition of both under and overinflation of the lungs in ventilated and nonventilated subjects. This study asked whether a prototype portable ultrasonic flow meter provided valid and reliable measurements of functional residual capacity (FRCUS) when compared to those obtained using a mass spectrometer (FRCMS) in nonventilated healthy infants. Paired, randomised measurements of FRCMS and FRCUS were obtained using the sulphur hexafluoride (SF6) multiple-breath washout technique in 23 healthy infants with a median (range) postnatal age of 34.6 (1.3-92.6) weeks and weight of 8.3 (3.9-11.7) kg. FRCUS was on average 5.7%, (95% CI: 1.0-10.4%) less than FRCMS equating to a difference of approximately 1 mL x kg(-1). The 95% limits of agreement (LA) between the two techniques were relatively wide (95% LA: -17.5% to 29%), although in keeping with previously reported within-patient variability for lung volume measurements. There was no significant difference between the within subject coefficient of variation for FRCMS (3.7%) and FRCUS (5.2%). The ultrasonic flow meter used in this study provides repeatable measurements of functional residual capacity in spontaneously breathing healthy infants that approximate those obtained during mass spectrometry. PMID:15176694

  8. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    Ş Şentürk; F Demiray; O Özsoy

    2007-09-01

    Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.

  9. Evaluating Mass Analyzers as Candidates for Small, Portable, Rugged Single Point Mass Spectrometers for Analysis of Permanent Gases

    Science.gov (United States)

    Arkin, C. Richard; Ottens, Andrew K.; Diaz, Jorge A.; Griffin, Timothy P.; Follestein, Duke; Adams, Fredrick; Steinrock, T. (Technical Monitor)

    2001-01-01

    For Space Shuttle launch safety, there is a need to monitor the concentration of H2, He, O2 and Ar around the launch vehicle. Currently a large mass spectrometry system performs this task, using long transport lines to draw in samples. There is great interest in replacing this stationary system with several miniature, portable, rugged mass spectrometers which act as point sensors which can be placed at the sampling point. Five commercial and two non-commercial analyzers are evaluated. The five commercial systems include the Leybold Inficon XPR-2 linear quadrupole, the Stanford Research (SRS-100) linear quadrupole, the Ferran linear quadrupole array, the ThermoQuest Polaris-Q quadrupole ion trap, and the IonWerks Time-of-Flight (TOF). The non-commercial systems include a compact double focusing sector (CDFMS) developed at the University of Minnesota, and a quadrupole ion trap (UF-IT) developed at the University of Florida. The System Volume is determined by measuring the entire system volume including the mass analyzer, its associated electronics, the associated vacuum system, the high vacuum pump and rough pump. Also measured are any ion gauge controllers or other required equipment. Computers are not included. Scan Time is the time required for one scan to be acquired and the data to be transferred. It is determined by measuring the time required acquiring a known number of scans and dividing by said number of scans. Limit of Detection is determined first by performing a zero-span calibration (using a 10-point data set). Then the limit of detection (LOD) is defined as 3 times the standard deviation of the zero data set. (An LOD of 10 ppm or less is considered acceptable.)

  10. Human folate metabolism using 14C-accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arjomand, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duecker, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zulim, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogel, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  11. Ion source memory in {sup 36}Cl accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Merchel, Silke; Rugel, Georg [HZDR, Dresden (Germany); Arnold, Maurice; Aumaitre, Georges; Bourles, Didier; Martschini, Martin [ASTER, Aix-en-Provence (France); Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Steier, Peter [VERA, Vienna (Austria)

    2013-07-01

    Since the DREAMS (Dresden Accelerator Mass Spectrometry) facility went operational in 2011, constant effort was put into enabling routine measurements of long-lived radionuclides as {sup 10}Be, {sup 26}Al and {sup 41}Ca. For precise AMS-measurements of the volatile element Cl the key issue is the minimization of the long term memory effect. For this purpose one of the two original HVE sources was mechanically modified, allowing the usage of bigger cathodes with individual target apertures. Additionally a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, a small inter-laboratory comparison had been initiated. The long-term memory effect in the Cs sputter ion sources of the AMS facilities VERA, ASTER and DREAMS had been investigated by running samples of natural {sup 35}Cl/{sup 37}Cl-ratio and samples containing highly enriched {sup 35}Cl({sup 35}Cl/{sup 37}Cl > 500). Primary goals of the research are the time constants of the recovery from the contaminated sample ratio to the initial ratio of the sample and the level of the long-term memory effect in the sources.

  12. Biomass carbon-14 ratio measured by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Measurement methods of a biomass carbon ratio in biomass products based on 14C-radiocarbon concentration have been reviewed. Determination of the biomass carbon ratio in biomass products is important to secure the reliance in the commercial market, because the 'biomass products' could contain products from petroleum. The biomass carbon ratio can be determined from percent Modern Carbon (pMC) using ASTM D6866 methods. The pMC value is calculated from the comparison between the 14C in sample and 14C in reference material. The 14C concentration in chemical products can be measured by liquid scintillation counter (LSC) and accelerator mass spectrometry (AMS). LSC can be applicable to determine the biomass carbon ratio for liquid samples such as gasoline with bioethanol (E5 or E10). On the other hand, AMS can be used to determine the biomass carbon ratio for almost all kinds of organic and inorganic compounds such as starch, cellulose, ethanol, gasoline, or polymer composite with inorganic fillers. AMS can accept the gaseous and solid samples. The graphite derived from samples included in solid phase is measured by AMS. The biomass carbon of samples derived from wood were higher than 100% due to the effect of atomic bomb test in the atmosphere around 1950 which caused the artificial 14C injection. Exact calculation methods of the biomass carbon ratio from pMC will be required for the international standard (ISO standard). (author)

  13. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    Science.gov (United States)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  14. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  15. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Matthew George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adamic, Mary Louise [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, John Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baeck, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, R. V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hahn, P. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jenson, D. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lister, T. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  16. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Matthew George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adamic, Mary Louise [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, John Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baeck, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, R. V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hahn, P. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jenson, D. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lister, T. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS. All with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  17. Development of a time-of-flight mass spectrometer for ion desorption studies at HiSOR

    CERN Document Server

    Fujii, K; Nakashima, Y; Waki, S; Sardar, S A; Yasui, Y; Wada, S I; Sekitani, T; Tanaka, K

    2001-01-01

    We have developed a time-of-flight mass spectrometer which is now under operation at HiSOR storage ring for research of photon stimulated ion desorption (PSID). The employment of the pulsed high voltage method as a trigger allowed us to perform the investigations at a multi bunch operation of the storage ring. The performance of this spectrometer was evaluated by applying to the PSID measurements of PMMA (poly-methylmethacrylate) thin films. The results are compared with those obtained at Photon Factory by using pulsed synchrotron radiation in a single bunch operation. The capabilities of the apparatus for ion desorption studies are discussed.

  18. Pushing the accelerator - speeding up drug research with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garner, R.C. E-mail: colin.garner@cbams.co.uk; Leong, D

    2000-10-01

    Accelerator mass spectrometry (AMS) is the most sensitive analytical method yet developed for elemental isotope analysis and has a broad range of applications. The measurement of {sup 14}C is of most interest to biomedical researchers but few studies have been reported using AMS in drug discovery and development. For biomedical use, {sup 14}C is incorporated into organic molecules by either radiosynthesis or biosynthetically and the isotope is used as a surrogate for the distribution of the radiolabelled molecule either in animal or human studies. The majority of users of {sup 14}C quantitate the radioactivity using decay counting usually with a liquid scintillation counter (LSC). Our Centre over the past 12 months has been evaluating and validating the use of AMS as an alternative detection method. In vitro spiking studies of human plasma with {sup 14}C-Fluconazole, a prescription antifungal drug has demonstrated an excellent correlation between AMS and LSC (correlation coefficient 0.999). Human Phase I clinical studies have been conducted with radioactive doses ranging from 120 Bq (7000 dpm) to 11 kBq (300 nCi) to provide mass balance, plasma concentration and radioactive metabolite profiling data. Limits of detection of 0.00022 Bq {sup 14}C-labelled drug/ml plasma have been accurately quantitated in a plasma background of 0.0078 Bq/ml (0.013 dpm/ml in a plasma background of 0.47 dpm/ml or 2.72 pMC in a background of 90.19 pMC)

  19. Standard practice for leaks using the mass spectrometer leak detector in the detector probe mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10−7 Pa m3/s (1 × 10−8 Std cm3/s) or greater. The test may be conducted on any device or component across which a pressure differential of helium or other suitable tracer gas may be created, and on which the effluent side of the leak to be tested is accessible for probing with the mass spectrometer sampling probe. 1.2 Two test methods are described: 1.2.1 Test Method A—Direct probing, and 1.2.2 Test Method B—Accumulation. 1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this sta...

  20. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

    Science.gov (United States)

    Wong, Michael H; Atreya, Sushil K; Mahaffy, Paul N; Franz, Heather B; Malespin, Charles; Trainer, Melissa G; Stern, Jennifer C; Conrad, Pamela G; Manning, Heidi L K; Pepin, Robert O; Becker, Richard H; McKay, Christopher P; Owen, Tobias C; Navarro-González, Rafael; Jones, John H; Jakosky, Bruce M; Steele, Andrew

    2013-01-01

    [1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL. PMID:26074632

  1. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  2. Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buchholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Enright, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCartt, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Malfatti, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ognibene, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loots, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-08

    The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integrated HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory

  3. Using accelerator mass spectrometry for radiocarbon dating of textiles

    Energy Technology Data Exchange (ETDEWEB)

    Jull, A.J.T.

    1997-12-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residence ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.

  4. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer.

    Science.gov (United States)

    Tang, Hui; Fang, Huasheng; Yin, Eric; Brasier, Allan R; Sowers, Lawrence C; Zhang, Kangling

    2014-06-01

    Histone acetylation and methylation play an important role in the regulation of gene expression. Irregular patterns of histone global acetylation and methylation have frequently been seen in various diseases. Quantitative analysis of these patterns is of high value for the evaluation of disease development and of outcomes from therapeutic treatment. Targeting histone acetylation and methylation by selected reaction monitoring (SRM) is one of the current quantitative methods. Here, we reported the use of the multiplexed parallel reaction monitoring (PRM) method on the QExactive mass spectrometer to target previously known lysine acetylation and methylation sites of histone H3 and H4 for the purpose of establishing precursor-product pairs for SRM. 55 modified peptides among which 29 were H3 K27/K36 modified peptides were detected from 24 targeted precursor ions included in the inclusion list. The identification was carried out directly from the trypsin digests of core histones that were separated without derivatization on a homemade capillary column packed with Waters YMC ODS-AQ reversed phase materials. Besides documenting the higher-energy c-trap dissociation (HCD) MS(2) spectra of previously known histone H3/H4 acetylated and methylated tryptic peptides, we identified novel H3 K18 methylation, H3 K27 monomethyl/acetyl duel modifications, H2B K23 acetylation, and H4 K20 acetylation in mammalian histones. The information gained from these experiments sets the foundation for quantification of histone modifications by targeted mass spectrometry methods directly from core histone samples. PMID:24823915

  5. The future of the accelerator mass spectrometry of rare long-lived radioactive isotopes

    International Nuclear Information System (INIS)

    Accelerators, originally designed for nuclear physics, can be added to mass spectrometric apparatus to increase the sensitivity so that isotope ratios in the range 10-12 to 10-15 can be measured routinely. This significant improvement of high-sensitivity mass spectrometry has been called Accelerator Mass Spectrometry. The present article addresses the basic principles of accelerator mass spectrometry and some recent applications which show its versatility. In particular, it is noted that accelerator mass spectrometry could play an increasing role in the measurement of the levels of long lived radioactivities in the environment, including the actinides, which result from human activities such as the use of nuclear power. To fulfill this promise, continued research and development is necessary to provide ion sources, various types of heavy ion accelerators and peripheral magnetic and electric analysers. (N.K.)

  6. Measurement of Uranium Isotopes in Particles of U3O8 by Secondary Ion Mass Spectrometry-Single-Stage Accelerator Mass Spectrometry (SIMS-SSAMS).

    Science.gov (United States)

    Fahey, Albert J; Groopman, Evan E; Grabowski, Kenneth S; Fazel, Kamron C

    2016-07-19

    A commercial secondary ion mass spectrometer (SIMS) was coupled to a ± 300 kV single-stage accelerator mass spectrometer (SSAMS). Positive secondary ions generated with the SIMS were injected into the SSAMS for analysis. This combined instrument was used to measure the uranium isotopic ratios in particles of three certified reference materials (CRM) of uranium, CRM U030a, CRM U500, and CRM U850. The ability to inject positive ions into the SSAMS is unique for AMS systems and allows for simple analysis of nearly the entire periodic table because most elements will readily produce positive ions. Isotopic ratios were measured on samples of a few picograms to nanograms of total U. Destruction of UH(+) ions in the stripper tube of the SSAMS reduced hydride levels by a factor of ∼3 × 10(4) giving the UH(+)/U(+) ratio at the SSAMS detector of ∼1.4 × 10(-8). These hydride ion levels would allow the measurement of (239)Pu at the 10 ppb level in the presence of U and the equivalent of ∼10(-10 236)U concentration in natural uranium. SIMS-SSAMS analysis of solid nuclear materials, such as these, with signals nearly free of molecular interferences, could have a significant future impact on the way some measurements are made for nuclear nonproliferation.

  7. Measurement of Uranium Isotopes in Particles of U3O8 by Secondary Ion Mass Spectrometry-Single-Stage Accelerator Mass Spectrometry (SIMS-SSAMS).

    Science.gov (United States)

    Fahey, Albert J; Groopman, Evan E; Grabowski, Kenneth S; Fazel, Kamron C

    2016-07-19

    A commercial secondary ion mass spectrometer (SIMS) was coupled to a ± 300 kV single-stage accelerator mass spectrometer (SSAMS). Positive secondary ions generated with the SIMS were injected into the SSAMS for analysis. This combined instrument was used to measure the uranium isotopic ratios in particles of three certified reference materials (CRM) of uranium, CRM U030a, CRM U500, and CRM U850. The ability to inject positive ions into the SSAMS is unique for AMS systems and allows for simple analysis of nearly the entire periodic table because most elements will readily produce positive ions. Isotopic ratios were measured on samples of a few picograms to nanograms of total U. Destruction of UH(+) ions in the stripper tube of the SSAMS reduced hydride levels by a factor of ∼3 × 10(4) giving the UH(+)/U(+) ratio at the SSAMS detector of ∼1.4 × 10(-8). These hydride ion levels would allow the measurement of (239)Pu at the 10 ppb level in the presence of U and the equivalent of ∼10(-10 236)U concentration in natural uranium. SIMS-SSAMS analysis of solid nuclear materials, such as these, with signals nearly free of molecular interferences, could have a significant future impact on the way some measurements are made for nuclear nonproliferation. PMID:27321905

  8. Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer TRIGA-TRAP

    Science.gov (United States)

    Ketelaer, J.; Audi, G.; Beyer, T.; Blaum, K.; Block, M.; Cakirli, R. B.; Casten, R. F.; Droese, C.; Dworschak, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Minaya Ramirez, E.; Nagy, Sz.; Neidherr, D.; Nörtershäuser, W.; Smorra, C.; Wang, M.

    2011-07-01

    The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard C12. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3-4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are discussed in the context of valence proton-neutron interactions using double differences of binding energies, δVpn(Z,N).

  9. Improved Ion Optics for Introduction of Ions into a 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Science.gov (United States)

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2014-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  10. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  11. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer.

    Science.gov (United States)

    Niemann, H B; Atreya, S K; Carignan, G R; Donahue, T M; Haberman, J A; Harpold, D N; Hartle, R E; Hunten, D M; Kasprzak, W T; Mahaffy, P R; Owen, T C; Way, S H

    1998-09-25

    The Galileo probe mass spectrometer determined the composition of the Jovian atmosphere for species with masses between 2 and 150 amu from 0.5 to 21.1 bars. This paper presents the results of analysis of some of the constituents detected: H2, He, Ne, Ar, Kr, Xe, CH4, NH3, H2O, H2S, C2 and C3 nonmethane hydrocarbons, and possibly PH3 and Cl. 4He/H2 in the Jovian atmosphere was measured to be 0.157 +/- 0.030. 13C/C12 was found to be 0.0108 +/- 0.0005, and D/H and 3He/4He were measured. Ne was depleted, < or = 0.13 times solar, Ar < or = 1.7 solar, Kr < or = 5 solar, and Xe < or = 5 solar. CH4 has a constant mixing ratio of (2.1 +/- 0.4) x 10(-3) (12C, 2.9 solar), where the mixing ratio is relative to H2. Upper limits to the H2O mixing ratio rose from 8 x 10(-7) at pressures <3.8 bars to (5.6 +/- 2.5) x 10(-5) (16O, 0.033 +/- 0.015 solar) at 11.7 bars and, provisionally, about an order of magnitude larger at 18.7 bars. The mixing ratio of H2S was <10(-6) at pressures less than 3.8 bars but rose from about 0.7 x 10(-5) at 8.7 bars to about 7.7 x 10(-5) (32S, 2.5 solar) above 15 bars. Only very large upper limits to the NH3 mixing ratio have been set at present. If PH3 and Cl were present, their mixing ratios also increased with pressure. Species were detected at mass peaks appropriate for C2 and C3 hydrocarbons. It is not yet clear which of these were atmospheric constituents and which were instrumentally generated. These measurements imply (1) fractionation of 4He, (2) a local, altitude-dependent depletion of condensables, probably because the probe entered the descending arm of a circulation cell, (3) that icy planetesimals made significant contributions to the volatile inventory, and (4) a moderate decrease in D/H but no detectable change in (D + 3He)/H in this part of the galaxy during the past 4.6 Gyr. PMID:11543372

  12. Direct Chemical Analysis of Solids by Laser Ablation in an Ion-Storage Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Grant, P M; Andresen, B D; Russo, R E

    2003-09-29

    A laser ablation/ionization mass spectrometer system is described for the direct analysis of solids, particles, and fibers. The system uses a quadrupole ion trap operated in an ion-storage (IS) mode, coupled with a reflectron time-of-flight mass spectrometer (TOF-MS). The sample is inserted radially into the ring electrode and an imaging system allows direct viewing and selected analysis of the sample. Measurements identified trace contaminants of Ag, Sn, and Sb in a Pb target with single laser-shot experiments. Resolution (m/{micro}m) of 1500 and detection limits of approximately 10 pg have been achieved with a single laser pulse. The system configuration and related operating principles for accurately measuring low concentrations of isotopes are described.

  13. Airborne observations of formic acid using a chemical ionization mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2012-12-01

    Full Text Available The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I reagent ions. The I ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer.

    In-flight standard addition calibrations from a formic acid source were used to determine the instrument sensitivity of 35 ± 6 ion counts pptv−1 s−1 and a limit of detection of 25 pptv. Routine measurements were made through a scrubbed inlet to determine the instrumental background. Three plumes of formic acid were observed over the UK, originating from London, Humberside and Tyneside. The London plume had the highest formic acid mixing ratio throughout the flight, peaking at 358 pptv. No significant correlations of formic acid with NOx and ozone were found, but a positive correlation was observed between CO and HCOOH within the two plumes where coincident data were recorded.

    A trajectory model was employed to determine the sources of the plumes and compare modelled mixing ratios with measured values. The model underestimated formic acid concentrations by up to a factor of 2. This is explained by missing sources in the model, which were considered to be both primary emissions of formic acid of mainly anthropogenic origin and a lack of precursor emissions, such as isoprene, from biogenic sources, whose oxidation in situ would lead to formic acid formation.

  14. Determining Solubility and Diffusivity by Using a Flow Cell Coupled to a Mass Spectrometer.

    Science.gov (United States)

    Khodayari, Mehdi; Reinsberg, Philip; Abd-El-Latif, Abd-El-Aziz A; Merdon, Christian; Fuhrmann, Juergen; Baltruschat, Helmut

    2016-06-01

    One of the main challenges in metal-air batteries is the selection of a suitable electrolyte that is characterized by high oxygen solubility, low viscosity, a liquid state and low vapor pressure across a wide temperature range, and stability across a wide potential window. Herein, a new method based on a thin layer flow through cell coupled to a mass spectrometer through a porous Teflon membrane is described that allows the determination of the solubility of volatile species and their diffusion coefficients in aqueous and nonaqueous solutions. The method makes use of the fact that at low flow rates the rate of species entering the vacuum system, and thus the ion current, is proportional to the concentration times the flow rate (c⋅u) and independent of the diffusion coefficient. The limit at high flow rates is proportional to D2/3·c·u1/3 . Oxygen concentrations and diffusion coefficients in aqueous electrolytes that contain Li(+) and K(+) and organic solvents that contain Li(+) , K(+) , and Mg(2+) , such as propylene carbonate, dimethyl sulfoxide tetraglyme, and N-methyl-2-pyrrolidone, have been determined by using different flow rates in the range of 0.1 to 80 μL s(-1) . This method appears to be quite reliable, as can be seen by a comparison of the results obtained herein with available literature data. The solubility and diffusion coefficient values of O2 decrease as the concentration of salt in the electrolyte was increased due to a "salting out" effect. PMID:27017297

  15. Establishing and Monitoring an Aseptic Workspace for Building the MOMA Mass Spectrometer

    Science.gov (United States)

    Lalime, Erin

    2016-01-01

    Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the ESA ExoMars 2018 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). As MOMA-MS is a life-detection instrument and it thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 sporem2 is allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three cleanrooms with varying levels of bioburden control. The Aseptic Assembly Cleanroom has the highest level of control, applying three different bioburden reducing methods: 70 IPA, 7.5 Hydrogen Peroxide, and Ultra-Violet C light. The three methods are used in rotation and each kills microbes by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Cleanrooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of cleanrooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and DHMR verification. The cleanrooms are monitored both for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic the other cleanroom.

  16. Developments of remote-controlled Electron Probe Micro Analyzer and Secondary Ion Mass Spectrometer

    International Nuclear Information System (INIS)

    The remote controlled Electron Probe Micro Analyzer (EPMA) and Secondary Ion Mass Spectrometer (SIMS) which were shielded by each lead box have been developed to study and research the characteristics of highly irradiated fuel pellets and cladding tubes. EPMA and SIMS are utilized to investigate the distribution or composition of fission products (FP) and intermetallic compounds, etc. in detail. This paper describes the summary of these instruments and the example of applications. As a sample is automatically transferred by rack-and-pinion, which was specially designed in each instrument, from the sample handling cell to the analytical chambers, the outer surface of instruments has no radioactive contamination. It means the maintenance of instruments is easy and speedy. EPMA was installed in 1991, and had been applied to examinations of irradiated fuel pellets and cladding tubes. SIMS is under a mock-up-test using unirradiated samples. This instrument has several features as shown below. (1) Cs+ ion gun and 02+ ion gun were attached to the analytical chamber. The minimum diameter of CS+ ion beam is ≤ 0.2 μm and that of 02+ ion beam is ≤ 2 μm. Ion guns will be suitably selected according to the analytical elements or the size of analytical area, etc. (2) Auger electron spectroscopy (AES) other than SIMS was attached. This makes possible speedy quantitative analysis to supplement the results of SIMS. (3) The compact machine which fractures a specimen by tensile tension was attached to AES chamber. The clean surface fractured under ultrahigh vacuum condition can be analyzed. (author). 9 refs, 9 figs, 1 tab

  17. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  18. On-line monitoring of control rod integrity in BWRs using a mass spectrometer

    Science.gov (United States)

    Larsson, I.; Loner, H.; Ammon, K.; Sihver, L.; Ledergerber, G.

    2013-01-01

    Surveillance of fuel and control rod integrity in the core of a boiling water reactor is essential for maintaining a safe and reliable operation. Control rods of a boiling water reactor are mainly filled with boron carbide as a neutron absorber. Due to the irradiation of boron with neutrons, a continuous production of lithium and helium will occur inside a control rod. Most of the created helium will be retained in the boron carbide lattice; however a small part will escape into the void volume of the control blade. Therefore the integrity of control rods during operation can efficiently be followed by on-line measurements of helium concentration in the reactor off-gas system using a mass spectrometer. Since helium is a fill gas in fuel rods, the same method is a useful early warning system for primary fuel failures. In this paper, we introduce an on-line helium detector system which is installed at the nuclear power plant in Leibstadt. Furthermore the measuring experiences of control rod failure detection at the plant are presented. Different causes of increased helium levels in the off-gas system have been distinguished. There are spontaneous helium releases as well as helium releases caused by changed conditions in the reactor (power reduction, control rod movement, etc.). Helium peaks can also be characterized according to the released amount of helium, the peak shape and the duration of the release, which leads to different interpretations of the release mechanisms. In addition, the measured amount of released helium from a 50 days period (280 l) is also compared to the calculated amount of produced helium from the washed out boron during the same time period (190 l).

  19. Analysis of the fatty acid composition of taraxicuum officinale flowers oil by gas chromatography mass spectrometer

    International Nuclear Information System (INIS)

    Taraxicum officinale, is a highly valuable medicinal plant. The roots is an important herbal drug, having long been used on the continent as a remedy for liver complaints. Keeping in view the importance and wide applications in the pharmaceutical industries, the present study was therefore aimed to analyze the chemical constituents of the flowers of T. officinale. The T. officinale flowers oil constituents of methyl ester derivatives of fatty acids were analyzed applying gas chromatography coupled to mass spectrometer. The results obtained showed the presence of both containing the saturated as well as unsaturated fatty acids in T. officinale flower oils. A total of 19 different components were identified and quantified. The concentration level of Methyl ester of Lenolenic acid was found very effective in concentration 3.33%, among the identified analytes of interest. In addition, the level of other chemical constituents of methyl ester of palmitic acid 3.11%, myristic acid 1.87, linolenic acids 1.67%, stearic acid 0.97 were found. The concentration level of the rest of identified fatty acids analytes were below 1%. Thus the results obtained from the current initiative is very promising due to the presence of high percentage of valuable analytes concentrations recorded in the fatty acid of T. officinale flower oil. Thus due to the presence of highly important analytes which have increased their importance for consumption in the pharmaceuticals as well as its applications in the new formulations for different skin, cosmetics and health purposes and for use by local practioners. The study will also provide a scientific database line. (author)

  20. Detection of meteoric smoke particles in the mesosphere by a rocket-borne mass spectrometer

    Science.gov (United States)

    Robertson, Scott; Dickson, Shannon; Horányi, Mihaly; Sternovsky, Zoltan; Friedrich, Martin; Janches, Diego; Megner, Linda; Williams, Bifford

    2014-10-01

    their number density is also reduced, perhaps as a consequence of photodetachment. Modeling of the charge state of the MSPs shows that the total number density of MSPs, charged and uncharged, is approximately 20,000 cm-3 below the ledge and the model reproduces the absence of positive MSPs above the ledge. An aerosol mass spectrometer was flown on 2 sounding rockets (day and night, 2011). Charged meteoric smoke particles (MSPs)were detected at altitudes of 63-94 km. The detected MSPs have radii less than 1.2 nm (8000 amu). MSPs above ~80 km are all negatively charged; both charge states occur below 80 km. MSP charge densities are lower during the daytime than nighttime.

  1. A Dual Source Ion Mobility-Mass Spectrometer for Direct Comparison of ESI and MALDI Collision Cross Section Measurements

    OpenAIRE

    Sundarapandian, Sevugarajan; May, Jody C.; McLean, John A.

    2010-01-01

    In this report, we describe a dual ionization source ion mobility-mass spectrometer (IM-MS) instrument platform for investigations that critically compare ion mobility collision cross section (CCS) measurements obtained from different ionization methods. The instrument incorporates both matrix-assisted laser desorption ionization (MALDI) and nano-electrospray ionization (nESI) sources. The nESI source incorporates a keyhole geometry ion funnel design which facilitates axial ion focusing, accu...

  2. Charging characteristics of Dynamic Explorer I Retarding Ion Mass Spectrometer and the consequence for core plasma measurements

    OpenAIRE

    Olsen, Richard Christopher

    1989-01-01

    Approved for public release; distribution is unlimited. The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer I (DE I) satellite has provided a new range of data, and challenges for studies of the core plasma of the magnetosphere. Analysis of the RIMS data provides a measure of the satellite potential in the inner magnetosphere. As the satellite leaves the inner plasmasphere, it begins to charge positively, crossing the 0 V mark at about 1000/cc. The potential rises slowly in...

  3. Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. H. Erickson

    2012-02-01

    Full Text Available A new approach was developed to measure the total abundance of long chain alkanes (C12 and above in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS. These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1, monocyclic aromatics, and an ion group with formula CnH2n−1 (m/z 97, 111, 125, 139. The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 μg m−3 to 100 μg m−3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.

  4. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  5. 辉光放电质谱仪Element GD的应用%Application of Newest Glow Discharge Mass Spectrometer- Element GD

    Institute of Scientific and Technical Information of China (English)

    尹松; 王勇为; 周昕; 蒋季春; 肖陈刚

    2005-01-01

    A newest high resolution glow discharge mass spectrometer (HR-GD-MS) was developed by Thermo Electron Bremen Manufactory. Combine of a glow discharge ion source with a successful high resolution mass spectrometer, Element GD become the ultimate tool for direct analysis of conductive materials. Every part of Element GD: GD ion source, mass spectrometer, detection system and software are designed for high throughput analysis: measure 50 elements at less than 10-9 within 5 minutes. Application in microelectronics, aerospace, medical/pharmaceutical/food and nuclear will be shown.

  6. Development of a Low Power Gas Chromatograph-Mass Spectrometer for In-Situ Detection of Organics in Martian Soil

    Science.gov (United States)

    Pinnick, Veronica; Buch, Arnaud; VanAmerom, Friso H. W.; Danell, Ryan M.; Brinckerhoff, William; Mahaffy, Paul; Cotter, Robert J.

    2011-01-01

    The Mars Organic Molecule Analyzer (MOMA) is a joint venture by NASA and the European Space Agency (ESA) to develop a sensitive, light-weight, low-power mass spectrometer for chemical analysis on Mars. MOMA is a key analytical instrument aboard the 2018 ExoMars rover mission seeking signs of past or present life. The current prototype was built to demonstrate operation of gas chromatography (OC) and laser desorption (LD) mass spectrometry under martian ambient conditions (5-7 Torr of CO2-rich atmosphere). Recent reports have discussed the MO MA concept, design and performance. Here, we update the current prototype performance, focusing specifically on the GCMS mode.

  7. Investigations of paleoclimate variations using accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Southon, J R; Kashgarian, M; Brown, T A

    2000-08-24

    This project has used Accelerator Mass Spectrometry (AMS) {sup 14}C measurements to study climate and carbon cycle variations on time scales from decades to millennia over the past 30,000 years, primarily in the western US and the North Pacific. {sup 14}C dates provide a temporal framework for records of climate change, and natural radiocarbon acts as a carbon cycle tracer in independently dated records. The overall basis for the study is the observation that attempts to model future climate and carbon cycle changes cannot be taken seriously if the models have not been adequately tested. Paleoclimate studies are unique because they provide realistic test data under climate conditions significantly different from those of the present, whereas instrumental results can only sample the system as it is today. The aim of this project has been to better establish the extent, timing, and causes of past climate perturbations, and the carbon cycle changes with which they are linked. This provides real-world data for model testing, both for the development of individual models and also for inter-model diagnosis and comparison activities such as those of LLNL's PCMDI program; it helps us achieve a better basic understanding of how the climate system works so that models can be improved; and it gives an indication of the natural variability in the climate system underlying any anthropogenically-driven changes. The research has involved four projects which test hypotheses concerning the overall behavior of the North Pacific climate system. All are aspects of an overall theme that climate linkages are strong and direct, so that regional climate records are correlated, details of fine structure are important, and accurate and precise dating is critical for establishing correlations and even causality. An important requirement for such studies is the requirement for an accurate and precise radiocarbon calibration, to allow better correlation of radiocarbon-dated records with

  8. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  9. Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements

    Science.gov (United States)

    Cui, J.; Yelle, R. V.; Vuitton, V.; Waite, J. H.; Kasprzak, W. T.; Gell, D. A.; Niemann, H. B.; Müller-Wodarg, I. C. F.; Borggren, N.; Fletcher, G. G.; Patrick, E. L.; Raaen, E.; Magee, B. A.

    2009-04-01

    In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N 2, CH 4, H 2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N 2, CH 4, H 2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C 2H 2, C 2H 4, C 2H 6, CH 3C 2H, C 4H 2, C 6H 6, CH 3CN, HC 3N, C 2N 2 and NH 3 in Titan's upper atmosphere. Upper limits are given for other minor species. The globally averaged distributions of N 2, CH 4 and H 2 are each modeled with the diffusion approximation. The N 2 profile suggests an average thermospheric temperature of 151 K. The CH 4 and H 2 profiles constrain their fluxes to be 2.6×10 cms and 1.1×10 cms, referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion

  10. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  11. Study on the atmospheric photochemical reaction of CF3 radicals using ultraviolet photoelectron and photoionization mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A study of the atmospheric photochemical reaction of CF3 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES- PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)- OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluo- rine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C-O bond and giving the fragments CF3OCO+ and CF3+. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be ap- plied widely in the study of atmospheric photochemical reaction.

  12. Study on the atmospheric photochemical reaction of CF3 radicals using ultraviolet photoelectron and photoionization mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    YAO Li; DU Lin; YIN Shi; GE MaoFa

    2008-01-01

    A study of the atmospheric photochemical reaction of CF2 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES-PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)-OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluo-rine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C-O bond and giving the fragments CF3OCO+ and CF<;+3. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be ap-plied widely in the study of atmospheric photochemical reaction.

  13. A Micro-Cylindrical Ion Trap (B5-CIT) Micro-Mass Spectrometer Instrument System (B5-MSIS) for NASA Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This activity will significantly increase the fidelity of the miniaturized component packaging of the μ-CIT mass spectrometer assembly. Our design approach...

  14. A Micro-Cylindrical Ion Trap (5-CIT) Micro-Mass Spectrometer Instrument System (5-MSIS) for NASA Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This activity will significantly increase the fidelity of the miniaturized component packaging of the µ-CIT mass spectrometer assembly. Our design approach...

  15. Search for high mass resonances in the dimuon channel using the muon spectrometer of the atlas experiment at CERN

    International Nuclear Information System (INIS)

    This thesis covers the search of new neutral gauge bosons decaying into a pair of muons in the ATLAS detector. The Large Hadron Collider (LHC) at CERN will produce parton collisions with very high center of mass energy and may produce Z' predicted by many theories beyond the standard model. Such a resonance should be detected by the ATLAS experiment. For the direct search of Z' decaying into two muons, a small number of events is enough for its discovery, which is possible with the first data. We shall study in particular the effects of the muon spectrometer alignment on high pT tracks and on the Z' discovery potential in the ATLAS experiment. The discovery potentials computed with this method have been officially approved by the ATLAS collaboration and published. At the start of the LHC operation, the muon spectrometer alignment will not have reached the nominal performances. This analysis aims at optimizing the discovery potential of ATLAS for a Z' boson in this degraded initial conditions. The impact on track reconstruction of a degraded alignment is estimated with simulated high pT tracks. Results are given in terms of reconstruction efficiency, momentum and invariant mass resolutions, charge identification and sensitivity to discovery or exclusion. With the first data, an analysis using only the muon spectrometer in stand alone mode will be very useful. Finally, a study on how to determine the initial geometry of the spectrometer (needed for its absolute alignment) is performed. This study uses straight tracks without a magnetic field and also calculates the beam time necessary for reaching a given accuracy of the alignment system. (author)

  16. A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater

    Directory of Open Access Journals (Sweden)

    E. S. Saltzman

    2009-07-01

    Full Text Available A compact, low-cost atmospheric pressure, chemical ionization mass spectrometer ("mini-CIMS" has been developed for continuous underway shipboard measurements of dimethylsulfide (DMS in seawater. The instrument was used to analyze DMS in air equilibrated with flowing seawater across a porous Teflon membrane equilibrator. The equilibrated gas stream was diluted with air containing an isotopically-labeled internal standard. DMS is ionized at atmospheric pressure via proton transfer from water vapor, then declustered, mass filtered via quadrupole mass spectrometry, and detected with an electron multiplier. The instrument described here is based on a low-cost residual gas analyzer (Stanford Research Systems, which has been modified for use as a chemical ionization mass spectrometer. The mini-CIMS has a gas phase detection limit of 170 ppt DMS for a 1 min averaging time, which is roughly equivalent to a seawater DMS concentration of 0.1 nM DMS at 20°C. The mini-CIMS has the sensitivity, selectivity, and time response required for underway measurements of surface ocean DMS over the full range of oceanographic conditions. The simple, robust design and relatively low cost of the instrument are intended to facilitate use in process studies and surveys, with potential for long-term deployment on research vessels, ships of opportunity, and large buoys.

  17. Determination of trace quantity of uranium in end product plutonium oxide samples by isotopic dilution mass spectrometry using an indigenous thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Characterization of special nuclear materials is an important step for efficient nuclear material management (NMM) in a fuel reprocessing plant. Determination of trace quantity of impurities present in the end product plutonium oxide is very important in categorizing the product for end-user specifications. An accurate knowledge of uranium quantity helps in many ways to characterize the material. Objective of this present work is to optimize the indigenous thermal ionization mass spectrometer for this work and develop a better and effective separation procedure prior to mass spectrometric analysis for determination of trace quantity of uranium in plutonium product stream oxide samples

  18. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Science.gov (United States)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  19. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  20. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    Science.gov (United States)

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas. PMID:27340893

  1. Operation and application of a new time-of-flight e-gas secondary neutral mass spectrometer (ToF-SNMS).

    Science.gov (United States)

    Kopnarski, M; Lösch, J; Simeonov, L

    2009-04-01

    The low-pressure rf plasma of a secondary neutral mass spectrometer (e-gas SNMS) was connected with a time-of-flight (ToF) mass spectrometer for the first time. As opposed to ToF-SIMS in e-gas SNMS, the primary ion pulse cannot be used for triggering the flight time measurement. Therefore, an extraction pulse is used which at a defined time loads an ion package from the beam of the post-ionised particles into the ToF spectrometer. The newly developed ToF-SNMS system is described, and first experimental results are presented. PMID:19130045

  2. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    CERN Document Server

    Congedo, Giuseppe

    2014-01-01

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-...

  3. A time-of-flight mass spectrometer with laser ionization for sensitive product molecule detection for heterogeneous model reactions

    International Nuclear Information System (INIS)

    Investigations of model catalysts are very often performed in ultra-high vacuum for ensuring very well-defined systems. Usually, product molecule detection is performed by electron impact (EI) ionization in a quadrupole mass spectrometer. While this method offers the possibilities of continuous measurements and high sensitivity, it features the drawback that a mass scan has to be performed to detect the masses of all reaction products. In addition, the discrimination between isobars is difficult to achieve because of the unselective properties of EI ionization. In this work we present a time-of-flight MS in combination with laser ionization. Due to the setup, this system allows for a very sensitive detection of isobaric species. In this poster the detection principle is illustrated and first proof-of-principle measurements are shown.

  4. Accurate mass measurements of $^{26}$Ne, $^{26-30}$Na, $^{29-33}$Mg performed with the MISTRAL spectrometer

    CERN Document Server

    Gaulard, C; Bachelet, C; De Simon, M S; Lunney, M D; Thibault, C; Vieira, N

    2006-01-01

    The minuteness of the nuclear binding energy requires that mass measurements be highly precise and accurate. Here we report on new measurements $^{29-33}$Mg and $^{26}$Na performed with the Mistral mass spectrometer at CERN's Isolde facility. Since mass measurements are prone to systematic errors, considerable effort has been devoted to their evaluation and elimination in order to achieve accuracy and not only precision. We have therefore conducted a campaign of measurements for calibration and error evaluation. As a result, we now have a satisfactory description of the Mistral calibration laws and error budget. We have applied our new understanding to previous measurements of $^{26}$Ne, $^{26-30}$Na and $^{29,32}$Mg for which re-evaluated values are reported.

  5. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh;

    2014-01-01

    Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is...... evaluated by four different acquisition methods and benchmarked across three generations of Q Exactive instruments (ProteomeXchange dataset PXD001305). We find the ultra-high-field Orbitrap mass analyzer capable of attaining a sequencing speed above 20 Hz and it routinely exceeds 10 peptide spectrum matches......-shot phosphoproteomics, where we identify 7600 unique HeLa phospho-peptides in one gradient hour and find the quality of fragmentation spectra to be more important than quantity for accurate site assignment....

  6. Session 6: High Throughput Screening of VOC Removal Catalysts in Scanning Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yaccato, K.; Hagemeyer, A.; Lefort, L.; Turner, H.; Volpe, A.; Weinberg, H. [Symyx Technologies Inc., Santa Clara, CA (United States)

    2004-07-01

    Volatile organic compounds (VOCs) are considered an important group of air pollutants. We have targeted more efficient VOC removal catalysts with high activity for total combustion at low temperature, negligible organics slip, high selectivity to CO{sub 2} without production of intermediate CO, oxygenates or cracking products. Butane was used as the model feed for VOC in Symyx' high-throughput Scanning Mass Spectrometer. The screening protocol encompassed bulk (unsupported) mixed metal oxides calcined in air at 400 C. Transition metals M{sub 1} known to have some oxidation activity M{sub 1}=Ti, V, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Cu and Ag, were combined with each other into binaries as well as doped with M{sub 2} = K, Cs, Mg, Sr, Sc, Y, Ce, Sm, Zr, Nb, Ta, Zn, Cd, B, Al, In, Sn, Pb, P, Sb, Bi and Te, using 5- point compositional gradients (5 different compositions per binary). Five M/Z values were monitored, namely 44, 68, 70, 72 and 98. CO{sub 2} at M/Z equal to 44 is the dominant product, and only traces of oxygenates are formed. Co, Cr, Ni, Mn, Cu are identified as the most active metals. Subsequently, CoCrM{sub 3} and CrZnM{sub 3} ternaries were synthesized and screened with M{sub 3} selected from M{sub 3} Li, K, Cs, Mg, Sr, Y, Mo, Ru, Rh, Pd, Pt, Ag, Zn, Al, Ga, In, Sn, Pb, P, Sb and Bi, (M{sub 3} {<=} 10%, 15 different compositions/ternaries; 3 copies: (a) unsupported, calcined at 400 C, (b) unsupported, calcined at 600 C, (c) Al{sub 2}O{sub 3}, calcined at 400 C). CoCr ternaries from Symyx' library archive were also screened. High CO{sub 2} production for the CoCr/400 C systems was observed. Catalyst compositions were then optimized in focus libraries. An example for a CoCrTi/CoVSi bis-ternary focus library will be discussed in detail. VPO catalysts were used as 'standards' to establish the correlation between primary and tertiary screening. High CO{sub 2} signals were also observed for Co-rich CoCr and CoCrTi systems. The best Co

  7. Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer.

    Science.gov (United States)

    Manning, Cara C; Stanley, Rachel H R; Lott, Dempsey E

    2016-03-15

    Noble gases dissolved in natural waters are useful tracers for quantifying physical processes. Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that provides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural waters. Gas is equilibrated with a membrane contactor cartridge and measured with a quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters. We use an electron energy of 35 V for Ne to eliminate isobaric interferences, and a higher electron energy for the other gases to improve sensitivity. The precision is 0.7% or better and 1.0% or better for all mole ratios when the instrument is installed in a temperature-controlled environment and a variable-temperature environment, respectively. In the lab, the accuracy is 0.9% or better for all gas ratios using air as the only calibration standard. In the field (and/or at greater levels of disequilbrium), the accuracy is 0.7% or better for Ne/Kr, Ne/Ar, and Ar/Kr, and 2.5% or better for Ne/Xe, Ar/Xe, and Kr/Xe using air as the only calibration standard. The field accuracy improves to 0.6% or better for Ne/Xe, Ar/Xe, and Kr/Xe when the data is calibrated using discrete water samples run on a laboratory-based mass spectrometer. The e-folding response time is 90-410 s. This instrument enables the collection of a large number of continuous, high-precision and accuracy noble gas measurements at substantially reduced cost and labor compared to traditional methods. PMID:26854788

  8. Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer.

    Science.gov (United States)

    Manning, Cara C; Stanley, Rachel H R; Lott, Dempsey E

    2016-03-15

    Noble gases dissolved in natural waters are useful tracers for quantifying physical processes. Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that provides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural waters. Gas is equilibrated with a membrane contactor cartridge and measured with a quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters. We use an electron energy of 35 V for Ne to eliminate isobaric interferences, and a higher electron energy for the other gases to improve sensitivity. The precision is 0.7% or better and 1.0% or better for all mole ratios when the instrument is installed in a temperature-controlled environment and a variable-temperature environment, respectively. In the lab, the accuracy is 0.9% or better for all gas ratios using air as the only calibration standard. In the field (and/or at greater levels of disequilbrium), the accuracy is 0.7% or better for Ne/Kr, Ne/Ar, and Ar/Kr, and 2.5% or better for Ne/Xe, Ar/Xe, and Kr/Xe using air as the only calibration standard. The field accuracy improves to 0.6% or better for Ne/Xe, Ar/Xe, and Kr/Xe when the data is calibrated using discrete water samples run on a laboratory-based mass spectrometer. The e-folding response time is 90-410 s. This instrument enables the collection of a large number of continuous, high-precision and accuracy noble gas measurements at substantially reduced cost and labor compared to traditional methods.

  9. Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

    Science.gov (United States)

    Zachreson, Matthew R.

    The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the

  10. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Directory of Open Access Journals (Sweden)

    W. Q. Sun

    2015-06-01

    Full Text Available In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  11. Characterization of an aerodynamic lens for transmitting particles > 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    L. R. Williams

    2013-06-01

    Full Text Available We have designed and characterized a new inlet and aerodynamic lens for the Aerodyne aerosol mass spectrometer (AMS that transmits particles between 80 nm and more than 3 μm in diameter. The design of the inlet and lens was optimized with computational fluid dynamics (CFD modeling of particle trajectories. Major changes include a redesigned critical orifice holder and valve assembly, addition of a relaxation chamber behind the critical orifice, and a higher lens operating pressure. The transmission efficiency of the new inlet and lens was characterized experimentally with size-selected particles. Experimental measurements are in good agreement with the calculated transmission efficiency.

  12. Use of the Isomass 54E thermal ionisation mass spectrometer at AEE Winfrith. Part II: plutonium analysis

    International Nuclear Information System (INIS)

    This report describes the application of the Isomass 54E Thermal ionisation mass spectrometer for the isotopic analysis of plutonium, and gives details of the development of a method for quantitative determination of plutonium in sample solutions using isotopic dilution. A computer program for the control of the 54E is also described. Isotope dilution was used to compare results of plutonium content of twelve zebra reactor fuel pellets with results obtained by titrimetry. The Isomass 54E is shown to be capable of high precision analysis of plutonium sample solutions for both isotopic content and total plutonium concentration using an isotope dilution technique. (U.K.)

  13. Detection and measurement of delay in the yield of negative ions from the ionization chamber of a mass spectrometer

    Science.gov (United States)

    Lukin, V. G.; Khvostenko, O. G.; Tuimedov, G. M.

    2016-02-01

    The times of extraction of negative ions from the ionization chamber of a mass spectrometer have been measured. The obtained values amount to several dozen microseconds or above—that is, significantly exceed the time of free ion escape from the chamber. It is established that ions are retained in the ionization chamber because of their adsorption on the inner surface. This leads to distortion of the experimentally measured lifetimes of negative ions that become unstable with respect to autodetachment of the excess electron.

  14. The application of Guided Ion Beam Tandem Mass Spectrometer; Bond dissociation energies of bare and ligated copper group cluster anions

    International Nuclear Information System (INIS)

    Threshold energies, fragmentation patterns, and integral cross sections for the reactions of collision induced dissociations of bare and ligated copper group cluster anions are determined using a Guided Ion Beam Tandem Mass Spectrometer (GIB-MS). The bond breaking patterns for the copper cluster anions show dramatic even/odd tendencies, e.g., all copper group anions generate as the predominant reaction product, Carbon monoxide is weakly bound to copper group cluster anions. Cohesive energies of the bare copper and silver cluster anions are determined and exhibit a good correspondence with estimate cohesive energies by the model of Miedema.

  15. A new method of measuring the spatial distribution of depletion fraction of silane plasma by mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    Wang Zhao-Kui; Lin Kui-Xun; Lin Xuan-Ying; Qiu Gui-Ming; Zhu Zu-Song

    2005-01-01

    A newly established movable sampling apparatus of mass spectrometer is used to measure the spatial distribution of depletion fraction of silane plasma. A straight-line fit method of deducing the depletion fraction of silane is proposed.Theoretical analysis and test results demonstrate that the proposed new method is universal and more accurate than the existing one. There exist a largest peak near the middle of two electrodes and two peaks near the electrodes in the spatial distribution of silane depletion fraction, which are related to the distribution of electric field and the silane plasma sheaths.

  16. Investigation of micrometre-sized fossils by a laser ablation mass spectrometer designed for in situ space research

    Science.gov (United States)

    Tulej, M.; Neubeck, A.; Ivarsson, M.; Neuland, M. B.; Riedo, A.; Meyer, S.; Wurz, P.

    2015-10-01

    Detection of extraterrestrial life is an ongoing goal in space exploration. The detection of signatures of life by means of chemical composition, elemental and isotopic, is one of the most important approaches. There is a need for advanced instruments and methods that can accomplish this task. We present the first investigations of chemical composition measurements of putative microfossils in natural samples using a miniature laser ablation/ionisation time-of-flight mass spectrometer (LMS). The primary aim of the study was investigation of the instrument's capabilities for element composition and isotopic abundance analysis of micro-sized samples.

  17. Transmission Mode Ion/Ion Reactions in the RF-only Ion Guide of Hybrid Tandem Mass Spectrometers

    OpenAIRE

    Emory, Joshua F; Hassell, Kerry H.; Londry, Frank A.; McLuckey, Scott A.

    2009-01-01

    Transmission mode ion/ion reactions have been performed within the first quadrupole, the Q0 RF-only quadrupole, of two types of hybrid tandem mass spectrometers (viz., triple quadrupole/linear ion trap and QqTOF instruments). These transmission mode reactions involved the storage of either the reagent species and the transmission of the analyte species through the Q0 quadrupole for charge inversion reactions or the storage of the analyte ions and transmission of the reagent ions as in charge ...

  18. Spurious barometric pressure acceleration in Antarctica and propagation into GRACE Antarctic mass change estimates

    Science.gov (United States)

    Kim, Byeong-Hoon; Eom, Jooyoung; Seo, Ki-Weon; Wilson, Clark R.

    2016-08-01

    Apparent acceleration in Gravity Recovery and Climate Experiment (GRACE) Antarctic ice mass time-series may reflect both ice discharge and surface mass balance contributions. However, a recent study suggests there is also contamination from errors in atmospheric pressure de-aliasing fields [European Center for Medium-Range Weather Forecast (ECMWF) operational products] used during GRACE data processing. To further examine this question, we compare GRACE atmospheric pressure de-aliasing (GAA) fields with in situ surface pressure data from coastal and inland stations. Differences between the two are likely due to GAA errors, and provide a measure of error in GRACE solutions. Time-series of differences at individual weather stations are fit to four presumed error components: annual sinusoids, a linear trend, an acceleration term and jumps at times of known ECMWF model changes. Using data from inland stations, we estimate that atmospheric pressure error causes an acceleration error of about +7.0 Gt yr-2, which is large relative to prior GRACE estimates of Antarctic ice mass acceleration in the range of -12 to -14 Gt yr-2. We also estimate apparent acceleration rates from other barometric pressure (reanalysis) fields, including ERA-Interim, MERRA and NCEP/DOE. When integrated over East Antarctica, the four mass acceleration estimates (from GAA and the three reanalysis fields) vary considerably (by ˜2-16 Gt yr-2). This shows the need for further effort to improve atmospheric mass estimates in this region of sparse in situ observations, in order to use GRACE observations to measure ice mass acceleration and related sea level change.

  19. Measurements of hydrogen, oxygen and carbon isotope ratios by SIRA 10 mass spectrometer and some problems of their quality assurance

    International Nuclear Information System (INIS)

    Full text: Hydrogen and oxygen are two chemical elements that combined between them forms the water molecules. Hydrogen has two stable isotopes 1H and 2H, with abundance, respectively, 99.985 % and 0.015 %, while the oxygen has three stable isotopes 16O, 17O, 18O with the abundance, respectively, 99.756 %, 0.039 %, 0.205 %. Hydrogen and oxygen stable isotopes, in our laboratory, are used in the hydrology and hydrogeology studies. The 'δ' values of hydrogen and oxygen of water samples are expressed in per mille with respect to SMOW, while, for carbon is expressed in per mille with respect to PDB. The isotopic compositions of these elements are measured using the SIRA 10 mass spectrometer, which is similar with the Nier mass spectrometer. SIRA 10 mass spectrometer, destined for the measurements of the isotopic ratios of the light elements, is equipped with double inlet system and with three collectors system (for the oxygen, carbon, nitrogen etc. isotopes) and double collector system for the hydrogen isotopes. The vacuum 10-9 torr is realized by the two oil diffusion pumps. The gas samples (H2, CO2, etc.) are admitted to the ion source of the mass spectrometer, where are transformed into positive ions by the electron impact. The magnetic field is normal to the path of the ions and is realized by a permanent magnet. The quality assurance of the 'δ' determination dependent from the preparation of the gas samples and from the measurements of the isotopic ratios. Stable isotopes hydrogen of the water samples are measured through the hydrogen gas which is gained from the water by the reduction reaction with metallic Zinc in a separate line, in vacuum conditions and high temperature. The reduction process of the water was occurred not normally because in the inside of the glass balloons seems water droplets. The different experiments of the changes the water quantity, Zinc quantity, dimensions of the metallic Zinc and the temperature of the reduction reaction didn

  20. Accelerator mass spectrometry at the University of Washington

    International Nuclear Information System (INIS)

    Our program is directed toward measurement of 10Be and 14C using the FN Tandem accelerator of the Nuclear Physics Laboratory. We began work in June 1977. Our progress and results up to August, 1979, were reported at the Tenth International Radiocarbon Conference. The present report covers chiefly our work since then. For 14C, we are in the final stages of testing a new sample changer and alternator and are comparing three systems of normalizing the rare and abundant ion beams to give isotope ratios. We have successfully prepared graphitized carbon source samples from contemporary and other material; while the graphitized sources have given the largest carbon beams, we are exploring other possibilities, among which the use of C/Ag combinations appears very promising. For 10Be, we have begun testing and measuring samples prepared from Antarctic and Peruvian snow and ice. In both the carbon and the beryllium programs various technical developments are in progress in addition to those reported here

  1. Cosmic acceleration from varying masses in five dimensions

    Science.gov (United States)

    Moraes, P. H. R. S.

    2016-10-01

    Much effort has been made in trying to solve or at least evade the inconsistencies that emerge from general relativity as the framework for a cosmological model. The extradimensional models rise as superb possibilities in this regard. In this work, I present cosmological solutions for Wesson’s space-time-matter theory of gravity. A relation between mass variation at cosmological scales and the expansion velocity of the universe is obtained. Such a relation yields novel features on space-time-matter theory of gravity, which are carefully discussed.

  2. Acceleration in Modified Gravity (MOG) and the Mass-Discrepancy Baryonic Relation

    CERN Document Server

    Moffat, J W

    2016-01-01

    The equation of motion in the generally covariant modified gravity (MOG) theory leads for weak gravitational fields and the non-relativistic limit to a modification of the Newtonian gravitational acceleration law, expressed in terms of two parameters $\\alpha$ and $\\mu$. The parameter $\\alpha$ determines the strength of the gravitational field and $\\mu$ is the effective mass of the vector field $\\phi_\\mu$, coupled with gravitational strength to baryonic matter. The MOG acceleration law for weak field gravitation and non-relativistic particles has been demonstrated to fit a wide range of galaxies, galaxy clusters and the Bullet Cluster and Train Wreck Cluster mergers. We demonstrate that the MOG acceleration law for a point mass source is in agreement with the McGaugh et al., correlation between the radial acceleration traced by galaxy rotation curves and the distribution of baryonic matter for the SPARC sample of 153 rotationally supported spiral and irregular galaxies.

  3. Design and construction of a simple Knudsen Effusion Mass Spectrometer (KEMS system for vapour pressure measurements of low volatility organics

    Directory of Open Access Journals (Sweden)

    A. M. Booth

    2009-07-01

    Full Text Available A design of and initial results from a Knudsen Effusion Mass Spectrometer (KEMS are presented. The design was adapted from high temperature alloy studies with a view to using it to measure vapour pressures for low volatility organics. The system uses a temperature controlled cell with an effusive orifice. This produces a molecular beam which is sampled by a quadropole mass spectrometer with electron impact ionization calibrated to a known vapour pressure. We have determined P(298 K and ΔHsub of the first 5 saturated straight chain dicarboxylic acids: 2.15±1.19×10-2 Pa and 75±19 KJ mol−1 respectively for oxalic acid, 5.73±1.14×10-4 Pa and 91±4 KJ mol−1 for Malonic acid, 1.13±0.47×10-4 Pa and 93±6 KJ mol−1 for Succinic acid, 4.21±1.66×10-4 Pa and 123±22 KJ mol−1 for Glutaric acid and 6.09±3.85×10-6 Pa and 125±40 KJ mol−1 for Adipic acid.

  4. LAVA Subsystem Integration and Testing for the RESOLVE Payload of the Resource Prospector Mission: Mass Spectrometers and Gas Chromatography

    Science.gov (United States)

    Coan, Mary R.; Stewart, Elaine M.

    2015-01-01

    The Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) payload is part of Resource Prospector (RP) along with a rover and a lander that are expected to launch in 2020. RP will identify volatile elements that may be combined and collected to be used for fuel, air, and water in order to enable deeper space exploration. The Resource Prospector mission is a key part of In-Situ Resource Utilization (ISRU). The demand for this method of utilizing resources at the site of exploration is increasing due to the cost of resupply missions and deep space exploration goals. The RESOLVE payload includes the Lunar Advanced Volatile Analysis (LAVA) subsystem. The main instrument used to identify the volatiles evolved from the lunar regolith is the Gas Chromatograph-Mass Spectrometer (GC-MS). LAVA analyzes the volatiles emitted from the Oxygen and Volatile Extraction Node (OVEN) Subsystem. The objective of OVEN is to obtain, weigh, heat and transfer evolved gases to LAVA through the connection between the two subsystems called the LOVEN line. This paper highlights the work completed during a ten week internship that involved the integration, testing, data analysis, and procedure documentation of two candidate mass spectrometers for the LAVA subsystem in order to aid in determining which model to use for flight. Additionally, the examination of data from the integrated Resource Prospector '15 (RP' 15) field test will be presented in order to characterize the amount of water detected from water doped regolith samples.

  5. An aircraft-borne chemical ionization – ion trap mass spectrometer (CI-ITMS for fast PAN and PPN measurements

    Directory of Open Access Journals (Sweden)

    H. Schlager

    2011-02-01

    Full Text Available An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate and PPN (peroxypropionyl nitrate. The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2σ detection limit of 25 pmol mol−1. An isotopically labelled standard was used for a permanent on-line calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol−1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol−1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis. PPN, the second most abundant PAN homologue, was measured simultaneously. Observed PPN/PAN ratios range between ~0.03 and 0.3.

  6. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    Science.gov (United States)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (direct on-site CWA detection as required by military or civil protection.

  7. Accelerating Twisted Mass LQCD with QPhiX

    CERN Document Server

    Schröck, Mario; Strelchenko, Alexei

    2015-01-01

    We present the implementation of twisted mass fermion operators for the QPhiX library. We analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel is able to reach 80\\% of the theoretical peak bandwidth, while on a Xeon Haswell E5-2630 CPU our generated code for the Dslash operator with AVX2 instructions outperforms the corresponding implementation in the tmLQCD library by a factor of $\\sim 5\\times$ in single precision. We strong scale the code up to 6.8 (14.1) Tflops in single (half) precision on 64 Xeon Haswell CPUs.

  8. Accelerating Twisted Mass LQCD with QPhiX

    Energy Technology Data Exchange (ETDEWEB)

    Schröck, Mario [INFN, Rome3; Simula, Silvano [INFN, Rome3; Strelchenko, Alexei [Fermilab

    2016-07-08

    We present the implementation of twisted mass fermion operators for the QPhiX library. We analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel is able to reach 80\\% of the theoretical peak bandwidth, while on a Xeon Haswell E5-2630 CPU our generated code for the Dslash operator with AVX2 instructions outperforms the corresponding implementation in the tmLQCD library by a factor of $\\sim 5\\times$ in single precision. We strong scale the code up to 6.8 (14.1) Tflops in single (half) precision on 64 Xeon Haswell CPUs.

  9. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    International Nuclear Information System (INIS)

    Highlights: ► First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. ► Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. ► Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. ► The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. ► The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  10. Measurement of mass yields from the 241Am(2nth,f reaction at the Lohengrin Spectrometer

    Directory of Open Access Journals (Sweden)

    Köster U.

    2013-03-01

    Full Text Available The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (235U, 239Pu in the thermal neutron-induced fission, only few measurements have been performed on 242Am. The interest of 242Am concerns the reduction of radiotoxicity of 241Am in nuclear wastes using transmutation reactions. This paper presents the measurement of the fission mass yields from the reaction 241Am(2nth,f performed at the Lohengrin mass spectrometer (ILL, France for both the light and the heavy peaks: a total of 41 mass yields have been measured. The experiment was also meant to determine whether there is a difference in mass yields between the isomeric state and the ground state as it exists in fission and capture cross sections. The method used to address this question is based on a repeated measurement of a set of fission mass yields as a function of the ratio between the 242gAm and the 242mAm fission rates. The presented experiment is also a first step towards the measurement of the isotopic fission yields of 242Am.

  11. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    Science.gov (United States)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  12. IonCCD Detector for Miniature Sector-Field Mass Spectrometer : Investigation of Peak Shape and Detector Surface Artifacts Induced by keV Ion Detection

    NARCIS (Netherlands)

    Hadjar, Omar; Schlatholter, Thomas; Davila, Stephen; Catledge, Shane A.; Kuhn, Ken; Kassan, Scott; Kibelka, Gottfried; Cameron, Chad; Verbeck, Guido F.

    2011-01-01

    A recently described ion charge coupled device detector IonCCD (Sinha and Wadsworth, Rev. Sci. Instrum. 76(2), 2005; Hadjar, J. Am. Soc. Mass Spectrom. 22(4), 612-624, 2011) is implemented in a miniature mass spectrometer of sector-field instrument type and Mattauch-Herzog (MH)-geometry (Rev. Sci. I

  13. Acceleration of the Greenland ice sheet mass loss as observed by GRACE: Confidence and sensitivity

    Science.gov (United States)

    Svendsen, P. L.; Andersen, O. B.; Nielsen, A. A.

    2013-02-01

    We examine the scale and spatial distribution of the mass change acceleration in Greenland and its statistical significance, using processed gravimetric data from the GRACE mission for the period 2002-2011. Three different data products - the CNES/GRGS, DMT-1b and GGFC GRACE solutions - have been used, all revealing an accelerating mass loss in Greenland, though with significant local differences between the three datasets. Compensating for leakage effects, we obtain acceleration values of -18.6 Gt/yr2 for CNES/GRGS, -8.8 Gt/yr2 for DMT-1b, and -14.8 Gt/yr2 for GGFC. We find considerable mass loss acceleration in the Canadian Arctic Archipelago, some of which will leak into the values for Greenland, depending on the approach used, and for our computations the leakage has been estimated at up to -4.7 Gt/yr2. The length of the time series of the GRACE data makes a huge difference in establishing an acceleration of the data. For both 10-day and monthly GRACE solutions, an observed acceleration on the order of 10-20 Gt/yr2 is shown to require more than 5 yrs of data to establish with statistical significance. In order to provide an independent evaluation, ICESat laser altimetry data have been smoothed to match the resolution of the GRACE solutions. This gives us an estimated upper bound for the acceleration of about -29.7 Gt/yr2 for the period 2003-2009, consistent with the acceleration values and corresponding confidence intervals found with GRACE data.

  14. [Development of a membrane inlet-single photon ionization/chemical ionization-mass spectrometer for online analysis of VOCs in water].

    Science.gov (United States)

    Hua, Lei; Wu, Qing-Hao; Hou, Ke-Yong; Cui, Hua-Peng; Chen, Ping; Zhao, Wu-Duo; Xie, Yuan-Yuan; Li, Hai-Yang

    2011-12-01

    A home-made membrane inlet- single photon ionization/chemical ionization- time-of-flight mass spectrometer has been described. A vacuum ultraviolet (VUV) lamp with photon energy of 10.6 eV was used as the light source for single photon ionization (SPI). Chemical ionization (CI) was achieved through ion-molecule reactions with O2- reactant ions generated by photoelectron ionization. The two ionization modes could be rapidly switched by adjusting electric field in the ionization region within 2 s. Membrane inlet system used for rapid enrichment of volatile organic compounds (VOCs) in water was constructed by using a polydimethylsiloxane (PDMS) membrane with a thickness of 50 microm. A purge gas was added to accelerate desorption of analytes from the membrane surface. The purge gas could also help to prevent the pump oil back-streaming into the ionization region from the analyzer chamber and improve the signal to noise ratio (S/N). Achieved detection limits were 2 microg x L(-1) for methyl tert-butyl ether (MTBE) in SPI mode and 1 microg x L(-1) for chloroform in SPI-CI mode within 10 s analysis time, respectively. The instrument has been successfully applied to the rapid analysis of MTBE in simulated underground water nearby petrol station and VOCs in disinfected drinking water. The results indicate that the instrument has a great application prospect for online analysis of VOCs in water.

  15. Experimental setup of a time-of-flight mass spectrometer for reaction product detection in heterogeneous catalysis

    International Nuclear Information System (INIS)

    Mass spectrometry is a very powerful analytical tool for the study of heterogeneous catalysis. It is often used to study reaction processes by analyzing the reaction products, both in a qualitative and in a quantitative way. Typically, mass spectrometers work by using electron impact ionization, where discrimination between isomers is difficult to achieve. Fragmentation patterns of the isomers must differ to a large extent to be distinguishable. A powerful and soft method for selective ionization is REMPI (Resonant Enhanced Multiphoton Ionization). In this technique a laser of specific wavelength is employed to ionize a single isomer through resonant intermediate states. Other isomers are not ionized as they are non resonant at the energy used. A new experimental setup was built for the study of catalytic reactions on metal clusters supported on single crystal surfaces under UHV conditions. Custom ion optics were designed to incorporate the crystal support and enable future desorption-ionization studies and enantioselective laser mass spectrometry. In this work we present our experimental setup, in which we combine time of flight mass spectrometry and resonance enhanced multiphoton ionization for investigation of products formed via surface reactions. It will thus be possible to examine the selectivity of catalytic reactions on size selected clusters.

  16. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 2: Analysis of aerosol mass spectrometer data

    Science.gov (United States)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2008-09-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit mass resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, the volatility and the level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the primary contribution after a few hours of aging under typical summertime conditions. Aging decreased the OA volatility of the total OA as measured with a thermodenuder; it also made the OA progressively more oxygenated in every experiment. With explicit knowledge of the condensed-phase mass spectrum (MS) of the primary emissions from each fire, each MS can be decomposed into primary and residual spectra throughout the experiment. The residual spectra provide an estimate of the composition of the photochemically produced OA. These spectra are also very similar to those of the oxygenated OA that dominates ambient AMS datasets. In addition, aged wood smoke spectra are shown to be similar to those from OA created by photo-oxidized dilute diesel exhaust and aged biomass-burning OA measured in urban and remote locations. This demonstrates that the oxygenated OA observed in the atmosphere can be produced by photochemical aging of dilute emissions from combustion of fuels containing both modern and fossil carbon.

  17. Combined distance-of-flight and time-of-flight mass spectrometer

    Science.gov (United States)

    Enke, Christie G; Ray, Steven J; Graham, Alexander W; Hieftje, Gary M; Barinaga, Charles J; Koppenaal, David W

    2014-02-11

    A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.

  18. Accuracy studies with carbon clusters at the Penning trap mass spectrometer TRIGA-TRAP

    Science.gov (United States)

    Ketelaer, J.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Eibach, M.; Herfurth, F.; Smorra, C.; Nagy, Sz.

    2010-05-01

    Extensive cross-reference measurements of well-known frequency ratios using various sizes of carbon cluster ions 12Cn + (10≤n≤23) were performed to determine the effects limiting the accuracy of mass measurements at the Penning-trap facility TRIGA-TRAP. Two major contributions to the uncertainty of a mass measurement have been identified. Fluctuations of the magnetic field cause an uncertainty in the frequency ratio due to the required calibration by a reference ion of uf(νref)/νref = 6(2) × 10-11/min × Δt. A mass-dependent systematic shift of the frequency ratio of epsilonm(r)/r = -2.2(2) × 10-9 × (m-mref)/u has been found as well. Finally, the nuclide 197Au was used as a cross-check since its mass is already known with an uncertainty of 0.6 keV.

  19. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  20. Frequency Dependence of Rotor's Free Falling Acceleration and Inequality of Inertial and Gravity Masses

    CERN Document Server

    Dmitriev, Alexander L

    2011-01-01

    Results of measurements of free falling acceleration of a closed container with a rotor of a mechanical gyroscope placed inside it on the frequency of the rotor rotation are briefly described. Time of separate accelerations measurements is 40 ms, the period of sampling is from 0.5 up to 1.0 minute. In rotation's frequencies range of 20-400 Hz, the negative changes of free falling container acceleration prevail. On individual frequencies the "resonant" maxima and minima of acceleration are observed. The obtained data apparently contradict the equivalence principle of inertial and gravitating masses. The expediency of development of ballistic gravimetry of high time resolution with use of rotating or oscillating test bodies is noted.

  1. A first attempt to measure 92Nb/93Nb ratios with Accelerator Mass Spectrometry

    Science.gov (United States)

    Guozhu, He; Ming, He; Zuying, Zhou; Zhenyu, Li; Kejun, Dong; Shaoyong, Wu; Shilong, Liu; Xiongjun, Chen; Qiwen, Fan; Chaoli, Li; Xianwen, He; Heng, Li; Shan, Jiang

    2013-01-01

    An Accelerator Mass Spectrometry (AMS) method for the measurement of the long-lived radionuclide 92Nb has been established at the HI-13 Tandem Accelerator of the China Institute of Atomic Energy (CIAE). Niobium powder mixed with PbF2 by a ratio of 1:2 (in mass) was used as the cathode material. Atomic anions of Nb- were extracted from a Cs-beam sputter source. The terminal voltage of the tandem accelerator was 8.5 MV. Nb13+ ions were selected after terminal foil stripping. A multi-anode gas ionization chamber was used for the particle detection. The total suppression factor of the two major interfering isobars, 92Zr and 92Mo, was about 103. A detection limit of about 10-11 was achieved for 92Nb/93Nb ratio measurements on a blank sample.

  2. Mass measurements on neutron-deficient nuclides at SHIPTRAP and commissioning of a cryogenic narrow-band FT-ICR mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Garcia, R.

    2007-07-01

    The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of {beta}-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A=90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-flight ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections ({sigma} <1 {mu}b), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported. (orig.)

  3. Mass measurements on neutron-deficient nuclides at SHIPTRAP and commissioning of a cryogenic narrow-band FT-ICR mass spectrometer

    International Nuclear Information System (INIS)

    The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of β-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A=90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-flight ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections (σ <1 μb), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported. (orig.)

  4. Modeling the Impact and Costs of Semiannual Mass Drug Administration for Accelerated Elimination of Lymphatic Filariasis

    NARCIS (Netherlands)

    W.A. Stolk (Wilma); Q.A. ten Bosch (Quirine); S.J. de Vlas (Sake); P.U. Fischer (Peter); G.J. Weil (Gary); A.S. Goldman (Ann)

    2013-01-01

    textabstractThe Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is neede

  5. Accelerator mass spectrometry in the study of vitamin and mineral metabolism in humans

    Science.gov (United States)

    Accelerator mass spectrometry is an isotopic ratio method that can estimate the concentrations of long-lived radioisotopes such as carbon-14 and calcium-41, making it useful in biochemical and physiological research. It is capable of measuring radio-labeled nutrients and their metabolites in attomol...

  6. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range

    NARCIS (Netherlands)

    Duijn, E. van; Sandman, H.; Grossouw, D.; Mocking, J.A.J.; Coulier, L.; Vaes, W.H.J.

    2014-01-01

    The increasing role of accelerator mass spectrometry (AMS) in biomedical research necessitates modernization of the traditional sample handling process. AMS was originally developed and used for carbon dating, therefore focusing on a very high precision but with a comparably low sample throughput. H

  7. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data

    Science.gov (United States)

    Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.

    2009-03-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in dilute wood smoke by exposing emissions from soft- and hard-wood fires to UV light in a smog chamber. This paper focuses on changes in OA composition measured using a unit-mass-resolution quadrupole Aerosol Mass Spectrometer (AMS). The results highlight how photochemical processing can lead to considerable evolution of the mass, volatility and level of oxygenation of biomass-burning OA. Photochemical oxidation produced substantial new OA, more than doubling the OA mass after a few hours of aging under typical summertime conditions. Aging also decreased the volatility of the OA and made it progressively more oxygenated. The results also illustrate strengths of, and challenges with, using AMS data for source apportionment analysis. For example, the mass spectra of fresh and aged BBOA are distinct from fresh motor-vehicle emissions. The mass spectra of the secondary OA produced from aging wood smoke are very similar to those of the oxygenated OA (OOA) that dominates ambient AMS datasets, further reinforcing the connection between OOA and OA formed from photo-chemistry. In addition, aged wood smoke spectra are similar to those from OA created by photo-oxidizing dilute diesel exhaust. This demonstrates that the OOA observed in the atmosphere can be produced by photochemical aging of dilute emissions from different types of combustion systems operating on fuels with modern or fossil carbon. Since OOA is frequently the dominant component of ambient OA, the similarity of spectra of aged emissions from different sources represents an important challenge for AMS-based source apportionment studies.

  8. Acceleration and deceleration of coronal mass ejections during propagation and interaction

    Science.gov (United States)

    Shen, Fang; Wu, S. T.; Feng, Xueshang; Wu, Chin-Chun

    2012-11-01

    A major challenge to the space weather forecasting community is accurate prediction of Coronal Mass Ejections (CMEs) induced Shock Arrival Time (SAT) at Earth's environment. In order to improve the current accuracy, one of the steps is to understand the physical processes of the acceleration and deceleration of a CME's propagation in the heliosphere. We employ our previous study of a three-dimensional (3D) magnetohydrodynamic (MHD) simulation for the evolution of two interacting CMEs in a realistic ambient solar wind during the period 28-31 March 2001 event to illustrate these acceleration and deceleration processes. The forces which caused the acceleration and deceleration are analyzed in detail. The forces which caused the acceleration are the magnetic pressure term of Lorentz force and pressure gradient. On the other hand, the forces which caused the deceleration are aerodynamic drag, the Sun's gravity and the tension of magnetic field. In addition the momentum exchange between the solar wind and the moving CMEs can cause acceleration and deceleration of the CME which are now analyzed. In this specific CME event 28-31 March 2001 we have analyzed those forces which cause acceleration and deceleration of CME with and without interaction with another CME. It shows that there are significant momentum changes between these two interacting CMEs to cause the acceleration and deceleration.

  9. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the University of Notre Dame

    Science.gov (United States)

    Schultz, B. E.; Kelly, J. M.; Nicoloff, C.; Long, J.; Ryan, S.; Brodeur, M.

    2016-06-01

    One of the most significant problems in the production of rare isotopes is the simultaneous production of contaminants, often time isobaric. Thus, a high-resolution beam purification method is required which needs to be compatible with both the low yield and short half-life of the desired radionuclide. A multi-reflection time-of-flight mass spectrometer meets all these criteria, in addition to boasting a smaller footprint relative to traditional separator dipole magnets. Such a device is currently under construction at the University of Notre Dame and is intended to be coupled to the IG-ISOL source of the planned cyclotron facility. The motivation and conceptual design are presented, as well as the status of simulations to determine the feasibility of using a Bradbury-Nielsen gate for bunching ion beams during initial system testing.

  10. Evaluation of the MAT-thermal ionization quadrupole mass spectrometer for potential use for on-situ safeguards verifications

    International Nuclear Information System (INIS)

    The Thermoquad THQ of Finnigan MAT is a quadrupole mass spectrometer with a Faraday cup and a secondary electron multiplier. The multiplier is placed at an angle of 90 degrees to the axis of the quadrupole rods. The sample size was for solution loadings 1/μg of uranium. Resin bead loadings carry about 2 ng of sample material. Both types of loadings have been used to test the instrument. The accuracy as well as the internal and external precision have been studied on standards and real samples. The possibilities as well as the limitations of the instrument are discussed with regard to its potential use for on-site safeguards verification measurements

  11. Mineralogical determination in situ of a highly heterogeneous material using a miniaturized laser ablation mass spectrometer with high spatial resolution

    Science.gov (United States)

    Neubeck, Anna; Tulej, Marek; Ivarsson, Magnus; Broman, Curt; Riedo, Andreas; McMahon, Sean; Wurz, Peter; Bengtson, Stefan

    2016-04-01

    Techniques enabling in situ elemental and mineralogical analysis on extraterrestrial planets are strongly required for upcoming missions and are being continuously developed. There is ample need for quantitative and high-sensitivity analysis of elemental as well as isotopic composition of heterogeneous materials. Here we present in situ spatial and depth elemental profiles of a heterogeneous rock sample on a depth-scale of nanometres using a miniaturized laser ablation mass spectrometer (LMS) designed for planetary space missions. We show that the LMS spectra alone could provide highly detailed compositional, three-dimensional information and oxidation properties of a natural, heterogeneous rock sample. We also show that a combination of the LMS and Raman spectroscopy provide comprehensive mineralogical details of the investigated sample. These findings are of great importance for future space missions where quick, in situ determination of the mineralogy could play a role in the process of selecting a suitable spot for drilling.

  12. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235U/238U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235U/238U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235U/238U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  13. A Liquid Injection Field Desorption/Ionization-Electrospray Ionization Combination Source for a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Science.gov (United States)

    Linden, H. Bernhard; Gross, Jürgen H.

    2011-12-01

    A new type of combination ion source has been devised. It unites two complementary ionization methods, i.e., liquid injection field desorption/ionization (LIFDI) and electrospray ionization (ESI). This LIFDI-ESI combination ion source has been constructed for a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The LIFDI-ESI combination ion source can be switched between the LIFDI and ESI modes of operation within 15 min without breaking the vacuum. The source design and its operation are described. LIFDI-FT-ICR spectra of the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, polyethylene glycol 600, 2,3,4-tridodecyloxy-benzaldehyde, and [60]fullerene are described.

  14. Design and construction of a simple Knudsen Effusion Mass Spectrometer (KEMS system for vapour pressure measurements of low volatility organics

    Directory of Open Access Journals (Sweden)

    A. M. Booth

    2009-03-01

    Full Text Available A design of and initial results from a Knudsen Effusion Mass Spectrometer (KEMS are presented. The design was adapted from high temperature alloy studies with a view to using it to measure vapour pressures for low volatility organics. The system uses a temperature controlled cell with an effusive orifice. This produces a molecular beam which is sampled by a quadropole mass spectrometer with electron impact ionization calibrated to a known vapour pressure. We have determined P298 and ΔHsub of the first 5 unsaturated straight chain dicarboxylic acids: 2.15±1.19×10−2 Pa and 75±19 kJ mol−1 respectively for Oxalic acid, 5.15±0.76×104 Pa and 91±4 kJ mol−1 for Malonic acid, 9.19±2.26×10−5 Pa and 93±6 kJ mol−1 for Succinic acid, 4.21±1.66×10−4 Pa and 123±22 kJ mol−1 for Glutaric acid and 5.21±3.84×10−6 Pa and 125±40 kJ mol−1 for Adipic acid.

  15. Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer

    Science.gov (United States)

    Almeida, Reinaldo; Pauling, Josch Konstantin; Sokol, Elena; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.

    2015-01-01

    Here we report on the application of a novel shotgun lipidomics platform featuring an Orbitrap Fusion mass spectrometer equipped with an automated nanoelectrospray ion source. To assess the performance of the platform for in-depth lipidome analysis, we evaluated various instrument parameters, including its high resolution power unsurpassed by any other contemporary Orbitrap instrumentation, its dynamic quantification range and its efficacy for in-depth structural characterization of molecular lipid species by quadrupole-based higher-energy collisional dissociation (HCD), and ion trap-based resonant-excitation collision-induced dissociation (CID). This evaluation demonstrated that FTMS analysis with a resolution setting of 450,000 allows distinguishing isotopes from different lipid species and features a linear dynamic quantification range of at least four orders of magnitude. Evaluation of fragmentation analysis demonstrated that combined use of HCD and CID yields complementary fragment ions of molecular lipid species. To support global lipidome analysis, we designed a method, termed MSALL, featuring high resolution FTMS analysis for lipid quantification, and FTMS2 analysis using both HCD and CID and ITMS3 analysis utilizing dual CID for in-depth structural characterization of molecular glycerophospholipid species. The performance of the MSALL method was benchmarked in a comparative analysis of mouse cerebellum and hippocampus. This analysis demonstrated extensive lipidome quantification covering 311 lipid species encompassing 20 lipid classes, and identification of 202 distinct molecular glycerophospholipid species when applying a novel high confidence filtering strategy. The work presented here validates the performance of the Orbitrap Fusion mass spectrometer for in-depth lipidome analysis.

  16. A program for mass spectrometer control and data processing analyses in isotope geology; written in BASIC for an 8K Nova 1120 computer

    Science.gov (United States)

    Stacey, J.S.; Hope, J.

    1975-01-01

    A system is described which uses a minicomputer to control a surface ionization mass spectrometer in the peak switching mode, with the object of computing isotopic abundance ratios of elements of geologic interest. The program uses the BASIC language and is sufficiently flexible to be used for multiblock analyses of any spectrum containing from two to five peaks. In the case of strontium analyses, ratios are corrected for rubidium content and normalized for mass spectrometer fractionation. Although almost any minicomputer would be suitable, the model used was the Data General Nova 1210 with 8K memory. Assembly language driver program and interface hardware-descriptions for the Nova 1210 are included.

  17. Design and performance of a matrix-assisted laser desorption time-of-flight mass spectrometer utilizing a pulsed nitrogen laser

    International Nuclear Information System (INIS)

    The design considerations and experimental performance of a linear time-of-flight mass spectrometer are reported for performing matrix-assisted laser desorption studies. A simple pulsed gas-discharge nitrogen laser (337.1 nm) is successfully used in contrast to the more widely used frequency-quadrupled (266 nm) or frequency-tripled (355 nm) Nd:YAG solid-state laser. Optical considerations in utilizing the pulsed nitrogen laser are discussed and a simple optical arrangement is described which allows for suitable imaging of the poor spatial beam profile of the pulsed nitrogen laser. Laser spot sizes of 150x450 μm are obtainable. As with the frequency-tripled Nd:YAG laser, sinapic acid is found to be the most useful matrix for producing protonated molecular species from proteins. Appropriate laser power levels are determined, as matrix/sample levels. Adequate response for most small to medium molecular weight proteins is obtained for less than 1 pmol of sample. A simple einsel lens incorporated into the ion source does not appear to provide any significant focusing on the laser-desorbed ions; however, a constant d.c. voltage applied to beam stirring plates enhances the ion signal significantly. Selective, pulsed deflection of the low-mass ions produced from the matrix is also utilized to prevent excessive saturation of the microchannel plate ion detector. High source potentials are found to provide improved resolution and sensitivity in comparison with lower source potentials combined with post-acceleration at the detector. Representative mass spectra of several proteins and peptides are presented. Increased formation of photoinduced adduct ions are observed in comparison with that reported for matrix-assisted laser desorption experiments utilizing a Nd:YAG laser and significant amounts of dimer and trimer ions are produced. Significantly more peak broadening than would normally be expected is observed above 20000 u. This may be due to the post-acceleration design of

  18. Experimental setup of a time-of-flight mass spectrometer for reaction product detection in heterogeneous catalysis

    International Nuclear Information System (INIS)

    Mass spectrometry is a very powerful analytical tool for the study of heterogeneous catalysis. It's often used to study reaction processes by analyzing the reaction products, both in a qualitative and in a quantitative way. Often mass spectrometers work by using electron impact ionization, where a discrimination between isomers is difficult to achieve. Their fragmentation patterns must differ to a large extent. A powerful and soft method for selective ionization is REMPI (Resonant Enhanced Multiphoton Ionization). In this technique a laser of specific wavelength is employed to ionize only one isomer through resonant intermediate states. Other isomers cannot be ionized as they are non resonant at the energy used. For the study of catalytic reactions on metal clusters supported on single crystal surfaces under UHV conditions a new experimental setup was built. For the spectroscopic studies custom ion optics were designed to incorporate the crystal support and enable future desorption-ionization studies. In this work we present our experimental setup, in which we combine time of flight mass spectrometry with resonance enhanced multiphoton ionization. Furthermore we show first experimental results and possible applications for our setup.

  19. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  20. Electron Capture Dissociation of Sodium-Adducted Peptides on a Modified Quadrupole/Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Voinov, Valery G.; Hoffman, Peter D.; Bennett, Samuel E.; Beckman, Joseph S.; Barofsky, Douglas F.

    2015-12-01

    Electron capture dissociation (ECD), which generally preserves the position of labile post-translational modifications, can be a powerful method for de novo sequencing of proteins and peptides. In this report, ECD product-ion mass spectra of singly and doubly sodiated, nonphosphorylated, and phosphorylated peptides are presented and compared with the ECD mass spectra of their protonated counterparts. ECD of doubly charged, singly sodiated peptides yielded essentially the same sequence information as was produced by the corresponding doubly protonated peptides. The presence of several sodium binding sites on the polypeptide backbone, however, resulted in more complicated spectra. This situation is aggravated by the zwitterionic equilibrium of the free acid peptide precursors. The product-ion spectra of doubly and triply charged peptides possessing two sodium ions were further complicated by the existence of isomers created by the differential distribution of sodium binding sites. Triply charged, phosphorylated precursors containing one sodium, wherein the sodium is attached exclusively to the PO4 group, were found to be as useful for sequence analysis as the fully protonated species. Although sodium adducts are generally minimized during sample preparation, it appears that they can nonetheless provide useful sequence information. Additionally, they enable straightforward identification of a peptide's charge state, even on low-resolution instruments. The experiments were carried out using a radio frequency-free electromagnetostatic cell retrofitted into the collision-induced dissociation (CID) section of a hybrid quadrupole/time-of-flight tandem mass spectrometer.

  1. Integration and Ruggedization of a Commercially Available Gas Chromatograph and Mass Spectrometer (GCMS) for the Resource Prospector Mission (RPM)

    Science.gov (United States)

    Loftin, Kathleen; Griffin, Timothy; Captain, Janine

    2013-01-01

    The Resource Prospector is a mission to prospect for lunar volatiles (primarily water) at one of the two lunar poles, as well as demonstrate In-Situ Resource Utilization (ISRU) on the Moon. The Resource Prospector consists of a lander, a rover, and a rover-borne scientific payload. The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload, will be able to (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The gas chromatograph mass spectrometer (GCMS) is the primary instrument in the RESOLVE instrumentation suite responsible for identification and quantification of the volatiles evolved from the lunar regolith. Specifically, this instrument must have: a low mass, a low power consumption, be able to perform fast analyses of samples ranging from less than one to greater than ninety nine percent water by mass, be autonomously controlled by the payload's software and avionics platform, and be able to operate in the harsh lunar environment. The RPM's short mission duration is the primary driver of the requirement for a very fast analysis time currently base lined at less than 2 minutes per sample. This presentation will discuss the requirements levied upon the GCMS design, lessons learned from a preliminary field demonstration deployment, the current design, and the path forward.

  2. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2006-01-01

    Full Text Available We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  3. Virtual Models of Mass Spectrometers as Teaching Tools for Graduate Students.

    Directory of Open Access Journals (Sweden)

    L. Gomes da Silva

    2010-05-01

    Full Text Available Universidade Federal do Rio de Janeiro – UFRJ – Campus Macaé- RJMass spectrometry is an analytical powerful technique for identifying unknowns, quantitating knows and discovering chemicals properties and molecular structures. The mass spectrometry concept is very simple: The sample becomes an ion through an ionization method. Ions are selected by mass to charge ratio (m/z based upon the motion in a magnetic field and each one is register under a spectrum. To access the basic of these techniques by using appropriate literature, videos, virtual models and simulations for this machinesbehavior is today´s exclusiveness for researchers through manufacturer handbooks. This reality becomes the science popularization and knowledge diffusion about proteomic analysis something plenty arduous for the portion or part of graduate students. The work objectives were making a multimediaschool-book showing biochemical techniques for proteomic analysis using mass spectrometry. The material was make with specific software for building 3D models and animation of different ionizations methods: Electron Ionization (EI, Electro spray Ionization (ESI, Atmospheric Pressure Chemical Ionization(APCI, Matrix Assisted Laser Desorption/Ionization (MALD and mass analyzers: Time of Flight(TOF, Quadrupole and Ion Trap.

  4. Lung function studied by servo-controlled ventilator and respiratory mass spectrometer

    International Nuclear Information System (INIS)

    The gas exchange function of lungs is studied. The gas concentration, measured by mass spectrometry and the lung volume and rate of change of lung volume are discussed. A servo-controlled ventilator is presented. Several experimental projects performed on anesthetized paralyzed dogs are reported. (M.A.C.)

  5. Laser-Ionization TOF Mass Spectrometer Characterization of Benzene Destruction in Atmospheric Pressure Pulsed Discharge

    Institute of Scientific and Technical Information of China (English)

    LIU Jiahong; XIAO Qingmei; WANG Liping; YAO Zhi; DING Hongbin

    2009-01-01

    Benzene is.a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry.It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CNHm (n=3~5,m =1~11), cycle-chain species of CNHm (n=6~9, m = 7~10) and polycyclic species CNHm (n ≥9,m = 8~12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.

  6. A Combined Laser Ablation-Resonance Ionization Mass Spectrometer for Planetary Surface Geochronology

    Science.gov (United States)

    Cardell, G.; Taylor, M. E.; Stewart, B. W.; Capo, R. C.; Crown, D. A.

    2002-01-01

    Progress in the development of an instrument for direct geochronologic measurements on rocks in situ will be described. The instrument integrates laser ablation sampling, resonance ionization, and mass spectrometry to directly measure concentrations of the Rb-Sr isotope system. Additional information is contained in the original extended abstract.

  7. Mars Organic Molecule Analyzer (MOMA) Mass Spectrometer Status and Science Operations on the ExoMars Rover

    Science.gov (United States)

    Brinckerhoff, W. B.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Arevalo, R. D., Jr.; Li, X.; Hovmand, L.; Mahaffy, P. R.; Goetz, W.; Goesmann, F.; Steininger, H.

    2014-12-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. MOMA combines analyses of acquired drill fines via (i) pyrolysis gas chromatography mass spectrometry (GCMS) and (ii) Mars ambient laser desorption mass spectrometry (LDMS), enabled by a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the MOMA ion trap's tandem mass spectrometry (MS/MS) mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of MOMA's ion trap mass spectrometer has been put through a battery of tests to assure robustness of operation in the martian environment, to assess science performance, and to prepare for the flight model build under extremely sterile conditions as required by ExoMars. These tests have included coupling campaigns with advanced prototypes of the MOMA GC (provided by the University of Paris) and the MOMA tapping station, ovens, and laser (provided by MPS and LZH). Planning for science operations has expanded with the development of scripts for MOMA's various parameterized modes, including MS/MS. Given the limited duration of the baseline mission (218 sols), MOMA will benefit from a thorough characterization of its performance with a variety of Mars analog samples and a careful comparison with current science results from the SAM experiment on MSL. Such preparation will enable efficient

  8. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds

    OpenAIRE

    Hamner, Samuel R.; Delp, Scott L.

    2012-01-01

    Running is a bouncing gait in which the body mass center slows and lowers during the first half of the stance phase; the mass center is then accelerated forward and upward into flight during the second half of the stance phase. Muscle-driven simulations can be analyzed to determine how muscle forces accelerate the body mass center. However, muscle-driven simulations of running at different speeds have not been previously developed, and it remains unclear how muscle forces modulate mass center...

  9. Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Imaging Source Coupled to a FT-ICR Mass Spectrometer

    Science.gov (United States)

    Robichaud, Guillaume; Barry, Jeremy A.; Garrard, Kenneth P.; Muddiman, David C.

    2013-01-01

    Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling.

  10. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    Directory of Open Access Journals (Sweden)

    Lin Shun-Ping

    2014-12-01

    Full Text Available Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5 and a sub-elite group (SG; n = 5. The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML acceleration (r = −0.83 to −0.93, p < 0.05, and between anterior-posterior (AP acceleration and running distance (r = −0.8953 to −0.9653, p < 0.05, but not for vertical control of the center of mass. This study suggests that runners reduce stride length to minimize mediolateral sway and the effects of braking on the trunk; moreover, cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated.

  11. Wavelet Analysis of Acceleration Response of Beam Under the Moving Mass for Damage Assessment

    Science.gov (United States)

    Vaidya, Tanuja; Chatterjee, Animesh

    2016-04-01

    In the present study, acceleration response of cracked beam is analyzed by using the wavelet transform to detect the crack presence, its location and also to predict the crack severity. The equation of motion of beam under the moving mass is solved by using the fourth order Runge-Kutta method. A code is written by expanding the equation for first three vibration modes. Acceleration signal of the damaged beam under the moving mass contains the discontinuity at the crack location. This discontinuity contained in the acceleration signal is sufficiently visible but it is very small for some signals. Therefore, the acceleration signals are transformed using the wavelet analysis. A wavelet coefficient peak occurs at the location of discontinuity, so that we can identify the crack presence and its location. From the value of wavelet coefficient peak, we can also predict the crack effect with respect to the change in velocity of moving mass and change in crack depth. The main advantage of this method is that the wavelet coefficient peak is sufficiently higher even for the higher velocities and small size crack.

  12. The mass discrepancy acceleration relation in early-type galaxies: extended mass profiles and the phantom menace to MOND

    Science.gov (United States)

    Janz, Joachim; Cappellari, Michele; Romanowsky, Aaron J.; Ciotti, Luca; Alabi, Adebusola; Forbes, Duncan A.

    2016-09-01

    The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the baryonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of fast-rotator early-type galaxies by Cappellari et al. based on ATLAS3D and SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) data, which was the first homogenous study of this kind, reaching ˜4 Re, where DM begins to dominate the total mass budget. We find the early-type galaxies to follow an MDA relation similar to spiral galaxies, but systematically offset. Also, while the slopes of the mass density profiles inferred from galaxy dynamics show consistency with those expected from their stellar content assuming MOND, some profiles of individual galaxies show discrepancies.

  13. The mass-discrepancy acceleration relation in early-type galaxies: extended mass profiles and the phantom menace to MOND

    CERN Document Server

    Janz, Joachim; Romanowsky, Aaron J; Ciotti, Luca; Alabi, Adebusola; Forbes, Duncan A

    2016-01-01

    The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the baryonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of fast-rotator early-type galaxies by Cappellari et al. based on ATLAS$^{3D}$ and SLUGGS data, which was the first homogenous study of this kind, reaching ~4 $R_e$, where DM begins to dominate the total mass budget. We find the early-type galaxies to follow a MDA relation similar to spiral galaxies, but systematically offset. Also, while the slopes of the mass ...

  14. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    Directory of Open Access Journals (Sweden)

    N. Utry

    2014-09-01

    Full Text Available Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite, oxides (quartz, hematite and rutile, and carbonate (limestone were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  15. Determination of alkyl methanesulfonates in doxazosin mesylate by gas chromatography-mass spectrometer

    Directory of Open Access Journals (Sweden)

    C Sitaram

    2011-01-01

    Full Text Available High sensitive rapid gas chromatography-mass spectrometry method for the determination of four carcinogenic alkyl methanesulfonates viz. methyl methanesulfonate, ethyl methanesulfonate, isopropyl methanesulfonate and n-butyl methanesulfonate in doxazosin mesylate has been presented by using selective ion monitoring mode. The optimum separation was achieved between methyl methanesulfonate, ethyl methanesulfonate, isopropyl methanesulfonate and n-butyl methanesulfonate on a DB-5 (30 m×0.32 mm×1.0 μm capillary column under programming temperature. Acetonitrile, water and ammonia (90:9:1 v/v/v mixture was used as diluent. Various factors involved in the gas chromatography-mass spectrometry method development are also presented. This method was validated as per International Conference on Harmonization guidelines. The limit of quantitation of methyl methanesulfonate, ethyl methanesulfonate, isopropyl methanesulfonate and n-butyl methanesulfonate is 6 ppm with respect to 30 mg/ml of doxazosin mesylate.

  16. Verifying the accuracy of the TITAN Penning-trap mass spectrometer

    CERN Document Server

    Brodeur, M; Brunner, T; Ettenauer, S; Gallant, A T; Simon, V V; Smith, M J; Lapierre, A; Ringle, R; Delheij, P; Good, M; Lunney, D; Dilling, J

    2011-01-01

    TITAN (TRIUMF's Ion Traps for Atomic and Nuclear science) is an online facility designed to carry out high-precision mass measurements on singly and highly charged radioactive ions. The TITAN Penning trap has been built and optimized in order to perform such measurements with an accuracy in the sub ppb-range. A detailed characterization of the TITAN Penning trap is presented and a new compensation method is derived and demonstrated, verifying the performance in the range of sub-ppb.

  17. Rapid screening and characterization of drug metabolites using a new quadrupole-linear ion trap mass spectrometer.

    Science.gov (United States)

    Hopfgartner, Gérard; Husser, Christophe; Zell, Manfred

    2003-02-01

    The application of a new hybrid RF/DC quadrupole-linear ion trap mass spectrometer to support drug metabolism and pharmacokinetic studies is described. The instrument is based on a quadrupole ion path and is capable of conventional tandem mass spectrometry (MS/MS) as well as several high-sensitivity ion trap MS scans using the final quadrupole as a linear ion trap. Several pharmaceutical compounds, including trocade, remikiren and tolcapone, were used to evaluate the capabilities of the system with positive and negative turbo ionspray, using either information-dependent data acquisition (IDA) or targeted analysis for the screening, identification and quantification of metabolites. Owing to the MS/MS in-space configuration, quadrupole-like CID spectra with ion trap sensitivity can be obtained without the classical low mass cutoff of 3D ion traps. The system also has MS(3) capability which allows fragmentation cascades to be followed. The combination of constant neutral loss or precursor ion scan with the enhanced product ion scan was found to be very selective for identifying metabolites at the picogram level in very complex matrices. Owing to the very high cycle time and, depending on the mass range, up to eight different MS experiments could be performed simultaneously without compromising chromatographic performance. Targeted product ion analysis was found to be complementary to IDA, in particular for very low concentrations. Comparable sensitivity was found in enhanced product ion scan and selected reaction monitoring modes. The instrument is particularly suitable for both qualitative and quantitative analysis. PMID:12577280

  18. Early Observations of the Upper Atmosphere and Ionosphere of Mars by MAVEN’s Neutral Gas and Ion Mass Spectrometer

    Science.gov (United States)

    Benna, Mehdi; Mahaffy, Paul R.; Elrod, Meredith

    2015-04-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution (MAVEN) Mission is designed to characterize the source region of escaping atoms in the upper atmosphere and ionosphere of Mars. The NGIMS instrument is a quadrupole analyzer with a mass rang of 2-150 Da. It utilizes a dual ion source in order to measure both surface reactive neutrals (using the Open Source Neutral mode - OSN), inert neutrals (using the Closed Source Neutral mode - CSN), and thermal ions (using the Open Source Ion mode - OSI) at altitudes below 500 km.In the first few months of the MAVEN mission, NGIMS alternated on sequential orbits between measurement sequences that focus on fully characterizing neutral species (using the CSN/OSN modes) and ions (using the CSN/OSI modes). The collected data revealed the substantial structure present in both neutral and ion densities with spatial scales of hundreds of kilometers along the spacecraft track. The data also brought to light the sharp contrast between the day side and night side atmospheric profiles of neutrals and ions in both total density and relative abundance.

  19. Activated Ion ETD Performed in a Modified Collision Cell on a Hybrid QLT-Oribtrap Mass Spectrometer

    Science.gov (United States)

    Ledvina, Aaron R.; Rose, Christopher M.; McAlister, Graeme C.; Syka, John E. P.; Westphall, Michael S.; Griep-Raming, Jens; Schwartz, Jae C.; Coon, Joshua J.

    2013-11-01

    We describe the implementation and characterization of activated ion electron transfer dissociation (AI-ETD) on a hybrid QLT-Orbitrap mass spectrometer. AI-ETD was performed using a collision cell that was modified to enable ETD reactions, in addition to normal collisional activation. The instrument manifold was modified to enable irradiation of ions along the axis of this modified cell with IR photons from a CO2 laser. Laser power settings were optimized for both charge (z) and mass to charge ( m/z) and the instrument control firmware was updated to allow for automated adjustments to the level of irradiation. This implementation of AI-ETD yielded 1.6-fold more unique identifications than ETD in an nLC-MS/MS analysis of tryptic yeast peptides. Furthermore, we investigated the application of AI-ETD on large scale analysis of phosphopeptides, where laser power aids ETD, but can produce b- and y-type ions because of the phosphoryl moiety's high IR adsorption. nLC-MS/MS analysis of phosphopeptides derived from human embryonic stem cells using AI-ETD yielded 2.4-fold more unique identifications than ETD alone, demonstrating a promising advance in ETD sequencing of PTM containing peptides.

  20. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer

    Science.gov (United States)

    Scott, Jill R.; Tremblay, Paul L.

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  1. On-line desalting of crude oil in the source region of a Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Chanthamontri, C Ken; Stopford, Andrew P; Snowdon, Ryan W; Oldenburg, Thomas B P; Larter, Stephen R

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pK(a); 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H₂O/toluene solution-phase extraction of oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  2. Correlation between y-Type Ions Observed in Ion Trap and Triple Quadrupole Mass Spectrometers

    OpenAIRE

    Sherwood, Carly A.; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Vitek, Olga; Martin, Daniel B.

    2009-01-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra. However, because the majority of discovery experiments are performed on ion tr...

  3. The Mass-Discrepancy Acceleration Relation: a Natural Outcome of Galaxy Formation in CDM halos

    CERN Document Server

    Ludlow, Aaron D; Schaller, Matthieu; Theuns, Tom; Frenk, Carlos S; Bower, Richard; Schaye, Joop; Crain, Robert A; Navarro, Julio F; Fattahi, Azadeh; Oman, Kyle A

    2016-01-01

    We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the EAGLE suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different subgrid models for stellar and AGN feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: different feedback processes -- which produce different galaxy populations -- mainly shift galaxies along the relation, rather than perpendicular to it. Furthermore, galaxies exhibit a single characteristic acceleration, $g_{\\dagger}$, above which baryons dominate the mass budget, as observed. These observations have been hailed as evidence for mod...

  4. Analysis of uncertainties in isotopic assay of UO2 pellets using thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Control Laboratory being a centralized analytical facility of NFC is responsible for isotopic assay of UO2 pellets by Thermal ionization mass spectrometry (TIMS). TIMS is a precise and accurate technique for the determination of isotopic ratios. The present work involves the evaluation of uncertainty components affecting the measurement results. Qualitative and Quantitative Uncertainty factors have been evaluated. Qualitative factors mentioned are mostly related to technical competency of operators involved in the analysis; while quantitative factors have been evaluated. The isotope reference material selected as check standard is SRM U-005 Uranium Isotopic Standard with 235U (at%): 0.4833 ± 0.0005 and the Natural isotopic composition of 235U sample has been selected for analysis to calculate uncertainty sources effecting the obtained isotopic ratios

  5. Competence evaluation of COSAC flight spare model mass spectrometer: In preparation of arrival of Philae lander on comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Giri, Chaitanya; Goesmann, Fred; Steele, Andrew; Gautier, Thomas; Steininger, Harald; Krüger, Harald; Meierhenrich, Uwe J.

    2015-02-01

    The Cometary Sampling and Composition (COSAC) experiment onboard the Philae lander is a combined Gas Chromatograph-Mass Spectrometer targeted to determine the organic composition of the nucleus of comet 67P/Churyumov-Gerasimenko. The COSAC flight-model mass spectrometer (FM-MS) was scheduled to sample volatile organic species from 67P's coma prior to Philae's detachment from the Rosetta orbiter in November 2014. It was again scheduled to sample subsequent to Philae's touchdown but prior to drilling operations, thereby retrieving measurements of volatiles from the surface of an unperturbed nucleus. This article evaluates the competence of COSAC mass spectrometers in identifying volatile organic species in both cometary and laboratory-simulated environments. The evaluation was conducted on an operationally optimized COSAC flight spare model mass spectrometer (FS-MS) maintained in ultra-high vacuum. The FS-MS obtained analytical measurements by "sniffing" several organic molecule mixtures of diverse chemical functional groups and molecules with broader molecular masses introduced into the vacuum vessel housing the instrument. The results demonstrate that COSAC produces mass fragmentation patterns of organic species similar to those in calibration standard mass spectra; it is able to identify various organic species within mixtures present at low concentrations (100 ppm); and it can identify fragmentation patterns of non-introduced unknown species and those with high molecular masses within organic mixtures. These observations successfully substantiate the potential of the FM-MS to make qualitative measurements of organic species both in the rarefied environment of the coma and in the relatively enriched nucleus surface.

  6. Measuring production-dissolution rates of marine biogenic silica by 30Si-isotope dilution using a high-resolution sector field inductively coupled plasma mass spectrometer

    OpenAIRE

    Fripiat, F.; Corvaisier, Rudolph; Navez, Jacques; Elskens, M.; Schoemann, Véronique; Leblanc, Karine; Andre, Luc; D. Cardinal

    2009-01-01

    Regional and seasonal variability of the Si dissolution:production ratios in the surface ocean have not been well assessed. Here, we propose a new method for determining these rates, using the 30Si-isotopic dilution technique with a high-resolution sector field inductively coupled plasma mass spectrometer (HR-SF-ICP-MS). Relative analytical precision of the isotopic measurement is better than 1%, similar to that obtained by thermal ionization-quadrupole mass spectrometry (TIMS). Accuracy and ...

  7. Modeling the Impact and Costs of Semiannual Mass Drug Administration for Accelerated Elimination of Lymphatic Filariasis

    OpenAIRE

    Stolk, Wilma; Bosch, Quirine; De Vlas, Sake,; Fischer, Peter; Weil, Gary; Goldman, Ann

    2013-01-01

    textabstractThe Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simul...

  8. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    OpenAIRE

    Lin Shun-Ping; Sung Wen-Hsu; Kuo Fon-Chu; Kuo Terry B J; Chen Jin-Jong

    2014-01-01

    Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month la...

  9. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    OpenAIRE

    Eliades J.; Zhao X.-L.; Kieser W. E.; Litherland A. E.

    2012-01-01

    Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS), and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2), which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing ...

  10. Sample preparation for accelerator mass spectrometry at the University of Washington

    International Nuclear Information System (INIS)

    The adaptation of the University of Washington FN tandem Van de Graaff to accelerator mass spectrometry (AMS), as well as some of the results obtained, are described in another paper in this volume (Farwell et al., 1981). Here we discuss our experiences in preparing carbon and beryllium samples that give large and stable ion beams when used in our Extrion cesium sputter source with an inverted cesium beam geometry

  11. Simulation of experimental spectra for medium-heavy nuclides in accelerator mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-Juan; GUAN Yong-Jing; HE Ming; RUAN Xiang-Dong; DONG Ke-Jun; LI Guo-Qiang; Wu Shao-Yong; WU Wei-Ming; JIANG Shan

    2005-01-01

    Some interferences are often encountered in accelerator mass spectrometry (AMS) measurements, especially for medium-heavy nuclide measurement. It is difficult for online discrimination of the nuclide of interest from the interfering ones. In order to solve this problem, we developed a method to simulate the experimental spectra of medium-heavy nuclides in AMS measurements. The results obtained from this method are in good agreement with experimental values.

  12. The airborne mass spectrometer AIMS - Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    Science.gov (United States)

    Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Schäuble, Dominik; Jeßberger, Philipp; Ziereis, Helmut

    2016-04-01

    Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5- reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10-12 to 10-6 mol mol-1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5-. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with

  13. The airborne mass spectrometer AIMS - Part 1: AIMS-H2O for UTLS water vapor measurements

    Science.gov (United States)

    Kaufmann, Stefan; Voigt, Christiane; Jurkat, Tina; Thornberry, Troy; Fahey, David W.; Gao, Ru-Shan; Schlage, Romy; Schäuble, Dominik; Zöger, Martin

    2016-03-01

    In the upper troposphere and lower stratosphere (UTLS), the accurate quantification of low water vapor concentrations has presented a significant measurement challenge. The instrumental uncertainties are passed on to estimates of H2O transport, cloud formation and the role of H2O in the UTLS energy budget and resulting effects on surface temperatures. To address the uncertainty in UTLS H2O determination, the airborne mass spectrometer AIMS-H2O, with in-flight calibration, has been developed for fast and accurate airborne water vapor measurements. We present a new setup to measure water vapor by direct ionization of ambient air. Air is sampled via a backward facing inlet that includes a bypass flow to assure short residence times (pressure-controlled gas discharge ion source of the mass spectrometer. The air is directed through the gas discharge region where ion-molecule reactions lead to the production of hydronium ion clusters, H3O+(H2O)n (n = 0, 1, 2), in a complex reaction scheme similar to the reactions in the D-region of the ionosphere. These ions are counted to quantify the ambient water vapor mixing ratio. The instrument is calibrated during flight using a new calibration source based on the catalytic reaction of H2 and O2 on a Pt surface to generate a calibration standard with well-defined and stable H2O mixing ratios. In order to increase data quality over a range of mixing ratios, two data evaluation methods are presented for lower and higher H2O mixing ratios respectively, using either only the H3O+(H2O) ions or the ratio of all water vapor dependent ions to the total ion current. Altogether, a range of water vapor mixing ratios from 1 to 500 parts per million by volume (ppmv) can be covered with an accuracy between 7 and 15 %. AIMS-H2O was deployed on two DLR research aircraft, the Falcon during CONCERT (CONtrail and Cirrus ExpeRimenT) in 2011, and HALO during ML-CIRRUS (Mid-Latitude CIRRUS) in 2014. The comparison of AIMS-H2O with the SHARC tunable

  14. MGA-1100质谱计在低压实验人体呼吸氧浓度监测中的应用%Application of MGA-1100 Mass Spectrometer in Human Experiment Under Low Pressure

    Institute of Scientific and Technical Information of China (English)

    黄刚; 刘学博; 彭远开; 费锦学; 周抗寒; 丁军平; 徐波

    2004-01-01

    The mass spectrometer and the method of measuring concentration of oxygen in the region of mouth and nose in vivo experiment under low pressure were developed. A mass flow controller was assembled through the inlet capillary of MGA-1100 mass spectrometer. The mass flow controller was controlled by a computer controlled the operating pressure in MGA -1100 to make operating in its linear region. The measuring value is not affected from the pressure of inlet. MGA-1100 mass spectrometer with improved inlet system can reach the demand of most human experiment under low pressure.

  15. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry.

  16. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    Science.gov (United States)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (quantitation, a largely underutilized approach to date.

  17. Role of thermal ionization mass spectrometer in nuclear fuel fabrication process at NFC

    International Nuclear Information System (INIS)

    Nuclear energy is an inevitable option for meeting the ever-increasing demand of electricity without degrading the environment. Water-cooled reactors are currently in operation in our country where uranium dioxide fuel in the form of pellet encapsulated in zircaloy clad fuel pins are used. Nuclear fuel production is an established industry in our country and the fuel required is produced at NFC, Hyderabad for both Pressurized Heavy Water Reactor (PHWR) and Boiled Water Reactor (BWR). The raw material in the form of Magnesium diuranate (MDU) also known as yellow cake is received from UCIL Jaduguda and is processed through ADU route to produce ceramic grade UO2 powder, which is subsequently pelletised. The pellets are loaded in Zircaloy tubes and resistance welded with end caps to fuel element for subsequent supply in the form of fuel bundles to the reactors. The quality of the fuel supplied has to be ensured with respective to chemical composition and various other parameters like isotopic assay, mechanical strength and leak test for helium, etc. Thus determination of isotopic assay is an important part of the quality assurance programme. The isotopic assay is being carried out using Thermal Ionization Mass Spectrometry (TIMS) at Control Laboratory

  18. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  19. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer.

    Science.gov (United States)

    Roy-Lachapelle, Audrey; Solliec, Morgan; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2015-01-01

    A new innovative analytical method combining ultra-fast analysis time with high resolution/accurate mass detection was developed to eliminate the misidentification of anatoxin-a (ANA-a), a cyanobacterial toxin, from the natural amino acid phenylalanine (PHE). This was achieved by using the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to the Q-Exactive, a high resolution/accurate mass spectrometer (HRMS). This novel combination, the LDTD-APCI-HRMS, allowed for an ultra-fast analysis time (0.999). Enhancement of signal to noise ratios relative to a standard triple-quadrupole method was demonstrated with lower detection and quantification limit values of 0.2 and 0.6 μg/L using the Q-Exactive. Accuracy and interday/intraday relative standard deviations were below 15%. The new method was applied to 8 different lake water samples with signs of cyanobacterial blooms. This work demonstrates the possibility of using an ultra-fast LDTD-APCI sample introduction system with an HRMS hybrid instrument for quantitative purposes with high selectivity in complex environmental matrices. PMID:25476385

  20. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    Science.gov (United States)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  1. Performance evaluation of a prototype multi-bounce time-of-flight mass spectrometer in linear mode and applications in space science

    Science.gov (United States)

    Hässig, M.; Libardoni, M.; Mandt, K.; Miller, G.; Blase, R.

    2015-11-01

    Mass spectrometry is a powerful tool to measure the composition of volatile and semi volatile gases. The necessity to accurately identify and quantify unknown species lead to the requirements of a mass spectrometer as the detector of choice in most separation science and direct sample analysis situations. Advantages of time-of-flight mass spectrometry (TOFMS) are the high mass resolution, high mass range, and the measurement of the entire mass range in each extraction. The multi-bounce time-of-flight mass spectrometer (MBTOF) described in this work, takes advantage of a small footprint without sacrificing mass resolution. To achieve this, the MBTOF prototype uses a linear flight path with dual lens stacks. Ions are bounced in between the mirrors for a specified duration whereby increasing their flight time and resolution. The number of bounces can tune the resolution of the instrument. To show the minimum capabilities of the instrument and further applications of it, MBTOF was operated in linear mode. The instrument is designed for a multibounce passage of the ion optics and the focal point of the ion optics is optimized for this application, therefore the resolution in linear mode is limited. However, even in linear mode of operation, the mass resolution meets or exceeds that of a quadrupole mass spectrometer with limited power supplies required for operations. The measurements presented here are based on lab measurements of the early lab prototype MBTOF operated in a linear flight mode with low ion source extraction fields. A detailed evaluation including filament characterization, dynamic range and resolution are investigated. Further discussion involving applications on planetary missions for rocket science, coupling of MBTOF with laser thermal desorption or gas chromatography for potential organic determination in deep space are included.

  2. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; Brunner, A. E.; Grotzinger,J. P.; Jones, J. H.; Leshin, L. A.; Miller, K.; Morris, R. V.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T. C.; Summons, R. E.; Sutter, B.; Webster, C. R.

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  3. Development and characterization of a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS

    Directory of Open Access Journals (Sweden)

    T. Mikoviny

    2010-01-01

    Full Text Available We have developed a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS in which both the ion source and the ion drift tube can be continuously operated at temperatures up to 250 °C. The instrument was characterized in a high E/N-mode (130 Td and in a low E/N-mode (87 Td at an operating temperature of 200 °C. Instrumental sensitivities and 2σ-detection limits were on the order of 50–110 cps/ppb and 100 ppt (1 s signal integration time, respectively. The HT-PTR-MS is primarily intended for measuring "sticky" or semi-volatile trace gases. Alternatively, it may be coupled to a particle collection/thermal desorption apparatus to measure particle-bound organics in near real-time. In view of these applications, we have measured instrumental response times for a series of reference compounds. 1/e2-response times for dimethyl sulfoxide, ammonia and monoethanolamine were in the sub-second to second regime. 1/e2-response times for levoglucosan, oxalic acid and cis-pinonic acid ranged from 8 to 370 s.

  4. Development and characterization of a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS

    Directory of Open Access Journals (Sweden)

    T. Mikoviny

    2010-05-01

    Full Text Available We have developed a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS in which both the ion source and the ion drift tube can be continuously operated at temperatures up to 250 °C. The instrument was characterized in a high E/N-mode (130 Td and in a low E/N-mode (87 Td at an operating temperature of 200 °C. Instrumental sensitivities and 2σ-detection limits were on the order of 50–110 cps/ppb and 100 ppt (1 s signal integration time, respectively. The HT-PTR-MS is primarily intended for measuring "sticky" or semi-volatile trace gases. Alternatively, it may be coupled to a particle collection/thermal desorption apparatus to measure particle-bound organics in near real-time. In view of these applications, we have measured instrumental response times for a series of reference compounds. 1/e2-response times for dimethyl sulfoxide, ammonia and monoethanolamine were in the sub-second to second regime. 1/e2-response times for levoglucosan, oxalic acid and cis-pinonic acid ranged from 8 to 370 s.

  5. Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface.

    Science.gov (United States)

    Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert; Chait, Brian T

    2015-04-01

    We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term "ConDuct," uses a conductive plastic pipette tip containing an approximately 1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (less than 1°) and persists for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to the commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2 to 3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length.

  6. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    Science.gov (United States)

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  7. Action spectroscopy of SrCl$^+$ using an integrated ion trap time-of-flight mass spectrometer

    CERN Document Server

    Puri, Prateek; Kotochigova, Svetlana; Petrov, Alexander; Hudson, Eric R

    2014-01-01

    The photodissociation cross-section of SrCl$^+$ is measured in the spectral range of 36000 -- 46000 cm$^{-1}$ using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl$^+$ molecular ions with a pulsed dye laser, X$^1\\Sigma^+$ state molecular ions are electronically excited to the repulsive wall of the A$^1\\Pi$ state, resulting in dissociation. Using the TOF-MS, the fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed $\\textit{ab initio}$ calculations of the molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl$^+$ are also compared to those of another alkaline earth chalcogen, BaCl$^+$, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and $\\textit{ab initio}$ calculations of SrCl$^+$.

  8. Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO₂.

    Science.gov (United States)

    Clark, Ezra L; Singh, Meenesh R; Kwon, Youngkook; Bell, Alexis T

    2015-08-01

    The discovery of electrocatalysts that can efficiently reduce CO2 to fuels with high selectivity is a subject of contemporary interest. Currently, the available analytical methods for characterizing the products of CO2 reduction require tens of hours to obtain the dependence of product distribution on applied potential. As a consequence, there is a need to develop novel analytical approaches that can reduce this analysis time down to about an hour. We report here the design, construction, and operation of a novel differential electrochemical mass spectrometer (DEMS) cell geometry that enables the partial current densities of volatile electrochemical reaction products to be quantified in real time. The capabilities of the novel DEMS cell design are demonstrated by carrying out the electrochemical reduction of CO2 over polycrystalline copper. The reaction products are quantified in real time as a function of the applied potential during linear sweep voltammetry, enabling the product spectrum produced by a given electrocatalyst to be determined as a function of applied potential on a time scale of roughly 1 h.

  9. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    Science.gov (United States)

    Elrod, Meredith; Bougher, Stephen; Benna, Mehdi; Yelle, Roger; Jakosky, Bruce; Bell, Jared; Mahaffy, Paul; Stone, Shane

    2016-07-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  10. Chemical Composition of Micrometer-Sized Filaments in an Aragonite Host by a Miniature Laser Ablation/Ionization Mass Spectrometer.

    Science.gov (United States)

    Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Riedo, Andreas; Neuland, Maike B; Meyer, Stefan; Wurz, Peter

    2015-08-01

    Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (∼15 μm) and vertical (∼20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). PMID:26247475

  11. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds.

    Science.gov (United States)

    Hamner, Samuel R; Delp, Scott L

    2013-02-22

    Running is a bouncing gait in which the body mass center slows and lowers during the first half of the stance phase; the mass center is then accelerated forward and upward into flight during the second half of the stance phase. Muscle-driven simulations can be analyzed to determine how muscle forces accelerate the body mass center. However, muscle-driven simulations of running at different speeds have not been previously developed, and it remains unclear how muscle forces modulate mass center accelerations at different running speeds. Thus, to examine how muscles generate accelerations of the body mass center, we created three-dimensional muscle-driven simulations of ten subjects running at 2.0, 3.0, 4.0, and 5.0m/s. An induced acceleration analysis determined the contribution of each muscle to mass center accelerations. Our simulations included arms, allowing us to investigate the contributions of arm motion to running dynamics. Analysis of the simulations revealed that soleus provides the greatest upward mass center acceleration at all running speeds; soleus generates a peak upward acceleration of 19.8m/s(2) (i.e., the equivalent of approximately 2.0 bodyweights of ground reaction force) at 5.0m/s. Soleus also provided the greatest contribution to forward mass center acceleration, which increased from 2.5m/s(2) at 2.0m/s to 4.0m/s(2) at 5.0m/s. At faster running speeds, greater velocity of the legs produced larger angular momentum about the vertical axis passing through the body mass center; angular momentum about this vertical axis from arm swing simultaneously increased to counterbalance the legs. We provide open-access to data and simulations from this study for further analysis in OpenSim at simtk.org/home/nmbl_running, enabling muscle actions during running to be studied in unprecedented detail. PMID:23246045

  12. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  13. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  14. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    Science.gov (United States)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-01

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam-laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam-particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.

  15. Targeted analysis with benchtop quadrupole–orbitrap hybrid mass spectrometer: Application to determination of synthetic hormones in animal urine

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •The quadrupole in Q Exactive acts as a powerful filter to reduce ion suppression. •Reducing mass range using quadrupole in targeted modes increases the S/N ratio. •Targeted SIM data dependent scan modes are the most suitable for residue analysis. •A HRMS confirmatory method for synthetic hormones in urine has been developed. •The Q Exactive provides similar sensitivity and enhanced selectivity compared to QqQ. -- Abstract: Sensitive and unequivocal determination of analytes/contaminants in complex matrices is a challenge in the field of food safety control. In this study, various acquisition modes (Full MS/AIF, Full MS + tMS/MS, Full MS/dd MS/MS and tSIM/ddMS/MS) and parameters of a quadrupole–orbitrap hybrid mass spectrometer (Q Exactive) were studied in detail. One of the main conclusions has been that, reducing the scan range for Full MS (using the quadrupole) and targeted modes give higher signal-to-noise (S/N) ratios and thereby better detection limits for analytes in matrix. The use of Q Exactive in a complex case, for the confirmatory analysis of hormones in animal urine is presented. A targeted SIM data dependent MS/MS (tSIM/ddMS/MS) acquisition method for determination of eight synthetic hormones (trenbolone, 17α ethinylestradiol, zeranol, stanozolol, dienestrol, diethylstilbestrol, hexestrol, taleranol) and a naturally occurring hormone (zearalenone) in animal urine were optimized to have sensitive precursors from targeted SIM mode and trigger MS/MS scans over the entire chromatograph peak. The method was validated according to EC/657/2002. CCα (decision limit) for the analytes ranged between 0.11 μg L−1 and 0.69 μg L−1 and CCβ (detection capability) ranged between 0.29 μg L−1 and 0.90 μg L−1

  16. Optical Detection and Characterization of Cometary Grains Collected for Analysis by the COSIMA Mass Spectrometer on-board ROSETTA.

    Science.gov (United States)

    Langevin, Y.; Hornung, K.; Hilchenbach, M.; Kissel, J.; Silen, J. V.; Briois, C.; Schulz, R.; Baklouti, D.; Eng, P.

    2014-12-01

    The COSIMA time of flight mass spectrometer on board the ROSETTA spacecraft (Kissel et al., 2007, 2009) will provide the first in-situ high resolution spectra of cometary grains. The first results on mass spectra will be presented in companion abstracts (e.g. Hilchenbach et al.). The grains are collected by three 10 mm x 10 mm targets exposed simultaneously in front of a funnel. The first exposed targets are covered by a very smooth "metal black" layer (gold and silver). Given the relatively low dust flux expected during the first stages of the RV phase and the non-renewable supply of Indium in the ion source, identifying the best candidate collected grains is a critical issue. For this purpose, COSIMA images the targets by presenting them before and after exposure in front of a camera ("COSISCOPE"), with grazing incidence illumination from opposite directions by two LED's. The images will also provide information on the scattering properties of the collected grains. The resolution of the camera is 14 μm / pixel, which makes it possible to identify features filling up a significant fraction of the analyzed spot (50 μm FWHM). The images of the first targets before and after exposure are downloaded without compression and with sub-pixel sampling for providing maximum resolution. Several algorithms have been developed so as to provide a priority ranking of features to be analyzed by SIMS. The results of this process will be presented, as well as the relationship between the optical signatures of high priority features and the outcome of the SIMS analyses. References:Kissel J. et al. (2007) Space Science Reviews, 128, p. 823-867Kissel J. et al. (2009) in ROSETTA : ESA's Mission to the Origin of the Solar System, edited by R. Schultz and et al., pp. 201-242, Springer Science.Hilchenbach M. et al. (2014) AGU fall meeting, 2014

  17. Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health

    International Nuclear Information System (INIS)

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of 90Sr by accelerator mass spectrometry. Despite a pervasive interference from 90Zr, our initial development has yielded an instrumental background of ∼ 108 atoms (75 mBq) per sample. Further refinement of our system (e.g., redesign of our detector, use of alternative target materials) is expected to push the background below 106 atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring, and human health

  18. Accelerator mass spectrometry of strontium-90 for homeland security, environmental monitoring and human health

    International Nuclear Information System (INIS)

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of 90Sr by accelerator mass spectrometry. Despite a pervasive interference from 90Zr, our initial development has yielded an instrumental background of ∼108 atoms (75 mBq) per sample. Further refinement of our system (e.g. redesign of our detector, use of alternative target materials) is expected to push the background below 106 atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring and human health

  19. Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health

    Energy Technology Data Exchange (ETDEWEB)

    Tumey, S J; Brown, T A; Hamilton, T F; Hillegonds, D J

    2008-03-03

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of {sup 90}Sr by accelerator mass spectrometry. Despite a pervasive interference from {sup 90}Zr, our initial development has yielded an instrumental background of {approx} 10{sup 8} atoms (75 mBq) per sample. Further refinement of our system (e.g., redesign of our detector, use of alternative target materials) is expected to push the background below 10{sup 6} atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring, and human health.

  20. Fast airborne aerosol size and chemistry measurements with the high resolution aerosol mass spectrometer during the MILAGRO Campaign

    Directory of Open Access Journals (Sweden)

    P. F. DeCarlo

    2007-12-01

    Full Text Available The concentration, size, and composition of non-refractory submicron aerosol (NR-PM1 was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS, in which the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA species dominate the NR-PM1 mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA and biomass burning (BB are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 μg m−3 (STP ppm−1. This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006 and Kleinman et al. (2007b. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city likely due to evaporation. BB does not appear to be a strong source of nitrate

  1. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    Science.gov (United States)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  2. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    Science.gov (United States)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  3. Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry

    CERN Document Server

    Dillmann, I; Heil, M; Käppeler, F; Wallner, A; Forstner, O; Golser, R; Kutschera, W; Priller, A; Steier, P; Mengoni, A; Gallino, R; Paul, M; Vockenhuber, C; 10.1103/PhysRevC.79.065805

    2009-01-01

    The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as "neutron poison" for the s-process. Previous determinations of this value at stellar energies were based o...

  4. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec2) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events

  5. Determination of the stellar (n,γ) cross section of Ca40 with accelerator mass spectrometry

    Science.gov (United States)

    Dillmann, I.; Domingo-Pardo, C.; Heil, M.; Käppeler, F.; Wallner, A.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.; Mengoni, A.; Gallino, R.; Paul, M.; Vockenhuber, C.

    2009-06-01

    The stellar (n,γ) cross section of Ca40 at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing γ-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the Li7(p,n)Be7 reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic Ca40 is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, Ca40 can also play a secondary role as “neutron poison” for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of 30keV=5.73±0.34 mb.

  6. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners.

    Science.gov (United States)

    Lin, Shun-Ping; Sung, Wen-Hsu; Kuo, Fon-Chu; Kuo, Terry B J; Chen, Jin-Jong

    2014-12-01

    Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional center-of-mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5) and a sub-elite group (SG; n = 5). The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each) was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML) acceleration (r = -0.83 to -0.93, p cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated. PMID:25713664

  7. Coronal mass ejection-related particle acceleration regions during a simple eruptive event

    Science.gov (United States)

    Salas-Matamoros, Carolina; Klein, Karl-Ludwig; Rouillard, Alexis P.

    2016-05-01

    An intriguing feature of many solar energetic particle (SEP) events is the detection of particles over a very extended range of longitudes in the heliosphere. This may be due to peculiarities of the magnetic field in the corona, to a broad accelerator, to cross-field transport of the particles, or to a combination of these processes. The eruptive flare on 26 April 2008 provided an opportunity to study relevant processes under particularly favourable conditions since it occurred in a very quiet solar and interplanetary environment. This enabled us to investigate the physical link between a single well-identified coronal mass ejection (CME), electron acceleration as traced by radio emission, and the production of SEPs. We conduct a detailed analysis, which combines radio observations (Nançay Radio Heliograph and Nançay Decametre Array, Wind/Waves spectrograph) with remote-sensing observations of the corona in extreme ultraviolet (EUV) and white light, as well as in situ measurements of energetic particles near 1AU (SoHO and STEREO spacecraft). By combining images taken from multiple vantage points, we were able to derive the time-dependent evolution of the 3D pressure front that was developing around the erupting CME. Magnetic reconnection in the post-CME current sheet accelerated electrons, which remained confined in closed magnetic fields in the corona, while the acceleration of escaping particles can be attributed to the pressure front ahead of the expanding CME. The CME accelerated electrons remotely from the parent active region, owing to the interaction of its laterally expanding flank, which was traced by an EUV wave, with the ambient corona. SEPs detected at one STEREO spacecraft and SoHO were accelerated later, when the frontal shock of the CME intercepted the spacecraft-connected interplanetary magnetic field line. The injection regions into the heliosphere inferred from the radio and SEP observations are separated in longitude by about 140°. The

  8. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2008-12-01

    Full Text Available We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS. The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12–30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27–30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information.

    The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH42SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion

  9. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    Science.gov (United States)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  10. VEGA, STAR, SIRIUS and ANTARES – from 1 to 10 MV: Accelerator Mass Spectrometry at ANSTO

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry is recognized as one of the most significant advances in analytical isotope research in the 20th century. Since the 1980’s its impact in all subjects related to the study of planet Earth has been immeasurable. Commensurate with all these advances, numerous revolutions have occurred in AMS technology with the continual drive to reduce complexity, and improve performance. The ANSTO AMS Facility has and is contributing to this process. We have recently acquired two new NEC AMS systems at 1 MV (VEGA) and a 6 MV (SIRIUS) NEC plus a full suite of new sample preparation laboratories for actinides and cosmogenics. This seminar will provide an overview of the new ANSTO Centre for Accelerator Science and also some novel applications of in-situ cosmogenic 10Be and 26Al in landscape change and glaciology. (author)

  11. A new insight into the negative-mass paradox of gravity and the accelerating universe

    CERN Document Server

    Ni, G J

    2003-01-01

    The discovery of acceleration of the universe expansion in recent astrophysics research prompts the author to propose that the Newton's gravitation law can be generalized to accommodate the antimatter: While the force between matters(antimatters) is attractive, the force between matter and antimatter is a repulsive one. A paradox of negative-mass in gravity versus a basic symmetry (m-->-m) based on quantum mechanics is discussed in sufficient detail so that the new postulate could be established quite naturally. Corresponding modification of the theory of general relativity is also suggested. If we believe in the symmetry of particle and antiparticle as well as the antigravity between them, it might be possible to consider a new scenario of the expansion of universe which might provide some new insight into the interpretation of cosmological phenomena including the accelerating universe observed.

  12. Accelerated tryptic digestion for the analysis of biopharmaceutical monoclonal antibodies in plasma by liquid chromatography with tandem mass spectrometric detection.

    Science.gov (United States)

    Lesur, Antoine; Varesio, Emmanuel; Hopfgartner, Gérard

    2010-01-01

    Accelerated tryptic digestion of a therapeutic protein including microwave irradiation and thermal transfer by convection at 60 degrees C and 37 degrees C was investigated. An analytical setup was devised to follow the protein digestion rate using 1D gel electrophoresis and liquid chromatography coupled a triple quadrupole linear ion trap mass spectrometer. The formation kinetic of its tryptic peptides was monitored in the selected monitoring mode (LC-SRM/MS). Different digestion end points (e.g. 2, 5, 10, 15, 30 and 60min) as well as an overnight digestion were tested using a therapeutic human monoclonal antibody (mAb) with the goal of its LC-SRM/MS quantification in human plasma. The peptides from the human mAb were generated at different rates and were classified into three categories: (1) the fast forming peptides, (2) the slow forming peptides and (3) the peptides degrading over time. For many monitored peptides, a heating temperature of 37 degrees C with a 750rpm mixing applied for at least 30min provided equivalent results to microwave-assisted digestion and generally allowed the achievement of an equivalent peptide concentration as an overnight digestion carried out at 37 degrees C. The disappearance of the protein of the heavy and light chains can be monitored by 1D gel electrophoresis but was found not to be representative of the final tryptic peptide concentrations. For quantitative purposes a stable isotope labeled version ((13)C(4), (15)N(1)) of the therapeutic protein was used. The labeled protein as internal standard was found to be very efficient to compensate for incomplete digestion or losses during sample preparation. PMID:19939394

  13. Measurements of radiocarbon concentrations by accelerator mass spectrometry in the bottom sediments from Lake Tilitso in Nepal, Himalayas

    International Nuclear Information System (INIS)

    Concentrations of radionuclides such as14C, 137Cs, 210Pb, and 214Pb, the contents of organic C and N, and 13C/12C ratios were measured for near surface sediments collected from Tilitso, a high altitude lake in Nepal, Himalayas, Living attached algae obtained from the streams feeding Lake Tilitso were also analyzed on their 14C abundances. The 14C concentration Δ14C, was measured by direct detection of 14C atoms using a Tandetron accelerator mass spectrometer, on the acid-insoluble organic carbon that was extracetd from each sediment or each algae sample. Activities of 137Cs, 210Pb, and 214Pb in the sediments were measured with a coaxial-well-type high-purity-germanium detector. The sedimentation rate was estimated to be 0.56±0.27 cm y-1 by the 210Pb method. The content of carbon as acid-insoluble organic compounds was from 0.5 to 0.7%, and such carbon was depleted in 14C, yielding Δ14C values between -855±5 and -905±4mil (apparent 14C ages between 15,520±250 and 18,910±360 y BP). Values of Δ14C for attached algae samples were also low, ranging from -463±31 to -701±29mil (apparent ages from 4,980±460 to 9,700±780 y BP). The unexpectedly low 14C concentrations of these sediment and attached algae samples can be reasonably explained by considering geological and climatic environments around Lake Tilitso. (author)

  14. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  15. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  16. Assesment of endocrinal and biochemical entities through liquid chromatography–tandem mass spectrometry/mass spectrometer: Inter-relative investigation of the interaction based cardiovascular formulation

    Science.gov (United States)

    Das, Rakesh; Pal, Tapan Kumar

    2015-01-01

    Background: Combinatory oral dosage treatment of atorvastatin (ATVS) and olmesartan (OLM) drugs to cardiovascular patients reflects unpredicted results instead of its individual therapy, which was accessed on quantification of endocrinal and biochemicals of plasma through liquid chromatography–tandem mass spectrometry/mass spectrometer (LCMS/MS). Objective: Mission was to track the remarkable biochemical variation in the plasma after induction of the combined formulation, to evaluate the pharma-market rumor on its efficiency. Methods: To fulfil undergoing research objectives for digging-up of market insult, human patient volunteers were chosen according to the required criteria along with bioethical regulation. A sensitive, rapid and precise method was developed and validated to estimate aldosterone (ALD), angiotensin (ANG-II) and the Mevalonate (MVA) not Mevalonic acid through LCMS/MS over least samples of cardiovascular patients. Level of each endogenous biochemicals were determined in three stages - without drugs, with a single drug (OLM/ATVS) and with their combination that was then correlate with blood pressure of respective volunteers. Result and Discussion: Comparative and correlative studies panaroma among these analytes was detected. The selectivity, specificity, linearity, precision, accuracy, extraction recovery, limit of detection and limit of quantification, stability were the essential points of validation of the developed methodology. And the significance of each endogenous analyte data were based on P ≥ 0.001. Thus, low value of ALD and reciprocally higher in ANG-II on administered single drug than its combination and equal concentration of mevalonate in both stages, was discovered. Conclusion: This concludes that the cardiovascular dosage formulation entrenched in the market are not synergistic and effective compared with a single drug as antihypertensive drug. PMID:25709337

  17. Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko

    Science.gov (United States)

    Langevin, Y.; Hilchenbach, M.; Ligier, N.; Merouane, S.; Hornung, K.; Engrand, C.; Schulz, R.; Kissel, J.; Rynö, J.; Eng, P.

    2016-06-01

    The COSIMA mass spectrometer on board the ROSETTA orbiter has collected dust in the near coma of comet 67P/Churyumov-Gerasimenko since August 11, 2014. The collected dust particles are identified by taking images with a microscope (COSISCOPE) under grazing incidence illumination before and after exposure of the target to cometary dust. More than 10,000 dust particles >14 μm in size collected from August 11, 2014 to April 3, 2015 have been detected on three distinct target assemblies, including ˜500 dust particles with sizes ranging from 50 to more than 500 μm, that can be resolved by COSISCOPE (pixel size 14 μm). During this period, the heliocentric distance decreased from 3.5 AU to less than 2 AU. The collection efficiency on targets covered with "metal black" has been very high, due to the low relative velocity of incoming dust. Therefore, the COSISCOPE observations provide the first optical characterization of an unbiased sample of particles collected in the inner coma of a comet. The typology of particles >100 μm in size is dominated by clusters with a wide range of structure and strength, most originating from the disruption of large aggregates (>1 mm in size) shortly before collection. A generic relationship between these clusters and IDPs/Antarctic meteorites is likely in the framework of accretion models. About 15% of particles larger than 100 μm are compact particles with two likely contributions, one being linked to clusters and another leaving the cometary nucleus as single compact particles.

  18. Mass variation governed by the universe expansion velocity and the cosmic acceleration

    CERN Document Server

    Moraes, Pedro H R S

    2015-01-01

    Much effort has been made in trying to solve, or at least evade, the inconsistencies that emerge from general relativity as the framework for a cosmological model. The extradimensional models rise as superb possibilities on this regard. In this work I present Wesson's Space-Time-Matter theory of gravity cosmological solutions. A relation between mass variation at cosmological scales and the expansion velocity of the universe is obtained. Such a novelty on Space-Time-Matter theory of gravity predicts a transition from a decelerated to an accelerated phase of the universe expansion.

  19. IAEA meeting on accelerator mass spectrometry, Zagreb, Croatia, April 19-21, 1995

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. It is of paramount importance to promote the use of AMS within the IAEA. This would be particularly beneficial for the following IAEA programs: Safeguards, Physical and chemical sciences, Human health, Food and agriculture, Radioactive waste management, Radiation safety, Industry and earth sciences. The IAEA is working in the area of development of reference materials, interlaboratory comparisons and quality assurance. This meeting recommends that this program further developed and extended to include all the AMS isotopes

  20. Mass varying neutrinos, quintessence, and the accelerating expansion of the Universe

    International Nuclear Information System (INIS)

    We analyze the mass varying neutrino scenario. We consider a minimal model of massless Dirac fermions coupled to a scalar field, mainly in the framework of finite-temperature quantum field theory. We demonstrate that the mass equation we find has nontrivial solutions only for special classes of potentials, and only within certain temperature intervals. We give most of our results for the Ratra-Peebles dark energy (DE) potential. The thermal (temporal) evolution of the model is analyzed. Following the time arrow, the stable, metastable, and unstable phases are predicted. The model predicts that the present Universe is below its critical temperature and accelerates. At the critical point, the Universe undergoes a first-order phase transition from the (meta)stable oscillatory regime to the unstable rolling regime of the DE field. This conclusion agrees with the original idea of quintessence as a force making the Universe roll towards its true vacuum with a zero Λ term. The present mass varying neutrino scenario is free from the coincidence problem, since both the DE density and the neutrino mass are determined by the scale M of the potential. Choosing M∼10-3 eV to match the present DE density, we can obtain the present neutrino mass in the range m∼10-2-1 eV and consistent estimates for other parameters of the Universe.

  1. Chemical and mineralogical analyses of planetary rocks using a laser ablation mass spectrometer for in situ space research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Riedo, Andreas; Tulej, Marek; Wurz, Peter

    2015-04-01

    The context chemical analysis is of considerable importance in space research. High resolution in situ studies of planetary materials can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1] [2]. A highly heterogeneous sample of Allende meteorite, representative for extraterrestrial material, is investigated by LMS, a miniature laser ablation mass spectrometer designed for space research [3]. In the current setup a fs-laser ablation ion source is applied, allowing chemical analysis with lateral resolution of about 10-15 μm and sub-micrometre depth resolution [4]. The reflectron TOF mass analyser is used to measure elemental and isotopic composition of the sampled surface. The LMS instrument supports mass resolution 400 and dynamic range of 108 [5]. In the current studies with the fs-ablation ion source significant improvements in the detection efficiency of several metals e.g., Ni, Co, and non-metals e.g., Si, P, S and O, was achieved comparing to our previous setup [6]. Also the values of sensitivity coefficients for these elements are determined to be close to one, which resulted in the substantial improvements of the quantitative element analysis of the sample. Since the ablation crater depth is expected to be about 1 nm/laser shot also the possible changes of the main element or isotope distribution in depth can be analysed to assess their influence on the mineralogical analysis [7]. Several areas on an Allende sample were investigated and the chemical composition across the surface was determined from the mass spectrometric analysis. Also accurate isotope analysis could be conducted for most of main elements with sufficiently high signal to noise ratio. Correlation of elements was conducted and yielded mineralogical maps

  2. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  3. Analysis of cloud condensation nuclei composition and growth kinetics using a pumped counterflow virtual impactor and aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    J. G. Slowik

    2011-01-01

    Full Text Available We present a new method of determining the size and composition of CCN-active aerosol particles. Method utility is illustrated through a series of ambient measurements. A continuous-flow thermal-gradient diffusion chamber (TGDC, pumped counterflow virtual impactor (PCVI, and Aerodyne time-of-flight mass spectrometer (AMS are operated in series. Ambient particles are sampled into the TGDC, where a constant supersaturation is maintained, and CCN-active particles grow to ~2.5±0.5 μm. The output flow from the TGDC is directed into the PCVI, where a counterflow of dry N2 gas opposes the particle-laden flow, creating a region of zero velocity. This stagnation plane can only be traversed by particles with sufficient momentum, which depends on their size. Particles that have activated in the TGDC cross the stagnation plane and are entrained in the PCVI output flow, while the unactivated particles are diverted to a pump. Because the input gas is replaced by the counterflow gas with better than 99% efficiency at the stagnation plane, the output flow consists almost entirely of dry N2 and water evaporates from the activated particles. In this way, the system yields an ensemble of CCN-active particles whose chemical composition and size are analyzed using the AMS. Measurements of urban aerosol in downtown Toronto identified an external mixture of CCN-active particles consisting almost entirely of ammonium nitrate and ammonium sulfate, with CCN-inactive particles of the same size consisting of a mixture of ammonium nitrate, ammonium sulfate, and organics. We also discuss results from the first field deployment of the TGDC-PCVI-AMS system, conducted from mid-May to mid-June 2007 in Egbert, Ontario, a semirural site ~80 km north of Toronto influenced both by clean air masses from the north and emissions from the city. Organic-dominated particles sampled during a major biogenic event exhibited higher CCN activity and/or faster growth

  4. Analysis of cloud condensation nuclei composition and growth kinetics using a pumped counterflow virtual impactor and aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    J. G. Slowik

    2011-08-01

    Full Text Available We present a new method of determining the size and composition of CCN-active aerosol particles. Method utility is illustrated through a series of ambient measurements. A continuous-flow thermal-gradient diffusion chamber (TGDC, pumped counterflow virtual impactor (PCVI, and Aerodyne time-of-flight mass spectrometer (AMS are operated in series. Ambient particles are sampled into the TGDC, where a constant supersaturation is maintained, and CCN-active particles grow to ~2.5 ± 0.5 μm. The output flow from the TGDC is directed into the PCVI, where a counterflow of dry N2 gas opposes the particle-laden flow, creating a region of zero axial velocity. This stagnation plane can only be traversed by particles with sufficient momentum, which depends on their size. Particles that have activated in the TGDC cross the stagnation plane and are entrained in the PCVI output flow, while the unactivated particles are diverted to a pump. Because the input gas is replaced by the counterflow gas with better than 99 % efficiency at the stagnation plane, the output flow consists almost entirely of dry N2 and water evaporates from the activated particles. In this way, the system yields an ensemble of CCN-active particles whose chemical composition and size are analyzed using the AMS. Measurements of urban aerosol in downtown Toronto identified an external mixture of CCN-active particles consisting almost entirely of ammonium nitrate and ammonium sulfate, with CCN-inactive particles of the same size consisting of a mixture of ammonium nitrate, ammonium sulfate, and organics. We also discuss results from the first field deployment of the TGDC-PCVI-AMS system, conducted from mid-May to mid-June 2007 in Egbert, Ontario, a semirural site ~80 km north of Toronto influenced both by clean air masses from the north and emissions from the city. Organic-dominated particles sampled during a major biogenic event exhibited higher CCN activity and/or faster

  5. Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data

    Directory of Open Access Journals (Sweden)

    C. Mohr

    2011-08-01

    Full Text Available Mobile measurements of PM1 (particulate matter with an aerodynamic diameter <1 μm chemical composition using a quadrupole aerosol mass spectrometer and a multi-angle absorption photometer were performed using the PSI mobile laboratory during winter 2007/2008 and December 2008 in the metropolitan area of Zurich, Switzerland. Positive matrix factorization (PMF applied to the organic fraction of PM1 yielded 3 factors: Hydrocarbon-like organic aerosol (HOA related to traffic emissions; organic aerosol from wood burning for domestic heating purposes (WBOA; and oxygenated organic aerosol (OOA, assigned to secondary organic aerosol formed by oxidation of volatile precursors. The chemical composition of PM1 was assessed for an urban background site and various sites throughout the city. The background site is dominated by secondary inorganic and organic species (57 %, BC, HOA, and WBOA account for 15 %, 6 %, and 12 %, respectively. As for the other sites, HOA is important along major roads (varying between 7 and 14 % of PM1 for different sites within the city, average all sites 8 %, domestic wood burning makes up between 8–15 % of PM1 for different sites within the city (average all sites 10.5 %. OOA makes up the largest fraction of organic aerosol (44 % on average. A new method allows for the separation and quantification of the local fraction of PM1 emitted or rapidly formed in the city, and the fraction of PM1 originating from the urban background. The method is based on simultaneous on-road mobile and stationary background measurements and the correction of small-scale meteorological effects using the ratio of on-road sulfate to stationary sulfate. Especially during thermal inversions over the Swiss plateau, urban background concentrations contribute substantially to particulate number concentrations (between 40 and 80 % depending on meteorological conditions and

  6. Targeted analysis with benchtop quadrupole–orbitrap hybrid mass spectrometer: Application to determination of synthetic hormones in animal urine

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Departament de Química Analítica, Universitat de Barcelona, Barcelona (Spain); Rúbies, Antoni; Centrich, Francesc [Laboratori Agència Salut Pública de Barcelona, Barcelona (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Granados, Mercè [Departament de Química Analítica, Universitat de Barcelona, Barcelona (Spain); Cortés-Francisco, Nuria; Caixach, Josep [Mass Spectrometry Laboratory-Organic Pollutants, IDAEA-CSIC, Barcelona (Spain); Companyó, Ramon, E-mail: compano@ub.edu [Departament de Química Analítica, Universitat de Barcelona, Barcelona (Spain)

    2013-05-30

    Graphical abstract: -- Highlights: •The quadrupole in Q Exactive acts as a powerful filter to reduce ion suppression. •Reducing mass range using quadrupole in targeted modes increases the S/N ratio. •Targeted SIM data dependent scan modes are the most suitable for residue analysis. •A HRMS confirmatory method for synthetic hormones in urine has been developed. •The Q Exactive provides similar sensitivity and enhanced selectivity compared to QqQ. -- Abstract: Sensitive and unequivocal determination of analytes/contaminants in complex matrices is a challenge in the field of food safety control. In this study, various acquisition modes (Full MS/AIF, Full MS + tMS/MS, Full MS/dd MS/MS and tSIM/ddMS/MS) and parameters of a quadrupole–orbitrap hybrid mass spectrometer (Q Exactive) were studied in detail. One of the main conclusions has been that, reducing the scan range for Full MS (using the quadrupole) and targeted modes give higher signal-to-noise (S/N) ratios and thereby better detection limits for analytes in matrix. The use of Q Exactive in a complex case, for the confirmatory analysis of hormones in animal urine is presented. A targeted SIM data dependent MS/MS (tSIM/ddMS/MS) acquisition method for determination of eight synthetic hormones (trenbolone, 17α ethinylestradiol, zeranol, stanozolol, dienestrol, diethylstilbestrol, hexestrol, taleranol) and a naturally occurring hormone (zearalenone) in animal urine were optimized to have sensitive precursors from targeted SIM mode and trigger MS/MS scans over the entire chromatograph peak. The method was validated according to EC/657/2002. CCα (decision limit) for the analytes ranged between 0.11 μg L{sup −1} and 0.69 μg L{sup −1} and CCβ (detection capability) ranged between 0.29 μg L{sup −1} and 0.90 μg L{sup −1}.

  7. Design, construction and commissioning of an RF trap system for a multiple-reflection time-of-flight isobar separator and mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Jesch, Christian; Dickel, Timo; Becker, Arno; Czok, Ulrich; Petrick, Martin [Justus-Liebig-Universitaet, Giessen (Germany); Plass, Wolfgang R.; Geissel, Hans; Scheidenberger, Christoph [Justus-Liebig-Universitaet, Giessen (Germany); GSI, Darmstadt (Germany)

    2009-07-01

    A multiple-reflection time-of-flight isobar separator and mass spectrometer (MR-TOF-MS) has been developed, which can be used for isobar separation, broadband mass spectrometry and high-accuracy mass measurement of very short lived nuclei with half-lives on the order of milliseconds. The start of the time-of-flight measurement in the MR-TOF-MS is given by the injection of ions from an RF trap. The performance of the mass spectrometer is significantly determined by the characteristics of the injected ion population. The newly developed injection trap system provides cooled ion bunches of low emittance. It consists of three stages for fast ion cooling, while avoiding collisional losses during ion ejection. A fast-switching square wave RF source was developed. It allows to switch off the RF during ejection in order to reduce mass selective ion energies. The system was set up and commissioned. Time-of-flight peak widths of < 5 ns have been measured, enabling a mass resolving power of the MR-TOF-MS of 10{sup 5} after a flight time of 1 ms. Cooling times of down to 1 ms and a high transmission efficiency have been achieved. The design of the trap system and first experimental results are presented.

  8. Research and development of a plasma jet mass accelerator as a driver for impact fusion. Final report

    International Nuclear Information System (INIS)

    A Ten Module Accelerator has been designed, fabricated and tested at projectile velocities up to 5 km/sec. It has been shown that a projectile with mass less than a half gram can be accelerated by a succession of momentum kicks from plasma jets. The significance of this acceleration mechanism is that it can be used, in principle, to accelerate projectiles to several hundred kilometers per second as a driver for inertial fusion or other energy-related applications. A theoretical base has been developed to understand the physics of plasma jet generation and the coupling of the jet momentum to the projectile

  9. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

    Directory of Open Access Journals (Sweden)

    C. Mohr

    2012-02-01

    Full Text Available PM1 (particulate matter with an aerodynamic diameter <1 μm non-refractory components and black carbon were measured continuously together with additional air quality and atmospheric parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean. Positive matrix factorization (PMF was conducted on the organic aerosol (OA data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR and high resolution (HR data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA, related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA, a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions; BBOA (biomass burning OA from domestic heating or agricultural biomass burning activities; and COA (cooking OA. LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O:C: 0.21 whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O:C: 0.03. If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59% of non-fossil carbon.

    This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the

  10. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    Science.gov (United States)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  11. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    Science.gov (United States)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  12. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  13. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael H., E-mail: ahmedw@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia); Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Mass transfer downstream of orifices was numerically and experimentally investigated. Black-Right-Pointing-Pointer The surface wear pattern is measured and used to validate the present numerical results. Black-Right-Pointing-Pointer The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. Black-Right-Pointing-Pointer The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. Black-Right-Pointing-Pointer The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO{sub 4}{center_dot} Vulgar-Fraction-One-Half H{sub 2}O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice

  14. Screening and identification of unknown contaminants in water with liquid chromatography and quadrupole-orthogonal acceleration-time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Bobeldijk, I; Vissers, J P; Kearney, G; Major, H; Van Leerdam, J A

    2001-09-21

    In order to assess and maintain the quality of surface waters, target compound monitoring is often not sufficient. Many unknown micro-contaminants are present in water, originating in municipal, industrial or agricultural effluents. Some of these might pose a risk to drinking water production and consequently to human health. The possibilities of screening surface water and identification of these non-target water pollutants with modern data acquisition possibilities of hybrid quadrupole-orthogonal acceleration time of flight mass spectrometers (Q-TOF), such as data-dependent MS to MS/MS switching were investigated. Using model compounds, a procedure for the liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening of water extracts was developed, enabling the detection and identification of compounds at levels < or = 0.25 microg/l in surface water. Based on the accurate mass the elemental compositions for the precursor and product ions are calculated. The calculated chemical formulae are searched against the Merck index, the NIST library, an own database containing about 2,500 water pollutants (pesticides and other contaminants) as well as a CI-CID library containing tandem MS spectra of about 100 water contaminants. The developed approach was applied for the identification of unknown compounds, present in native surface water extract. For three of these compounds, structures were proposed. Confirmation of the proposed structures with standards was beyond the scope of this study.

  15. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  16. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    Directory of Open Access Journals (Sweden)

    S. G. Brown

    2012-01-01

    Full Text Available Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS at an elementary school 18 m from the US 95 freeway soundwall in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC, carbon monoxide (CO, nitrogen oxides (NOx, and meteorological data were collected. The US~Environmental Protection Agency's (EPA positive matrix factorization (PMF data analysis tool was used to apportion organic matter (OM as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA, low-volatility oxygenated organic aerosol (LV-OOA, biomass burning organic aerosol (BBOA, and semi-volatile oxygenated organic aerosol (SV-OOA. When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26% of the OM, while LV-OOA was highest in the afternoon and accounted for 26% of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12% of the OM; SV-OOA accounted for the remaining third of the OM. Use of the pulling techniques

  17. Spatial variation of chemical composition and sources of submicron aerosol in Zurich: factor analysis of mobile aerosol mass spectrometer data

    Directory of Open Access Journals (Sweden)

    C. Mohr

    2011-04-01

    Full Text Available Mobile measurements of PM1 (PM with an aerodynamic diameter D<1 μm chemical composition using a quadrupole aerosol mass spectrometer and a multi-angle absorption photometer were performed using the PSI mobile laboratory during winter 2007/2008 and December 2008 in the metropolitan area of Zurich, Switzerland. Positive matrix factorization (PMF applied to the organic fraction of PM1 yielded 3 factors: Hydrocarbon-like organic aerosol (HOA related to traffic emissions; organic aerosol from wood burning for domestic heating purposes (WBOA; and oxygenated organic aerosol (OOA, assigned to secondary organic aerosol formed by oxidation of volatile precursors. The spatial variation of the chemical composition of PM1 shows a uniform distribution throughout the city: for primary emissions, road traffic is important along major roads (varying between 7 and 14% of PM1 for different sites within the city, but overall, domestic wood burning is more important for the organic aerosol concentrations in Zurich during winter time (varying between 8–15% of PM1 for different sites within the city. OOA makes up the largest fraction of organic aerosol (44% on average. A new method, based on simultaneous on-road mobile and stationary background measurements and using the ratio of on-road sulfate to stationary sulfate to correct for small-scale dynamic effects, allows for the separation of PM1 emitted or produced locally and the PM1 from the regional background. It could be shown that especially during thermal inversions over the Swiss plateau, regional background concentrations contribute substantially to particulate number concentrations (60% on average as well as to the concentrations of PM1 components (on average 60% for black carbon and HOA, over 97% for WBOA and OOA, and more than 94% for the measured inorganic components in downtown Zurich. The results emphasize, on

  18. Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona

    Science.gov (United States)

    de La Haye, V.; Waite, J. H.; Johnson, R. E.; Yelle, R. V.; Cravens, T. E.; Luhmann, J. G.; Kasprzak, W. T.; Gell, D. A.; Magee, B.; Leblanc, F.; Michael, M.; Jurac, S.; Robertson, I. P.

    2007-07-01

    The neutral nitrogen and methane measurements made by Ion and Neutral Mass Spectrometer during Cassini flybys TA, TB, and T5 in Titan's upper atmosphere and exosphere are presented. Large horizontal variations are observed in the total density, recorded to be twice as large during TA as during T5. Comparison between the atmospheric and exospheric data show evidence for the presence of a significant population of suprathermal molecules. Using a diffusion model to simultaneously fit the N2 and CH4 density profiles below 1500 km, the atmospheric structure parameters are determined, taking into account recent changes in the calibration parameters. The best fits are obtained for isothermal profiles with values 152.8 ± 4.6 K for TA, 149.0 ± 9.2 K for TB, and 157.4 ± 4.9 K for T5, suggesting a temperature ≃5 K warmer at night than at dusk, a trend opposite to that determined by solar-driven models. Using standard exospheric theory and a Maxwellian exobase distribution, a temperature of 20 to 70 K higher would be necessary to fit the TA, TB, and egress-T5 data above 1500 km. The suprathermal component of the corona was fit with various exobase energy distributions, using a method based on the Liouville theorem. This gave a density of suprathermals at the exobase of 4.4 ± 5.1 × 105 cm-3 and 1.1 ± 0.9 × 105 cm-3, and an energy deposition rate at the exobase of 1.1 ± 0.9 × 102 eV cm-3 s-1 and 3.9 ± 3.5 × 101 eV cm-3 s-1 for the hot N2 and CH4 populations, respectively. The energy deposition rate allowed us to roughly estimate escape rates for nitrogen of ≃7.7 ± 7.1 × 107 N cm-2 s-1 and for methane of ≃2.8 ± 2.1 × 107 CH4 cm-2 s-1. Interestingly, no suprathermal component was observed in the ingress-T5 data.

  19. Injection system of the minicyclotron accelerator massspectrometer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The existing injection system of the SMCAMS (super-sensitiveminicyclotron accelerator mass spectrometer) is described togetherwith the discussion of its disadvantages exposed after having beenoperating for fiveyears, which provides a basis for consideration ofimprovements to the injectionsystem. An optimized injection system with an analyticalmagnet added prior to theminicyclotron has been proposed and calculated.

  20. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    Science.gov (United States)

    Kieser, W. E.; Zhao, X.-L.; Eliades, J.; Litherland, A. E.

    2012-04-01

    Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS), and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2), which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.