WorldWideScience

Sample records for accelerator driven neutron

  1. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  2. Neutron Transport Methods for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Nicholas Tsoulfanidis; Elmer Lewis

    2005-01-01

    The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube

  3. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  4. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  5. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  6. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    International Nuclear Information System (INIS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-01-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system

  7. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Butler, G.; Cappiello, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  8. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  9. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  10. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Habob, Moinul

    2005-12-15

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design.

  11. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    International Nuclear Information System (INIS)

    Habib, Moinul

    2005-12-01

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design

  12. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  13. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  14. Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh, M. [Nuclear Science and Technology Research Institute, AEOI, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Feghhi, S.A.H., E-mail: a_feghhi@sbu.ac.ir [Department of Radiation Application, Shahid Beheshti University, G.C., Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute, AEOI, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2013-09-15

    Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ{sup †}) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ{sup †}) and importance weighted neutron generation time (Λ{sup †}) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ{sup †} is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function.

  15. Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors

    International Nuclear Information System (INIS)

    Hassanzadeh, M.; Feghhi, S.A.H.; Khalafi, H.

    2013-01-01

    Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ † ) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ † ) and importance weighted neutron generation time (Λ † ) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ † is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function

  16. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  17. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  18. Analysis of the Photoneutron Yield and Thermal Neutron Flux in an Unreflected Electron Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Dale, Gregory E.; Gahl, John M.

    2005-01-01

    There are several potential uses for a high-flux thermal neutron source in both industrial and clinical applications. The viable commercial implementation of these applications requires a low-cost, high-flux thermal neutron generator suitable for installation in industrial and clinical environments. This paper describes the Monte Carlo for N-Particle modeling results of a high-flux thermal neutron source driven with an electron accelerator. An electron linear accelerator (linac), fitted with a standard X-ray converter, can produce high neutron yields in materials with low photonuclear threshold energies, such as D and 9 Be. Results indicate that a 10-MeV, 10-kW electron linac can produce on the order of 10 12 n/s in a heavy water photoneutron target. The thermal neutron flux in an unreflected heavy water target is calculated to be on the order of 10 10 n.cm -2 .s. The sensitivity of these answers to heavy water purity is also investigated, specifically the dilution of heavy water with light water. It is shown that the peak thermal neutron flux is not adversely effected by dilution up to a light water weight fraction of 35%

  19. Neutronic Design of an Accelerator Driven Sub-Critical Research Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Conceptual design of an accelerator driven sub-critical research reactor (ADSRR), as a new project in the Vinca Institute of Nuclear Sciences, is suggested for support to the Ministry of science, technologies and development of Republic Serbia, Yugoslavia. This paper show initial results of neutronic analyses of the proposed ADSRR carried out by Monte Carlo based MCNP and SHIELD codes. According to the proposal, the ADSRR would be constructed, in a later phase, at high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation, that is under completion in the Vinca Institute. The fuel elements of 80%-enriched uranium dioxide dispersed in aluminium matrix, available in the Vinca Institute, are proposed for the ADSRR core design. The HEU fuel elements are placed in aluminium tubes filled by the 'primary moderator' - light water. These 'fuel tubes' are placed in a square lattice within lead matrix in a stainless steel tank. The lead is used as a 'secondary moderator' in the core and as the axial and radial reflector. Such design of the ADSRR shows that this small low neutron flux system can be used as an experimental 'demonstration' ADS with some neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate or fast neutron spectrum. The proposed experimental ADSRR, beside usage as a valuable research machine in reactor and neutron physics, will contribute to following and developing new nuclear technologies in the country, useful for eventual nuclear power option and nuclear waste incineration in future. (author)

  20. New shielding material development for compact accelerator-driven neutron source

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-04-01

    Full Text Available The Compact Accelerator-driven Neutron Source (CANS, especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE, PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  1. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  2. Accelerator driven neutron sources in Korea. Current and future

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho

    2008-01-01

    The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)

  3. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  4. Neutron data for accelerator-driven transmutation technologies. Annual Report 2004/2005

    International Nuclear Information System (INIS)

    Blomgren, J.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oehrn, A.; Oesterlund, M.

    2005-09-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: An article on three-body force effects has been on the top-ten downloading list of Physics Letters B. Uppsala had the largest foreign delegation at the International Conference on Nuclear Data for Science and Technology in Santa Fe, NM, USA, and presented the largest number of papers of all experimental groups. A neutron flux monitor for the new FOI neutron beam facility has been developed, commissioned and taken into regular operation. Within the project, one licentiate exam has been awarded. The new neutron beam facility at TSL has been taken into commercial operation and is now having the largest commercial turnover of all European facilities in the field

  5. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  6. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL

  7. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL.

  8. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  9. Monte Carlo analysis of accelerator-driven systems studies on spallation neutron yield and energy gain

    CERN Document Server

    Hashemi-Nezhad, S R; Westmeier, W; Bamblevski, V P; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Wan, J S; Odoj, R

    2001-01-01

    The neutron yield in the interaction of protons with lead and uranium targets has been studied using the LAHET code system. The dependence of the neutron multiplicity on target dimensions and proton energy has been calculated and the dependence of the energy amplification on the proton energy has been investigated in an accelerator-driven system of a given effective multiplication coefficient. Some of the results are compared with experimental findings and with similar calculations by the DCM/CEM code of Dubna and the FLUKA code system used in CERN. (14 refs).

  10. Evaluation of Importance of Source Neutrons in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Kim, Yong Hee; Park, Won Seok

    2002-01-01

    An importance function of the external spallation neutrons in ADS (Accelerator-Driven System) is defined to characterize the source multiplication in subcritical blanket. For a model ADS problem, the source importance function is evaluated with the TRANSX/TWODANT code system. In order to assess the impact of the power distribution on the importance function, both homogeneous and heterogeneous cores are analyzed and corresponding source multiplications are compared. Also, based on the source importance function, an optimization of the shape of the proton current is performed from the source multiplication point of view. Additionally, the source importance function is compared with the conventional λ-mode adjoint flux, which is used as an importance function of fission neutrons in the critical reactors. Concerning an issue in the ADS design, i.e., difficulty in reducing the fission power unless the proton current is shut off, a study is performed to minimize the source importance, thereby minimizing the fission power, even when the k-eff value of the core is quite high. (authors)

  11. On the Neutron Kinetics and Control of Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    2004-01-01

    This work addresses fundamental aspects of the time- and space-dependent behavior of an Accelerator-Driven Subcritical Core System (ADS) and presents a paradigm ADS neutron kinetics model that is solved exactly. Thus, this paradigm model can serve for benchmarking two- and/or three-dimensional computational tools. Furthermore, this work also proposes a global optimal control theory framework for the operation and control of an ADS. This framework encompasses conceptually the time- and space-dependent behavior of the ADS coupled neutron kinetics/thermal-hydraulic balance equations and aims at the optimal control of ADS operational objectives, which would include minimization of local flux disturbances, load and source following, etc. Importantly, this new conceptual framework makes no use of a 'fictitious ADS steady state' and yields the correct and complete (i.e., including sources) adjoint equations, without leaving any room for ambiguities. Thus, this new conceptual framework provides a natural basis for developing new computational methods and corresponding verification experiments specifically tailored for the control and operation of ADS

  12. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  13. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  14. Radiation-induced segregation in materials: Implications for accelerator-driven neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, R.B.; Song, S. [Loughborough Univ. of Technology (United Kingdom)

    1995-10-01

    This paper reviews exisiting models for radiation-induced segregation to microstrucural interfaces and surfaces. It indicates how the models have been successfully used in the past in neutron irradiation situations and how they may be modified to account for accelerator-driven RIS. The predictions of the models suggest that any impurity with large misfit will suffer RIS and that the effect is heightened as radiation damage increases. The paper suggests methods to utilise the RIS in transmutation technology by dynamically segregating long life nuclides to preferred sites in the microstructure so that subsequent transmutations occur with maximum efficiency.

  15. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  16. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  17. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  18. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA

  19. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA.

  20. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  1. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2000-01-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10 1 '5 n/cm 2 .s with neutron energies exceeding 0.75 MeV and about 3.10 15 n/cm 2 .s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed

  2. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ for the Accelerator Driven Neutron Source

    International Nuclear Information System (INIS)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells, Russell

    2007-01-01

    A high-yield neutron source to screen sea-land cargo containers for shielded Special Nuclear Materials (SNM) has been designed at LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses the D(d,n)3He reaction to create a forward directed neutron beam. Key components are a high-current radio-frequency quadrupole (RFQ) accelerator and a high-power target capable of producing a neutron flux of >107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical design and analysis of the four-module, bolt-together RFQ will be presented here. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mA deuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ modules will consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and the modules. RF connections are made with canted coil spring contacts. A series of 60 water-cooled pi-mode rods provides quadrupole mode stabilization. A set of 80 evenly spaced fixed slug tuners is used for final frequency adjustment and local field perturbation correction

  3. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomic fraction >90 percent was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. We observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  4. Microwave Ion Source and Beam Injection for an Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm 2 and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D + beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  5. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  6. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H

    2000-07-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10{sup 1}'5 n/cm{sup 2}.s with neutron energies exceeding 0.75 MeV and about 3.10{sup 15} n/cm{sup 2}.s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed.

  7. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  8. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  9. Accelerator driven radiation clean nuclear power system conceptual research symposium

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2000-06-01

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  10. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  11. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1995-01-01

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation

  12. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  13. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  14. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  15. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  16. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  17. Monte Carlo studies of accelerator driven systems energy and spatial distribution of neutrons in multiplying and non-multiplying media

    CERN Document Server

    Hashemi-Nezhad, S R; Brandt, R; Krivopustov, M I; Kulakov, B A; Odoj, R; Sosnin, A N; Wan, J S; Westmeier, W

    2002-01-01

    The LAHET code system is used to study the behaviour of the spallation neutrons resulting from the interaction of 2.5 GeV/c protons with a massive lead target within a large (approx 32 m sup 3) lead and graphite moderating environments. The spatial and energy distribution of the neutrons with presence and absence of a fissile material in Accelerator Driven Systems (ADS) are investigated. It is shown that the energy spectra of the neutrons in graphite and lead moderators are very different and such difference is expected to result in noticeable differences in the nuclear waste transmutation abilities of the ADSs that use graphite and lead for neutron moderation and storage.

  18. KIPT accelerator-driven system design and performance

    International Nuclear Information System (INIS)

    Gohar, Y.; Bolshinsky, I.; Karnaukhov, I.

    2015-01-01

    Argonne National Laboratory (ANL) of the US is collaborating with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine to develop and construct a neutron source facility. The facility is planned to produce medical isotopes, train young nuclear professionals, support Ukraine's nuclear industry and provide capability to perform reactor physics, material research, and basic science experiments. It consists of a subcritical assembly with low-enriched uranium fuel driven with an electron accelerator. The target design utilises tungsten or natural uranium for neutron production through photonuclear reactions from the Bremsstrahlung radiation generated by 100-MeV electrons. The accelerator electron beam power is 100 KW. The neutron source intensity, spectrum, and spatial distribution have been studied as a function of the electron beam parameters to maximise the neutron yield and satisfy different engineering requirements. Physics, thermal-hydraulics, and thermal-stress analyses were performed and iterated to maximise the neutron source strength and to minimise the maximum temperature and the thermal stress in the target materials. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with an effective neutron multiplication factor of <0.98. Different fuel and reflector materials are considered for the subcritical assembly design. The mechanical design of the facility has been developed to maximise its utility and minimise the time for replacing the target, fuel, and irradiation cassettes by using simple and efficient procedures. Shielding analyses were performed to define the dose map around the facility during operation as a function of the heavy concrete shield thickness. Safety, reliability and environmental considerations are included in the facility design. The facility is configured to accommodate future design upgrades and new missions. In addition, it has unique features relative to the other international

  19. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  20. ADS Neutronic Benchmark A New Approach to the Design of Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Carminati, F.; Kadi, Y.

    1997-01-01

    The main parameter characterizing the neutron economy of an accelerator driven subcritical fission device, like the Energy Amplifier (EA), is the factor M by which the source spallation neutrons are multiplied by the fission dominated cascade. A related quantity is the multiplication coefficient K s rc=(M-1)/M, that is the average ratio of the neutron population in two subsequent generations of the source-initiated cascade. Such a factor k s rc, depending on both the properties of the source and of the medium, is in general conceptual and numerically different from the effective criticality factor k e ff, commonly used in reactor theory, which is in fact only relevant to the fundamental mode of the neutron flux distribution, and is independent on the source. The effective criticality factor k e ff is however a meaningful measure of the actual safety characteristics of the device, that is 1-k e ff is a proper gauge of the distance from criticality. In this paper the difference between k e ff is addressed numerically in the case of an externally driven Thorium fuelled and Lead cooled subcritical device representing a simplified version of the Energy Amplifier. It is found that codes or calculations implementing the critical reactor formalism (neutrons are distributed according to a cos-type imposed distribution together with a fission spectrum energy distribution and non-fission multiplication, i. e. n,X n reactions, is not considered explicitly) in order to describe a subcritical device, systematically underestimate the reactivity on the system by about 0.028 in k (∼ 2800 pcm) which implies an error in the estimation of the necessary concentration of ''233U close to 5% which in turn induces an adverse effect on the stability of k during burnup. Finally, the discrepancies arising from the use of different nuclear data libraries are as significant as the effects of using different neutron source approximations and hence also deserve attention. We think that a

  1. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  2. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  3. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  4. The neutronics of an Accelerator-Driven Energy Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.; Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    1995-10-01

    This study has been focused on an Accelerator-Driven Energy Amplifier, based on the concept proposed by the CERN-group. To analyze the performance of this system the extensive optimization of the core lattice was done, the temperature coefficients of reactivity were investigated, reactivity budget and power distribution were estimated.

  5. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  6. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  7. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  8. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  9. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  10. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  11. Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki

    2004-01-01

    Neutronics design study was performed for lead-bismuth cooled accelerator-driven system (ADS) to transmute minor actinides. Early study for ADS indicated two problems: a large burnup reactivity swing and a significant peaking factor. To solve these problems, effect of design parameters on neutronics characteristics were searched. The design parameters were initial plutonium loading, buffer region between spallation target and core, and zone fuel loading. Parametric survey calculations were performed considering fuel cycle consisting of burnup and recycle. The results showed that burnup reactivity swing depends on the plutonium fraction in the initial fuel loading, and the lead-bismuth buffer region and the two-zone loading were effective for solving the problems. Moreover, an optimum value for the effective multiplication factor was also evaluated using reactivity coefficients. From the result, the maximum allowable value of the effective multiplication factor for a practical ADS can be set at 0.97. Consequently, a new core concept combining the buffer region and the two-zone loading was proposed base on the results of the parametric survey. (author)

  12. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  13. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  14. About using of ion accelerators in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Chigrinov, S; Kevitskaya, A; Petlevskij, V; Rutkovskaya, C [Belarussian Academy of Sciences, Minsk-Sosny (Belarus). Radiation Physics and Chemistry Inst.

    1997-12-31

    The prospects of using deuteron and alpha particle beams in Accelerator Driven Molten Salt Breeder for simultaneous production of uranium 233 and of thermal power are discussed, disregarding the problems of reactor construction and design. It is shown that by replacing the proton beam by beams of deuterons or alpha particles the energy cost of one neutron can be reduced from 11.5 MeV down to 9.3-10 MeV. The average energy of neutrons increases from 17.7 MeV to 24.3 MeV or 28.2 MeV, respectively. Thus, the gain in the number of fissile nuclei and in thermal power production of at least 1.2 - 1.3 times can be expected in ACMB. (J.U.). 1 tab., 3 figs., 4 refs.

  15. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  16. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  17. Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2006-01-01

    Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n T OF experiment, which is a neutron cross section measurement project at CERN, is also described

  18. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  19. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  20. Physics study of D-D/D-T neutron driven experimental subcritical assembly

    International Nuclear Information System (INIS)

    Sinha, Amar

    2015-01-01

    An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)

  1. Accelerator based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    Salimov, R.; Bayanov, B.; Belchenko, Yu.; Belov, V.; Davydenko, V.; Donin, A.; Dranichnikov, A.; Ivanov, A.; Kandaurov, I; Kraynov, G.; Krivenko, A.; Kudryavtsev, A.; Kursanov, N.; Savkin, V.; Shirokov, V.; Sorokin, I.; Taskaev, S.; Tiunov, M.

    2004-01-01

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7 Li(p,n) 7 Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  2. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    International Nuclear Information System (INIS)

    Conde, H.; Baecklin, A.; Carius, S.

    1995-01-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described

  3. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Conde, H.; Baecklin, A.; Carius, S. [Uppsala Univ. (Sweden)] [and others

    1995-10-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described.

  4. Neutronics design of accelerator-driven system for power flattening and beam current reduction

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Iwanaga, Kohei; Tsujimoto, Kazufumi; Kurata, Yuji; Oigawa, Hiroyuki; Iwasaki, Tomohiko

    2008-01-01

    In the present neutronics design of the Accelerator-Driven System (ADS) cooled by lead-bismuth eutectic (LBE), we investigated several methods to reduce the power peak and beam current, and estimated the temperature reductions of the cladding tube and beam window from the conventional design. The methods are adjustment of inert matrix ratio in fuel in each burn-up cycle, multiregion design in terms of pin radius or inert matrix content, and modification of the level of the beam window position and the height of the central fuel assemblies. As a result, we optimized the ADS combined with the adjustment of the inert matrix ratio in each burn-up cycle, multiregion design in terms of inert matrix content and deepened window level. The maximum temperatures of the optimized ADS at the surface of the cladding tube and the beam window were reduced by 91 and 38degC, respectively. The maximum beam current was improved from 20.3 to 15.6 mA. (author)

  5. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  6. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible

    International Nuclear Information System (INIS)

    Adams, Marvin; Best, Fred; Kurwitz, Cable; McInturff, Al; McIntyre, Peter; Rogers, Bob; Sattarov, Akhdior; Wu Zeyun; Yavuz, Mustafa; Meitzler, Charles

    2002-01-01

    We have developed a conceptual design for an accelerator-driven thorium cycle power reactor which addresses the issues of accelerator performance, reliability, and neutronics that limited earlier designs. The proton drive beam is provided by a flux-coupled stack of isochronous cyclotrons, occupying the same footprint as a single cyclotron but providing 7 independent beams from 7 separate accelerating structures within a common magnetic envelope. The core is arranged in a hexagonal lattice, and the 7 beams are used to provide a hexagonal drive beam pattern so that the effective neutron gain is relatively uniform over the entire core volume. Reliability is achieved by redundancy: if any drive beam is interrupted, the other 6 suffice to maintain reactor operation. A new approach to fuel cladding should make it possible to operate with lead moderator at temperatures ∼ 800 C, enabling access to advanced heat cycles and perhaps to a Brayton cycle for hydrogen production. (authors)

  7. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  8. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  9. Development opportunities for small and medium scale accelerator driven neutron sources. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-02-01

    Neutron applications in the life sciences will be a rapidly growing research area in the near future, as neutrons can provide unique information on the reaction dynamics of complex biomolecular systems, complementing other analytical techniques such as electron microscopy, X rays and nuclear magnetic resonance. Small and medium power spallation neutron sources will become more important, as many small neutron producing research reactors are being phased out. Recent developments in accelerator technology have made it possible to produce useful neutron fluxes at accelerator facilities suitable for universities and industrial laboratories. In addition to basic research these alternative neutron sources will be important for educational and training purposes. In a wider perspective this technology should make it possible to introduce neutron research and applications to industrial and national research centres in IAEA Member States that are unable to afford a high energy spallation neutron source and have no access to a research reactor

  10. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  11. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  12. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  13. Uncertainty assessment for accelerator-driven systems

    International Nuclear Information System (INIS)

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-01-01

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems

  14. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  15. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  16. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    Science.gov (United States)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  17. Accelerator-driven system design concept for disposing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gohar, Y.; Cao, Y.; Kellogg, R.; Merzari, E.

    2015-01-01

    At present, the US SNF (Spent Nuclear Fuel) inventory is growing by about 2,000 metric tonnes (MT) per year from the current operating nuclear power plants to reach about 70,000 MT by 2015. This SNF inventory contains about 1% transuranics (700 MT), which has about 115 MT of minor actinides. Accelerator-driven systems utilising proton accelerators with neutron spallation targets and subcritical blankets can be utilised for transmuting these transuranics, simultaneously generating carbon free energy, and significantly reducing the capacity of the required geological repository storage facility for the spent nuclear fuels. A fraction of the SNF plutonium can be used as a MOX fuel in the current/future thermal power reactors and as a starting fuel for future fast power reactors. The uranium of the spent nuclear fuel can be recycled for use in future nuclear power plants. This paper shows that only four to five accelerator-driven systems operating for less than 33 full power years can dispose of the US SNF inventory expected by 2015. In addition, a significant fraction of the long-lived fission products will be transmuted at the same time. Each system consists of a proton accelerator with a neutron spallation target and a subcritical assembly. The accelerator beam parameters are 1 GeV protons and 25 MW beam power, which produce 3 GWt in the subcritical assembly. A liquid metal (lead or lead-bismuth eutectic) spallation target is selected because of design advantages. This target is located at the centre of the subcritical assembly to maximise the utilisation of spallation neutrons. Because of the high power density in the target material, the target has its own coolant loop, which is independent of the subcritical assembly coolant loop. Mobile fuel forms with transuranic materials without uranium are considered in this work with liquid lead or lead-bismuth eutectic as fuel carrier

  18. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  19. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  20. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  1. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  2. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  3. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  4. Design of an accelerator-driven system for the destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kadi, Y.; Revol, J.P.

    2003-01-01

    Progress in particle accelerator technology makes it possible to use a proton accelerator to produce energy and to destroy nuclear waste efficiently. The Energy Amplifier (EA) proposed by Carlo Rubbia and his group is a sub-critical fast neutron system driven by a proton accelerator. It is particularly attractive for destroying, through fission, transuranic elements produced by present nuclear reactors. The EA could also transform efficiently and at minimal cost long-lived fission fragments using the concept of Adiabatic Resonance Crossing (ARC) recently tested at CERN with the TARC experiment. (author)

  5. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  6. Advanced Computational Models for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Talamo, A.; Ravetto, P.; Gudowsk, W.

    2012-01-01

    In the nuclear engineering scientific community, Accelerator Driven Systems (ADSs) have been proposed and investigated for the transmutation of nuclear waste, especially plutonium and minor actinides. These fuels have a quite low effective delayed neutron fraction relative to uranium fuel, therefore the subcriticality of the core offers a unique safety feature with respect to critical reactors. The intrinsic safety of ADS allows the elimination of the operational control rods, hence the reactivity excess during burnup can be managed by the intensity of the proton beam, fuel shuffling, and eventually by burnable poisons. However, the intrinsic safety of a subcritical system does not guarantee that ADSs are immune from severe accidents (core melting), since the decay heat of an ADS is very similar to the one of a critical system. Normally, ADSs operate with an effective multiplication factor between 0.98 and 0.92, which means that the spallation neutron source contributes little to the neutron population. In addition, for 1 GeV incident protons and lead-bismuth target, about 50% of the spallation neutrons has energy below 1 MeV and only 15% of spallation neutrons has energies above 3 MeV. In the light of these remarks, the transmutation performances of ADS are very close to those of critical reactors.

  7. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  8. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  9. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  10. A Cost Benefit Analysis of an Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Westlen, D.; Gudowski, W.; Wallenius, J.; Tucek, K.

    2002-01-01

    This paper estimates the economical costs and benefits associated with a nuclear waste transmutation strategy. An 800 MWth, fast neutron spectrum, subcritical core design has been used in the study (the so called Sing-Sing Core). Three different fuel cycle scenarios have been compared. The main purpose of the paper has been to identify the cost drivers of a partitioning and transmutation strategy, and to estimate the cost of electricity generated in a nuclear park with operating accelerator driven systems. It has been found that directing all transuranic discharges from spent light water reactor (LWR) uranium oxide (UOX) fuel to accelerator driven systems leads to a cost increase for nuclear power of 50±15%, while introduction of a mixed oxide (MOX) burning step in the LWRs diminishes the cost penalty to 35±10%. (authors)

  11. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  12. A new target concept for proton accelerator driven boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1998-01-01

    A new target concept termed Discs Incorporating Sector Configured Orbiting Sources (DISCOS), is proposed for spallation applications, including BNCT (Boron Neutron Capture Therapy). In the BNCT application a proton beam impacts a sequence of ultra thin lithium DISCOS targets to generate neutrons by the 7 Li(p,n) 7 Be reaction. The proton beam loses only a few keV of its ∼MeV energy as it passes through a given target, and is re-accelerated to its initial energy, by a DC electric field between the targets

  13. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  14. Neutron fluctuations in accelerator driven and power reactors via backward master equations

    International Nuclear Information System (INIS)

    Zhifeng Kuang

    2000-05-01

    The transport of neutrons in a reactor is a random process, and thus the number of neutrons in a reactor is a random variable. Fluctuations in the number of neutrons in a reactor can be divided into two categories, namely zero noise and power reactor noise. As the name indicates, they dominate (i.e. are observable) at different power levels. The reasons for their occurrences and utilization are also different. In addition, they are described via different mathematical tools, namely master equations and the Langevin equation, respectively. Zero noise carries information about some nuclear properties such as reactor reactivity. Hence methods such as Feynman- and Rossi-alpha methods have been established to determine the subcritical reactivity of a subcritical system. Such methods received a renewed interest recently with the advent of the so-called accelerator driven systems (ADS). Such systems, intended to be used either for energy production or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those of the traditionally used radioactive sources which were also assumed in the derivation of the Feynman- and Rossi-alpha formulae. Therefore it is necessary to re-derive the Feynman- and Rossi-alpha formulae. Such formulae for ADS have been derived recently but in simpler neutronic models. One subject of this thesis is the extension of such formulae to a more general case in which six groups of delayed neutron precursors are taken into account, and the full joint statistics of the prompt and all delayed groups is included. The involved complexity problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Power reactor noise carries information about parametric perturbation of the system. Langevin technique has been used to extract such information. In such a treatment, zero noise has been neglected. This is a pragmatic

  15. Neutrons from medical electron accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.; McCall, R.C.

    1979-06-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence, but do substantially reduce the average energy of the transmitted spectrum. Reflected neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. Absolute depth-dose distributions for realistic neutron spectra are calculated, and a rapid falloff with depth is found

  16. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  17. Comparison calculations for an accelerator-driven minor actinide burner

    International Nuclear Information System (INIS)

    2002-01-01

    International interest in accelerator-driven systems (ADS) has recently been increasing in view of the important role that these systems may play as efficient minor actinide and long-lived fission-product (LLFP) burners and/or energy producers with an enhanced safety potential. However, the current methods of analysis and nuclear data for minor actinide and LLFP burners are not as well established as those for conventionally fuelled reactor systems. Hence, in 1999, the OECD/NEA Nuclear Science Committee organised a benchmark exercise for an accelerator-driven minor actinide burner to check the performances of reactor codes and nuclear data for ADS with unconventional fuel and coolant. The benchmark model was a lead-bismuth-cooled subcritical system driven by a beam of 1 GeV protons. This report provides an analysis of the results supplied by seven participants from eight countries. The analysis reveals significant differences in important neutronic parameters, indicating a need for further investigation of the nuclear data, especially minor actinide data, as well as the calculation methods. This report will be of particular interest to reactor physicists and nuclear data evaluators developing nuclear systems for nuclear waste management. (authors)

  18. Use of accelerator based neutron sources

    International Nuclear Information System (INIS)

    2000-05-01

    With the objective of discussing new requirements related to the use of accelerator based neutron generators an Advisory Group meeting was held in October 1998 in Vienna. This meeting was devoted to the specific field of the utilization of accelerator based neutron generators. This TECDOC reports on the technical discussions and presentations that took place at this meeting and reflects the current status of neutron generators. The 14 MeV neutron generators manufactured originally for neutron activation analysis are utilised also for nuclear structure and reaction studies, nuclear data acquisition, radiation effects and damage studies, fusion related studies, neutron radiography

  19. Physics analyses of an accelerator-driven sub-critical assembly

    Science.gov (United States)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  20. Results from Accelerator Driven TRIGA Reactor Experiments at The University of Texas at Austin

    International Nuclear Information System (INIS)

    O'Kelly, S.; Braisted, J.; Krause, M.; Welch, L.

    2008-01-01

    Accelerator Driven Transmutation of High-Level Waste (ATW) is one possible solution to the fuel reprocessing back-end problem for the disposal of high level waste such as minor actinides (Am, Np or Cm) and long-lived fission products. International programs continue to support research towards the eventual construction and operation of a proton accelerator driven spallation neutron source coupled to a subcritical 'neutron amplifier' for more efficient HLW transmutation. This project was performed under DOE AFCI Reactor-Accelerator Coupling Experiments (RACE). A 20 MeV Electron Linac was installed in the BP no 5 cave placing neutron source adjacent to an offset reactor core to maximize neutron coupling with available systems. Asymmetric neutron injection 'wasted' neutrons due to high leakage but sufficient neutrons were available to raise reactor power to ∼100 watts. The Linac provided approximately 100 mA but only 50% reached target. The Linac cooling system could not prevent overheating at frequencies over 200 Hz. The Linac electron beam had harmonics of primary frequency and periodic low frequency pulse intensity changes. Neutron detection using fission chambers in current mode eliminated saturation dead time and produced better sensitivity. The Operation of 'dual shielded' fission chambers reduced electron noise from linac. Benchmark criticality calculation using start-up data showed that the MCNPX model overestimates reactivity. TRIGA core was loaded to just slightly supercritical by adding graphite elements and measuring reactivity of $0.037. MCNPX modeled TRIGA core with and without graphite to arrive at 'true' measured subcritical multiplication of 0.998733± 0.00069. Thus, Alpha for the UT-RACE TRIGA core was approximately 155.99 s -1 . The Stochastic Feynman-Alpha Method (SFM) accuracy was evaluated during transients and reactivity changes. SFM was shown to be a potential real-time method of reactivity determination in future ADSS but requires stable

  1. Neutron yield of medical electron accelerators

    International Nuclear Information System (INIS)

    McCall, R.C.

    1988-01-01

    Shielding calculations for medical electron accelerators above about 10 MeV require some knowledge of the neutron emission from the machine. This knowledge might come from the manufacturer's specifications or from published measurements of the neutron leakage of that particular model and energy of accelerator. In principle, the yield can be calculated if details of the accelerator design are known. These details are often not available because the manufacturer considers them proprietary. A broader knowledge of neutron emission would be useful and it is the purpose of this paper to present such information

  2. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    Science.gov (United States)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  3. An accelerator-driven reactor for meeting future energy demand

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel

  4. Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Chang Hong; Wu Zongxin; Gu Yuxiang

    2002-01-01

    The modular high temperature gas cooled reactor (MHTGR) has good safety characteristics because of the use of coated particles in the fuel element. After the particles cool outside of the reactor for some time, the spent fuel can be re-utilized. The author describes a physics feasibility study for the burning of spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor in an accelerator-driven sub-critical reactor. A conceptual design is given for the 30 MW accelerator-driven sub-critical reactor. The neutron transport in the sub-critical reactor was simulated using the MCNP code, and the burnup was calculated using the ORIGEN2 code. The results show that the accelerator-driven sub-critical gas-cooled reactor has reliable sub-criticality and low power density and that the spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor can be burned to provide 20% more energy

  5. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  6. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  7. Accelerator Based Neutron Beams for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2003-01-01

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  8. Accelerator-driven subcritical systems - An analysis with a focus on non-proliferation and export control

    International Nuclear Information System (INIS)

    Andersson, Per; Nielsen, Fredrik; Sunhede, Daniel

    2013-01-01

    The Department of Nuclear Weapons Related Issues at The Swedish Defence Research Agency, FOI, as commissioned by the Swedish Radiation Safety Authority, SSM, conducted a study concerning Accelerator Driven Subcritical Systems, ADS, with emphasis on non-proliferation and export control. An ADS looks at first glance like a traditional nuclear reactor, but the nuclear core is designed to always remain subcritical, both during normal and off-normal conditions. Neutrons are instead supplied by an external source in the form of an proton accelerator and a spallation target. This report gives a short walk-through to the physical processes that governs the neutron flux and reactivity in the core and how they are affected by the design of the core including the accelerator and spallation target. Furthermore is the results from reactor core simulations presented, where the isotopic nuclear fuel inventory has been studied as a function of burn up and initial configuration. Finally the report contains an analysis of the potential risks involved from the perspective of nuclear proliferation and exports. This study shows that ADS in the future could constitute a proliferation concern. The subsystems and components in question share design and materials with the equivalent components in traditional reactors with the exception of the proton accelerator and spallation target, which is unique for accelerator driven systems

  9. Neutron dosimeters and survey meters in accelerators, reactors and other neutron environments

    International Nuclear Information System (INIS)

    1989-03-01

    Neutron fields in occupationally accessible areas around nuclear reactors, radioisotope sources and medical and high energy accelerators have been characterized using currently available information. Neutron, rem meters, such as the Leake detector, are the most suitable instruments available for conducting neutron dose rate surveys in the vicinity of radioisotope neutron sources, nuclear reactors and medical accelerators. However, these instruments have been shown to be deficient in that they overrespond by a factor of four to neutrons in the 0.1 to 1 MeV range and are insensitive to neutrons from about 1 eV up to about 10 keV. Also, they are insensitive to neutrons above 20 MeV and their use must be restricted near high energy accelerators where significant numbers of neutrons above 20 MeV are known to be present. The most suitable instrument of measure dose from neutrons above 20 MeV is the 12 C(n,2n) 11 C scintillation chamber. Commercially available rem meters frequently use BF 3 counters in the pulse mode to detect thermal neutrons. Therefore, measurements around pulsed accelerators must be made with caution to ensure that the detector is not saturated during each pulse and that the accelerator pulse period is greater than the response time of the detector. The personal neutron dosimeters currently available either are known to be insensitive to neutrons above 20 MeV or have not been tested. Also, all except the albedo dosimeter are insensitive to or have not been tested for neutron energies in the range 1 eV to 10 keV. Several dosimeter types respond reasonably well to neutrons in the energy range 0.1 to 15 MeV, for example, CR-39, bubble and superheated drop detectors. However, the first gas a lower limit of sensitivity of about 0.3 mSv. The bubble detector can be designed to measure doses as small as 1μSv and offers the additional benefit of direct-reading capability. The superheated drop detector is not suitable for use around pulsed accelerators because

  10. Radiological Impact of the TRIGA Accelerator-Driven Experiment (TRADE)

    CERN Document Server

    Herrera-Martínez, A; Kadi, Y; Zanini, L; Parks, G T; Rubbia, Carlo; Burgio, N; Carta, M; Santagata, A; Cinotti, L

    2002-01-01

    The TRADE project, which is part of the European Roadmap towards the development of Accelerator Driven Systems (ADS), foresees the coupling of a 110 MeV, 2 mA proton cyclotron with the core of a 1 MW Triga research reactor. We performed radioprotection studies using two state-of-the-art computer code packages, FLUKA and EA-MC. We concentrated on the calculation of the neutron and particle flux and dose rates during normal operation as well as in the case of several possible accidents, in order to assess the radiation damage and define the design of key components of the facility, such as the beam-line shielding. Both high-energy particle interactions and low-energy neutron transport are treated with a sophisticated method based on a full Monte Carlo simulation, combined with the use of modern nuclear data libraries.

  11. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  12. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  13. Transmutation of nuclear waste in accelerator-driven systems

    CERN Document Server

    Herrera-Martínez, A

    2004-01-01

    Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

  14. A new concept for accelerator driven transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs

  15. Comments to accelerator-driven system

    International Nuclear Information System (INIS)

    Taka aki, Matsumoto

    2003-01-01

    Accelerator-driven system (ADS) that was a subcritical nuclear reactor driven by a high power proton accelerator was recently studied by several large organisations over the world. This paper described two comments for ADS: philosophical and technological ones. The latter was made from a view point of micro ball lightning (BL) that was newly discovered by the author. Negative and positive aspects of micro BL for ADS were discussed. (author)

  16. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  17. Development of a sealed-accelerator-tube neutron generator

    Science.gov (United States)

    Verbeke; Leung; Vujic

    2000-10-01

    Sealed-accelerator-tube neutron generators are being developed in Lawrence Berkeley National Laboratory (LBNL) for applications ranging from neutron radiography to boron neutron capture therapy and neutron activation analysis. The new generation of high-output neutron generators is based on the D-T fusion reaction, producing 14.1-MeV neutrons. The main components of the neutron tube--the ion source, the accelerator and the target--are all housed in a sealed metal container without external pumping. Thick-target neutron yield computations are performed in this paper to estimate the neutron yield of titanium and scandium targets. With an average deuteron beam current of 1 A and an energy of 120 keV, a time-averaged neutron production of approximately 10(14) n/s can be estimated for a tritiated target, for both pulsed and cw operations. In mixed deuteron/triton beam operation, a beam current of 2 A at 150 keV is required for the same neutron output. Recent experimental results on ion sources and accelerator columns are presented and discussed.

  18. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  19. Proposed Brookhaven accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.; Batchelor, K.; Chasman, R.; Rheaume, R.

    1976-01-01

    The d-Li Neutron Source concept, which includes a high-current dueteron linac, is an outgrowth of attempts made to use the BNL, 200-MeV proton linac BLIP facility to do radiation damage studies. It included a 100 mA, 30-MeV deuteron linear accelerator and a fast-flowing liquid lithium jet as the target. The latest design is not very different, except that the current is now 200 mA and the linac energy has been raised to 35 MeV. Both parameters, were changed to optimize the effectiveness of the facility with respect to flux, experimental volume and match to 14 MeV neutron-radiation-damage effects. The proposed Brookhaven Accelerator-based Neutron Generator is described with particular emphasis on the linear accelerator. The proposed facility is a practical and efficient way of producing the intense, high energy neutron beams needed for CTR material studies. The accelerator and liquid-metal technologies are well proven, state-of-the-art technologies. The fact that no new technology is required guarantees the possibility of meeting construction schedules, and more importantly, guarantees a high level of operational reliability

  20. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  1. Omega-mode perturbation theory and reactor kinetics for analyzing accelerator-driven subcritical systems

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2003-01-01

    An ω-mode first-order perturbation theory is developed for analyzing the time- and space-dependent neutron behavior in Accelerator-Driven Subcritical Systems (ADSS). The generalized point-kinetics equations are systematically derived using the ω-mode first-order perturbation theory and Fredholm Alternative Theorem. Seven sets of the ω-mode eigenvalues exist with using six groups of delayed neutrons and all ω eigenvalues are negative in ADSS. Seven ω-mode adjoint and forward eigenfunctions are employed to form the point-kinetic parameters. The neutron flux is expressed as a linear combination of the products of seven ω-eigenvalue-mode shape functions and their corresponding time functions up to the first order terms, and the lowest negative ω-eigenvalue mode is the dominant mode. (author)

  2. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  3. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  4. Monte-Carlo Simulation of the Features of Bi-Reactior Accelerator Driven Systems

    CERN Document Server

    Bznuni, S A; Khudaverdian, A G; Barashenkov, V S; Sosnin, A N; Polyanskii, A A

    2002-01-01

    Parameters of accelerator-driven systems containing two "cascade" subcritical assemblies (liquid metal fast reactor, used as a neutron booster, and a thermal reactor, where main heat production is taking place) are investigated. Three main reactor cores analogous to VVER-1000, MSBR-1000 and CANDU-6 reactors are considered. Functioning in a safe mode (k_{eff}=0.94-0.98) these systems under consideration demonstrate much larger capacity in the wide range of k_{eff} in comparison with analogous systems without intermediate fast booster reactor and simultaneously having the density of thermal neutron flux equal to Phi^{max}=10^{14} cm^{-2}c^{-1} and operating with the fast and thermal zones they are capable to transmute the whole scope of nuclear waste reducing the requirements on the beam current of the accelerator by one order of magnitude. It seems to be the most important in case when molten salt thermal breeder reactor cores are considered as a main heat generating zone.

  5. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  6. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  7. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Michael James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the very few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.

  8. Efficiency of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Sang-In [Sungkyunkwan University, Suwon (Korea, Republic of); Hong, Seung-Woo [Sungkyunkwan University, Suwon (Korea, Republic of); Kadi, Yacine [CERN, Geneva (Switzerland)

    2016-10-15

    An Accelerator-Driven System (ADS) combined with a subcritical Molten Salt Reactor (MSR) is a type of hybrid reactor originally designed to breed uranium from thorium or to incinerate long-lived minor actinides in nuclear wastes. In an MSR, the salt material is used not only as a nuclear fuel but also as a primary coolant. In addition, this material is used as a target for inducing spallation neutrons in most AD-MSR concepts. A high energy proton beam impinges on a heavy metal target to induce spallation reactions and produces neutrons. Accordingly, a reliable proton accelerator is needed to feed the source neutrons. As ADSs have been criticized for requiring high power accelerators, minimization of beam power is an important aspect of ADS design. A primary concern associated with ADS development is stable high-power accelerators. We therefore studied the neutron source efficiencies of an AD-MSR involving chloride fuels by including a Pb-Bi eutectic (LBE) spallation target. The proton source efficiency and the accelerator beam power required have been studied for an AD-MSR. Adoption of an LBE spallation target induces an increase in proton source efficiencies in comparison to the case without a spallation target. Thus the presence of an efficient spallation target is useful in the reduction of the beam power of an accelerator. Almost 33 % of the beam power can be reduced in comparison to the case without the target for NaCl-Th/{sup 233}U fuel, and about 16 % for NaCl-U/TRU fuel. The beam power amplifications increase by 1.5 times for NaCl-Th/{sup 233}U and 1.2 times for NaCl-U/TRU in comparison with the no target AD-MSR.

  9. Neutron fluence produced in medical accelerators

    International Nuclear Information System (INIS)

    Castro, R.C.; Silva, A.X. da; Crispim, V.R.

    2004-01-01

    Radiotherapy with photon and electron beams still represents the most diffused technique to control and treat tumour diseases. To increase the treatment efficiency, accelerators of higher energy are used, the increase of electron and photon energy is joined with generation of undesired fast neutron that contaminated the therapeutic beam and give a non-negligible contribution to the patient dose. In this work we have simulated with the MCNP4B code the produced neutron spectra in the interaction between the beam and the head to the accelerator and estimating the equivalent dose for neutrons by x-ray dose for aims far from the targets. (author)

  10. Neutron emission during acceleration of 252Cf fission fragments

    International Nuclear Information System (INIS)

    Batenkov, O.I.; Blinov, M.V.; Blinov, A.B.; Smirnov, S.N.

    1991-01-01

    We investigate neutron emission during acceleration of fission fragments in the process of spontaneous fission of 252 Cf. Experimental angular and energy distributions of neutrons are compared with the results of calculations of neutron evaporation during fragment acceleration. (author). 8 refs, 3 figs

  11. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  12. Nuclear data for accelerator-driven transmutation. Annual Report 2001/2002

    International Nuclear Information System (INIS)

    Blomgren, J.; Johansson, C.; Klug, J.; Olsson, N.; Pomp, S.; Renberg, P.U.

    2002-07-01

    The present project started 1998-07-01. The primary objective from the supporting organizations is to promote research and research education of relevance for development of the national competence within nuclear energy. The aim of the project is in short to: promote development of the competence within nuclear physics and nuclear technology by supporting licentiate and PhD students; push forward the international research front regarding fundamental nuclear data within the presently highlighted research area 'accelerator-driven transmutation'; strengthen the Swedish in influence within the mentioned research area by expanding the international contact network; constitute a basis for Swedish participation in the nuclear data activities at IAEA and OECD/NEA. The project is run by the Department of Neutron Research (INF)at Uppsala University, and is utilizing the unique neutron beam facility at the national The Svedberg Laboratory (TSL) at Uppsala University. Transmutation techniques in accelerator-driven systems (ADS) involve high-energy neutrons, created in the proton-induced spallation of a heavy target nucleus. The existing nuclear data libraries developed for reactors of today go up to about 20 MeV,which covers all available energies for that application; but with a spallator coupled to a core, neutrons with energies up to 1 - 2 GeV will be present. Although a large majority of the neutrons will be below 20 MeV, the relatively small fraction at higher energies still has to be characterized. Above ∼ 200 MeV, direct reaction models work reasonably well, while at lower energies nuclear distortion plays a non-trivial role. This makes the 20 - 200 MeV region the most important for new experimental cross section data. Very little high-quality neutron-induced data exist in this energy domain.Only the total cross section and the np scattering cross section have been investigated extensively. Besides this, there are data on neutron elastic scattering from UC Davis at

  13. Accelerator-driven transmutation: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2000-01-01

    This paper discusses current technical and political issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution and improvements of the design technologies are identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Transmutation of waste has been historically viewed by nuclear engineers as one of those technologies that is too good to be true and probably too expensive to be feasible. The concept discussed in the present paper uses neutrons ( which result from protons accelerated into spallation targets)to transmute the major very long-lived hazardous materials such as the radioactive isotopes of technetium, iodine, neptunium, plutonium, americium, and curium. Although not a new concept, accelerator-driven transmutation technology (ADTT) lead by a team at Los Alamos National Laboratory (LANL) has made some significant advances which are discussed in the present paper. (authors)

  14. Proposal for an accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.

    1975-07-01

    An Accelerator-based Neutron Generator is described that consists of a 30-MeV deuteron linear accelerator using a flowing liquid lithium target. With a continuous deuteron current of 100 milliamperes, a source intensity of more than 10 16 neutrons per second will be produced. The neutrons will be emitted in a roughly collimated beam. The proposed facility can be divided into two areas: the 30-MeV linear accelerator and the multiple-target experimental area. The 30-MeV accelerator will consist of eight rf accelerating cavities in a single vacuum tank, each cavity being powered by its own rf power amplifier operating at 50 MHz. To shield the beam bunches from the rf field when it is in the decelerating direction, 66 ''drift tubes'' will be included; the drift-tube structures will include quadrupole magnets which will keep the beam focused. The accelerator will produce a continuous beam of 100 milliamperes. Beam power will thus be 3.0 megawatts; total power including rf losses in the accelerating cavities will be 4.5 megawatts. The injectors for the linear accelerator will be two 500-kV dc accelerators, one for injection of D + ions and the other for D - ions. They can be used simultaneously or one can serve as a spare in case of breakdown or maintenance of the other. (U.S.)

  15. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  16. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  17. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  18. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    International Nuclear Information System (INIS)

    Ceder, M.

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  19. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, M

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  20. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  1. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  2. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  3. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  4. Disposition of nuclear waste using subcritical accelerator-driven systems

    International Nuclear Information System (INIS)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-01-01

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power

  5. Proton-driven Plasma Wakefield Acceleration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The construction of ever larger and costlier accelerator facilities has a limited future, and new technologies will be needed to push the energy frontier. Plasma wakefield acceleration is a rapidly developing field and is a promising candidate technology for future high energy colliders. We focus on the recently proposed idea of proton-driven plasma wakefield acceleration and describe the current status and plans for this approach.

  6. Modelling of two-zone accelerator-driven systems

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2012-09-01

    Full Text Available Neutron-physical modelings of two-zone subcritical reactor driven by high-intensity neutron generator are considered. The cascade principle in subcritical reactors, the use of which can hypothetically substantially amplify the neutron flux from the external source is discussed in this article. The theoretical preconditions of the cascade principle are discussed, and the directions of practical realization of the cascade subcritical system are considered, namely the possible methods of neutron feedback between reactor sections elimination. The results of Monte Carlo neutron-physical modeling of the cascade subcritical systems are presented and discussed.

  7. Linear accelerator driven (LADR) and regenerative reactors (LARR) for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Steinberg, M.; Takahashi, H.; Powell, J.R.; Kouts, H.J.C.

    1977-09-01

    Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile material would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh fuel element or in a depleted or burned element after use in a power reactor. In the latter mode the fissile material would be increased in concentration for reuse in a power reactor. This system is called a Linear Accelerator Regenerative Reactor (LARR). The LAB can also be conceived of operating in a power production mode in which the spallation neutrons would be used to drive a subcritical assembly to produce power. This is called a Linear Accelerator Driven Reactor (LADR). A discussion is given of the principles and some of the technical problems of both types of accelerator breeders

  8. Effect of accelerated matter in neutron optics

    International Nuclear Information System (INIS)

    Frank, A. I.; Geltenbort, P.; Jentschel, M.; Kustov, D. V.; Kulin, G. V.; Nosov, V. G.; Strepetov, A. N.

    2008-01-01

    Results of experiments aimed at observing the change in the energy of a neutron traversing an accelerated refractive sample are reported. The experiments were performed with ultracold neutrons, the energy transfer in these experiments being ±(2-6) x 10 -10 eV. The results suggest the existence of the effect and agree with theoretical predictions to a precision higher than 10%. A similar effect was previously predicted for the change in the frequency of an electromagnetic wave traversing an accelerated dielectric slab. In all probability, the effect has a very general nature, but it is presently observed only in neutron optics.

  9. Calculations of accelerator-based neutron sources characteristics

    International Nuclear Information System (INIS)

    Tertytchnyi, R.G.; Shorin, V.S.

    2000-01-01

    Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)

  10. Fusion neutron detector calibration using a table-top laser generated plasma neutron source

    International Nuclear Information System (INIS)

    Hartke, R.; Symes, D.R.; Buersgens, F.; Ruggles, L.E.; Porter, J.L.; Ditmire, T.

    2005-01-01

    Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV

  11. Source-jerk method for application on ADS neutronics study The ADS is stated for Accelerator Driven sub-critical System

    CERN Document Server

    Zhu Qing Fu; Li Yi; Xia Pu; Zheng Wu Qing; Zhu Guo Sheng

    2003-01-01

    The paper is concerned in the source-jerk method used to measure the sub-criticality, and the sub-critical experiment facility, which is used for the study on the neutronics of ADS, driven by external neutron source sup 2 sup 5 sup 2 Cf. The effects of the location of neutron source and material buffer where is at the location of the pipe of proton beam and target of fission-product dispersion on the sub-criticality of reactor are studied by source-jerk method

  12. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  13. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    International Nuclear Information System (INIS)

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-01-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW t

  14. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj

    2015-05-01

    Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.

  15. 233U breeding in accelerator-driven sub-critical fast reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; An Yu

    1999-01-01

    Accelerator-driven Sub-critical Fast Reactor (ADFR) is chosen as fissile-material-breeding reactor. (U-Pu)O x is chosen as fuel in the core and ThO 2 as fertile material in the blanket zone to breed 233 U. Molten lead is chosen as coolant because of its better neutronic and chemical characteristics over sodium. The program system used for neutronics study consists of: LAHET, for the simulation of the interaction between the proton with medium energy and the nuclei of the target; MCNP4A, for the simulation of neutron transport with energy below 20 MeV in the sub-critical reactor; CONNECT1, for the processing of some tallies provided by the output of MCNP4A in order to prepare micro-cross sections for elements used for burnup calculation; ORIGEN2, used for multi-region burnup calculation; CONNECT2, for the processing of atom densities of some elements provided in the output of ORIGEN2 in order to prepare input to LAHET calculation for next time step. The calculated results show that the proposed case is feasible for breeding fissile material considering the criticality safety, power density, burnup, etc

  16. Importance of delayed neutron data in transmutation system

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi

    1999-01-01

    The accelerator-driven transmutation system has been studied at the Japan Atomic Energy Research Institute. This system is a hybrid system which consists of a high intensity accelerator, a spallation target and a subcritical core region. The subcritical core is driven by neutrons generated by spallation reaction in the target region. There is no control rod in this system, so the power is controlled only by proton beam current. The beam current to keep constant power change with effective multiplication factor of subcritical core. So, the evaluation of delayed neutron fraction which is strongly connected to the measurement of subcritical level is important factor in operation of accelerator-driven system. In this paper, important nuclides for the delayed neutron fraction of ADS will be discussed, moreover, present state of delayed neutron data in evaluated nuclear data library is presented. (author)

  17. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    International Nuclear Information System (INIS)

    Shetty, Nikhil Vittal

    2013-01-01

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  18. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  19. Direct evidence for inelastic neutron 'acceleration' by 177Lum

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Rosse, B.; Belier, G.; Daugas, J.-M.; Morel, P.; Letourneau, A.; Menelle, A.

    2011-01-01

    The inelastic neutron acceleration cross section on the long-lived metastable state of 177 Lu has been measured using a direct method. High-energy neutrons have been detected using a specially designed setup placed on a cold neutron beam extracted from the ORPHEE reactor in Saclay. The 146±19 b inelastic neutron acceleration cross section in the ORPHEE cold neutron flux confirms the high cross section for this process on the 177 Lu m isomer. The deviation from the 258±58 b previously published obtained for a Maxwellian neutron flux at a 323 K temperature could be explained by the presence of a low energy resonance. Resonance parameters are deduced and discussed.

  20. Conceptual design of multi-purpose accelerator-driven transmutation test facility

    International Nuclear Information System (INIS)

    Hirota, Koichi; Hida, Kenzo; Yokobori, Hitoshi; Kamishima, Yoshio

    1999-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been developing a concept of accelerator-driven transmutation system using a high-power proton linac. To demonstrate the technical feasibility of this concept, accelerator-driven spallation experiments will be necessary. We believe our proposal of a multi-purpose test facility is a promising concept to clarify its feasibility from the basic neutronics and engineering standpoint. The main feature of our initial proposal is using an inclined beam injection. It enables to simplify the head of the test vessel as well as to facilitate easy replacing of the beam window and the testing device containing the test specimen, and also this system will minimize the complexity of the vessel head and surrounding structures. Next proposal is using an ordinary overhead beam injection system and is modified to be simple structural concept of the test vessel from inclined beam injection. At the first step, the basic neutronics experiments will be performed. At this step, the test device and the cooling device are simpler ones, due to only small heat will be generated. Then we plan using a gas cooling. At the following steps, the test device and the vessel internal structures will be remodeled or remade to adjust to the test purposes, if necessary. At these steps, target material tests and thermal hydraulic tests using some liquid metal coolants will be done. In this case, the natural circulation cooling will be done. To verify the transmutation technology, a larger heat will be generated, so a forced coolant circulation system will be installed in the test vessel. This system consists of a heat exchanger and a circulation pump. The vessel internal structure will be remade. Doing such step-wise remaking, initial construction cost of the proposed test facility will be expected to be reasonable. (author)

  1. Neutron physics with accelerators

    Science.gov (United States)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  2. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  3. Production of neutrons in particle accelerators: a PNRI safety concern

    International Nuclear Information System (INIS)

    Garcia, Corazon M.; Cayabo, Lynette B.; Artificio, Thelma P.; Melendez, Johnylen V.; Piquero, Myrna E.; Parami, Vangeline K.

    2002-09-01

    In the safety assessment made for the first cyclotron facility in the Philippines, that is the cyclotron in the P.E.T. (Positron Emission Tomography) center of the St. Luke's Medical Center, the concern on the production of neutrons associated with the operation of particle accelerators has been identified. This takes into consideration the principles in the operation of particle accelerators and the associated production of neutrons resulting from their operation, the hazards and risks in their operation. The Bureau of Health Devices and Technology (BHDT) of the Department of Health in the Philippines regulates and controls the presently existing six (6) linear accelerators distributed in different hospitals in the country, being classified as x-ray producing devices. From the results of this study, it is evident that the production of neutrons from the operation of accelerators, produces neutrons and that activation due to neutrons can form radioactive materials. The PNRI (Philippine Nuclear Research Institute) being mandated by law to regulate and control any equipment or devices producing or utilizing radioactive materials should take the proper steps to subject all accelerator facilities and devices in the Philippines such as linear accelerators under its regulatory control in the same manner as it did with the first cyclotron in the country. (Author)

  4. Activity report of working party on reactor physics of accelerator-driven system. July 1999 to March 2001

    International Nuclear Information System (INIS)

    2002-02-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) was set in July 1999 to review and investigate special subjects related to reactor physics research for the Accelerator-Driven Subcritical System (ADS). The ADS-WP, at the first meeting, discussed a guideline of its activity for two years and decided to concentrate upon three subjects: (1) neutron transport calculations in high energy range, (2) static and kinetic (safety-related) characteristics of subcritical system, and (3) system design including ADS concepts and elemental technology developments required. The activity of ADS-WP continued from July 1999 to March 2001. In this duration, the members of ADS-WP met together four times and discussed the above subjects. In addition, the ADS-WP conducted a questionnaire on requests and proposals for the plan of Transmutation Physics Experimental Facility in the High-Intensity Proton Accelerator Project, which is a joint project between JAERI and KEK (High Energy Accelerator Research Organization). This report summarizes the results obtained by the above ADS-WP activity. (author)

  5. FPGA hardware acceleration for high performance neutron transport computation based on agent methodology - 318

    International Nuclear Information System (INIS)

    Shanjie, Xiao; Tatjana, Jevremovic

    2010-01-01

    The accurate, detailed and 3D neutron transport analysis for Gen-IV reactors is still time-consuming regardless of advanced computational hardware available in developed countries. This paper introduces a new concept in addressing the computational time while persevering the detailed and accurate modeling; a specifically designed FPGA co-processor accelerates robust AGENT methodology for complex reactor geometries. For the first time this approach is applied to accelerate the neutronics analysis. The AGENT methodology solves neutron transport equation using the method of characteristics. The AGENT methodology performance was carefully analyzed before the hardware design based on the FPGA co-processor was adopted. The most time-consuming kernel part is then transplanted into the FPGA co-processor. The FPGA co-processor is designed with data flow-driven non von-Neumann architecture and has much higher efficiency than the conventional computer architecture. Details of the FPGA co-processor design are introduced and the design is benchmarked using two different examples. The advanced chip architecture helps the FPGA co-processor obtaining more than 20 times speed up with its working frequency much lower than the CPU frequency. (authors)

  6. Lead cooled heterogeneous accelerator driven molten-fluoride blanket for incineration of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Lopatkin, A.V.; Matyushechkin, V.M.; Tretyakov, I.T.; Blagovolin, P.P.; Kazaritsky, V.D.

    1997-01-01

    This paper presents a tentative design description and evaluation of the basic parameters of a lead cooled heterogeneous accelerator driven molten fluoride blanket. The proton beam of a 1 GeV accelerator strikes the blanket from below and generates spallation neutrons in the flow of lead, which serves as a target. These neutrons leave the target zone and get into a heterogeneous blanket with separated volumes of molten salts and lead. Fissile materials are dissolved in the salt. On getting into the molten salt volume the neutrons cause fission (transmutation) of the actinides, the produced heat being removed by circulation of molten lead. Two versions of the blanket design are examined. The first version: molten salt circulates in the fuel channels, while lead cools the channels flowing through the interchannel space (the salt channel design). The second version: it is lead that circulates in the channels, while molten salt takes up the interchannel space (the lead channel design). A preliminary blanket design study showed that both blanket designs possess a potential for improving performance. At present time the blanket design, mentioned above as the salt channel design, seems to be more promising. 1 ref., 2 figs., 2 tabs

  7. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  8. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  9. Radiological Hazard of Spallation Products in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-01-01

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs

  10. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  11. Theory of Feynman-alpha technique with masking window for accelerator-driven systems

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Misawa, Tsuyoshi

    2017-01-01

    Highlights: • A theory of the modified Feynman-alpha technique for the ADS was developed. • The experimental conditions under which this technique works were discussed. • It is expected this technique is applied to the subcriticality monitor for the ADS. - Abstract: Recently, a modified Feynman-alpha technique for the subcritical system driven by periodically triggered neutron bursts was developed. One of the main features of this technique is utilization of a simple formula that is advantageous in evaluating the subcriticality. However, owing to the absence of the theory of this technique, this feature has not been fully investigated yet. In the present study, a theory of this technique is provided. Furthermore, the experimental conditions under which the simple formula works are discussed to apply this technique to the subcriticality monitor for the accelerator-driven system.

  12. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  13. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  14. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  15. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Bianchi, F.; Peluso, V.; Calabrese; Chen, X.; Maschek, W.

    2007-01-01

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  16. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  17. Requirements of a proton beam accelerator for an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-01-01

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam

  18. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  19. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  20. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  1. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  2. Research on transmutation and accelerator-driven systems at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Knebel, J.U.; Heusener, G.

    2000-01-01

    Transmutation is considered a promising technology worldwide for significantly reducing the amount and, thereby, the long-term radiotoxicity of high active waste (HAW) produced by the operation of nuclear power plants such as light water reactors (LWR). The maximum reduction of radiotoxicity could be by a factor of about 100. Transmutation is thus an alternative to the direct deposition of large volumes of highly radioactive waste. Transmutation presents the possibility of closing the fuel cycle including the minor actinides. Plutonium, minor actinides and long-lived fission products can be transmuted in a so called Accelerator Driven Sub-critical System (ADS), which consists of an accelerator, a target module and a subcritical blanket. This paper describes the work performed at Forschungszentrum Karlsruhe which is critically evaluating an ADS mainly with respect to its potential for transmuting minor actinides, to its feasibility and to safety aspects. The work is being done in the area of core design, neutronics, safety, system analyses, materials and corrosion. (orig.) [de

  3. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing.

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...

  4. Fast neutron scintillation spectrometer in a heavy ion accelerator

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Tyurin, G.P.

    1984-01-01

    Scintillation fast neutron spectrometer in a heavy ion accelerator is described in short. The spectrometer is used to measure characteristics of neutrons emitted in heavy ion interaction with different nuclei. Experiment was performed on the base of particle flight from 0.7 up to 2 m. Within the angle range of 0-150 deg. The technique is based on recording of two-dimensional neutron spectra obtained due to combination of the time-of-flight method and the method of recoil proton energy detection. Two measuring channels were used in the spectrometer. Each channel comprise both amplitude and time tracks. Detector on the base microchannel plates (MCP) generated a signal in passing the next ion bunch was used in order to obtain the time mark. Data from the scintillation block are recorded with respect to three parameters: recoil proton amplitude, time of neutron or γ-quantum arrival in respect of MCP-sensor pulse. Apparatus is carried out within the CAMAC standard. The spectrometer calibration within the 1-20 MeV neutron range was conducted in the Van-de-Graaf accelerator, and for higher energies - with the use of lightguides. Spectrometer time resolution for neutron energies of 0.5-50 MeV constituted 1.5-1.8 ns. The above measuring of neutron spectra from 1 /H2C+ 181 Ta and sup(20, 22)Ne+sup(181)Ta reaction have revealed a possibility of the experiment organization in heavy ion accelerators in the presence of strong neutron and γ-fields. Organization of multi-dimensional analysis combining two methods allows one to separate accelerator cycle, a region of the most reliable information, free of a low-energy gamma background and limited both by a dynamic threshold and a region of permissible energy values

  5. Transport of accelerator produced high energy neutrons though concrete

    International Nuclear Information System (INIS)

    Prabhakar Rao, G.; Sarkar, P.K.

    1996-01-01

    Development of a computational system for estimating the production and transport of high energy neutrons in particle accelerators is reported. The energy-angle distribution of neutrons from accelerated ions bombarding thick targets is calculated by a hybrid nuclear reaction model code, ALICE-91, modified to suit the purpose. Subsequent transmission of these neutrons through concrete slabs is treated using the anisotropic source-flux iteration technique (ASFIT) in the framework of a coupled neutron-gamma transport. Several parameters of both the codes have been optimized to obtain the transmitted dose through concrete. The calculations are found to be accurate and at the same time faster compared to the detailed Monte Carlo calculations. (author). 8 refs., 2 figs

  6. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States); Borden, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  7. Behavior of structural and target materials irradiated in spallation neutron environments

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Wechsler, M.; Borden, M.

    1995-01-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources

  8. MYRRHA project: a Multipurpose Accelerator Driven System (ADS) for R and D

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The objective of the MYRRHA project is to develop a multipurpose neutron source for research and development applications on the basis of an Accelerator Driven System (ADS). Current activities in this area focus on (1) the continuation and the extension towards ADS of the ongoing programmes at SCK-CEN in the field of reactor materials, fuel and reactor physics research; (2) the enhancement and the triggering of new R and D activities such as nuclear waste transmutation, ADS technology, liquid metal embrittlement; (3) the initiation of medical applications, for example proton therapy and PET production, or proton Based irradiation programmes. Main achievements in these topical areas in 2000 are summarised

  9. Neutron fluence in a 18 MeV Electron Accelerator for Therapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.

    2001-01-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm 2 were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the accelerator

  10. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  11. The intense neutron generator and future factory type ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1968-07-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  12. The intense neutron generator and future factory type ion accelerators

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1968-01-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  13. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  14. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  15. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  16. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  17. Design and analysis of nuclear battery driven by the external neutron source

    International Nuclear Information System (INIS)

    Wang, Sanbing; He, Chaohui

    2014-01-01

    Highlights: • A new type of space nuclear power called NBDEx is investigated. • NBDEx with 252 Cf has better performance than RTG with similar structure. • Its thermal power gets great improvement with increment of fuel enrichment. • The service life of NBDEx is about 2.96 year. • The launch abortion accident analysis fully demonstrates the advantage of NBDEx. - Abstract: Based on the theory of ADS (Accelerator Driven Subcritical reactor), a new type of nuclear battery was investigated, which was composed of a subcritical fission module and an isotope neutron source, called NBDEx (Nuclear Battery Driven by External neutron source). According to the structure of GPHS-RTG (General Purpose Heat Source Radioisotope Thermoelectric Generator), the fuel cell model and fuel assembly model of NBDEx were set up, and then their performances were analyzed with MCNP code. From these results, it was found that the power and power density of NBDEx were almost six times higher than the RTG’s. For fully demonstrating the advantage of NBDEx, the analysis of its impact factors was performed with MCNP code, and its lifetime was also calculated using the Origen code. These results verified that NBDEx was more suitable for the space missions than RTG

  18. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  19. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  20. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  1. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Bergueiro, J.; Igarzabal, M.; Suarez Sandin, J.C.; Somacal, H.R.; Thatar Vento, V.; Huck, H.; Valda, A.A.; Repetto, M.

    2011-01-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  2. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  3. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  4. On stability of accelerator driven systems

    International Nuclear Information System (INIS)

    Makai, Mihaly

    2003-01-01

    An unsolved problem of energy production in nuclear reactors is the waste management. A large portion of the nuclear waste is the spent fuel. At present, two possibilities are seen. The first one is to 'wrap up' all the radioactive waste safely and to bury it at a remote quiet place where it can rest undisturbed until its activity decreases to a tolerable level. The second one is to exploit the excitation energy still present in the nuclear waste. In order to release that energy, the spent fuel is bombarded by high energy particles obtained from an accelerator. The resulting system is called accelerator driven system (ADS). In an ADS, the spent fuel forms a subcritical reactor, which is driven by an external source. (author)

  5. Nuclear data for accelerator-driven transmutation. Annual report 1999/2000

    International Nuclear Information System (INIS)

    Atac, A.; Blomgren, J.; Johansson, C.; Klug, J.; Olsson, N.; Renberg, P.U.

    2000-09-01

    The present project, supported as a research task agreement by SKI, SKB, Barsebaeck Kraft AB and Vattenfall AB, started 1998-07-01. From 1999-01-01 the project also receives support from the Defence Research Establishment. The primary objective from the supporting organizations is to promote research and research education of relevance for development of the national competence within nuclear energy. The aim of the project is in short to: promote development of the competence within nuclear physics and nuclear technology by supporting licentiate and PhD students, push forward the international research front regarding fundamental nuclear data within the presently highlighted research area 'accelerator-driven transmutation', strengthen the Swedish influence within the mentioned research area by expanding the international contact network, constitute a basis for Swedish participation in the nuclear data activities at IAEA and OECD/NEA. The project is run by the Department of Neutron Research at Uppsala University, and is utilizing the unique neutron beam facility at the national The Svedberg Laboratory. In this document, we give a status report after the second year (1999-07-01--2000-06-30) of the project

  6. Transient analysis for lead-bismuth-cooled accelerator-driven system proposed by JAEA

    International Nuclear Information System (INIS)

    Sugawara, T.; Nishihara, K.; Tsujimoto, K.

    2015-01-01

    It is supposed that an Accelerator-driven System (ADS) is safer than conventional critical reactors since an ADS is driven by the external neutron source in the subcritical state. In this study, the transient analyses for the lead-bismuth cooled ADS proposed by JAEA were performed using the SIMMER-III and RELAP5/mod3.2 codes to investigate the possibility of core damage. In this research, 3 accidents: the protected loss of heat sink, the protected overcooling and the unprotected blockage accident were considered as typical ADS accidents. Through these calculations, it was confirmed that all calculation results, except for the protected loss of heat sink, fulfilled the no-damage criteria. In the protected loss of heat sink, the cladding tube temperature reached its melting temperature after 18-21 hours, although the calculation condition was very conservative. These results have led to requirements to design a safety system of the ADS to decrease the frequencies of accidents. (authors)

  7. Irradiation system for neutron capture therapy using the small accelerator

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Hoshi, Masaharu

    2002-01-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions 10 B(n, αγ) 7 Li and 7 Li (p, n) 7 Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction 7 Li (p, n) 7 Be. The system devoted to the NCT is awaited in future. (K.H.)

  8. Plasma driven neutron/gamma generator

    Science.gov (United States)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  9. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  10. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  11. Performance of the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has now been operating in a routine way for outside users since November 1, 1981. From that date through December of 1982, the accelerator system was scheduled for neutron science for 4500 hours. During this time the accelerator achieved its short-term goals by delivering about 380,000,000 pulses of beam totaling over 6 x 10 20 protons. The changes in equipment and operating practices that evolved during this period of intense running are described. The intensity related instability threshold was increased by a factor of two and the accelerator beam current has been ion source limited. Plans to increase the accelerator intensity are also described. Initial operating results with a new H - ion source are discussed

  12. Target spot localization at neutron producing accelerators

    International Nuclear Information System (INIS)

    Medveczki, L.; Bornemisza-Pauspertl, P.

    1980-01-01

    In the application of neutron producing accelerators it is required to know the actual position and the homogeneity of distribution of the emitted neutrons. Solid state nuclear track detectors offer a good possibility to get precise information on these without any disturbing influence on them. LR 115 2 type cellulose nitrate Kodak-Pathe Foils were irradiated with fast neutrons. When track density is higher than about 104 tracks cm -2 the damaged area can be observed with the naked eye, too. To get quantitative information the track densities were counted with manual technique. (author)

  13. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  14. Pseudo-random neutron time-of-flight spectroscopy using a Van de Graaff accelerator as neutron source

    International Nuclear Information System (INIS)

    Duquesne, Henry; Schmitt, Andre; Poussot, Rene; Pelicier, Henri.

    1976-05-01

    The classical experiments of neutron time-of-flight spectrometry on bulk multiplying media are using recurrent neutron bursts from a linear accelerator. The adaptation of the ion beam issued from the Cadarache Van de Graaff accelerator is described with the test experiments which were effected. Both methods are compared with respect to the accuracy obtained, the energy resolution and the time consumed [fr

  15. Neutron and photon dose assessment in Indus accelerator complex

    International Nuclear Information System (INIS)

    Verma, Dimple; Haridas Nair, G.; Bandopadhyay, Tapas; Tripathy, R.M.; Pal, Rupali; Bakshi, A.K.; Palani Selvam, T.; Datta, D.

    2016-02-01

    Indus Accelerator Complex (IAC) consists of 20 MeV Microtron, 450/550 MeV Booster, 450 MeV Indus-1 and 2.5 GeV Indus-2 storage rings. The radiation environment in Indus Accelerator Complex comprises of bremsstrahlung photons, electrons, positrons, photo neutrons and muons, out of which, bremsstrahlung photons are the major constituent of the prompt radiation. Major problem faced for on-line detection of neutrons is their severely pulsed nature. In the present study, measurement of neutron and photon dose rates in Indus Accelerator Complex was carried out using passive dosimeters such as CR-39 solid state nuclear track detector (SSNTD) and CaSO 4 :Dy Teflon disc, 6 LiF:Mg,Ti (TLD 600) and 7 LiF:Mg,Ti (TLD 700) based thermo luminescent (TL) detectors. The report describes the details of the measurement and discusses the results. (author)

  16. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  17. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Evaluation of CdZnTe as neutron detector around medical accelerators

    International Nuclear Information System (INIS)

    Martin-Martin, A.; Iniguez, M. P.; Luke, P. N.; Barquero, R.; Lorente, A.; Morchon, J.; Gallego, E.; Quincoces, G.; Marti-Climent, J. M.

    2009-01-01

    The operation of electron linear accelerators (LINACs) and cyclotrons can produce a mixed gamma-neutron field composed of energetic neutrons coming directly from the source and scattered lower energy neutrons. The thermal neutron detection properties of a non-moderated coplanar-grid CdZnTe (CZT) gamma-ray detector close to an 18 MV electron LINAC and an 18 MeV proton cyclotron producing the radioisotope 18 F for positron emission tomography are investigated. The two accelerators are operated at conditions producing similar thermal neutron fluence rates of the order of 104 cm -2 s -1 at the measurement locations. The counting efficiency of the CZT detector using the prompt 558 keV photopeak following 113 Cd thermal neutron capture is evaluated and a good neutron detection performance is found at the two installations. (authors)

  19. Neutron dose measurements with the GSI ball at high energy accelerators

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Gutermuth, F.; Radon, T.; Kozlova, E.

    2005-01-01

    Full text: At high energy particle accelerators the production of neutron radiation dominates radiation protection. For the radiation survey at accelerators there is a need for reliable detection systems (passive radiation monitors), which can measure the dose for a wide range of neutron energies independently on the beam pulse structure of the produced radiation. In this work a passive neutron dosemeter for the measurement of the ambient dose equivalent is presented. The dosemeter is suitable for measurements of the emerging neutron radiation at accelerators for the whole energy range up to about 10 GeV. The dosemeter consists of a polyethylene sphere, TL elements (pairs of TLD600/700) and an additional lead layer (PE/Pb) in neutron fields at high energy accelerators is investigated in this work. Results of dose measurements which were performed in realistic neutron fields at the high energy accelerator SPS at CERN (CERF facility) and in Cave A at the heavy ion synchrotron SIS at GSI are presented. The results of these measurements are compared with the expected dose values from the neutron spectra determined for the measurement positions at CERF and in Cave A (FLUKA) and with the dosemeter response derived by the calculated response functions (FLUKA) folded with the neutron spectra. The comparisons show that the additional lead layer in the PE/Pb-sphere improves significantly the response of the dosemeter. The response of the PE/Pb-sphere is 40 to 50 % higher at CERF and Cave A in comparison to the bare PE-sphere. At CERF the dose values of the PE/Pb-sphere is about 25 % lower than the expected dose value, whilst for Cave A, a rather good agreement was found (2 % deviation). (author)

  20. Laser-driven wakefield electron acceleration and associated radiation sources

    International Nuclear Information System (INIS)

    Davoine, X.

    2009-10-01

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme

  1. Project of new tandem-driven neutron facility in Slovakia

    International Nuclear Information System (INIS)

    Strisovska, Jana

    2014-01-01

    New neutron laboratory based on Pelletron R Accelerator with terminal voltage of 2 MV is under construction at the Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. The accelerator will be employed as a tunable source of monoenergetic fast neutrons. Using of deuterium and in the future also tritium gas cells is foreseen. These cells will allow to produce fast neutrons with various energies via 2 H(d,n) 3 He and 3 H(p,n) 3 He nuclear reactions. Physics program of new laboratory will be focused on nuclear structure studied via inelastic neutron scattering with gamma ray detection, especially for light singly-closed shell nuclei. Fission cross section measurement and fission gamma rays studies will be performed. Development and testing of neutron detectors, as integral part of future project ALLEGRO, i.e., the demonstrator of fast nuclear reactor cooled with helium gas, is planned. Parallel to neutron program, beams of charged particles will be used for studies of resonant nuclear astrophysics reactions. Start of operation of the laboratory is foreseen in 2015. In the talk, current status, physics program and details of the facility will be presented. (authors)

  2. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the

  3. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  4. An intense neutron generator based on a proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G A; Milton, J C.D.; Vogt, E W

    1964-07-01

    A study has been made of the demand for a neutron facility with a thermal flux of {>=} 10{sup 16} n cm{sup -2} sec{sup -1} and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of {pi} and {mu} mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics

  5. An intense neutron generator based on a proton accelerator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Milton, J.C.D.; Vogt, E.W.

    1964-01-01

    A study has been made of the demand for a neutron facility with a thermal flux of ≥ 10 16 n cm -2 sec -1 and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of π and μ mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics, and perhaps also in

  6. Accelerator driven heavy water blanket on circulating fuel

    International Nuclear Information System (INIS)

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  7. Photonic laser-driven accelerator for GALAXIE

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  8. Radiation effects in materials for accelerator-driven neutron technologies

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.; Daemen, L.L.; Ferguson, P.D.

    1997-01-01

    The materials exposed to the most damaging radiation environments in an SNS (spallation neutron source) are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. The major solid targets in operating SNS's and under consideration for the 1--5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the project target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  9. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  10. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    International Nuclear Information System (INIS)

    Favalli, Andrea; Roth, Markus

    2015-01-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  11. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  12. Accelerator-based intense neutron source for materials R ampersand D

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Accelerator-based neutron sources for R ampersand D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and to be a satisfactory approximation to that of the fusion process. The technology of high-intensity linear accelerators can readily be applied to provide the deuteron beam for the neutron source. Earlier applications included the Los Alamos Meson Physics Facility and the Fusion Materials Irradiation Test facility prototype. The key features of today's advanced accelerator technology are presented to illustrate the present state-of-the-art in terms of improved understanding of basic physical principles and engineering technique, and to show how these advances can be applied to present demands in a timely manner. These features include how to produce an intense beam current with the high quality required to minimize beam losses along the accelerator and transport system that could cause maintenance difficulties, by controlling the beam emittance through proper choice of the operating frequency, balancing of the forces acting on the beam, and realization in practical hardware. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. 8 refs., 5 figs

  13. Nuclear data for accelerator-driven transmutation. Annual report 1998/99

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Johansson, C.; Klug, J.; Olsson, N.; Renberg, P.U. [Uppsala Univ. (Sweden). Dept. of Neutron Research. The Svedberg Lab.

    1999-09-01

    The present project, supported as a research task agreement by the Nuclear Power Inspectorate, the Nuclear Fuel and Waste Management Co, Barsebaeck Kraft AB and Vattenfall AB, started according to the plan 1998-07-01. From 1999-01-01 the project also receives support from the Defence Research Institute. The primary objective from the supporting organizations is to promote research and research education of relevance for development of the national competence within nuclear energy. The aim of the project is in short to: promote development of the competence within nuclear physics and nuclear technology by supporting PhD students; push forward the international research front regarding fundamental nuclear data within the presently highlighted research area 'accelerator-driven transmutation'; strengthen the Swedish influence within the mentioned research area by expanding the international contact network; and constitute a basis for Swedish participation in the nuclear data activities at IAEA and OECD/NEA. The project is run by the Department of Neutron Research at Uppsala University, and is utilizing the unique neutron beam facility at the national The Svedberg Laboratory (TSL) at Uppsala University. In this document, we give a status report after the first year (1998-07-01--1999-06-30) of the project.

  14. Nuclear data for accelerator-driven transmutation. Annual report 2000 / 2001

    International Nuclear Information System (INIS)

    Blomgren, J.; Johansson, C.; Klug, J.; Olsson, N.; Pomp, S.; Renberg, P.U.

    2001-09-01

    The present project, supported as a research task agreement by SKI, SKB, Barsebaeck Kraft AB and Vattenfall AB, started 1998-07-01. From 1999-01-01 the project also receives support from the Defence Research Establishment. The primary objective from the supporting organizations is to promote research and research education of relevance for development of the national competence within nuclear energy. The aim of the project is in short to: promote development of the competence within nuclear physics and nuclear technology by supporting licentiate and PhD students, push forward the international research front regarding fundamental nuclear data within the presently highlighted research area 'accelerator-driven transmutation', strengthen the Swedish influence within the mentioned research area by expanding the international contact network, constitute a basis for Swedish participation in the nuclear data activities at IAEA and OECD/NEA. The project is run by the Department of Neutron Research at Uppsala University, and is utilizing the unique neutron beam facility at the national The Svedberg Laboratory. In this document, we give a status report after the third year (2000-07-01--2001-06-30) of the project. The annual report also includes a report with the title: Charge-exchange giant resonances as probes of nuclear structure. This report is indexed separately

  15. Nuclear data for accelerator-driven transmutation. Annual report 1998/99

    International Nuclear Information System (INIS)

    Blomgren, J.; Johansson, C.; Klug, J.; Olsson, N.; Renberg, P.U.

    1999-09-01

    The present project, supported as a research task agreement by the Nuclear Power Inspectorate, the Nuclear Fuel and Waste Management Co, Barsebaeck Kraft AB and Vattenfall AB, started according to the plan 1998-07-01. From 1999-01-01 the project also receives support from the Defence Research Institute. The primary objective from the supporting organizations is to promote research and research education of relevance for development of the national competence within nuclear energy. The aim of the project is in short to: promote development of the competence within nuclear physics and nuclear technology by supporting PhD students; push forward the international research front regarding fundamental nuclear data within the presently highlighted research area 'accelerator-driven transmutation'; strengthen the Swedish influence within the mentioned research area by expanding the international contact network; and constitute a basis for Swedish participation in the nuclear data activities at IAEA and OECD/NEA. The project is run by the Department of Neutron Research at Uppsala University, and is utilizing the unique neutron beam facility at the national The Svedberg Laboratory (TSL) at Uppsala University. In this document, we give a status report after the first year (1998-07-01--1999-06-30) of the project

  16. Occupational dose due to neutrons in medical linear accelerators

    International Nuclear Information System (INIS)

    Larcher, Ana M.; Bonet Duran, Stella M.; Lerner, Ana M.

    2000-01-01

    This paper describes a semi-empirical method to calculate the occupational dose due to neutrons and capture gamma rays in medical linear accelerators. It compares theoretical dose values with measurements performed in several 15 MeV medical accelerators installed in the country. Good agreement has been found between calculations made using the model and dose measurements, except for those accelerator rooms in which the maze length was shorter than the postulated tenth value distance. For those cases the model seems to overestimate neutron dose. The results demonstrate that the semi-empirical model is a good tool for quick and conservative shielding calculations for radiation protection purposes. Nevertheless, it is necessary to continue with the measurements in order to perform a more accurate validation of the model. (author)

  17. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  18. Cosmic acceleration driven by mirage inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Galfard, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2006-03-21

    A cosmological model based on an inhomogeneous D3-brane moving in an AdS{sub 5} x S{sub 5} bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities.

  19. Accelerator driven light water fast reactor (revisiting to the accelerator LWR fuel regenerator)

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhang, J.

    1999-01-01

    A tight-latticed, high-enriched Pu fuel reactor cooled by water or by super-critical steam has a high neutron economy, similar to that of Na-or Pb-cooled fast reactor. Operating in a subcritical condition by providing spallation neutrons, this Pu-fueled reactor can run safely, despite the positive coolant void coefficients. It can be used to transmute the proliferation-prone Pu into proliferation-resistive U-233 fuel using thorium as the fertile material. Rather than employing the large linear accelerator proposed for the LWR fuel regenerator studied in the INFCE program, a small circular accelerator, such as a cyclotron or a Fixed Field Alternating Gradient Synchrotron (FFAG), can run a large power reactor in a slightly subcritical reactor using control rods, on-line fuel reshuffling, and slightly graded proton-beam injection. Some thoughts on improving the reliability of the proton accelerator, on transmutation of the long-lived fission products of Tc-99, and I-129, and the future direction of the development of the fast reactor are discussed. (author)

  20. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Murin, B.P.; Kochurov, B.P.; Shubin, Yu.M.; Volk, V.I.; Bogdanov, P.V.

    1997-01-01

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  1. Monoenergetic neutron fields for the calibration of neutron dosemeters at the accelerator facility of the PTB

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.; Schoelermann, H.

    1987-01-01

    The present state in the realization of monoenergetic standard neutron fields and the possibility of calibrating neutron dose- and doserate meters at the accelerator facility of the PTB are described. There are excellent conditions for the performance of irradiations in the neutron energy range of 1 keV to 14.8 MeV. (orig.) [de

  2. Monte Carlo criticality calculations accelerated by a growing neutron population

    International Nuclear Information System (INIS)

    Dufek, Jan; Tuttelberg, Kaur

    2016-01-01

    Highlights: • Efficiency is significantly improved when population size grows over cycles. • The bias in the fission source is balanced to other errors in the source. • The bias in the fission source decays over the cycle as the population grows. - Abstract: We propose a fission source convergence acceleration method for Monte Carlo criticality simulation. As the efficiency of Monte Carlo criticality simulations is sensitive to the selected neutron population size, the method attempts to achieve the acceleration via on-the-fly control of the neutron population size. The neutron population size is gradually increased over successive criticality cycles so that the fission source bias amounts to a specific fraction of the total error in the cumulative fission source. An optimal setting then gives a reasonably small neutron population size, allowing for an efficient source iteration; at the same time the neutron population size is chosen large enough to ensure a sufficiently small source bias, such that does not limit accuracy of the simulation.

  3. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  4. Neutron radiation from medical electron accelerators

    International Nuclear Information System (INIS)

    McCall, R.C.

    1983-01-01

    A method is described using simple gold foils and relatively inexpensive moderators to measure neutron fluences, both fast nd thermal, which then can be converted to dose equivalent using a few simple formulas. The method is sensitive, easy to calibrate, and should work at most accelerators regardless of energy or room geometry

  5. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  6. Accelerator-based neutron source and its future

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2008-01-01

    Neutrons are useful tool for the material science and also for the industrial applications. Now, high intensity neutron sources based on MW class big accelerators are under commissioning in Japan, Japan Spallation Neutron Source (JSNS) at J-PARC and in the US, SNS. Such high power neutron sources required the moderators that can be used under high radiation field and also give high neutronic performance. We have been performing experimental and Monte Carlo simulation studies to develop the cold neutron moderator systems for the high power sources since it is becoming important for materials and life science. Hydrogen is the unique candidate at the present stage due to its high resistibility to the radiation. It was indicated the para hydrogen moderator gave a good neutronic performance by experimental results. On the other hand, in the future, low power neutron sources are recognized to be useful to perform sprouting experiments and to promote the neutron science. The moderator systems need a concept different from the high power source. Therefore, we studied neutronic performances of the mesitylene and the methane moderators to get high intensity in a definite area on the moderator surface. Single groove moderators were studied and optimal geometry and the intensity gain were obtained. The mesitylene moderator gave a rather good performance compared to the methane moderator. (author)

  7. Source characterization of Purnima Neutron Generator (PNG)

    International Nuclear Information System (INIS)

    Bishnoi, Saroj; Patel, T.; Paul, Ram K.; Sarkar, P.S.; Adhikari, P.S.; Sinha, Amar

    2011-01-01

    The use of 14.1 MeV neutron generators for the applications such as elemental analysis, Accelerated Driven System (ADS) study, fast neutron radiography requires the characterization of neutron source i.e neutron yield (emission rate in n/sec), neutron dose, beam spot size and energy spectrum. In this paper, a series of experiments carried out to characterize this neutron source. The neutron source has been quantified with neutron emission rate, neutron dose at various source strength and beam spot size at target position

  8. Laser-driven particle acceleration towards radiobiology and medicine

    CERN Document Server

    2016-01-01

    This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their applicatio to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.

  9. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  10. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Abanades, Alberto; Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto; Bornos, Victor; Kiyavitskaya, Anna; Carta, Mario; Janczyszyn, Jerzy; Maiorino, Jose; Pyeon, Cheolho; Stanculescu, Alexander; Titarenko, Yury; Westmeier, Wolfram

    2008-01-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  11. Science opportunities at high power accelerators like APT

    International Nuclear Information System (INIS)

    Browne, J.C.

    1996-01-01

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels

  12. An accelerator neutron source for BNCT. Technical progress report, 1 June 1993--31 May 1994

    International Nuclear Information System (INIS)

    Blue, T.E.; Vafai, K.

    1994-02-01

    This is the progress report for the project entitled, ''An Accelerator Neutron Source for BNCT.'' The progress report is for the period from July 1, 1993 to date. The overall objective of our research project is to develop an Accelerator Epithermal Neutron Irradiation Facility (AENIF) for Boron Neutron Capture Therapy (BNCT). The AENIF consists of a 2.5 MeV high current proton accelerator, a lithium target to produce source neutrons, and a moderator/reflector assembly to obtain from the energetic source neutrons an epithermal neutron field suitable for BNCT treatments. Our project goals are to develop the non-accelerator components of the AENIF, and to specifically include in our development: (1) design, numerical simulation, and experimental verification of a target assembly which is capable of removing 75 kW of beam power; (2) re-optimization of the moderator assembly design based on in-phantom dose assessments using neutron spectra calculated in phantom and an energy-dependent neutron Relative Biological Effectiveness (RBE); (3) construction of a prototype moderator assembly and confirmation of its design by measurements; (4) design of the shielding of the accelerator and treatment rooms for an AENIF; and (5) design of a high energy beam transport system which is compatible with the shielding design and the thermal-hydraulic design

  13. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    International Nuclear Information System (INIS)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang

    2008-05-01

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  14. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  15. IAEA coordinated research project on 'analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Ait-Abderrahim, H.; Stanculescu, A.

    2006-01-01

    This paper provides the general background and the main specifications of the benchmark exercises performed within the framework of the IAEA Coordinated Research Project (CRP) on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWG-FR) of IAEA's Nuclear Energy Dept., is to contribute to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e. heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. (authors)

  16. Development of nuclear transmutation technology - A study on accelerator-driven transmutation of long-lived radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Chung, Kie Hyung; Hong, Sang Hee; Hwang, Il Soon; Park, Byung Gi; Yang, Hyung Lyeol; Kim, Duk Kyu; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The objective of this study is to help establish the long-range nuclear waste disposal strategy through the investigations and comparisons of various= concepts of the accelerator-driven nuclear waste transmutation reactors, which have been suggested to replace the geological waste disposal due to the technical uncertainties in the long-time scale. Nuclear data, categorized in high -and low-energy neutron cross-sections, were investigated and the structures, principles, and recent progresses of proton linac were reviews, Also the accelerator power for transmutation and the economics were referred, The comparison of the transmutation concepts concentrated on two: Japanese OMEGA program of alloy fuelled system, Minor actinide molten salt system, and Eutectic alloy system and American ATW program of aqueous system and molten salt system. From the comparative study, a state-of-art of the technology has been identified as a concept employing proton-accelerate of 800 {approx} 1600 MeV with 100 mA capacity combined with liquid lead target, molten salt blanket and on-line chemical separation using centrifuge and electrowinning technology. 34 refs., 25 tabs., 64 figs. (author)

  17. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  18. An experimental accelerator driven system based on plutonium subcritical assembly and 660 MeV protons accelerator

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Puzynin, I.V.; Sisakyan, A.N.; Polanski, A.

    1999-01-01

    We present a Plutonium Based Energy Amplifier Testing Concept, which employs a plutonium subcritical assembly and a 660 MeV proton accelerator operating in the JINR Laboratory of Nuclear Problems. Fuel designed for the pulsed neutron source IREN (Laboratory of Neutron Physics, JINR) will be adopted for the core of the assembly. To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient K eff ranging between 0.94 and 0.95 and the energetic gain about 20. Accelerated current is in the range of 1-1.6μA

  19. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  20. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  1. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  2. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  3. Direct measurement of the inelastic neutron acceleration by 177mLu

    Directory of Open Access Journals (Sweden)

    Menelle A.

    2010-03-01

    Full Text Available The inelastic neutron acceleration (INNA cross section on the long-lived isomer state of 177mLu has been measured from a new isomeric target using a direct method. The detection of high energy neutrons has been performed using a specially designed setup and a cold neutron beam at the ORPHEE reactor facility in Saclay.

  4. Dosimetric response evaluation of tooth enamel for accelerator-based neutron radiation

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Rink, W.J.; Boreham, D.R.

    2003-01-01

    To study the neutron response of human tooth enamel, a number of experiments with an accelerator-based neutron source have been designed. The neutron beam was produced with the low gamma yield, 7 Li(p,n) 7 Be type thick target, using the 3 MV McMaster K.N. Van de Graaff accelerator. The dosimetry was done using a pre-calibrated snoopy type neutron dosimeter. Neutron irradiation induces a dosimetric signal in the tooth enamel at the same defect site as gamma produced damage with the same g-values (g parallel =1.9973, width 0.4 mT g perpendicular =2.002, width 0.3 mT). The dosimetric signal grows linearly with neutron dose from 6-35 Gy tissue dose. Dosimetric response in two different grain sizes (300-500 μm, and grains <4 mm) has shown increased dosimetric amplitude in the larger grains. Dose build up effect on tooth inside the mouth due to cheek was simulated by placing a 4 mm thick paraffin wax layer between the beam and tooth, but had little effect. These results show that for mean neutron energy of 280 keV, the relative neutron response of the human tooth enamel ranges from 8% to 12% of the equivalent gamma ray response

  5. Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser

    Science.gov (United States)

    Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.

    2014-10-01

    Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.

  6. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  7. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  8. Toroidal deuteron accelerator for Mo-98 neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L., E-mail: wagner.leite@ifnmg.edu.br, E-mail: tprcampos@pq.cnpq.br [Instituto Federal do Norte de Minas Gerais (IFN-MG), Montes Claros, MG (Brazil); Campos, Tarcisio P.R. Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The radionuclide Tc-{sup 99m} is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10{sup 13} n.s{sup -1}. In a arrangement of 30 column samples, TTS provides 230 mCi s{sup -1} Mo{sup 99} in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  9. Toroidal deuteron accelerator for Mo-98 neutron activation

    International Nuclear Information System (INIS)

    Araujo, Wagner L.; Campos, Tarcisio P.R. Universidade Federal de Minas Gerais

    2017-01-01

    The radionuclide Tc- 99m is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10 13 n.s -1 . In a arrangement of 30 column samples, TTS provides 230 mCi s -1 Mo 99 in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  10. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2008-05-15

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  11. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  12. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  13. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  14. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  15. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  16. Use of a Van de Graaff proton accelerator for neutron radiography

    International Nuclear Information System (INIS)

    Cassidy, J.P.

    1976-12-01

    A neutron radiographic capability has been established at the Pantex ERDA Plant. A 3 MeV Van de Graaff accelerator is being used to make neutron radiographs in order to observe defects of explosives encased in metal containers and ''O'' ring integrity

  17. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  18. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  19. Design of a molten heavy-metal coolant and target for fast-thermal accelerator driven sub-critical system (ADS)

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Degwekar, S.B.; Nema, P.K.

    2001-01-01

    Accelerator Driven sub-critical Systems (ADS) have evoked considerable interest in recent years. The Energy Amplifier concept developed by C. Rubbia and others at CERN incorporates a buoyancy driven, lead-coolant primary system for extracting the heat generated in the fast reactor as well as that in neutron spallation target. In earlier publications, our BARC group has proposed a one-way coupled booster reactor system which could be operated at proton beam currents as low as 1-2 mA for a power output of 750 MW th . Here, the basic idea is to have a fast booster reactor zone of low power (- 100 MW th ) which is separated by a large gap from the main thermal reactor zone. In this arrangement, the spallation neutron source feeds neutrons to the fast reactor zone where neutrons are further multiplied. Further in this system, the neutrons from the booster region enter the main reactor but very few neutrons from main reactor return to booster, thus ensuring one-way coupling. In earlier work, several possible configurations of the booster and thermal regions were presented. In the present work, we describe an engineering design particularly with respect to thermal hydraulics of lead/lead-bismuth eutectic coolant also acting as spallation neutron source. This hybrid ADS reactor consists of fast and thermal reactor zones producing about 100 MW th and 650 MW th respectively. The scheme of the system is shown. The fast core consists of 48 hexagonal fuel bundles each containing 169 fuel pins of 8.2 mm diameter arranged in 11.4 mm triangular array pitch. The average thermal power per fuel pin is about 13.46 kw. However, due to neutron flux peaking effect, the maximum fuel pin power can be up to 2.5 times this average power. The thermal reactor consists of heavy water as moderator and coolant similar to a typical CANDU type Indian PHWR except for fuel composition. Though the gap between fast and thermal zones essentially provides one way coupling of neutron flux, a thermal

  20. Perspectives of development of linac-driver for the ITEP neutron generator

    International Nuclear Information System (INIS)

    Kozodaev, A.M.; Vengrov, R.M.; Drozdovskij, A.A.; Kolomiets, A.A.; Orlov, Yu.G.; Raskopin, A.M.; Skachkov, V.S.; Shvedov, O.V.

    1999-01-01

    The perspectives of developing the experimental accelerator-driven neutron generator being made in ITEP are discussed. The ITEP ADS neutron generator consists of the target-blanket assembly and the linear proton accelerator Istra-36. It is projected to introduce superconducting sections in the composition of the neutron generator linac-driven. The application of superconducting resonators allows to increase the particle energy up to 53 MeV at the average beam current 500 μA. The variants of raising the average current up to 5 mA by increasing the HF-system power are considered. The application of magnetohard materials permits to decrease the cost of the bend magnet and its dimensions. To improve the radiation situation it is proposed to use the graphite absorbers of particles [ru

  1. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  2. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    Accelerator driven systems (ADS) are attracting worldwide attention .... The region of interest (or the entire reactor core) is divided into a suitable number ..... have also presented the status of the theoretical and experimental activities being.

  3. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator

    International Nuclear Information System (INIS)

    Salgado, Ana Paula

    2011-01-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  4. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  5. Ion sources for medical accelerators

    Science.gov (United States)

    Barletta, W. A.; Chu, W. T.; Leung, K. N.

    1998-02-01

    Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.

  6. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  7. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing

    Science.gov (United States)

    Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

    2002-02-01

    We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n⩾1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

  8. Neutron and proton transmutation-activation cross section libraries to 150 MeV for application in accelerator-driven systems and radioactive ion beam target-design studies

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.; MacFarlane, R.E.; Mashnik, S.; Wilson, W.B.

    1998-05-01

    New transmutation-activation nuclear data libraries for neutrons and protons up to 150 MeV have been created. These data are important for simulation calculations of radioactivity, and transmutation, in accelerator-driven systems such as the production of tritium (APT) and the transmutation of waste (ATW). They can also be used to obtain cross section predictions for the production of proton-rich isotopes in (p,xn) reactions, for radioactive ion beam (RIB) target-design studies. The nuclear data in these libraries stem from two sources: for neutrons below 20 MeV, we use data from the European activation and transmutation file, EAF97; For neutrons above 20 MeV and for protons at all energies we have isotope production cross sections with the nuclear model code HMS-ALICE. This code applies the Monte Carlo Hybrid Simulation theory, and the Weisskopf-Ewing theory, to calculate cross sections. In a few cases, the HMS-ALICE results were replaced by those calculated using the GNASH code for the Los Alamos LA150 transport library. The resulting two libraries, AF150.N and AF150.P, consist of 766 nuclides each and are represented in the ENDF6-format. An outline is given of the new representation of the data. The libraries have been checked with ENDF6 preprocessing tools and have been processed with NJOY into libraries for the Los Alamos transmutation/radioactivity code CINDER. Numerous benchmark figures are presented for proton-induced excitation functions of various isotopes compared with measurements. Such comparisons are useful for validation purposes, and for assessing the accuracy of the evaluated data. These evaluated libraries are available on the WWW at: http://t2.lanl.gov/. 21 refs

  9. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  10. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  11. Operational Characteristics of an Accelerator Driven Fissile Solution System

    International Nuclear Information System (INIS)

    Kimpland, Robert Herbert

    2016-01-01

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a ''generic'' Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  12. A new pulsed neutron source at Pohang accelerator laboratory

    International Nuclear Information System (INIS)

    Kim, G.N.; Choi, J.Y.; Cho, M.H.; Ko, I.S.; Namkung, W.; Chang, J.H.

    1997-01-01

    The main efforts in the field of promoting the nuclear data activities to support the national nuclear development program being realized in the Republic of Korea are discussed. Within this program frameworks the Korea Atomic Energy Research Institute (KAERI) will play a central role and the Pohang Accelerator Laboratory (PAL) will construct a pulsed neutron source facility. The 100 MeV electron linac based on the existing equipment including Toshiba E3712 klystron, 200 MW modulator and constant gradient accelerating sections is designed in PAL. The schematic diagram and the main parameters of the linac consisting of a triode type electron gun (EIMAC Y824), an S-band prebuncher and buncher, two accelerating sections and various other components are considered. The construction of the linac already started in early 1997 is planned to be completed in 1998. The target room, TOF beam lines and detector stations will be constructed by the end of 1999. The first experiments with the intense pulsed neutrons produced at the facility considered are expected by 2000

  13. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1985-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron measurements and in the studies of neutron interactions with nuclei. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out

  14. New applications of laser-driven neutron sources in the car industry

    International Nuclear Information System (INIS)

    Kakeno, Mitsutaka

    2015-01-01

    New applications of LDNS (Laser-Driven Neutron Sources) are described. One of them is ib-DATA (in-beam Double Activation Tracer Analysis) with which we can measure mean drift velocity and mass flow rate in a variety of fluid. In ib-DATA, LDNS with very light and compact beam-head will be constructed to shoot pulsed neutrons into the fluid in pinpoint. (author)

  15. Measurement of accelerator-based neutron distributions using nuclear track detectors

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R.

    2000-01-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n) 4 He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within ±4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons

  16. Measurement of accelerator-based neutron distributions using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R

    2000-12-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n){sup 4}He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within {+-}4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons.

  17. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cartelli, D.; Thatar Vento, V.; Castell, W.; Di Paolo, H.; Kesque, J.M.; Bergueiro, J.; Valda, A.A.

    2011-01-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  18. On the e-linac-based neutron yield

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2010-01-01

    We treat neutron generating in high atomic number materials due to the photonuclear reactions induced by the Bremsstrahlung of an electron beam produced by linear electron accelerator (e-linac). The dependence of neutron yield on the electron energy and the irradiated sample size is considered for various sample materials. The calculations are performed without resort to the so-called 'numerical Monte Carlo simulation'. The acquired neutron yields are well correlated with the data asserted in investigations performed at a number of the e-linac-driven neutron sources

  19. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Thatar Vento, V.; Bergueiro, J.; Cartelli, D.; Valda, A.A.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  20. Accelerator-based intense neutron source for materials R and D

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Accelerator-based neutron sources for R and D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and satisfactory as an approximation of the fusion process. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. First, of course, is a high flux of neutrons. Four other tools are described: 1. The output energy of the deuteron beam can be varied to provide energy selectivity for the materials researcher. The energy would typically be varied in discrete steps; the number of steps can be adjusted depending on actual needs and costs. 2. The materials sample target chamber could be irradiated by more than one beam, from different angles. This would provide many possibilities for tailoring the flux distribution. 3. Advanced techniques in magnetic optics systems allow the density distribution of the deuteron beam at the target to be tailored. Controlled distributions from Gaussian to uniform to hollow can be provided. This affords further control of the distribution in the target chamber. 4. The accelerator and associated beam transport elements are all essentially electronic systems and, therefore, can be controlled and modulated on a time cycle basis. Therefore, all of the above tools could be varied in possibly complex patterns under computer control; this may open further experimental approaches for studying various rate-dependent effects. These considerations will be described in the context of the Energy Selective Neutron Irradiation Test (ESNIT) facility which is conceived at JAERI. (author)

  1. Conceptual design of a commercial accelerator driven thorium reactor

    International Nuclear Information System (INIS)

    Fuller, C. G.; Ashworth, R. W.

    2010-01-01

    This paper describes the substantial work done in underpinning and developing the concept design for a commercial 600 MWe, accelerator driven, thorium fuelled, lead cooled, power producing, fast reactor. The Accelerator Driven Thorium Reactor (ADTR TM) has been derived from original work by Carlo Rubbia. Over the period 2007 to 2009 Aker Solutions commissioned this concept design work and, in close collaboration with Rubbia, developed the physics, engineering and business model. Much has been published about the Energy Amplifier concept and accelerator driven systems. This paper concentrates on the unique physics developed during the concept study of the ADTR TM power station and the progress made in engineering and design of the system. Particular attention is paid to where the concept design has moved significantly beyond published material. Description of challenges presented for the engineering and safety of a commercial system and how they will be addressed is included. This covers the defining system parameters, accelerator sizing, core and fuel design issues and, perhaps most importantly, reactivity control. The paper concludes that the work undertaken supports the technical viability of the ADTR TM power station. Several unique features of the reactor mean that it can be deployed in countries with aspirations to gain benefit from nuclear power and, at 600 MWe, it fits a size gap for less mature grid systems. It can provide a useful complement to Generation III, III+ and IV systems through its ability to consume actinides whilst at the same time providing useful power. (authors)

  2. Convectively driven decadal zonal accelerations in Earth's fluid core

    Science.gov (United States)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  3. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  4. Neutron fluence in a 18 MeV Electron Accelerator for Therapy; Fluencia de neutrones en un Acelerador de Electrones de 18 MeV para terapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L C [Instituto Nacional de Investigaciones Nucleares, Direccion de Innovacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm{sup 2} were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the

  5. Study of a neutronic potential of a modular fast spectrum ADS for radiotoxic waste transmutation

    International Nuclear Information System (INIS)

    Slessarev, I.; Arkhipov, V.

    1999-01-01

    The IAEA has maintained an active interest in advanced nuclear technology related to Accelerator Driven Systems (ADS). The activities carried out by the IAEA within its Programme on Emerging Nuclear Energy Systems for Energy Generation and Transmutation include preparation of status reports on advanced technologies development, conduct of technical information exchange meetings and co-operative Co-ordinated Research Programmes (CRPs). Consultancy on Accelerator Driven Systems and Related Fuel Cycles held from 1-2 February 1996 in Cadarache, France reviewed the recent progress in studies on feasibility of Accelerator Driven Systems and participants recommended the IAEA to organize a CRP to investigate the accelerator driven systems potential. In 1996 the CRP: 'Use of Th-based Fuel Cycle in Accelerator Driven Systems (ADS) to Incinerate Pu and to Reduce Long-term Waste Toxicities' was established and the first Research Coordination Meeting was convened in March 1997 at the ENEA Research Center in Bologna, Italy. Results of the first stage 'Accelerator Driven Systems (ADS)-Neutronic Benchmark' were reported to the IAEA Technical Committee Meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation in Madrid, Spain, in September 1997. Results obtained during the second stage of the CRP were presented and analysed at the RCM in December 1998 in Petten, Netherlands. The meeting was attended by 21 representatives and observers from IAEA, Belarus, Czech Republic, France, Germany, Italy, the Netherlands, the Russian Federation, Spain, Sweden and USA. This paper was prepared on recommendation of the participants of the meeting in Petten, Netherlands. Accelerator Driven System (ADS) neutronic potential, i.e. capability to burnout transuranic elements (TRU) or minor actinides (MA) and Long-Lived Fission Products (LLFP) with minimum ADS park as well as the rate of LLFP transmutation (mass/energy production) for nuclear waste

  6. Shielding for neutrons produced by medical linear accelerators

    International Nuclear Information System (INIS)

    Rebello, Wilson F.; Silva, Ademir X.

    2007-01-01

    The shielding system called Multileaf Shielding (MLS) was designed in Brazil to be used for protection patients, who undergo radiotherapy treatment, against undesired neutrons produced in the medical linear accelerator heads. During the conceiving of the MLS it was necessary to evaluate its efficiency. For that purpose, several simulations using the Monte Carlo N-particle radiation transport code, MCNP5, were made, in order to evaluate the response of the new shielding system. The results showed a significant neutron dose reduction after the inclusion of the MLS. This work aims to presenting these simulation results. (author)

  7. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  8. Indirect and direct measurement of thermal neutron acceleration by inelastic scattering on the 177Lu isomer

    International Nuclear Information System (INIS)

    Belier, G.; Roig, O.; Meot, V.; Daugas, J.M.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Veyssiere, Ch.

    2008-01-01

    When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, 152m Eu and 180m Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on 177m Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the 177 Lu isomer with different neutron fluxes we obtained a value of (257 ± 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on 177g Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)

  9. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  11. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Science.gov (United States)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  12. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  13. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  14. Establishment of nuclear data system - Feasibility study for neutron-beam= facility at pohang accelerator laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nam Kung, Won; Koh, In Soo; Cho, Moo Hyun; Kim, Kui Nyun; Kwang, Hung Sik; Park, Sung Joo [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    1996-12-01

    Nuclear data which have been produced by a few developed countries in the= past are essential elements to many disciplines, especially to nuclear engineering. As we promote our nuclear industry further to the level of advanced countries, we also have to establish the Nuclear Data System to produce and evaluate nuclear data independently. We have studied the possibility to build a neutron-beam facility utilizing accelerator facilities, technologies and man powers at pohang Accelerator Laboratory. We found specific parameters for the PAL 100-MeV electron linac based on the existing klystron, modulator, accelerating tubes and other facilities in the PAL; the beam energy is 60-100 MeV, the beam current for the short pulse (10 ns) is 2 A and for the long pulse is 500 mA and the pulse repetition rate is 60 Hz. We propose a neutron-beam facility using PAL 100-MeV electron linac where we can use a Ta-target for the neutron generation and three different time-of-flight beam lines (10 m, 20 m, and 100 m). One may find that the proposed neutron-beam facility is comparable with other operating neutron facilities in the world. We conclude that the proposed neutron-beam facility utilizing the existing accelerator facility in the PAL would be an excellent facility for neutron data production in combination with the ` Hanaro` facility in KAERI. 8 refs., 11 tabs., 12 figs. (author)

  15. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  16. Intense pulsed neutron source accelerator status

    International Nuclear Information System (INIS)

    Potts, C.W.; Brumwell, F.R.; Stipp, V.F.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has been in operation since November 1, 1981. From that date through August 1, 1983, the accelerator system was scheduled for 7191 hours of operation. During this period, 627 million pulses totaling about 1.1 x 10 21 protons were delivered to the spallation target. The accelerator has exceeded goals set in 1981 by averaging 8.65 μA over this two year period. This average beam current, while modest by the standards of proposed machines, makes the IPNS synchrotron (Rapid Cycling Synchrotron [RCS]) the highest intensity proton synchrotron in the world today. Detailed data on accelerator operation are presented. Weekly average currents of 12 μA have been achieved along with peaks of 13.9 μA. A great deal has been learned about the required operating constraints during high beam current operation. It should be possible to increase the average beam current during this next year to 12 μA while observing these restraints. Improvement plans have been formulated to increase the beam current to 16 μA over the next three years

  17. The TARC experiment (PS211): neutron-driven nuclear transmutation by adiabatic resonance crossing

    International Nuclear Information System (INIS)

    Revol, J.P.; Arnould, H.; Bompas, C.A.

    1999-01-01

    The main purpose of the TARC experiment is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS beam line to study how neutrons produced by spallation at relatively high energy (E n ≥1 MeV) slow down quasi adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates of LLFFs 99 Tc, 129 I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99 Tc or 129 I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications. (orig.)

  18. Neutrons in basic and applied nuclear research - a review

    International Nuclear Information System (INIS)

    Bhattacharya, Sailajananda

    2013-01-01

    Energetic neutron sources, both white and mono-energetic, are widely used In basic nuclear physics as well as various multidisciplinary research. Precise measurement of various neutron induced reaction cross-sections are crucial for the design and development of new generation of reactors, like accelerator driven subcritical systems, nuclear incinerators, etc. A review of some recent trends in neutron induced basic and applied nuclear research will be presented in this talk. (author)

  19. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.

    2016-01-01

    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  1. Some basic advantages of accelerator-driven transmutation of minor actinides and iodine-129

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A.N.; Apse, V.A.; Kulikov, G.G. [Moscow Engineering Physics Institute (Russian Federation)

    1995-10-01

    The blanket of accelerator-driven facility designed for I-129 transmutation doesn`t contain fissile and fertile materials. So the overheating of iodine compounds transmuted is practically excluded. The efficacy of I-129 transmutation is estimated. Curium being accumulated in nuclear reactors can be incinerated in blanket of accelerator-driven facility. The deep depletion of curium diluted with inert material can be achieved.

  2. Dose levels due to neutrons in the vicinity of high energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.; Wood, M.; Sohrabi, M.; Mills, M.; Rodriguez, R.

    1976-01-01

    High energy photons are generated for use in radiation therapy by the decelleration of electrons in metal targets. Fast neutrons are also generated as a result of (γ, n) and (e, e'n) interactions in the target, beam compensator filter, and collimator material. In this work the adsorbed dose to neutrons was measured at the center of a 10 x 10 cm photon beam and 5 cm outside of the beam edge for a number of treatment units. Dose levels due to slow and fast neutrons were also established outside of the treatment rooms and a Bonner sphere neutron spectrometer system was employed to determine the neutron energy spectrum due to stray neutron radiation at each accelerator. For the linac it was found that the neutron dose at the beam center was 0.0039% of the photon dose and values of 0.049% and 0.053% were observed for the Allis Chalmers betatron and the Brown Boveri Betatron. Dose equivalent rates in the range of 0.3 to 22.5 mrem/hr were measured for points outside the treatment rooms when the accelerators were operated at a photon dose rate of 100 rad/min at the treatment position

  3. Steady-state natural circulation analysis with computational fluid dynamic codes of a liquid metal-cooled accelerator driven system

    International Nuclear Information System (INIS)

    Abanades, A.; Pena, A.

    2009-01-01

    A new innovative nuclear installation is under research in the nuclear community for its potential application to nuclear waste management and, above all, for its capability to enhance the sustainability of nuclear energy in the future as component of a new nuclear fuel cycle in which its efficiency in terms of primary Uranium ore profit and radioactive waste generation will be improved. Such new nuclear installations are called accelerator driven system (ADS) and are the result of a profitable symbiosis between accelerator technology, high-energy physics and reactor technology. Many ADS concepts are based on the utilization of heavy liquid metal (HLM) coolants due to its neutronic and thermo-physical properties. Moreover, such coolants permit the operation in free circulation mode, one of the main aims of passive systems. In this paper, such operation regime is analysed in a proposed ADS design applying computational fluid dynamics (CFD)

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Alberto [Universidad Politecnica de Madrid (Spain); Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto [ANL, Argonne (United States); Bornos, Victor; Kiyavitskaya, Anna [Joint Institute of Power Eng. and Nucl. Research ' Sosny' , Minsk (Belarus); Carta, Mario [ENEA, Casaccia (Italy); Janczyszyn, Jerzy [AGH-University of Science and Technology, Krakow (Poland); Maiorino, Jose [IPEN, Sao Paulo (Brazil); Pyeon, Cheolho [Kyoto University (Japan); Stanculescu, Alexander [IAEA, Vienna (Austria); Titarenko, Yury [ITEP, Moscow (Russian Federation); Westmeier, Wolfram [Wolfram Westmeier GmbH, Ebsdorfergrund (Germany)

    2008-07-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  7. Ashing vs. electric generation in accelerator driven system

    International Nuclear Information System (INIS)

    Solanilla, Roberto B.

    1999-01-01

    Accelerator Driven Systems have been conceived as an alternative for the processing of the radioactive wastes contained in spent fuel elements from nuclear power plants. These systems are formed by the coupling of a nuclear reactor - preferably a subcritical reactor - with a particle accelerator providing particles with energy in the order of the GeV. The long-lived fission products and actinides of the spent fuels are transformed by nuclear reactions in stable isotopes or in short-lived radioisotopes. The basic parameters for the electric energy production of the different systems are analysed. (author)

  8. Neutron dose to patients treated with high-energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.

    2001-01-01

    The neutron dose equivalent received by patients treated with high energy x-ray beams was measured in this research. A total of 13 different medical accelerators were evaluated in terms of the neutron dose equivalent in the patient plane and at the beam center. The neutron dose equivalent at the beam center was found to ranged from 0.02 to 9.4 mSv per Sv of x-ray dose and values from 0.029 to 2.58 mSv per Sv of x-ray were measured in the patient plane. It was concluded that the neutron levels meet the International Electrotechnical Commission standard for the patient plane. It was also concluded that when intensity modulated radiation treatment is conducted the neutron dose equivalent received by the patient will increase by a factor of 2 to 10. (author)

  9. Evaluation of moderator assemblies for use in an accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Woollard, J.E.; Blue, T.E.; Gupta, N.; Gahbauer, R.A.

    1998-01-01

    The neutron fields produced by several moderator assemblies were evaluated using both in-phantom and in-air neutron field assessment parameters. The parameters were used to determine the best moderator assembly, from among those evaluated, for use in the accelerator-based neutron source for boron neutron capture therapy. For a 10-mA proton beam current and the specified treatment parameters, a moderator assembly consisting of a BeO moderator and a Li 2 CO 3 reflector was found to be the best moderator assembly whether the comparison was based on in-phantom or in-air neutron field assessment parameters. However, the parameters were discordant regarding the moderator thickness. The in-phantom neutron field assessment parameters predict 20 cm of BeO as the best moderator thickness, whereas the in-air neutron field assessment parameters predict 25 cm of BeO as the best moderator thickness

  10. Application of accelerator sources for pulsed neutron logging of oil and gas wells

    International Nuclear Information System (INIS)

    Randall, R.R.

    1985-01-01

    Dresser Atlas introduced the first commercial pulsed neutron oil well log in the early 1960s. This log had the capability of differentiating oil from salt water in a completed well. In the late 1970s the first continuous carbon/oxygen (C/O) log capable of differentiating oil from fresh water was introduced. The sources used in these commercial logs are radial geometry deuterium-tritium reaction devices with Cockcroft-Walton voltage multipliers providing the accelerator voltage. The commercial logging tools using these accelerators are comprised of scintillators detectors, power supplies, line drivers and receivers, and various timing and communication electronics. They are used to measure either the time decay or energy spectra of neutron-induced gamma events. The time decay information is useful in determining the neutron capture cross section, and the energy spectra is used to characterize inelastic neutron events. (orig.)

  11. Application of accelerator sources for pulsed neutron logging of oil and gas wells

    Science.gov (United States)

    Randall, R. R.

    1985-05-01

    Dresser Atlas introduced the first commercial pulsed neutron oil well log in the early 1960s. This log had the capability of differentiating oil from salt water in a completed well. In the late 1970s the first continuous carbon/oxygen (C/O) log capable of differentiating oil from fresh water was introduced. The sources used in these commercial logs are radial geometry deuterium-tritium reaction devices with Cockcroft-Walton voltage multipliers providing the accelerator voltage. The commercial logging tools using these accelerators are comprised of scintillators detectors, power supplies, line drivers and receivers, and various timing and communications electronics. They are used to measure either the time decay or energy spectra of neutron-induced gamma events. The time decay information is useful in determining the neutron capture cross section, and the energy spectra is used to characterize inelastic neutron events.

  12. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  13. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  14. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  15. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  17. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  18. Accelerator driven systems. ADS benchmark calculations. Results of stage 2. Radiotoxic waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Freudenreich, W.E.; Gruppelaar, H

    1998-12-01

    This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case {sup 99}Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k{sub eff}=0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The {sup 99} Tc-burner has a large initial loading; a more effective design may be possible. 5 refs.

  19. Accelerator driven systems. ADS benchmark calculations. Results of stage 2. Radiotoxic waste transmutation

    International Nuclear Information System (INIS)

    Freudenreich, W.E.; Gruppelaar, H.

    1998-12-01

    This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case 99 Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k eff =0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The 99 Tc-burner has a large initial loading; a more effective design may be possible. 5 refs

  20. Beyond KERMA - neutron data for biomedical applications

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.

    2003-01-01

    Presently, many new applications of fast neutrons are emerging or under development, like dose effects due to cosmic-ray neutrons for airplane crew, fast-neutron cancer therapy, studies of electronic failures induced by cosmic-ray neutrons, and accelerator-driven incineration of nuclear waste and energy production technologies. All these areas would benefit from improved neutron dosimetry. In this paper, the present rapid progress on measurements of double-differential neutron-induced nuclear reaction data are described. With such data at hand, the full response of, in principle, any system, including human tissue, can be calculated in detail. This could potentially revolutionise our understanding of biological effects in tissue due to fast neutrons. (author)

  1. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  2. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  4. Neutron spectrometry with Bonner spheres for area monitoring in particle accelerators

    International Nuclear Information System (INIS)

    Bedogni, R.

    2011-01-01

    Selecting the instruments to determine the operational quantities in the neutron fields produced by particle accelerators involves a combination of aspects, which is peculiar to these environments: the energy distribution of the neutron field, the continuous or pulsed time structure of the beam, the presence of other radiations to which the neutron instruments could have significant response and the large variability in the dose rate, which can be observed when moving from areas near the beam line to free-access areas. The use of spectrometric techniques in support of traditional instruments is highly recommended to improve the accuracy of dosimetric evaluations. The multi-sphere or Bonner Sphere Spectrometer (BSS) is certainly the most used device, due to characteristics such as the wide energy range, large variety of active and passive detectors suited for different workplaces, good photon discrimination and the simple signal management. Disadvantages are the poor energy resolution, weight and need to sequentially irradiate the spheres, leading to usually long measurement sessions. Moreover, complex unfolding analyses are needed to obtain the neutron spectra. This work is an overview of the BSS for area monitoring in particle accelerators. (authors)

  5. Indirect and direct measurement of thermal neutron acceleration by inelastic scattering on the {sup 177}Lu isomer

    Energy Technology Data Exchange (ETDEWEB)

    Belier, G.; Roig, O.; Meot, V.; Daugas, J.M. [CEA Bruyeres-le-Chatel, Dept. de Physique Theorique et Appliquee, 91 (France); Aupiais, J.; Jutier, Ch.; Le Petit, G. [CEA Bruyeres-le-Chatel, Service de Physique Nucleaire, 91 (France). Dept. de Physique Theorique et Appliquee; Letourneau, A.; Marie, F. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique Nucleaire, 91- Gif sur Yvette (France); Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service d' Ingenierie des Systemes, 91- Gif sur Yvette (France)

    2008-07-01

    When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, {sup 152m}Eu and {sup 180m}Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on {sup 177m}Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the {sup 177}Lu isomer with different neutron fluxes we obtained a value of (257 {+-} 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on {sup 177g}Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)

  6. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1995-01-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives

  7. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    Science.gov (United States)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  8. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  9. Preliminary assessment of the activation of the IFMIF accelerator structure by deuterons and neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Itacil C. [Argonne National Lab., IL (United States); Bruhwiler, David L. [Northrop Grumman Corp., Princeton, NJ (United States). Advanced Systems and Technology

    1997-12-01

    This paper presents a preliminary analysis of the IFMF (International Fusion Materials Irradiation Facility) accelerator structure activation by deuterons and neutrons. The main objective of this study is to identify the source terms and to quantify the radioactivity levels at different positions in the accelerator vault. The MCNP code is used to perform radiation transport analysis, the RACC activation code is used for neutron activation analysis, and the cross section library of the LAHET code is used to generate the cross section for the deuteron interaction with the inside surfaces of the accelerator. (author). 10 refs., 5 figs.

  10. Current status of neutron scattering research and accelerator technology in Indonesia

    International Nuclear Information System (INIS)

    Ridwan; Ikram, Abarul; Wuryanto

    2001-01-01

    The neutron beam generated from steady state reactor 30 MW RSG-GAS are used mainly for neutron scattering studies and isotope production. There are seven neutron scattering facilities under responsible and operated by Research and Development Center for Materials Science and Technology of National Nuclear Energy Agency (Batan) of Indonesia. In this report, current conditions of the facilities namely, DN1-M, HRPD, FCD/TD, SANS, HRSANS, TAS and NRF and research activities will be described. Also, a part of research activities by using accelerator technology at Batan-Yogyakarta will be reviewed. (author)

  11. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Science.gov (United States)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  12. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  13. Accelerator conceptual design and needs of nuclear data for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Yamanaka, Toshiyuki; Yokobori, Hitoshi

    1999-01-01

    An optimization study has been made on an accelerator-based facility for the boron neutron capture therapy. The energy of the incident proton and the arrangement of the moderator assemblies are optimized. The beam current and the accelerating voltage are determined so that the accelerator power becomes minimum. The proposed facility is equipped with a 2.5 MeV proton accelerator of 10-25 mA, a lithium target, and a heavy water moderator contained in an aluminum tank. Each of these equipment is feasible, if proper R and D works have been done. Our new design requires the beam power of less than a hundred kW for the accelerator, although that of our previous design was 1 MW. The reduction of the beam power makes the cooling system for the target much simpler. The essential issues for realization of this concept are long-life lithium targets under high heat flux and high current proton accelerators with average currents of more than 10 mA. It is necessary for the reasonable design of a small-sized and low cost facility to get good accuracy nuclear reaction data. Especially, the latest Li/Be(p, n) neutron yield data in a range of threshold energy - few MeV are required for exact evaluation of neutron energy spectrum used therapy. And damage data by low energy proton beam are also important to evaluate integrity of target material. (author)

  14. Measurements of Accelerator-Produced Leakage Neutron and Photon Transmission through Concrete

    International Nuclear Information System (INIS)

    2002-01-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  15. Summary of the Accelerator-Driven Transmutation Technologies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Wanger, T.P.

    1995-10-01

    During the past 15 years many advances have been made in the technology of high-power accelerators, and in the understanding of the beam-physics issues associated with their high-performance requirements. These developments have contributed significantly to the high level of confidence in the practicality of the applications that were the central point of the international Accelerator-Driven Transmutation Technologies (ADTT) Conference. Even so, there are many accelerator topics that needed to be addressed, and the Conference provided the opportunity to address these issues.

  16. Planetary method to measure the neutrons spectrum in lineal accelerators of medical use

    International Nuclear Information System (INIS)

    Vega C, H. R.; Benites R, J. L.

    2014-08-01

    A novel procedure to measure the neutrons spectrum originated in a lineal accelerator of medical use has been developed. The method uses a passive spectrometer of Bonner spheres. The main advantage of the method is that only requires of a single shot of the accelerator. When this is used around a lineal accelerator is necessary to operate it under the same conditions so many times like the spheres that contain the spectrometer, activity that consumes enough time. The developed procedure consists on situating all the spheres of the spectrometer at the same time and to realize the reading making a single shot. With this method the photo neutrons spectrum produced by a lineal accelerator Varian ix of 15 MV to 100 cm of the isocenter was determined, with the spectrum is determined the total flow and the ambient dose equivalent. (Author)

  17. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  18. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M; Stanculescu, A [International Atomic Energy Agency, Vienna (Austria); Paver, N [University of Trieste and INFN, Trieste (Italy)

    2003-06-15

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems.

  19. Impact of thermal and intermediate energy neutrons on the semiconductor memories for the CERN accelerators

    CERN Document Server

    Cecchetto, Matteo; Gerardin, Simone

    A wide quantity of SRAM memories are employed along the Large Hadron Collider (LHC), the main CERN accelerator, and they are subjected to high levels of ionizing radiations which compromise the reliability of these devices. The Single Event Effect (SEE) qualification for components to be used in the complex high-energy accelerator at CERN relies on the characterization of two cross sections: 200-MeV protons and thermal neutrons. However, due to cost and time constraints, it is not always possible to characterize the SEE response of components to thermal neutrons, which is often regarded as negligible for components without borophosphosilicate glass (BPSG). Nevertheless, as recent studies show, the sensitivity of deep sub-micron technologies to thermal neutrons has increased owing to the presence of Boron 10 as a dopant and contact contaminant. The very large thermal neutron fluxes relative to high-energy hadron fluxes in some of the heavily shielded accelerator areas imply that even comparatively small therm...

  20. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented

  1. System and safety studies of accelerator driven transmutation. Annual Report 2003

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  2. System and safety studies of accelerator driven transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics] [and others

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  3. Bi-stability in accelerator driven 233U breeders

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. On the other hand, the indigenous U availability is limited and hence there is a strong incentive for breeding. Moreover the large Th deposits in the country provide a clear incentive to develop Th related technologies. Th has the additional advantage that it produces very little trans-uranic waste. While Pu fuelled fast reactors using advanced metallic fuel can have high breeding ratios due to the hard spectrum in such reactors, Th fuelled critical reactors can at best be self sustaining or marginal breeders. A possible way to improve the breeding of Th fueled reactors is to use an external neutron source as is done in ADSs. ADSs can not only give improved breeding but also permit greater flexibility in type of fuel that may be used and have the potential to considerably simplify the Th fuel cycle as in the case of the Th burner. In this paper we study various issues associated with breeding in ADSs such as the energy economics of breeding in ADSs using various types of neutron sources and the effect of the reactor spectrum and the discharge fluence (or irradiation time) of the fuel on the breeding performance. We show that even with non-fissioning, non-power- producing targets such as Pb or LBE it is possible to choose the fuel irradiation time so that the breeder produces sufficient power to drive the accelerator and export the balance to the grid, without significantly diminishing the 233 U breeding rate. By increasing the discharge fluence (irradiation time) it is possible to increase the power. However, the 233 U production rate falls off rapidly to about half its maximum value. This is the Th burner region. As the equations governing the breeding process are non

  4. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  5. Safety and control of accelerator-driven subcritical systems

    Energy Technology Data Exchange (ETDEWEB)

    Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.

  6. Acceleration of criticality analysis solution convergence by matrix eigenvector for a system with weak neutron interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Takada, Tomoyuki; Kuroishi, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kadotani, Hiroyuki [Shizuoka Sangyo Univ., Iwata, Shizuoka (Japan)

    2003-03-01

    In the case of Monte Carlo calculation to obtain a neutron multiplication factor for a system of weak neutron interaction, there might be some problems concerning convergence of the solution. Concerning this difficulty in the computer code calculations, theoretical derivation was made from the general neutron transport equation and consideration was given for acceleration of solution convergence by using the matrix eigenvector in this report. Accordingly, matrix eigenvector calculation scheme was incorporated together with procedure to make acceleration of convergence into the continuous energy Monte Carlo code MCNP. Furthermore, effectiveness of acceleration of solution convergence by matrix eigenvector was ascertained with the results obtained by applying to the two OECD/NEA criticality analysis benchmark problems. (author)

  7. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  8. Study of muon-induced neutron production using accelerator muon beam at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Draeger, E.; White, C. G. [Illinois Institute of Technology, Chicago, Illinois (United States); Luk, K. B.; Steiner, H. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Department of Physics, University of California, Berkeley, California (United States)

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  9. Accelerator system of neutron spallation source for nuclear energy technology development

    International Nuclear Information System (INIS)

    Silakhuddin; Mulyaman, Maman

    2002-01-01

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  10. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  11. Opportunity of characteristic's improvement for accelerator driven systems

    CERN Document Server

    Kiselev, G V

    2001-01-01

    Review of sentences on the investigation into different variations of electronuclear plants be directed to the improvement in characteristics of the plants in an effort to the efficient disposal of long-lived components of radioactive wastes is presented. Attention is drown to the fact that subcritical reactor with complicated neutron valve can be used. This permits for drop in demand to current of proton accelerator. Briefly description of the process scheme with the indication of problems is given

  12. Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T., E-mail: sharad@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Pethe, S.N., E-mail: sanjay@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Krishnan, R., E-mail: krishnan@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N., E-mail: vnb@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2011-12-15

    For the production of a clinical 15 MeV photon beam, the design of accelerator head assembly has been optimized using Monte Carlo based FLUKA code. The accelerator head assembly consists of e-{gamma} target, flattening filter, primary collimator and an adjustable rectangular secondary collimator. The accelerators used for radiation therapy generate continuous energy gamma rays called Bremsstrahlung (BR) by impinging high energy electrons on high Z materials. The electron accelerators operating above 10 MeV can result in the production of neutrons, mainly due to photo nuclear reaction ({gamma}, n) induced by high energy photons in the accelerator head materials. These neutrons contaminate the therapeutic beam and give a non-negligible contribution to patient dose. The gamma dose and neutron dose equivalent at the patient plane (SSD = 100 cm) were obtained at different field sizes of 0 Multiplication-Sign 0, 10 Multiplication-Sign 10, 20 Multiplication-Sign 20, 30 Multiplication-Sign 30 and 40 Multiplication-Sign 40 cm{sup 2}, respectively. The maximum neutron dose equivalent is observed near the central axis of 30 Multiplication-Sign 30 cm{sup 2} field size. This is 0.71% of the central axis photon dose rate of 0.34 Gy/min at 1 {mu}A electron beam current.

  13. Cross section for inelastic neutron acceleration by 178Hfm2

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2009-01-01

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called Inelastic Neutron Acceleration (INNA) and occurs when the final nucleus after emission of the neutron is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomeric population to the ground state. A cascade of several gammas must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases and the associated cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was σ INNA = (258 ± 58) b for neutron scattering by 177 Lu m . In the present work, an INNA cross section of σ INNA = 152 -36 +51 b was deduced from measurements of the total burn-up of the high-spin, four-quasiparticle isomer 178 Hf m2 during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced σ INNA is compared to the theoretically predicted cross section

  14. Macroscopic multigroup constants for accelerator driven system core calculation

    International Nuclear Information System (INIS)

    Heimlich, Adino; Santos, Rubens Souza dos

    2011-01-01

    The high-level wastes stored in facilities above ground or shallow repositories, in close connection with its nuclear power plant, can take almost 106 years before the radiotoxicity became of the order of the background. While the disposal issue is not urgent from a technical viewpoint, it is recognized that extended storage in the facilities is not acceptable since these ones cannot provide sufficient isolation in the long term and neither is it ethical to leave the waste problem to future generations. A technique to diminish this time is to transmute these long-lived elements into short-lived elements. The approach is to use an Accelerator Driven System (ADS), a sub-critical arrangement which uses a Spallation Neutron Source (SNS), after separation the minor actinides and the long-lived fission products (LLFP), to convert them to short-lived isotopes. As an advanced reactor fuel, still today, there is a few data around these type of core systems. In this paper we generate macroscopic multigroup constants for use in calculations of a typical ADS fuel, take into consideration, the ENDF/BVI data file. Four energy groups are chosen to collapse the data from ENDF/B-VI data file by PREPRO code. A typical MOX fuel cell is used to validate the methodology. The results are used to calculate one typical subcritical ADS core. (author)

  15. Procedure to measure the neutrons spectrum around a lineal accelerator for radiotherapy

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Letechipia de L, C.; Benites R, J. L.; Salas L, M. A.

    2013-10-01

    An experimental procedure was developed, by means of Bonner spheres, to measure the neutrons spectrum around Linacs of medical use that only requires of a single shot of the accelerator; to this procedure we denominate Planetary or Isocentric method. One of the problems associated to the neutrons spectrum measurement in a radiotherapy room with lineal accelerator is because inside the room a mixed, intense and pulsed radiation field takes place affecting the detection systems based on active detector; this situation is solved using a passive detector. In the case of the Bonner spheres spectrometer the active detector has been substituted by activation detectors, trace detectors or thermoluminescent dosimeters. This spectrometer uses several spheres that are situated one at a time in the measurement point, this way to have the complete measurements group the accelerator should be operated, under the same conditions, so many times like spheres have the spectrometer, this activity can consume a long time and in occasions due to the work load of Linac to complicate the measurement process too. The procedure developed in this work consisted on to situate all the spectrometer spheres at the same time and to make the reading by means of a single shot, to be able to apply this procedure, is necessary that before the measurements two characteristics are evaluated: the cross-talking of the spheres and the symmetry conditions of the neutron field. This method has been applied to determine the photo-neutrons spectrum produced by a lineal accelerator of medical use Varian ix of 15 MV to 100 cm of the isocenter located to 5 cm of depth of a solid water mannequin of 30 x 30 x 15 cm. The spectrum was used to determine the total flow and the environmental dose equivalent. (Author)

  16. Conceptual design for an accelerator system for a very high-intensity pulsed neutron source using a linear-induction accelerator

    International Nuclear Information System (INIS)

    Foss, M.H.

    1981-01-01

    Several accelerator-based intense neutron sources have been constructed or designed by various laboratories around the world. All of these facilities have a common scheme of a linac and synchrotron or accumulator ring, and the system produces the proton energy of 500 to 1000 MeV. The average beam currents range from a few mA to a few hundred mA. The protons are then used to generate high-flux neutrons by spallation out of heavy-metal targets. In a synchrotron system, the protons are already bunched, and thus the pulse rate of the neutron beam is that of the repetition rate of the synchrotron. For an accumulator system, the pulse rate is determined by the extraction repetition rate of the accumulator. We have conceptually designed a new system that uses a linear-induction accelerator which can be operated for an average beam current up to a few mA with a repetition rate up to 100 Hz. The details of the design will be given

  17. The linear proton accelerator for the MYRRHA-ADS

    International Nuclear Information System (INIS)

    Vandeplassche, D.; Medeiros Ramao, L.

    2013-01-01

    The article discusses the development of a linear proton accelerator for the MYRRHA Accelerator Driven System (ADS). The linear proton accelerator provides a high energy and high intensity proton beam that is directed to a spallation target, which will deliver neutrons to a subcritical nuclear reactor core. The article describes the MYRRHA linear accelerator, which mainly consists of a sequence of superconducting accelerating radiofrequent cavities that are positioned in a linear configuration. The beam requirements for MYRRHA are discussed involving, amongst others, a continuous wave beam delivery mode with a high reliability goal. The key concepts to increase the reliability of the accelerator are described.

  18. The “neutron channel design”—A method for gaining the desired neutrons

    Directory of Open Access Journals (Sweden)

    G. Hu

    2016-12-01

    Full Text Available The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the “neutron channel design”, is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS. One layer polyethylene (PE moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  19. Modelling of an experiment for the study of neutron spallation source at JINR

    International Nuclear Information System (INIS)

    Kumawat, Harphool; Goyal, Uttam; Kumar, V.; Barashenkov, V.S.

    2002-01-01

    Intense neutron spallation source (INSS) is a necessary requirement of accelerator driven sub-critical systems. INSS are proposed to be generated using the high current proton beams. Some studies are conducted for the neutron flux, transmutation rates and energy gains and a larger number of related experiments are being planned

  20. Neutron cross-sections above 20 MeV for design and modeling of ...

    Indian Academy of Sciences (India)

    One of the outstanding new developments in the field of partitioning and transmutation (P&T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial ...

  1. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  2. Review of national accelerator driven system programmes for partitioning and transmutation. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    2003-08-01

    One of the current important issues of nuclear power is the long lived radioactive waste toxicity problem. The sharpness of this problem could be considerably reduced if, during energy production, there was the possibility to incinerate at least the most toxic radioactive isotopes (long lived fission products and minor actinides). The combination of external intensive neutron sources with facilities containing nuclear fuel, so-called hybrid systems, are under investigation in several countries. The surplus of neutrons in such systems may be used to convert most of the long lived radioactive nuclides into isotopes having a shorter lifetime. Currently, an increasing number of groups are entering this field of research. There is clearly a need for co-originated their efforts, and also for the exchange of information from nationally or internationally co-ordinated activities. Consideration of the advantages of hybrid systems, and the wide field of interdisciplinary areas of research involved, show the need for an international co-operation in this novel R and D area. The International Atomic Energy Agency has maintained an active interest in advanced nuclear technology related to accelerator driven systems (ADS), and related activities have been carried out within the framework of its programme on emerging nuclear energy systems. After thorough analyses of the outcomes of several international forums and recommendations of the IAEA Technical Committee Meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation (Madrid, Spain, 1997), the IAEA conducted an Advisory Group Meeting on Review of National Accelerator Driven System Programmes in Taejon, Republic of Korea, from 1 to 4 November 1999. The scope of the meeting included review of the current R and D programmes in the Member States and the assessment of the progress in the development of hybrid concepts. The programme of the AGM included the following topics

  3. Calculations of the main free path on neutron emission cross-section for spallation reaction of target and fuel nuclei

    International Nuclear Information System (INIS)

    Tel, E.; Kisoglu, H. F.; Topaksu, A. K.; Aydin, A.; Kaplan, A.

    2007-01-01

    There are several new technological application fields of fast neutrons such as accelerator-driven incineration/ transmutation of the long-lived radioactive nuclear wastes (in particular transuranium nuclides) to short-lived or stable isotopes by secondary spallation neutrons produced by high-intensity, intermediate-energy, charged-particle beams, prolonged planetary space missions, shielding for particle accelerators. Especially, accelerator driven subcritical systems (ADS) can be used for fission energy production and /or nuclear waste transmutation as well as in the intermediate-energy accelerator driven neutron sources, ions and neutrons with energies beyond 20 MeV, the upper limit of exiting data files that produced for fusion and fission applications. In these systems, the neutron scattering cross sections and emission differential data are very important for reactor neutronics calculations. The transition rate calculation involves the introduction of the parameter of mean free path determines the mean free path of the nucleon in the nuclear matter. This parameter allows an increase in mean free path, with simulation of effect, which is not considered in the calculations, such as conservation of parity and angular momentum in intra nuclear transitions. In this study, we have investigated the multiple preequilibrium matrix element constant from internal transition for Uranium, Thorium, (n,xn) neutron emission spectra. The neutron-emission spectra produced by (n,xn) reactions on nuclei of some target (for spallation) have been calculated. In the calculations, we have used the geometry dependent hybrid model and the cascade exciton model including the effects of the preequilibrium. The pre-equilibrium direct effects have been examined by using full exciton model. All calculated results have been compared with the experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  4. Optimization of a neutron transmission beamline applied to materials science for the CAB linear accelerator

    International Nuclear Information System (INIS)

    Ramirez, S; Santisteban, J.R

    2009-01-01

    The Neutrons and Reactors Laboratory (NYR) of CAB (Centro Atomico Bariloche) is equipped with a linear electron accelerator (LINAC - Linear particle accelerator). This LINAC is used as a neutron source from which two beams are extracted to perform neutron transmission and dispersion experiments. Through these experiments, structural and dynamic properties of materials can be studied. The neutron transmission experiments consist in a collimated neutron beam which interacts with a sample and a detector behind the sample. Important information about the microstructural characteristics of the material can be obtained from the comparison between neutron spectra before and after the interaction with the sample. In the NYR Laboratory, cylindrical samples of one inch of diameter have been traditionally studied. Nonetheless, there is a great motivation for doing systematic research on smaller and with different geometries samples; particularly sheets and samples for tensile tests. Hence, in the NYR Laboratory it has been considered the possibility of incorporating a neutron guide into the existent transmission line. According to all mentioned above, the main objective of this work consisted in the optimization of the flight transmission tube optics of neutrons. This optimization not only improved the existent line but also contributed to an election criterion for the neutron guide acquisition. [es

  5. An accelerated beam-plasma neutron/proton source and early application of a fusion plasma

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yoshikawa, K.; Yamamoto, Y.; Hoshino, C.; Masuda, K.; Miley, G.; Jurczyk, B.; Stubbers, R.; Gu, Y.

    1999-01-01

    We measured the number of the neutrons and protons produced by D-D reactions in an accelerated beam-plasma fusion and curried out the numerical simulations. The linear dependence of the neutron yield on a discharge current indicates that the fusion reactions occur between the background gas and the fast particles. i.e. charge exchanged neutrals and accelerated ions. The neutron yield divided by (fusion cross section x ion current x neutral gas pressure) still possesses the dependence of the 1.2 power of discharge voltage. which shows the fusion reactions are affected by the electrostatic potential built-up in the center. The measured proton birth profiles suggest the existence of a double potential well, which is supported by the numerical simulations. (author)

  6. The participation of IPEN in the IAEA coordinated research projects on accelerators driven systems (ADS)

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, J.R.; Santos, A.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F. de; Lee, S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: maiorino@ipen.br

    2007-07-01

    This paper describes the participation of the IPEN in the International Atomic Energy Agency (IAEA) Coordinated Research Projects(CRP) on Analytical and Experimental Benchmark Analysis on ADS and Low Enriched Uranium Fuel Utilization in ADS. The first CRP has as specific objective to improve the present understanding of the coupling of an external neutron source [e.g. a spallation source in the case of the accelerator driven system (ADS)] with a multiplicative sub-critical core, and the second CRP, or collaborative work, the utilization of LEU in existing or planned ADS facilities. IPEN participate in both CRP through a research contract (13388), and although there are several benchmarks defined in both CRP, presently IPEN is participating in the activities related with reactor physics benchmark of the Yalina Booster facility in Belarus, in the analytical and numerical benchmarking of methods and codes for ADS kinetics, and in the ADS target calculations. Besides, since there are plans to introduce a compact neutron generator in a sub critical core of the IPEN-MB-01 facility, a benchmark of a simulation of such project has been proposed in the LEU-ADS CRP. The paper will review the CRPs with details on the activities in which IPEN is participating. (author)

  7. The participation of IPEN in the IAEA coordinated research projects on accelerators driven systems (ADS)

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Santos, A.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F. de; Lee, S.M.

    2007-01-01

    This paper describes the participation of the IPEN in the International Atomic Energy Agency (IAEA) Coordinated Research Projects(CRP) on Analytical and Experimental Benchmark Analysis on ADS and Low Enriched Uranium Fuel Utilization in ADS. The first CRP has as specific objective to improve the present understanding of the coupling of an external neutron source [e.g. a spallation source in the case of the accelerator driven system (ADS)] with a multiplicative sub-critical core, and the second CRP, or collaborative work, the utilization of LEU in existing or planned ADS facilities. IPEN participate in both CRP through a research contract (13388), and although there are several benchmarks defined in both CRP, presently IPEN is participating in the activities related with reactor physics benchmark of the Yalina Booster facility in Belarus, in the analytical and numerical benchmarking of methods and codes for ADS kinetics, and in the ADS target calculations. Besides, since there are plans to introduce a compact neutron generator in a sub critical core of the IPEN-MB-01 facility, a benchmark of a simulation of such project has been proposed in the LEU-ADS CRP. The paper will review the CRPs with details on the activities in which IPEN is participating. (author)

  8. Development of Neutron Shielding Material for Cask and Accelerator

    International Nuclear Information System (INIS)

    Kang, Hee Young; Seo, Ki Seog; Lee, Byung Chul; Park, Chang Jae; Kim, Ho Dong

    2008-01-01

    The neutron shielding materials are used as a neutron shield for spent fuel shipping cask, beam accelerators and neutron generators. At early stage, the neutron attenuations of materials were evaluated with the cross sections. After that, benchmark or mock-up experiments on the multi-layer problem to confirm the shielding characteristics or to evaluate analysis accuracy were reported. Recently, the need to transport spent nuclear fuels is increasing due to the current limited storage capacity. The on-site storage capacity at some of nuclear power plants is expected to be full in near future. With a growing inventory of spent fuels at power plants, these spent fuels need to be transported to other storage facilities. Shipping casks have been developed to safely transport spent fuels that emit high neutrons and gamma-ray radiation. The external radiation level of the shipping cask from the spent fuel must be limited to meet the standards specified by the IAEA radioactive material package regulation, so it is important to develop a proper neutron shielding material for a shipping cask. Neutron shielding experiments and analyses on the shielding effects of materials have been conducted, and some experiments have been performed to examine the shielding effects of selected materials. The shielding experiments consist of evaluating not only the shielding effects of a material alone but also the effects of the material thickness. The experimental results were compared with those obtained by using the MCNP-5c code

  9. The Influence of Used Construction Material and Its Thickness on the Neutron Dose Rate Around the Linear Accelerator - Experimental Results

    International Nuclear Information System (INIS)

    Krpan, I; Miklavcic, I.; Poje, M.; Radolic, V.; Vukovic, B.; Zivkovic, A.; Faj, D.; Ivkovic, A.

    2013-01-01

    Since linear accelerators for medical radiotherapy do not have active radioactive sources it makes them adequate from the radioprotection point of view. However, when operating at the energy higher than 10 MeV, they can become a source of unwanted neutron radiation in the giant dipole resonance reaction between the photon beam and the accelerator head material. Neutrons created in this reaction are almost isotropic in direction with an energy range between 700 keV and 1 MeV. During the accelerator installation and different phases of the construction work around the accelerator, a neutron dose rate at several important locations was investigated. Both passive (solid state nuclear track etched detectors - CR 39 and/or LR-115 with the 10B foil) and active detectors (Thermo Biorem FHT 752) were used. A higher photon dose rate was measured around the accelerator facility. An effective photon dose reduction was achieved using steel plates. However, this was the secondary source of neutrons in the reaction between the photons and steel plates, since higher values were measured. Neutron reduction was done by additional layers of barite concrete. A very conservative assessment of the effective dose was done for the medical personnel inside the control room. At the accelerator extreme operating regime (fixed accelerator direction - gantry angle, highest energy possible used), the neutron dose rate in the control room of 12 μSv/h was measured. Knowing the number of working days and number of patients per technician (per day), an exposure to the neutron dose of 1,1 mSv per year was calculated.(author)

  10. Nondestructive elemental analysis of coins using accelerator-based thermal neutrons

    International Nuclear Information System (INIS)

    Khairi, F.Z.; Aksoy, A.; Al-Haddad, M.N.

    2007-01-01

    The accelerator-based thermal-neutrons activation analysis setup at KFUPM has an adequate thermal -neutron flux that can be advantageously used for the elemental analysis of a variety of samples including archeological ones. The thermal neutrons are derived from the moderation of fast neutrons from the D (d, n) He reaction which produces fast 2.5 MeV neutrons. A maximum thermals flux of about 2.5x10 n/m-s was achieved. For the purpose of determining the suitability of the set up for the analysis of contemporary and ancient coins, we carried out a feasibility study by irradiating a selected number of Saudi Arabian coins dating from 1958 to 1987 in the thermal-neutron flux. The induced gamma-ray activities were then counted using a HP-GMX detector coupled to a PC-based data acquisition and analysis system. The elements that were determined in the coins were copper (75%), nickel (around 25%) and manganese (<0.5%). Calibration curves were also established for these elements. The determined concentrations are in agreement with the data published by the Standard Catalogue of World Coins. (author)

  11. Prospects for accelerator neutron sources for large volume minerals analysis

    International Nuclear Information System (INIS)

    Clayton, C.G.; Spackman, R.

    1988-01-01

    The electron Linac can be regarded as a practical source of thermal neutrons for activation analysis of large volume mineral samples. With a suitable target and moderator, a neutron flux of about 10 10 n/cm/s over 2-3 kg of rock can be generated. The proton Linac gives the possibility of a high neutron yield (> 10 12 n/s) of fast neutrons at selected energies. For the electron Linac, targets of W-U and W-Be are discussed. The advantages and limitations of the system are demonstrated for the analysis of gold in rocks and ores and for platinum in chromitite. These elements were selected as they are most likely to justify an accelerator installation at the present time. Errors due to self shielding in gold particles for thermal neutrons are discussed. The proton Linac is considered for neutrons generated from a lithium target through the 7 Li(p, n) 7 Be reaction. The analysis of gold by fast neutron activation is considered. This approach avoids particle self-absorption and, by appropriate proton energy selection, avoids potentially dominating interfering reactions. The analysis of 235 U in the presence of 238 U and 232 Th is also considered. (author)

  12. Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method

    International Nuclear Information System (INIS)

    Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong

    2014-01-01

    In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)

  13. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  14. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  15. Acceleration of polyethelene foils by laser driven ablation

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Burginyon, G.A.; Haas, R.A.

    1974-01-01

    The production of thermonuclear energy, by laser driven implosion of spherical DT shells, with achievable laser technology, requires the development of an efficient and stable implosion. Certain aspects of the acceleration of the spherical shells can be studied experimentally by irradiating thin, 5 to 25 μm, polyethelene foils. The results of foil acceleration experiments performed using a Nd:YAG-Glass laser capable of producing 150 J, 1 nsec pulses will be discussed. The dynamics of the accelerated foil, the ion blow off, high energy electron spectrum (6 to 180 keV), x-ray spectrum (1 to 150 keV) the spatial distribution of the x-ray emission, the laser beam focal spot energy distribution, the laser temporal pulse shape and spectrum for reflected and transmitted radiation have all been measured simultaneously. The results of these measurements are compared with detailed numerical simulations. (U.S.)

  16. Status of SINQ, the only MW spallation neutron source-highlighting target development and industrial applications

    International Nuclear Information System (INIS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Grosse, Mirco; Lehmann, Eberhard

    2006-01-01

    SINQ is a continuous spallation neutron source, driven by PSI's 590 MeV proton accelerator. Receiving a stable proton current of 1.3 mA, SINQ is the presently most powerful accelerator-driven facility worldwide. Besides the primary designation of SINQ to serve as user facility for neutron scattering and neutron imaging, PSI seeks to play a leading role in the development of the facility, focusing on spallation targets and materials research for high-dose radiation environments. Accompanying these activities, SINQ has established several projects serving a more general, profound development towards high-power spallation targets: the most prominent ones being SINQ Target Irradiation Program (STIP) and megawatt pilot experiment for a liquid metal target (MEGAPIE), complemented by LiSoR and VIMOS. Within the user program, SINQ is aspiring to attract an appropriate contingent of industrial applications. The paper highlights the potential for industrial applications by means of selected examples from strain mapping and neutron imaging

  17. Gamma-neutron activation experiments using laser wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.

    2001-01-01

    Gamma-neutron activation experiments have been performed with relativistic electron beams produced by a laser wakefield accelerator. The electron beams were produced by tightly focusing (spot diameter ≅6 μm) a high power (up to 10 TW), ultra-short (≥50 fs) laser beam from a high repetition rate (10 Hz) Ti:sapphire (0.8 μm) laser system, onto a high density (>10 19 cm -3 ) pulsed gasjet of length ≅1.5 mm. Nuclear activation measurements in lead and copper targets indicate the production of electrons with energy in excess of 25 MeV. This result was confirmed by electron distribution measurements using a bending magnet spectrometer. Measured γ-ray and neutron yields are also found to be in reasonable agreement with simulations using a Monte Carlo transport code

  18. Neutron Generators for Spent Fuel Assay

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard A.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  19. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  20. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.

    1993-01-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10 20 neutrons/m 2 s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons

  1. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Accelerator-driven thermal fission systems may provide energy supply advantages

    International Nuclear Information System (INIS)

    Linford, R.K.

    1992-01-01

    This presentation discusses the energy supply advantages of using accelerator-driven thermal fission systems. Energy supply issues as related to cost, fuel supply stability, environmental impact, and safety are reviewed. It is concluded that the Los Alamos Accelerator Transmutation of Waste (ATW) concept, discussed here, has the following advantages: improved safety in the form of low inventory and subcriticality; reduced high-level radioactive waste management timescales for both fission products and actinides; and a very long-term fuel supply requiring no enrichment

  3. FMIT: an accelerator-based neutron factory for fusion materials qualification

    International Nuclear Information System (INIS)

    Burke, R.J.; Hagan, J.W.; Trego, A.L.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special-purpose materials in support of fusion-power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high-energy neutrons to ensure materials damage characteristic of the deuterium-tritium power system. The facility, its testing role, the status, and major aspects of its design and supporting system development are described. Emphasis is given to programmatic elements and features incorporated in the accelerator and other systems to assure that the FMIT runs as a highly reliable fusion materials testing installation

  4. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    International Nuclear Information System (INIS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-01-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I_0 = 3 × 10"2"0" W/cm"2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  5. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.; Shen, X. F.; You, W. Y. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, C. T.; He, X. T. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  6. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  7. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  8. The neutron total cross-section measurement of 56Fe and 57Fe by using Japan Proton Accelerator Research Complex facility

    International Nuclear Information System (INIS)

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun; Won, Nam Kung; Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun; Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik; Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki

    2012-01-01

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of 56 Fe and 57 Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by 6 Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  9. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  10. Neutron interrogation of actinides with a 17 MeV electron accelerator and first results from photon and neutron interrogation non-simultaneous measurements combination

    Energy Technology Data Exchange (ETDEWEB)

    Sari, A., E-mail: adrien.sari@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Carrel, F.; Lainé, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Lyoussi, A. [CEA, DEN, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2013-10-01

    In this article, we demonstrate the feasibility of neutron interrogation using the conversion target of a 17 MeV linear electron accelerator as a neutron generator. Signals from prompt neutrons, delayed neutrons, and delayed gamma-rays, emitted by both uranium and plutonium samples were analyzed. First results from photon and neutron interrogation non-simultaneous measurements combination are also reported in this paper. Feasibility of this technique is shown in the frame of the measurement of uranium enrichment. The latter was carried out by combining detection of prompt neutrons from thermal fission and delayed neutrons from photofission, and by combining delayed gamma-rays from thermal fission and delayed gamma-rays from photofission.

  11. A European roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration. Executive summary

    International Nuclear Information System (INIS)

    The European Technical Working Group on ADS

    2001-01-01

    In 1998 the Research Ministers of France, Italy and Spain, set up a Ministers' Advisors Group on the use of accelerator driven systems (ADS) for nuclear waste transmutation. This led to the establishing of a technical working group under the chairmanship of Prof. Carlo Rubbia to identify the critical technical issues and to prepare a 'Roadmap' for a demonstration programme to be performed within 12 years. In the following Roadmap, the technical working group (consisting of representatives from Austria, Belgium, Finland, France, Germany, Italy, Portugal, Spain, Sweden and the JRC) has identified the steps necessary to start the construction of an experimental accelerator driven system towards the end of the decade. This is considered as an essential prerequisite to assess the safe and efficient behaviour of such systems for a large-scale deployment for transmutation purposes in the first half of this century. The development and deployment of accelerator driven systems requires three steps: a comprehensive mid- and long-term R and D program, to develop the single elements and components of the system. This includes development of new fuels and fuel cycle systems; planning, design, construction and operation of an Experimental Accelerator Driven System for the demonstration of the concept; planning, design, construction and operation of a large size prototype accelerator driven systems with subsequent large-scale deployment. Following a first phase of R and D focused on the understanding of the basic principles of ADS (already partly underway), the programmes should be streamlined and focused on a practical demonstration of the key issues. These demonstrations should cover high intensity proton accelerators (beam currents in the range 1-20 mA), spallation targets of high power (of power in excess of 1 megawatt), and their effective coupling with a sub-critical core. Cost estimates are taken into account as well as the ADS activities in Japan and USA

  12. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  13. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  14. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    Science.gov (United States)

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  15. Development of an accelerating piston implosion-driven launcher

    International Nuclear Information System (INIS)

    Huneault, J; Loiseau, J; Higgins, A J

    2014-01-01

    The ability to soft-launch projectiles to velocities exceeding 10 km/s is of interest for a number of scientific fields, including orbital debris impact testing and equation of state research. Current soft-launch technologies have reached a performance plateau below this operating range. In the implosion-driven launcher (ILD) concept, explosives are used to dynamically compress a light driver gas to significantly higher pressures and temperatures than the propellant of conventional light-gas guns. The propellant of the IDL is compressed through the linear implosion of a pressurized tube. The imploding tube behaves like a piston which travels into the light gas at the explosive detonation velocity, thus forming an increasingly long column of shock-compressed gas which can be used to propel a projectile. The McGill designed IDL has demonstrated the ability to launch a 0.1-g projectile to 9.1 km/s. This work will focus on the implementation of a novel launch cycle in which the explosively driven piston is accelerated in order to gradually increase driver gas compression, thus maintaining a relatively constant projectile driving pressure. The theoretical potential of the concept as well as the experimental development of an accelerating piston driver will be examined.

  16. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  17. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  18. [International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study

    International Nuclear Information System (INIS)

    Thoms, K.R.; Wiffen, F.W.

    1991-01-01

    Both travelers were members of a nine-person US delegation that participated in an international workshop on accelerator-based 14 MeV neutron sources for fusion materials research hosted by the University of Tokyo. Presentations made at the workshop reviewed the technology developed by the FMIT Project, advances in accelerator technology, and proposed concepts for neutron sources. One traveler then participated in the initial meeting of the IEA Working Group on High Energy, High Flux Neutron Sources in which efforts were begun to evaluate and compare proposed neutron sources; the Fourth FFTF/MOTA Experimenters' Workshop which covered planning and coordination of the US-Japan collaboration using the FFTF reactor to irradiate fusion reactor materials; and held discussions with several JAERI personnel on the US-Japan collaboration on fusion reactor materials

  19. Source driven breeding thermal power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Ben-Gurion Univ. of the Negev, Beersheba

    1978-03-01

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that the DT device. The efficienct of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed. (aurthor)

  20. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor, k/sub eff/ has been satisfactorily determined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments and the development of theoretical methods to predict the experimental observables

  1. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables

  2. Materials issues in accelerator driven-systems

    International Nuclear Information System (INIS)

    Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. Nuclear energy has to cope with critical topics to resolve the economical question of increasing energy demand and, in particular, the public acceptability demands: - increasing the absolute safety of the installations; - managing more efficiently the nuclear waste; In that respect, the development of a new type of nuclear installation coping with above constraints of technological as well as socio-economical nature may be of high importance for the future of sustainable energy provision. An accelerator-driven system (ADS) - a subcritical core, operated as a waste burner for minor actinides (MAs) and long-lived fission products (LLFPs) or as nuclear amplifier for energy production, fed with primary neutrons by a spallation source - has the potential to cope with above constraints and to pave the way to a more environmentally safe and acceptable nuclear energy production. Within the framework of EUROTRANS, the European community has launched a broad R and D programme in collaboration with partners from Europe and abroad (USA, Japan), to address the technical, technological and fundamental issues related to the realisation of an experimental machine that is intended to allow: - continuation, and extension of the present knowledge towards ADS, in the field of reactor materials, fuel and reactor physics research; - enhancement and triggering of new R and D activities such as nuclear waste transmutation, ADS technology, liquid metal embrittlement, The present lecture will cover the main aspects of the design of an experimental XT-ADS taking as example the work that has been performed at SCK.CEN within MYRRHA project. The safety aspect of such machine will be addressed on terms of structural material performance, with emphasis on issues related to the interaction between structural materials (austenitic and ferritic martensitic steels) and the liquid metal coolant (lead-alloys). Finally, a discussion will be given on the open issues and

  3. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-01-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7 Li(p, n) 7 Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  4. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F

    2002-04-22

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  5. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  6. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  7. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  8. Novel target design for enhanced laser driven proton acceleration

    Directory of Open Access Journals (Sweden)

    Malay Dalui

    2017-09-01

    Full Text Available We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  9. Evidence for inelastic neutron acceleration by the 177Lu isomer

    International Nuclear Information System (INIS)

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Abt, D.; Aupiais, J.; Jutier, Ch.; Petit, G. Le; Letourneau, A.; Marie, F.; Veyssiere, Ch.

    2006-01-01

    The neutron burnup cross section σ burnup m on the long-lived metastable state of 177 Lu has been measured from a specially designed isomeric target. The Maxwellian averaged cross section obtained for this reaction on 177 Lu m (J π =23/2 - ) is σ burnup m =626±45 b at the reactor temperature T=323 K. The difference between the burnup cross section and the previously measured capture cross section σ n,γ clearly shows a possible existence of 177 Lu m deexcitation via (n,n ' ) inelastic neutron acceleration channels. The results are interpreted in terms of a statistical approach using parameters from a deformed optical potential calculation

  10. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  11. Calculated neutron-activation cross sections for E/sub n/ /le/ 100 MeV for a range of accelerator materials

    International Nuclear Information System (INIS)

    Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.

    1988-01-01

    Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab

  12. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  13. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  14. Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Sho [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sekiguchi, Yuichiro [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Kiuchi, Kenta; Shibata, Masaru, E-mail: sho.fujibayashi@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-09-10

    We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.

  15. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  16. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  17. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  18. Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation

    International Nuclear Information System (INIS)

    Avramovic, I.; Pesic, M.

    2008-01-01

    Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)

  19. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source

    International Nuclear Information System (INIS)

    Yoshida, F.; Yamamoto, T.; Nakai, K.; Zaboronok, A.; Matsumura, A.

    2015-01-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. - Highlights: • Gd-DTPA is widely clinically used as a contrast medium for MRI. • Shift to an accelerator-based neutron source is advantageous for gadolinium NCT. • Boron–gadolinium NCT effects on tumor cell lines were significant. • Additional administration of Gd-DTPA might enhance the effect of BPA–BNCT.

  20. Transient analyses for lead–bismuth cooled accelerator-driven system

    International Nuclear Information System (INIS)

    Sugawara, Takanori; Nishihara, Kenji; Tsujimoto, Kazufumi

    2013-01-01

    Highlights: ► The transient analyses for the LBE cooled accelerator-driven system were performed. ► The purpose was to investigate the possibility of the core damage. ► All results except the protected loss of heat sink satisfied the no-damage criteria. - Abstract: The transient analyses for the lead–bismuth cooled Accelerator-Driven System (ADS) were performed with the use of the SIMMER-III and RELAP5/mod3.2 codes to investigate the possibility of the core damage. Five accidents; the beam window breakage, the protected loss of heat sink, the beam overpower, the unprotected loss of flow and the unprotected blockage accident were analyzed as the typical accidents in the ADS. Through these calculations, it was confirmed that all calculation results except the protected loss of heat sink satisfied the no-damage criteria. In the protected loss of heat sink, the cladding tube temperature reached at the melting temperature after 20 h although the calculation condition was very conservative. It is required to design a safety system of the ADS to decrease the frequencies of the accidents and to ease the accidents

  1. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  2. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    OpenAIRE

    Mishustin, Igor; Malyshkin, Yury; Pshenichnov, Igor; Greiner, Walter

    2014-01-01

    A possibility of synthesizing neutron-reach super-heavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to Bk-249 can be produced in multiple neutron capture reactions in macroscopic quantities. Howeve...

  3. European Collaboration for High-Resolution Measurements of Neutron Cross Sections between 1 MeV and 250 MeV

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Yuasa nakagawa, K; Koehler, P E; Quaranta, A

    2002-01-01

    The experimental determination of neutron cross section data has always been of primary importance in Nuclear Physics. Many of the salient features of nuclear levels and densities can be determined from the resonant structure of such cross sections and of their decay scheme. An associated importance of precise neutron induced reaction cross sections has resulted from the worldwide interest in Accelerator Driven Systems (ADS) that has emerged at CERN and elsewhere. Many applications, such as accelerator-based transmutation of nuclear waste, energy amplification medical research, astrophysical applications and also fusion research require nuclear data that quantitatively and qualitatively go beyond the presently available traditional evaluation.\\\\ \\\\We consider a spallation driven TOF facility at the CERN-PS with an unprecedented neutron flux (1000 times the existing ones) in the broad energy range between 1 eV and 250 MeV and with very high energy resolution. The present concept for an intense neutron source m...

  4. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of the environmental equivalent dose rate using area monitors for neutrons in clinical linear accelerators

    International Nuclear Information System (INIS)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Batista, Delano V.S.

    2009-01-01

    The Neutron Laboratory of the Radioprotection and Dosimetry Institute - IRD/CNEN, Rio de Janeiro, Brazil, initiated studies on the process of calibration of neutron area monitors and the results of the measurements performed at radiotherapy treatment rooms, containing clinical accelerators

  6. Study of spallation neutrons for the transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Brochard, F.; Boyard, J.L.; Duchazeaubeneix, J.C.; Durand, J.M.; Faivre, J.C.; Leray, S.; Milleret, G.; Plouin, F.; Whittal, D.M.; Beau, M.; Crespin, S.; Frehaut, J.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petitbon, E.; Sigaud, J.; Legrain, R.; Lepretre, A.; Terrien, Y.; Bacha, F.; Maillard, J.; Silva, J.

    1994-01-01

    With the renewed interest in accelerator-driven systems to transmute long-lived nuclear waste or to produce energy, new requirements for intermediate-energy nuclear data are now emerging. In all these systems, neutrons are produced by spallation reactions induced by around 1 GeV protons on a heavy target. These neutrons then drive a sub-critical blanket in which wastes are burned or energy is produced. A good knowledge of the spallation process (energy and angular distribution of the neutrons) is necessary to design and optimize the target-blanket system: for instance, to determine the best choices of beam energy, of composition and geometry of the target, in order to have the maximum neutron yield at the lowest cost, or to minimize the back-scattering of neutrons to the accelerator. A programme aimed at measuring the double differential cross-sections for the production of spallation neutrons induced by protons and deuterons GeV beams on different targets, is beginning at SATURNE. (authors). 3 refs., 3 figs

  7. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  8. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  9. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators

    International Nuclear Information System (INIS)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. (authors)

  10. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  11. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  12. Accelerator-driven assembly for plutonium transformation (ADAPT)

    Science.gov (United States)

    Tuyle, Greorgy J. Van; Todosow, Michael; Powell, James; Schweitzer, Donald

    1995-01-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the U.S. and Russia. The highly fissle plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90%), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reativity feedbacks often associated with plutonium fuel.

  13. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  14. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  15. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1988-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron physics and nuclear data measurements. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out. Refs, figs and tabs

  16. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    Science.gov (United States)

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-01

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  18. Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.

    1993-01-01

    Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies

  19. Recent performance of the Intense Pulsed Neutron Source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.; Donley, L.

    1987-03-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10 21 protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 μA (3.2 x 10 12 protons per pulse, 30 pulses per second) and short-term peaks of almost 17 μA have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation

  20. Dose determination of Neutron contamination in radiothrapy rooms equiped with high energy linear accelerators

    International Nuclear Information System (INIS)

    Shweikani, R.; Anjak, O.

    2014-03-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high-energy linear accelerators are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. A high-energy (23 MV) linear accelerator (Varian 21EX) was studied. The CR-39 nuclear track detectors (NTDs) were used to study the variation of fast neutron relative intensities around a linear accelerator high energy photon beam and to determined the its variation on the patient plane at 0, 50, 100, 150 and 200 cm from the center of the photon beam was. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the fields. Photoneutron intensity and distributions at isocenter level with the field sizes of 40*40 cm'2 at SSD=100cm around 23 MV photon beam using Nuclear Track Detectors were determined. The advantages of CR-39 NTD s over active detectors: 1- there is no pulse pileup problem. 2- no photon interference with neutron measurement. 3- no electronics are required. 4 - less prone to noise and interference. The photoneutron intensities were rapidly decreased as we move away from the isocenter of linear accelerators. As the use of simulation software MCNP match in the results we have obtained through direct measurements and the modeling results using the code MCNP (author).

  1. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron

    International Nuclear Information System (INIS)

    Gur, D.; Bukovitz, A.G.; Rosen, J.C.; Holmes, B.G.

    1979-01-01

    Fast neutron contamination in photon beams in the 20 MV range have been reported in recent years. In order to determine if the variations were due mainly to differences in measurement procedures, or inherent in the design of the accelerators, three different 18-MV (BJR) photon beams were compared using identical analytical techniques. The units studied were a Philips SL/75-20 and a Siemens Mevatron-20 linear accelerators and a Schimadzu betatron. Gamma spectroscopy of an activated aluminum foil was the method used. By comparing the relative amounts of neutron contamination, errors associated with absolute measurements such as detector efficiency and differences in activation foils were eliminated. Fast neutron contaminations per rad of x rays in a ratio of 6.7:3.7:1 were found for the Philips, Schimadzu and Siemens accelerators, respectively

  2. Neutron-induced electronic failures around a high-energy linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.

    2011-01-01

    Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  3. Laser-driven acceleration of protons from hydrogenated annealed silicon targets

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Margarone, Daniele; Krása, Josef; Velyhan, Andriy; Serra, E.; Bellutti, P.; Scarduelli, G.; Calliari, L.; Krouský, Eduard; Rus, Bedřich; Dapor, M.

    2010-01-01

    Roč. 92, č. 3 (2010), 34008/1-34008/5 ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * laser ablation * plasma-material interactions * boundary layer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.753, year: 2010

  4. Subcriticality of accelerator driven system by AESJ/JAERI working party

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko

    2002-01-01

    Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  5. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.

    2000-01-01

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects

  6. Construction of a open-quotes black neutron detectorclose quotes at the University of Massachusetts-Lowell Accelerator Laboratory

    International Nuclear Information System (INIS)

    Bertone, P.F.; DeSimone, D.J.; Dugan, P.F.

    1992-01-01

    In many experiments involving fast neutrons generated in nuclear reactions initiated by accelerator produced charged particle beams, it is important to be able to determine accurately the neutron yield from the target. A detector suitable for such applications should have: a constant efficiency over a large energy range; a fast time response; and the ability to discriminate between gamma rays and neutrons. The authors have constructed a open-quotes black neutron detectorclose quotes based on the design of Poenitz that has these characteristics. At the Lowell Van de Graaff accelerator laboratory neutrons are produced via the 7 Li(p,n) 7 Be reaction using a pulsed proton beam which impinges on metallic lithium targets. The pulsed beam enables the detector to be used in a time-of-flight spectrometer. Use of BC501 liquid scintillator permits neutron-gamma discrimination. The scintillator is viewed by five RCA 48796 photo tubes. The detector is housed in a massive shield of lead, polyethylene and lithium carbonate. The characteristics and use of this detector will be discussed

  7. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    Science.gov (United States)

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  8. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  9. A physical design of extracting/accelerating system for a neutron tube with yields of 1.5 X 1010 n/s

    International Nuclear Information System (INIS)

    Li Wenjie; Li Zhongmin; Dong Aiping; Tian Shengjun

    2000-01-01

    A new screened type of extracting/accelerating system that accelerates ion beam up to 1.1 mA and 180 kV based on the requirements of high-yield neutron tube is described. The optimization of structure has been realized and a neutron yield of more than 1.5 x 10 10 n/s has reached. The long-term practices prove this physical design is rational and lays a foundation for developing neutron tubes with still higher yield

  10. 15 N utilization in nitride nuclear fuels for advanced nuclear power reactors and accelerator - driven systems

    International Nuclear Information System (INIS)

    Axente, D.

    2005-01-01

    15 N utilization for nitride nuclear fuels production for nuclear power reactors and accelerator - driven systems is presented. Nitride nuclear fuel is the obvious choice for advanced nuclear reactors and ADS because of its favorable properties: a high melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in nuclear reactors and ADS requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Accelerator - driven system is a recent development merging of accelerator and fission reactor technologies to generate electricity and transmute long - lived radioactive wastes as minor actinides: Np, Am, Cm. A high-energy proton beam hitting a heavy metal target produces neutrons by spallation. The neutrons cause fission in the fuel, but unlike in conventional reactors, the fuel is sub-critical and fission ceases when the accelerator is turned off. Nitride fuel is a promising candidate for transmutation in ADS of minor actinides, which are converted into nitrides with 15 N for that purpose. Tacking into account that the world wide market is about 20 to 40 Kg 15 N annually, the supply of that isotope for nitride fuel production for nuclear power reactors and ADS would therefore demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N, using present technology of isotopic exchange in NITROX system, the first separation stage of the cascade would be fed with 10M HNO 3 solution of 600 mc/h flow - rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for a production plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million mc/y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle of SO 2 is a problem to be solved to compensate the cost of SO 2

  11. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-01-01

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1

  12. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  13. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  14. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  15. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10 12 ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses

  16. Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis

    International Nuclear Information System (INIS)

    Wilson, Paul P.H.; Tautges, Timothy J.; Kraftcheck, Jason A.; Smith, Brandon M.; Henderson, Douglass L.

    2010-01-01

    The Direct Accelerated Geometry Monte Carlo (DAGMC) software library offers a unique approach to performing neutronics analysis on CAD-based geometries of fusion systems. By employing a number of acceleration techniques, the ray-tracing operations that are fundamental to Monte Carlo radiation transport are implemented efficiently for direct use on the CAD-based solid model, eliminating the need to translate to the native Monte Carlo input language. By forming hierarchical trees of oriented bounding boxes, one for each facet that results from a high-fidelity tessellation of the model, the ray-tracing performance is adequate to permit detailed analysis of large complex systems. In addition to the reduction in human effort and improvement in quality assurance that is found in the translation approaches, the DAGMC approach also permits the analysis of geometries with higher order surfaces that cannot be represented by many native Monte Carlo radiation transport tools. The paper describes the various acceleration techniques and demonstrates the resulting capability in a real fusion neutronics analysis.

  17. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    Science.gov (United States)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  19. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  20. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-10-01

    The neutron scattering community has endorsed the need for a high- power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 KW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap