WorldWideScience

Sample records for accelerating potential

  1. Transient accelerating scalar models with exponential potentials

    Institute of Scientific and Technical Information of China (English)

    Wen-Ping Cui; Yang Zhang; Zheng-Wen Fu

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient.We find that,although a decelerating era will return in the future,when extrapolating the model back to earlier stages (z(≥) 4),scalar dark energy becomes dominant over matter.So these models do not have the desired tracking behavior,and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology.When couplings between the scalar field and matter are introduced,the models still have the same problem; only the time when deceleration returns will be varied.To achieve re-deceleration,one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  2. The relativistic geoid: redshift and acceleration potential

    Science.gov (United States)

    Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker

    2017-04-01

    We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.

  3. Awakening the potential of plasma acceleration

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Civil engineering has begun for the new AWAKE experiment, which looks to push the boundaries of particle acceleration. This proof-of-principle experiment will harness the power of wakefields generated by proton beams in plasma cells, producing accelerator gradients hundreds of times higher than those used in current RF cavities.   Civil engineering works are currently ongoing at the AWAKE facility. As one of CERN's accelerator R&D experiments, the AWAKE project is rather unique. Like all of CERN's experiments, AWAKE is a collaborative endeavour with institutes and organisations participating around the world. "But unlike fixed-target experiments, where the users take over once CERN has delivered the facility, in AWAKE, the synchronised proton, electron and laser beams provided by CERN are an integral part of the experiment," explains Edda Gschwendtner, CERN AWAKE project leader. "So, of course, CERN's involvement in the project goes well...

  4. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  5. Potential Impacts of Accelerated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, L. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-31

    This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhance NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.

  6. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  7. Accelerating yield potential in soybean: potential targets for biotechnological improvement.

    Science.gov (United States)

    Ainsworth, Elizabeth A; Yendrek, Craig R; Skoneczka, Jeffrey A; Long, Stephen P

    2012-01-01

    Soybean (Glycine max Merr.) is the world's most widely grown legume and provides an important source of protein and oil. Global soybean production and yield per hectare increased steadily over the past century with improved agronomy and development of cultivars suited to a wide range of latitudes. In order to meet the needs of a growing world population without unsustainable expansion of the land area devoted to this crop, yield must increase at a faster rate than at present. Here, the historical basis for the yield gains realized in the past 90 years are examined together with potential metabolic targets for achieving further improvements in yield potential. These targets include improving photosynthetic efficiency, optimizing delivery and utilization of carbon, more efficient nitrogen fixation and altering flower initiation and abortion. Optimization of investment in photosynthetic enzymes, bypassing photorespiratory metabolism, engineering the electron transport chain and engineering a faster recovery from the photoprotected state are different strategies to improve photosynthesis in soybean. These potential improvements in photosynthetic carbon gain will need to be matched by increased carbon and nitrogen transport to developing soybean pods and seeds in order to maximize the benefit. Better understanding of control of carbon and nitrogen transport along with improved knowledge of the regulation of flower initiation and abortion will be needed to optimize sink capacity in soybean. Although few single targets are likely to deliver a quantum leap in yields, biotechnological advances in molecular breeding techniques that allow for alteration of the soybean genome and transcriptome promise significant yield gains. © 2011 Blackwell Publishing Ltd.

  8. The use and potential application of electron accelerator in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  9. Risk of potential radiation accidental situations at TESLA accelerator installation

    Energy Technology Data Exchange (ETDEWEB)

    Spasic Jokic, Vesna [TESLA Accelerator Installation, Lab. of Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro (Serbia); Orlic, Milan [VINCA Institute of Nuclear Sciences, Lab. of radioisotopes, Belgrade, Serbia and Montenegro (Serbia); Djurovic, Branka [Military Medical Academy, Radiation Protection Dept., Belgrade, Serbia and Montenegro (Serbia)

    2006-07-01

    The main aim of this paper is to recognize some of the numerous risks of potential exposure and to quantify requirements and probability of failure of radiation protection system due to design event tree. Nature of design and construction of Tesla Accelerator Installation (T.A.I.) make possibility of potential exposure as a result of proven design and modification, trade off, human error as well as defense in depth. In the case of potential exposure human risk is the result of two random events: first, the occurrence of the event that causes the exposure, and the second, the appearance of a harmful effect. The highest doses during potential exposure at T.A.I. can be received at the entrance to primary beam space (V.I.N.C.Y. cyclotron vault) as well as in space with target for fluorine production, high energy experimental channels, proton therapy channel and channel for neutron researches. Expected values of prompt radiation equivalent dose rate in the cyclotron vault is considerably high, in order of 10 Sv/h. Serious problem deals with such large research installation is a number of workers, as visiting research workers of different educational levels and people in Institute who are not professionally connected with ionizing radiation. They could cause willing or unwilling opening of the cyclotron vault doors. Considering some possible scenarios we assumed that during 7000 working hours per year it is reasonably to expect 300 unsafe entries per year. It can be concluded that safety system should be designed so that probability of failure of radiation protection system has to be less than 1.9 10{sup -6}. (authors)

  10. Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas

    CERN Document Server

    Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang

    2014-01-01

    In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...

  11. Evaluating the Potential of Commercial GIS for Accelerator Configuration Management

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Larrieu; Y.R. Roblin; K. White; R. Slominski

    2005-10-10

    The Geographic Information System (GIS) is a tool used by industries needing to track information about spatially distributed assets. A water utility, for example, must know not only the precise location of each pipe and pump, but also the respective pressure rating and flow rate of each. In many ways, an accelerator such as CEBAF (Continuous Electron Beam Accelerator Facility) can be viewed as an ''electron utility''. Whereas the water utility uses pipes and pumps, the ''electron utility'' uses magnets and RF cavities. At Jefferson lab we are exploring the possibility of implementing ESRI's ArcGIS as the framework for building an all-encompassing accelerator configuration database that integrates location, configuration, maintenance, and connectivity details of all hardware and software. The possibilities of doing so are intriguing. From the GIS, software such as the model server could always extract the most-up-to-date layout information maintained by the Survey & Alignment for lattice modeling. The Mechanical Engineering department could use ArcGIS tools to generate CAD drawings of machine segments from the same database. Ultimately, the greatest benefit of the GIS implementation could be to liberate operators and engineers from the limitations of the current system-by-system view of machine configuration and allow a more integrated regional approach. The commercial GIS package provides a rich set of tools for database-connectivity, versioning, distributed editing, importing and exporting, and graphical analysis and querying, and therefore obviates the need for much custom development. However, formidable challenges to implementation exist and these challenges are not only technical and manpower issues, but also organizational ones. The GIS approach would crosscut organizational boundaries and require departments, which heretofore have had free reign to manage their own data, to cede some control and agree to a

  12. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Y.C., E-mail: yuancun.nie@desy.de [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Assmann, R.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Weikum, M. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); University of Strathclyde, G1 1XQ Glasgow (United Kingdom); Zhu, J.; Hüning, M. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany)

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  13. GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations

    Science.gov (United States)

    Nguyen, Trung Dac

    2017-03-01

    The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.

  14. Occupant accelerations and injury potential during an ambulance-to-curb impact.

    Science.gov (United States)

    Lee, Ellen L; Hayes, Wilson C

    2014-04-01

    This paper presents real world acceleration data for an ambulance driving up and over a curb. A full scale reenactment was performed for a litigated case in which a patient on a gurney in an ambulance claimed a variety of bodily injuries after the ambulance struck a curb. A height and weight matched surrogate rode on the gurney during the tests. Results demonstrated that peak vehicle and occupant accelerations never exceeded 1.1g's. To address the claimed injuries, the accelerations likely sustained by the patient were compared to those experienced during daily life. Since ambulances are wide vehicles that travel fast on potentially narrow arterial, collector or local roadways, curb or median impacts may occur during the normal course of driving. Thus, these results may be useful for forensic experts in dealing with similar cases involving claimed injuries following curb impacts.

  15. High-field plasma acceleration in a high-ionization-potential gas.

    Science.gov (United States)

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  16. Accelerated aging and controlled deterioration for the determination of the physiological potential of onion seeds

    Directory of Open Access Journals (Sweden)

    Rodo Angelica Brod

    2003-01-01

    Full Text Available International research on vegetable seed vigor is not at the same level attained for grain crops species. This study was conducted to identify reliable procedures for the accelerated aging and controlled deterioration tests to rank onion (Allium cepa L. seed lots according to their physiological potential. Six seed lots of the cultivars Aurora and Petroline were evaluated in the laboratory for germination, first count, seedling vigor classification, traditional and saturated salt accelerated aging (41masculineC / 48 and 72 h, controlled deterioration (24% of water / 45masculineC / 24 h and seedling emergence tests. Seed moisture content after the saturated salt accelerated aging test was lower and uniform, which is considered an important advantage in comparison to the traditional procedure. The saturated salt accelerated aging (41masculineC / 48 and 72 h and controlled deterioration (moisture content adjusted to 24% / 45masculineC / 24 h tests were the best procedures to assess the physiological potential of onion seeds, and are indicated for use in quality control programs.

  17. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    Science.gov (United States)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  18. Accelerating the search for global minima on potential energy surfaces using machine learning

    Science.gov (United States)

    Carr, S. F.; Garnett, R.; Lo, C. S.

    2016-10-01

    Controlling molecule-surface interactions is key for chemical applications ranging from catalysis to gas sensing. We present a framework for accelerating the search for the global minimum on potential surfaces, corresponding to stable adsorbate-surface structures. We present a technique using Bayesian inference that enables us to predict converged density functional theory potential energies with fewer self-consistent field iterations. We then discuss how this technique fits in with the Bayesian Active Site Calculator, which applies Bayesian optimization to the problem. We demonstrate the performance of our framework using a hematite (Fe2O3) surface and present the adsorption sites found by our global optimization method for various simple hydrocarbons on the rutile TiO2 (110) surface.

  19. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    Directory of Open Access Journals (Sweden)

    Michael J Smout

    2015-10-01

    Full Text Available Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA. Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world.

  20. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil.

    Science.gov (United States)

    Yanto, Dede Heri Yuli; Tachibana, Sanro

    2014-08-15

    The potential of fungal co-culture of the filamentous Pestalotiopsis sp. NG007 with four different basidiomycetes--Trametes versicolor U97, Pleurotus ostreatus PL1, Cerena sp. F0607, and Polyporus sp. S133--for accelerating biodegradation of petroleum hydrocarbons (PHCs) was studied using three different physicochemical characteristic PHCs in soil. All the combinations showed a mutual intermingling mycelial interaction on the agar plates. However, only NG007/S133 (50/50) exhibited an optimum growth rate and enzymatic activities that supported the degradation of asphalt in soil. The co-culture also degraded all fractions at even higher concentrations of the different PHCs. In addition, asphaltene, which is a difficult fraction for a single microorganism to degrade, was markedly degraded by the co-culture, which indicated that the simultaneous biodegradation of aliphatic, aromatic, resin, and asphaltene fractions had occurred in the co-culture. An examination of in-vitro degradation by the crude enzymes and the retrieval fungal culture from the soil after the experiment confirmed the accelerated biodegradation due to enhanced enzyme activities in the co-culture. The addition of piperonyl butoxide or AgNO3 inhibited biodegradation by 81-99%, which demonstrated the important role of P450 monooxygenases and/or dioxygenases in the initial degradation of the aliphatic and aromatic fractions in PHCs.

  1. Polyphenols, Antioxidant Potential and Color of Fortified Wines during Accelerated Ageing: The Madeira Wine Case Study

    Directory of Open Access Journals (Sweden)

    José C. Marques

    2013-03-01

    Full Text Available Polyphenols, antioxidant potential and color of three types of fortified Madeira wines were evaluated during the accelerated ageing, named as estufagem. The traditional estufagem process was set to 45 °C for 3 months. Overheating conditions, 1 month at 70 °C, were also examined. Total polyphenols (TP, total monomeric anthocyanins (TMA and total flavonoids (TF were assessed by spectrophotometric methods, while individual polyphenols and furans were simultaneously determined by HPLC-DAD. Antioxidant potential (AP was estimated by ABTS, DPPH and FRAP assays, while color was evaluated by Glories and CIELab. Traditional estufagem decreased the TP and AP up to 20% and 26%, respectively, with final values similar to other wines. TMA of the Madeira wines from red grapes decreased during estufagem. Six hydroxybenzoic acids, three hydroxycinnamic acids, one stilbene, three flavonols and three flavan-3-ols were found in these wines. The prominent phenolics were hydroxycinnamates and hydroxybenzoates, even after estufagem. Most polyphenols decreased, with the exception of caffeic, ferulic, p-coumaric, gallic and syringic acids. Finally, both chromatic systems revealed that all wines tended to similar chromatic characteristics after estufagem. The study suggests that estufagem can be applied without high impact on polyphenols and antioxidant potential of these fortified wines.

  2. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    CERN Document Server

    Geng, Hua Y

    2014-01-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...

  3. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hua Y., E-mail: huay.geng@gmail.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China); Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 (United States)

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  4. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Science.gov (United States)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  5. Clinical aspects and potential clinical applications of laser accelerated proton beams

    Science.gov (United States)

    Spatola, C.; Privitera, G.

    2013-07-01

    Proton beam radiation therapy (PBRT), as well as the other forms of hadrontherapy, is in use in the treatment of neoplastic diseases, to realize a high selective irradiation with maximum sparing of surrounding organs. The main characteristic of such a particles is to have an increased radiobiological effectiveness compared to conventional photons (about 10% more) and the advantage to deposit the energy in a defined space through the tissues (Bragg peak phenomenon). The goal of ELIMED Project is the realization of a laser accelerated proton beam line to prove its potential use for clinical application in the field of hadrontherapy. To date, there are several potential clinical applications of PBRT, some of which have become the treatment of choice for a specific tumour, for others it is under investigation as a therapeutic alternative to conventional X-ray radiotherapy, to increase the dose to the tumour and reduce the side effects. For almost half of cancers, an increased local tumour control is the mainstay for increased cancer curability.

  6. An evaluation of the potential of GPUs to accelerate tracking algorithms for the ATLAS trigger

    CERN Document Server

    Baines, JTM; The ATLAS collaboration; Emeliyanov, D; Howard, JR; Kama, S; Washbrook, AJ; Wynne, BM

    2014-01-01

    The potential of GPUs has been evaluated as a possible way to accelerate trigger algorithms for the ATLAS experiment located at the Large Hadron Collider (LHC). During LHC Run-1 ATLAS employed a three-level trigger system to progressively reduce the LHC collision rate of 20 MHz to a storage rate of about 600 Hz for offline processing. Reconstruction of charged particles trajectories through the Inner Detector (ID) was performed at the second (L2) and third (EF) trigger levels. The ID contains pixel, silicon strip (SCT) and straw-tube technologies. Prior to tracking, data-preparation algorithms processed the ID raw data producing measurements of the track position at each detector layer. The data-preparation and tracking consumed almost three-quarters of the total L2 CPU resources during 2012 data-taking. Detailed performance studies of a CUDA™ implementation of the L2 pixel and SCT data-preparation and tracking algorithms running on a Nvidia® Tesla C2050 GPU have shown a speed-up by a factor of 12 for the ...

  7. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  8. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent;

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  9. Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with this code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.

  10. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Impact of accelerated electrons on activating process and foaming potential of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cuba, V.; Pospisil, M. E-mail: mpospisil@br.fjfi.cvut.cz; Mucka, V.; Jenicek, P.; Silber, R.; Dohanyos, M.; Zabranska, J

    2003-06-01

    The process of activation is an important part of wastewater treatment technology. It can be affected in many ways, not least by using radiation. The paper describes effects of pre-irradiation of small part of biomass on activated sludge process. It has been shown, that relatively low dose of accelerated electrons can positively affect many parameters of the system.

  12. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  13. Wake potentials and impedances for the ATA (Advanced Test Accelerator) induction cell

    Energy Technology Data Exchange (ETDEWEB)

    Craig, G.D.

    1990-09-04

    The AMOS Wakefield Code is used to calculate the impedances of the induction cell used in the Advanced Test Accelerator (ATA) at Livermore. We present the wakefields and impedances for multipoles m = 0, 1 and 2. The ATA cell is calculated to have a maximum transverse impedance of approximately 1000 {Omega}/m at 875 MHz with a quality factor Q = 5. The sensitivity of the impedance spectra to modeling variations is discussed.

  14. How does the U-shaped potential close above the acceleration region? A study using Polar data

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a statistical study of Polar electric field observations using auroral oval passes over Scandinavia above the acceleration region. We are especially interested in seeing whether we can find large perpendicular electric fields associated with an upward extended classical U-shaped potential drop for these passes, during which Polar is in the northern hemisphere usually at about 4 RE altitude. We also use Polar magnetic field data to infer the existence of a field-aligned current (FAC and conjugate ground-based magnetometers (the IMAGE magnetometer network to check whether the event is substorm-related or not. We find several events with a FAC but only weak perpendicular electric fields at Polar. In those rare cases where the Polar electric field was large, its direction was mostly found to be incompatible with the U-shaped potential model, or it was associated with disturbed conditions (substorms, where one cannot easily distinguish between inductive and static perpendicular electric fields. We found only two cases which are compatible with the upward extended U-shaped potential picture, and even in those cases the potential value is quite small (1-2 kV. To check the validity of the analysis method we also estimate the perpendicular electric field on the southern hemisphere, where Polar flies within or below the acceleration region, and we found a large number of inverted-V-type signatures as expected from previous studies. To explain the lack of perpendicular electric fields at high altitudes we suggest an O-shaped potential model instead of the U-shaped one.

    Key words. Ionosphere (particle acceleration · Magnetospheric physics (auroral phenomena; magnetosphere · ionosphere interactions

  15. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  16. RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and College of William and Mary, Williamsburg, VA (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2012-09-01

    In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

  17. Accelerator mass spectrometry for human biochemistry: The practice and the potential

    Science.gov (United States)

    Vogel, John S.

    2000-10-01

    Isotopic labels are a primary tool for tracing chemicals in natural systems. Accelerator mass spectrometry (AMS) quantifies long-lived isotopes that can be used in safe, sensitive and precise biochemical research with human participants. AMS could reduce the use of animals in biochemical research and remove the uncertain extrapolations from animal models to humans. Animal data seldom represent the sort of variability expected in a human population. People, knowingly or not, routinely expose themselves to radiation risks much greater than AMS-based biochemical research that traces μg/kg doses of chemicals containing tens of nCi of 14C for as long as 7 months. AMS is applied to research in toxicology, pharmacology and nutrition.

  18. Inhibition of nitric oxide synthesis accelerates the recovery of polysynaptic reflex potentials after transient spinal cord ischemia in cats.

    Science.gov (United States)

    Nemoto, T; Sekikawa, T; Suzuki, T; Moriya, H; Nakaya, H

    1997-04-01

    Nitric Oxide (NO) has been implicated as a mediator of neuronal injury in vascular stroke. On the other hand, NO is suggested to play a neuroprotective role by increasing blood flow during cerebral ischemia. In order to evaluate the role of NO in the spinal cord ischemia, effects of nitric oxide synthase (NOS) inhibition on the recovery of reflex potentials after a transient spinal cord ischemia were examined in urethane-chloralose anesthetized spinal cats. Spinal cord ischemia was produced by occlusion of the thoracic aorta and the both internal mammary arteries for 10 min. Regional blood flow (RBF) in the spinal cord was continuously measured with a laser-Doppler flow meter. The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials elicited by electrical stimulation of the tibial nerve, were recorded from the L7 or S1 ventral root. The recovery process of spinal reflex potentials was reproducible when the oclusion was repeated twice at an interval of 120 min. Pretreatment with N(G)-monomethyl-L-arginine (L-NMMA, 10 mg/kg), a NOS inhibitor significantly accelerated the recovery of PSR potentials after spinal cord ischemia. The accelerating effect of L-NMMA on the recovery of PSR potentials was abolished by co-administration of L-arginine (1 mg/kg/min) but not by that of D-arginine (1 mg/kg/min). L-NMMA failed to improve RBF in the spinal cord during ischemia and reperfusion. Nitroprusside (10 microg/kg/min), a NO donor, retarded the recovery of PSR potentials after spinal cord ischemia. These results suggest that NO production has a significant influence on the functional recovery after transient spinal cord ischemia.

  19. Vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration applied at the nasion.

    Science.gov (United States)

    Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G

    2014-12-01

    We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.

  20. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.

    Science.gov (United States)

    Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei

    2016-09-01

    Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  1. Antioxidant potential of bilirubin-accelerated wound healing in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Ram, Mahendra; Singh, Vishakha; Kumar, Dhirendra; Kumawat, Sanjay; Gopalakrishnan, Anu; Lingaraju, Madhu C; Gupta, Priyanka; Tandan, Surendra Kumar; Kumar, Dinesh

    2014-10-01

    Oxidative injury is markedly responsible for wound complications in diabetes mellitus. The biological actions of bilirubin may be relevant to prevent oxidant-mediated cell death, as bilirubin application at a low concentration scavenges reactive oxygen species. Hence, we hypothesized that topical bilirubin application might improve wound healing in diabetic rats. Diabetes was induced in adult male Wistar rats, which were divided into two groups, i.e., diabetic control and diabetic treated. Non-diabetic healthy rats were also taken as healthy control group. Wound area was measured on days 3, 7, 14, and 19 post-wounding. The levels of malondialdehyde (MDA) and reduced glutathione (GSH) and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were estimated in the granulation tissue. There was a significant increase in percent wound closure in healthy control and diabetic treated rats on days 7, 14, and 19, as compared to diabetic control rats on days 7, 14, and 19. There was significant decrease in MDA levels on days 7, 14, and 19 in diabetic treated rats, as compared to diabetic control rats. Levels of GSH were significantly increased on days 3, 7, 14, and 19 in diabetic treated rats, as compared to diabetic control rats. GPx, SOD, and CAT activities were significantly higher on days 3, 7, and 14 in diabetic treated rats, as compared to diabetic control rats. The findings indicate that bilirubin is effective in reducing the oxidant status in wounds of diabetic rats which might have accelerated wound healing in these rats.

  2. Thermoneutral immersion exercise accelerates heart rate recovery: A potential novel training modality.

    Science.gov (United States)

    Garzon, Mauricio; Dupuy, Olivier; Bosquet, Laurent; Nigam, Anil; Comtois, Alain Steve; Juneau, Martin; Gayda, Mathieu

    2017-04-01

    This study compared heart rate recovery (HRR) after incremental maximal exercise performed at the same external power output (Pext) on dry land ergocycle (DE) vs. immersible ergocycle (IE). Fifteen young healthy participants (30 ± 7 years, 13 men and 2 women) performed incremental maximal exercise tests on DE and on IE. The initial Pext on DE was 25 W and was increased by 25 W/min at a pedalling cadence between 60 and 80 rpm, while during IE immersion at chest level in thermoneutral water (30°C), the initial Pext deployment was at a cadence of 40 rpm which was increased by 10 rpm until 70 rpm and thereafter by 5 rpm until exhaustion. Gas exchange and heart rate (HR) were measured continuously during exercise and recovery for 5 min. Maximal HR (DE: 176 ± 15 vs. IE 169 ± 12 bpm) reached by the subjects in the two conditions did not differ (P > .05). Parasympathetic reactivation parameters (ΔHR from 10 to 300 s) were compared during the DE and IE HR recovery recordings. During the IE recovery, parasympathetic reactivation in the early phase was more predominant (HRR at Δ10-Δ60 s, P  .05) when compared to the DE condition. In conclusion, incremental maximal IE exercise at chest level immersion in thermoneutral water accelerates the early phase parasympathetic reactivation compared to DE in healthy young participants.

  3. The potential of accelerating early detection of autism through content analysis of YouTube videos.

    Directory of Open Access Journals (Sweden)

    Vincent A Fusaro

    Full Text Available Autism is on the rise, with 1 in 88 children receiving a diagnosis in the United States, yet the process for diagnosis remains cumbersome and time consuming. Research has shown that home videos of children can help increase the accuracy of diagnosis. However the use of videos in the diagnostic process is uncommon. In the present study, we assessed the feasibility of applying a gold-standard diagnostic instrument to brief and unstructured home videos and tested whether video analysis can enable more rapid detection of the core features of autism outside of clinical environments. We collected 100 public videos from YouTube of children ages 1-15 with either a self-reported diagnosis of an ASD (N = 45 or not (N = 55. Four non-clinical raters independently scored all videos using one of the most widely adopted tools for behavioral diagnosis of autism, the Autism Diagnostic Observation Schedule-Generic (ADOS. The classification accuracy was 96.8%, with 94.1% sensitivity and 100% specificity, the inter-rater correlation for the behavioral domains on the ADOS was 0.88, and the diagnoses matched a trained clinician in all but 3 of 22 randomly selected video cases. Despite the diversity of videos and non-clinical raters, our results indicate that it is possible to achieve high classification accuracy, sensitivity, and specificity as well as clinically acceptable inter-rater reliability with nonclinical personnel. Our results also demonstrate the potential for video-based detection of autism in short, unstructured home videos and further suggests that at least a percentage of the effort associated with detection and monitoring of autism may be mobilized and moved outside of traditional clinical environments.

  4. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress.

    Science.gov (United States)

    Cash, James G; Kuhel, David G; Basford, Joshua E; Jaeschke, Anja; Chatterjee, Tapan K; Weintraub, Neal L; Hui, David Y

    2012-08-10

    Apolipoprotein (apo) E4 is a major genetic risk factor for a wide spectrum of inflammatory metabolic diseases, including atherosclerosis, diabetes, and Alzheimer disease. This study compared diet-induced adipose tissue inflammation as well as functional properties of macrophages isolated from human APOE3 and APOE4 mice to identify the mechanism responsible for the association between apoE4 and inflammatory metabolic diseases. The initial study confirmed previous reports that APOE4 gene replacement mice were less sensitive than APOE3 mice to diet-induced body weight gain but exhibited hyperinsulinemia, and their adipose tissues were similarly inflamed as those in APOE3 mice. Peritoneal macrophages isolated from APOE4 mice were defective in efferocytosis compared with APOE3 macrophages. Increased cell death was also observed in APOE4 macrophages when stimulated with LPS or oxidized LDL. Western blot analysis of cell lysates revealed that APOE4 macrophages displayed elevated JNK phosphorylation indicative of cell stress even under basal culturing conditions. Significantly higher cell stress due mainly to potentiation of endoplasmic reticulum (ER) stress signaling was also observed in APOE4 macrophages after LPS and oxidized LDL activation. The defect in efferocytosis and elevated apoptosis sensitivity of APOE4 macrophages was ameliorated by treatment with the ER chaperone tauroursodeoxycholic acid. Taken together, these results showed that apoE4 expression causes macrophage dysfunction and promotes apoptosis via ER stress induction. The reduction of ER stress in macrophages may be a viable option to reduce inflammation and inflammation-related metabolic disorders associated with the apoE4 polymorphism.

  5. Membrane anchor R9AP potentiates GTPase-accelerating protein activity of RGS11 x Gbeta5 complex and accelerates inactivation of the mGluR6-G(o) signaling.

    Science.gov (United States)

    Masuho, Ikuo; Celver, Jeremy; Kovoor, Abraham; Martemyanov, Kirill A

    2010-02-12

    The R7 subfamily of RGS proteins critically regulates neuronal G protein-signaling pathways that are essential for vision, nociception, motor coordination, and reward processing. A member of the R7 RGS family, RGS11, is a GTPase-accelerating protein specifically expressed in retinal ON-bipolar cells where it forms complexes with the atypical G protein beta subunit, Gbeta(5), and transmembrane protein R9AP. Association with R9AP has been shown to be critical for the proteolytic stability of the complex in the retina. In this study we report that R9AP can in addition stimulate the GTPase-accelerating protein activity of the RGS11 x Gbeta(5) complex at Galpha(o). Single turnover GTPase assays reveal that R9AP co-localizes RGS11 x Gbeta(5) and Galpha(o) on the membrane and allosterically potentiates the GTPase-accelerating function of RGS11 x Gbeta(5). Reconstitution of mGluR6-Galpha(o) signaling in Xenopus oocytes indicates that RGS11 x Gbeta(5)-mediated GTPase acceleration in this system requires co-expression of R9AP. The results provide new insight into the regulation of mGluR6-Galpha(o) signaling by the RGS11 x Gbeta(5) x R9AP complex and establish R9AP as a general GTPase-accelerating protein activity regulator of R7 RGS complexes.

  6. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent; Perrin, Greg; Glick, Stephen; Kurtz, Sarah; Wohlgemuth, John

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cell circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.

  7. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs

    Science.gov (United States)

    Nitschke, Naomi; Atkovska, Kalina; Hub, Jochen S.

    2016-09-01

    Molecular dynamics simulations are capable of predicting the permeability of lipid membranes for drug-like solutes, but the calculations have remained prohibitively expensive for high-throughput studies. Here, we analyze simple measures for accelerating potential of mean force (PMF) calculations of membrane permeation, namely, (i) using smaller simulation systems, (ii) simulating multiple solutes per system, and (iii) using shorter cutoffs for the Lennard-Jones interactions. We find that PMFs for membrane permeation are remarkably robust against alterations of such parameters, suggesting that accurate PMF calculations are possible at strongly reduced computational cost. In addition, we evaluated the influence of the definition of the membrane center of mass (COM), used to define the transmembrane reaction coordinate. Membrane-COM definitions based on all lipid atoms lead to artifacts due to undulations and, consequently, to PMFs dependent on membrane size. In contrast, COM definitions based on a cylinder around the solute lead to size-independent PMFs, down to systems of only 16 lipids per monolayer. In summary, compared to popular setups that simulate a single solute in a membrane of 128 lipids with a Lennard-Jones cutoff of 1.2 nm, the measures applied here yield a speedup in sampling by factor of ˜40, without reducing the accuracy of the calculated PMF.

  8. A model for the determination of the nominal potential for a linear accelerator; Un modelo para la determinacion del potencial nominal de un acelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gutt, F.; Silva, P.; Guerrero, R.; Diaz, J.; Colmenares, J. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Laboratorio Secundario de Calibracion Dosimetrica (LSCD), Apartado 21827, Caracas 1020 A (Venezuela)

    1998-12-31

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm{sup 2} field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  9. The effect of the substrate temperature and the acceleration potential drop on the structural and physical properties of SiC thin films deposed by TVA method

    Science.gov (United States)

    Ciupina, Victor; Lungu, Cristian P.; Vladoiu, Rodica; Prodan, Gabriel C.; Antohe, Stefan; Porosnicu, Corneliu; Stanescu, Iuliana; Jepu, Ionut; Iftimie, Sorina; Prodan, Madalina; Mandes, Aurelia; Dinca, Virginia; Vasile, Eugeniu; Zarovski, Valeriu; Nicolescu, Virginia

    2014-08-01

    Crystalline Si-C thin films were prepared at substrate temperature between 200°C and 1000°C using Thermionic Vacuum Arc (TVA) method. To increase the acceleration potential drop a negative bias voltage up to -1000V was applied on the substrate. The 200nm thickness carbon thin films was deposed on glass and Si substrate and then 200-500 nm thickness Si-C layer on carbon thin films was deposed. Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM), X-Ray Photoelectron Spectroscopy (XPS), and electrical conductivity measurement technique characterized the structure and physical characteristics of as-prepared SiC coating. At a constant acceleration potential drop, the electrical conductivity of the Si-C films deposed on C, increase with increasing of substrate temperature. On the other part, significant increases in the acceleration potential drop at constant substrate temperature lead to a variation of the crystallinity and electrical conductivity of the SiC coatings XPS analysis was performed using a Quantera SXM equipment, with monochromatic AlKα radiation at 1486.6eV. Electrical conductivity of the Si-C coating on carbon at different temperatures was measured comparing the potential drop on the sample with the potential drop on a series standard resistance in constant mode.

  10. Cardiac acceleration at the onset of exercise: a potential parameter for monitoring progress during physical training in sports and rehabilitation.

    Science.gov (United States)

    Hettinga, Florentina J; Monden, Paul G; van Meeteren, Nico L U; Daanen, Hein A M

    2014-05-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were searched to retrieve studies investigating HRonset. In total 652 studies were retrieved. These articles were then classified as having emphasis on HRonset in a sports or rehabilitation setting, which resulted in 8 of 112 studies with a sports application and 6 of 68 studies with a rehabilitation application that met inclusion criteria. Two co-existing mechanisms underlie HRonset: feedforward (central command) and feedback (mechanoreflex, metaboreflex, baroreflex) control. A number of studies investigated HRonset during the first few seconds of exercise (HRonsetshort), in which central command and the mechanoreflex determine vagal withdrawal, the major mechanism by which heart rate (HR) increases. In subsequent sports and rehabilitation studies, interest focused on HRonset during dynamic exercise over a longer period of time (HRonsetlong). Central command, mechanoreflexes, baroreflexes, and possibly metaboreflexes contribute to HRonset during the first seconds and minutes of exercise, which in turn leads to further vagal withdrawal and an increase in sympathetic activity. HRonset has been described as the increase in HR compared with resting state (delta HR) or by exponential modeling, with measurement intervals ranging from 0-4 s up to 2 min. Delta HR was used to evaluate HRonsetshort over the first 4 s of exercise, as well as for analyzing HRonsetlong. In exponential modeling, the HR response to dynamic exercise is biphasic, consisting of fast (parasympathetic, 0-10 s) and slow (sympathetic, 1-4 min) components. Although available studies differed largely in measurement protocols, cross-sectional and longitudinal training studies showed that studies analyzing HRonset

  11. Cardiac Acceleration at the Onset of Exercise : A Potential Parameter for Monitoring Progress During Physical Training in Sports and Rehabilitation

    NARCIS (Netherlands)

    Hettinga, Florentina J.; Monden, Paul G.; van Meeteren, Nico L. U.; Daanen, Hein A. M.

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were

  12. Cardiac acceleration at the onset of exercise: A potential parameter for monitoring progress during physical training in sports and rehabilitation

    NARCIS (Netherlands)

    Hettinga, F.J.; Monden, P.G.; Meeteren, N.L.U. van; Daanen, H.A.M.

    2014-01-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were

  13. Cardiac Acceleration at the Onset of Exercise : A Potential Parameter for Monitoring Progress During Physical Training in Sports and Rehabilitation

    NARCIS (Netherlands)

    Hettinga, Florentina J.; Monden, Paul G.; van Meeteren, Nico L. U.; Daanen, Hein A. M.

    2014-01-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were se

  14. Impact accelerations

    Science.gov (United States)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  15. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    Directory of Open Access Journals (Sweden)

    Wenduo Chen

    Full Text Available Gay-Berne (GB potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  16. Effects on CO2 Reduction Potential of the Accelerated Introduction of Plug-in Hybrid Electric Vehicle in the Market

    Science.gov (United States)

    Shinoda, Yukio; Yabe, Kuniaki; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In this paper we consider that there are two economical social behaviors when new technologies are introduced. One is on the short-term economic basis, the other one is on the long-tem economic basis. If we consider a learning curve on the technology, it is more economical than short-term behavior to accelerate the introduction of the technology much wider in the earlier term than that on short-term economic basis. The costs in the accelerated term are higher, but the introduction costs in the later terms are cheaper by learning curve. This paper focuses on the plug-in hybrid electric vehicles (PHEVs). The ways to derive the results on short-term economic basis and the results on long-term economic basis are shown. The result of short-term behaviors can be derived by using the iteration method in which the battery costs in every term are adjusted to the learning curve. The result of long-term behaviors can be derived by seeking to the way where the amount of battery capacity is increased. We also estimate that how much subsidy does it need to get close to results on the long-term economic basis when social behavior is on the short-term economic basis. We assume subsidy for PHEV's initial costs, which can be financed by charging fee on petroleum consumption. In that case, there is no additional cost in the system. We show that the greater the total amount of money to that subsidy is, the less the amount of both CO2 emissions and system costs.

  17. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  18. Debye potentials, electromagnetic reciprocity and impedance boundary conditions for efficient analytic approximation of coupling impedances in complex heterogeneous accelerator pipes

    Energy Technology Data Exchange (ETDEWEB)

    Petracca, S. [Salerno Univ. (Italy)

    1996-08-01

    Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)

  19. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kant, Vinay; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surendra K; Kumar, Dinesh

    2014-06-01

    Prolonged inflammation and increased oxidative stress impairs healing in diabetics and application of curcumin, a well known antioxidant and anti-inflammatory agent, could be an important strategy in improving impaired healing in diabetics. So, the present study was conducted to evaluate the cutaneous wound healing potential of topically applied curcumin in diabetic rats. Open excision skin wound was created in streptozotocin induced diabetic rats and wounded rats were divided into three groups; i) control, ii) gel-treated and iii) curcumin-treated. Pluronic F-127 gel (25%) and curcumin (0.3%) in pluronic gel were topically applied in the gel- and curcumin-treated groups, respectively, once daily for 19 days. Curcumin application increased the wound contraction and decreased the expressions of inflammatory cytokines/enzymes i.e. tumor necrosis factor-alpha, interleukin (IL)-1beta and matrix metalloproteinase-9. Curcumin also increased the levels of anti-inflammatory cytokine i.e. IL-10 and antioxidant enzymes i.e. superoxide dismutase, catalase and glutathione peroxidase. Histopathologically, the curcumin-treated wounds showed better granulation tissue dominated by marked fibroblast proliferation and collagen deposition, and wounds were covered by thick regenerated epithelial layer. These findings reveal that the anti-inflammatory and antioxidant potential of curcumin caused faster and better wound healing in diabetic rats and curcumin could be an additional novel therapeutic agent in the management of impaired wound healing in diabetics.

  1. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  2. Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: a piecewise potential vorticity diagnosis

    Directory of Open Access Journals (Sweden)

    Shenming Fu

    2014-03-01

    Full Text Available An extreme explosive extratropical cyclone over the northwestern Pacific Ocean (NPO that formed in winter 2004 and went through two distinct rapid deepening periods was successfully simulated by a non-hydrostatic mesoscale model (MM5. Based on the simulation, the cyclone's rapid deepening was investigated in detail using the piecewise potential vorticity (PV inversion method which successfully captured the characteristics of the cyclone and its associated background circulations. Results indicated that explosive development of the cyclone was dominated by forcings in the extended surface layer (ESL, which were closely related to baroclinity (temperature advection and boundary layer processes (sensible heat exchange. In the interior layer (IL, direct effects of condensation were mainly conducive to the cyclone's development, whereas indirect effects (interactions with other layers mainly acted conversely. Processes associated with latent heat release (LHR were characterised by nonlinearity. Features of the precipitation, including intensity, duration, range and relative configuration to the cyclone determined the influences of condensation on the cyclone. In the upper layer (UL, tropopause-folding processes and horizontal PV advection were main influencing factors to the evolution of the cyclone. Upper-level forcings firstly exerted slight effects on the cyclone's development, since upper-level positive PV anomalies were far from the cyclone; then, as the influencing short-wave trough and the cyclone both moved northeastward, upper-level positive PV anomalies merged, enhanced and entered key areas of the cyclone, and thus both direct and indirect effects associated with the upper-level forcings strengthened significantly around the cyclone, and this dominated the cyclone's transition from a moderate explosive cyclone to an extreme one.

  3. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Directory of Open Access Journals (Sweden)

    Kyoung-Rok Lee

    2013-12-01

    Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  4. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  5. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  6. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  7. Accelerated Learning and Individual Potential.

    Science.gov (United States)

    Lozanov, Georgi

    1979-01-01

    Presents an overview of reasons why it is generally assumed by educators that people can only assimilate information within limitations set by educators and theorists. The article also explores educational practices designed to help students learn better and identifies ways in which suggestology can increase student motivation and student…

  8. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  9. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  10. Particle acceleration by plasma

    CERN Document Server

    Ogata, A

    2002-01-01

    Plasma acceleration is carried out by using potential of plasma wave. It is classified by generation method of plasma wave such as the laser wake-field acceleration and the beat wave acceleration. Other method using electron beam is named the plasma wake-field acceleration (or beam wake-field acceleration). In this paper, electron acceleration by laser wake-field in gas plasma, ion source by laser radiation of solid target and nanoion beam generation by one component of plasma in trap are explained. It is an applicable method that ions, which run out from the solid target irradiated by laser, are used as ion source of accelerator. The experimental system using 800 nm laser, 50 mJ pulse energy and 50 fs pulse width was studied. The laser intensity is 4x10 sup 1 sup 6 Wcm sup - sup 2 at the focus. The target film of metal and organic substance film was used. When laser irradiated Al target, two particles generated, in front and backward. It is new fact that the neutral particle was obtained in front, because it...

  11. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  12. Future accelerators

    CERN Document Server

    Hübner, K

    1999-01-01

    An overview of the various schemes for electron-positron linear colliders is given and the status of the development of key components and the various test facilities is given. The present studies of muon-muon colliders and very large hadron colliders are summarized including the plans for component development and tests. Accelerator research and development to achieve highest gradients in linear accelerators is outlined. (44 refs).

  13. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  14. Accelerated Unification

    OpenAIRE

    Arkani-Hamed, Nima; Cohen, Andrew; Georgi, Howard

    2001-01-01

    We construct four dimensional gauge theories in which the successful supersymmetric unification of gauge couplings is preserved but accelerated by N-fold replication of the MSSM gauge and Higgs structure. This results in a low unification scale of $10^{13/N}$ TeV.

  15. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    Science.gov (United States)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  16. Invited Review Article: “Hands-on” laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München (Germany); Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München (Germany); Bolton, P. R.; Parodi, K. [Lehrstuhl für Medizinphysik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching bei München (Germany)

    2016-07-15

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  17. A Critical Theory Perspective on Accelerated Learning.

    Science.gov (United States)

    Brookfield, Stephen D.

    2003-01-01

    Critically analyzes accelerated learning using concepts from Herbert Marcuse (rebellious subjectivity) and Erich Fromm (automaton conformity). Concludes that, by providing distance and separation, accelerated learning has more potential to stimulate critical autonomous thought. (SK)

  18. A Critical Theory Perspective on Accelerated Learning.

    Science.gov (United States)

    Brookfield, Stephen D.

    2003-01-01

    Critically analyzes accelerated learning using concepts from Herbert Marcuse (rebellious subjectivity) and Erich Fromm (automaton conformity). Concludes that, by providing distance and separation, accelerated learning has more potential to stimulate critical autonomous thought. (SK)

  19. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  20. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  1. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  2. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  3. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  4. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  5. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  6. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  7. Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-01

    Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technical feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by

  8. Daily Exposure to Di(2-ethylhexyl) Phthalate Alters Estrous Cyclicity and Accelerates Primordial Follicle Recruitment Potentially Via Dysregulation of the Phosphatidylinositol 3-Kinase Signaling Pathway in Adult Mice1

    Science.gov (United States)

    Hannon, Patrick R.; Peretz, Jackye; Flaws, Jodi A.

    2014-01-01

    ABSTRACT Humans are exposed daily to di(2-ethylhexyl) phthalate (DEHP), a plasticizer found in many consumer, medical, and building products containing polyvinyl chloride. Large doses of DEHP disrupt normal ovarian function; however, the effects of DEHP at environmentally relevant levels, the effects of DEHP on folliculogenesis, and the mechanisms by which DEHP disrupts ovarian function are unclear. The present study tested the hypothesis that relatively low levels of DEHP disrupt estrous cyclicity as well as accelerate primordial follicle recruitment by dysregulating phosphatidylinositol 3-kinase (PI3K) signaling. Adult CD-1 mice were orally dosed with DEHP (20 μg/kg/day–750 mg/kg/day) daily for 10 and 30 days. Following dosing, the effects on estrous cyclicity were examined, and follicle numbers were histologically quantified. Further, the ovarian mRNA and protein levels of PI3K signaling factors that are associated with early folliculogenesis were quantified. The data indicate that 10- and 30-day exposure to DEHP prolonged the duration of estrus and accelerated primordial follicle recruitment. Specifically, DEHP exposure decreased the percentage of primordial follicles and increased the percentage of primary follicles counted following 10-day exposure and increased the percentage of primary follicles counted following 30-day exposure. DEHP exposure, at doses that accelerate folliculogenesis, increased the levels of 3-phosphoinositide-dependent protein kinase-1, mammalian target of rapamycin complex 1, and protein kinase B and decreased the levels of phosphatase and tensin homolog, potentially driving PI3K signaling. Collectively, relatively low levels of DEHP disrupt estrous cyclicity and accelerate primordial follicle recruitment potentially via a mechanism involving dysregulation of PI3K signaling. PMID:24804967

  9. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  10. Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Capacio, B.R.; Harris, L.W.; Anderson, D.R.; Lennox, W.J.; Gales, V.

    1992-12-31

    The accelerating rotarod was used to assess motor performance decrement in rats after administration of candidate anticonvulsant compounds (acetazolamide, amitriptyline, chlordiazepoxide, diazepan, diazepam-lysine, lorazepam, loprazolam, midazolam, phenobarbital and scopolamine) against nerve agent poisoning. AH compounds were tested as the commercially available injectable preparation except for diazepam-lysine and loprazolam, which are not FDA approved. A peak effect time, as well as a dose to decrease performance time by 50% from control (PDD50), was determined. The calculated PDD50 (micrometer ol/kg) values and peak effect tunes were midazolam, 1.16 at 15 min; loprazolam, 1.17 at 15 min; diazepam-lysine, 4.17 at 30 min; lorazepwn, 4.98 at 15 min; diazepam, 5.27 at 15 min; phenobarbital, 101.49 at 45 min; chlordiazepoxide, 159.21 at 30 min; scopolamine, amitriptyline and acetazolamide did not demonstrate a performance decrement at any of the doses tested. The PDD50 values were compared with doses which have been utilized against nerve agent-induced convulsions or published ED50 values from standard anticonvulsant screening tests (maximal electroshock MES and subcutaneous pentylenetetrazol (scMET)). I serve agents, anticonvulsants, diazepam, accelerating rotarod, motor performance.

  11. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  12. Shear Acceleration in Expanding Flows

    CERN Document Server

    Rieger, F M

    2016-01-01

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets of active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi-Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge ...

  13. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  14. Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8

    Directory of Open Access Journals (Sweden)

    Nobuhiro Wada

    2016-12-01

    Full Text Available This study investigates effects of dipeptide balenine, as a major component of whale meat extract (hereafter, WME, supplementation on senescence-accelerated mouse prone 8 (SAMP8, an Alzheimer's disease (AD model at level of learning and memory formation and brain expression profiles genome-wide in brain. Mice fed experimental balenine (+WME supplemented diet for 26 weeks were subjected to four behavioral tests – open field, Y-maze, novel object recognition, and water-filled multiple T-maze – to examine effects on learning and memory. Brain transcriptome of SAMP8 mice-fed the WME diet over control low-safflower oil (LSO diet-fed mice was delineated on a 4 × 44 K mouse whole genome DNA microarray chip. Results revealed the WME diet not only induced improvements in the learning and memory formation but also positively modulated changes in the brain of the SAMP8 mouse; the gene inventories are publically available for analysis by the scientific community. Interestingly, the SAMP8 mouse model presented many genetic characteristics of AD, and numerous novel molecules (Slc2a5, Treh, Fbp1, Aldob, Ppp1r1a, DNase1, Agxt2l1, Cyp2e1, Acsm1, Acsm2, and Pah were revealed over the SAMR1 (senescence-accelerated mouse resistant 1 mouse, to be oppositely regulated/recovered under the balenine (+WME supplemented diet regime by DNA microarray and bioinformatics analyses. Our present study demonstrates an experimental strategy to understand the effects of dipeptide balenine, prominetly contained in meat diet, on SAMP8, providing new insight into whole brain transcriptome changes genome-wide. The gene expression data has been deposited into the Gene Expression Omnibus (GEO: GSE76459. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

  15. Neurodegeneration in accelerated aging.

    Science.gov (United States)

    Scheibye-Knudsen, Moren

    2016-11-01

    of PARP1 or the downstream metabolites may be a therapeutic strategy for treating accelerated aging disorders and potentially age-associated neurological decline seen in the normal population.

  16. Understanding the potentiality of accelerator based-boron neutron capture therapy for osteosarcoma: dosimetry assessment based on the reported clinical experience.

    Science.gov (United States)

    Bortolussi, Silva; Postuma, Ian; Protti, Nicoletta; Provenzano, Lucas; Ferrari, Cinzia; Cansolino, Laura; Dionigi, Paolo; Galasso, Olimpio; Gasparini, Giorgio; Altieri, Saverio; Miyatake, Shin-Ichi; González, Sara J

    2017-08-15

    Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1 h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is

  17. EM Structure Based and Vacuum Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  18. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  19. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  20. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    Institute of Scientific and Technical Information of China (English)

    LUO Huan-Li; XU Yu-Cun; WANG Xiang-Qi; XU Hong-Liang

    2013-01-01

    In the recent decades of particle accelerator R&D area,the fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost,although there are still some technical challenges.In this paper,the FFAG accelerator is adopted to accelerate a helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of the FFAG accelerator and exploring the possibility of developing high power FFAG accelerators.The conventional period focusing unit of the helium ion FFAG accelerator and threedimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given.For low energy and low revolution frequency,induction acceleration is proposed to replace conventional radio frequency (RF) acceleration for the helium ion FFAG accelerator,which avoids the potential breakdown of the acceleration field caused by the wake field and improves the acceleration repetition frequency to gain higher beam intensity.The main parameters and three-dimensional model of induction cavity are given.Two special constraint waveforms are proposed to refrain from particle accelerating time slip (AT) caused by accelerating voltage drop of flat top and energy deviation.The particle longitudinal motion in two waveforms is simulated.

  1. Future HEP Accelerators: The US Perspective

    CERN Document Server

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  2. Piezoelectric particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.; Franzi, Matthew

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  3. Acceleration without Horizons

    CERN Document Server

    Doria, Alaric

    2015-01-01

    We derive the metric of an accelerating observer moving with non-constant proper acceleration in flat spacetime. With the exception of a limiting case representing a Rindler observer, there are no horizons. In our solution, observers can accelerate to any desired terminal speed $v_{\\infty} < c$. The motion of the accelerating observer is completely determined by the distance of closest approach and terminal velocity or, equivalently, by an acceleration parameter and terminal velocity.

  4. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  5. High-Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  6. Accelerating flight: Edge with arbitrary acceleration

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2011-11-01

    Full Text Available ? temporal scales ? Euler ? convection ? Reynolds ? translational viscous ? Ekman ? rotational viscous ? Translational acceleration ? related to g ? Rotational accleration ? Rossby ? Coriolis ? Centrifugal ? Gravitational ? CSIR 2009...

  7. Fixed-Field Alternating-Gradient Accelerators

    CERN Document Server

    Sheehy, S L

    2016-01-01

    These notes provide an overview of Fixed-Field Alternating-Gradient (FFAG) accelerators for medical applications. We begin with a review of the basic principles of this type of accelerator, including the scaling and non-scaling types, highlighting beam dynamics issues that are of relevance to hadron ac- celerators. The potential of FFAG accelerators in the field of hadron therapy is discussed in detail, including an overview of existing medical FFAG designs. The options for FFAG treatment gantries are also considered.

  8. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    CERN Document Server

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  9. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  10. Hardware acceleration of EDA algorithms custom ICS, FPGAs and GPUs

    CERN Document Server

    Khatri, Sunil P

    2010-01-01

    This text covers the acceleration of EDA algorithms using hardware platforms such as FPGAs and GPUs. In it, widely applied CAD algorithms are evaluated and compared for potential acceleration on FPGAs and GPUs.

  11. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.

    Science.gov (United States)

    Park, Chung Mu; Cho, Chung Won; Song, Young Sun

    2014-04-01

    Anti-inflammatory and anti-oxidative activities of polysaccharides from Taraxacum officinale (TOP 1 and 2) were analyzed in RAW 264.7 cells. First, lipopolysaccharide (LPS) was applied to identify anti-inflammatory activity of TOPs, which reduced expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. TOPs treatment inhibited phosphorylation of inflammatory transcription factor, nuclear factor (NF)κB, and its upstream signaling molecule, PI3K/Akt. Second, cytoprotective potential of TOPs against oxidative stress was investigated via heme oxygenase (HO)-1 induction. HO-1, one of phase II enzymes shows antioxidative activity, was potently induced by TOPs treatment, which was in accordance with the nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). In addition, TOPs treatment phosphorylated PI3K/Akt with slight activation of c-Jun NH2-terminal kinase (JNK). TOPs-mediated HO-1 induction protected macrophage cells from oxidative stress-induced cell death, which was confirmed by SnPP and CoPP (HO-1 inhibitor and inducer, respectively). Consequently, TOPs potently inhibited NFκB-mediated inflammation and accelerated Nrf2-mediated antioxidative potential through the modulation of PI3K/Akt pathway, which would contribute to their promising strategy for novel anti-inflammatory and anti-oxidative agents.

  12. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  13. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  14. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  15. Elements of a dielectric laser accelerator

    CERN Document Server

    McNeur, Joshua; Schönenberger, Norbert; Leedle, Kenneth J; Deng, Huiyang; Ceballos, Andrew; Hoogland, Heinar; Ruehl, Axel; Hartl, Ingmar; Solgaard, Olav; Harris, James S; Byer, Robert L; Hommelhoff, Peter

    2016-01-01

    The widespread use of high energy particle beams in basic research, medicine and coherent X-ray generation coupled with the large size of modern radio frequency (RF) accelerator devices and facilities has motivated a strong need for alternative accelerators operating in regimes outside of RF. Working at optical frequencies, dielectric laser accelerators (DLAs) - transparent laser-driven nanoscale dielectric structures whose near fields can synchronously accelerate charged particles - have demonstrated high-gradient acceleration with a variety of laser wavelengths, materials, and electron beam parameters, potentially enabling miniaturized accelerators and table-top coherent x-ray sources. To realize a useful (i.e. scalable) DLA, crucial developments have remained: concatenation of components including sustained phase synchronicity to reach arbitrary final energies as well as deflection and focusing elements to keep the beam well collimated along the design axis. Here, all of these elements are demonstrated wit...

  16. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  17. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  18. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  19. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  20. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  1. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  2. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  3. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  4. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  5. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  6. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  7. Acceleration in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  8. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  9. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  10. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  11. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  12. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  13. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  14. Miniaturization Techniques for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, James E.

    2003-05-27

    The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

  15. FFAGS for rapid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  16. FFAGS FOR MUON ACCELERATION.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.KAHN,S.PALMER,R.TRBOJEVIC,D.JOHNSTONE,C.KEIL,Y.OGITSU,T.OHMORI,C.SESSLER,A.KOSCIELNIAK,S.

    2003-06-26

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed.

  17. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  19. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  20. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  1. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  2. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  3. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  4. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  5. Clearance of materials from accelerator facilities

    Directory of Open Access Journals (Sweden)

    Rokni Sayed H.

    2017-01-01

    Full Text Available A new Technical Standard that supports the clearance of materials and equipment (personal property from U.S. Department of Energy (DOE accelerator facilities has been developed. The Standard focuses on personal property that has the potential to be radiologically impacted by accelerator operations. It addresses material clearance programs and protocols for off-site releases without restriction on use. Common metals with potential volumetric activation are of main interest with technical bases provided in Appendices of the Standard. The clearance protocols in the Standard include three elements: 1 clearance criteria, 2 process knowledge, and 3 measurement methods. This paper presents the technical aspects of the new Standard, discusses operational experience gained in clearance of materials and equipment from several accelerator facilities at SLAC and examples as to how this Standard can be applied to benefit the entirety of the DOE Accelerator Complex.

  6. Laser acceleration... now with added fibre

    CERN Document Server

    Katarina Anthony

    2012-01-01

    Laser acceleration technology is plagued by two main issues: efficiency and repetition rates. In other words, lasers consume too much power and cannot sustain accelerating particles long enough to produce collisions. ICAN, a new EU-funded project, is examining how fibre lasers may help physicists tackle these issues.   A diode-pumped fibre laser. (Image courtesy of Laser Zentrum Hannover.) The International Coherent Amplification Network (ICAN) is studying the potential of lasers for collision physics. CERN is a beneficiary of the project and will collaborate with 15 other institutes from around the world, including KEK in Japan, Fermilab in the USA, and DESY in Germany. “The network is looking into existing fibre laser technology, which we believe has fantastic potential for accelerators,” says Gerard Mourou, ICAN co-ordinator at the École Polytechnique in France. “The hope is to make laser acceleration competitive with traditional radio-fre...

  7. The crystal acceleration effect for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation); Berdnikov, Ya. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru; Kuznetsov, I. A.; Lasitsa, M. V.; Semenikhin, S. Yu., E-mail: ssy@pnpi.spb.ru; Vezhlev, E. O.; Voronin, V. V., E-mail: vvv@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation)

    2017-01-15

    A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to its homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.

  8. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  9. Actinides, accelerators and erosion

    Science.gov (United States)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  10. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  11. The Accelerated Kepler Problem

    CERN Document Server

    Namouni, Fathi

    2007-01-01

    The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.

  12. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  13. Velocity, acceleration and gravity in Einstein's relativity

    CERN Document Server

    Abramowicz, Marek A

    2016-01-01

    Einstein's relativity theory demands that all meaningful physical objects should be defined covariantly, i.e. in a coordinate independent way. Concepts of relative velocity, acceleration, gravity acceleration and gravity potential are fundamental in Newton's theory and they are imprinted in everyone's physical intuition. Unfortunately, relativistic definitions of them are not commonly known or appreciated. Every now and then some confused authors use wrong, non-covariant, definitions of velocity, acceleration and gravity, based on their vague Newtonian intuitions and hidden in a superficial, often purely semantic, relativistic disguise. A recent example of such a confusion (Gorkavyi & Vasilkov, 2016) is discussed at the end of this Note.

  14. Laser ion source for particle accelerators

    CERN Document Server

    Sherwood, T R

    1995-01-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  15. Potencial fisiológico de sementes de brássicas com ênfase no teste de envelhecimento acelerado Physiological potential of Brassica seeds with emphasis to the accelerated aging test

    Directory of Open Access Journals (Sweden)

    Caroline J Costa

    2008-06-01

    different tests for the evaluation of the physiological potential of Brassica seeds with emphasis to the accelerated aging test (AAT. Four lots of cabbage seeds cv. Coração de Boi, four lots of broccoli seeds cv. Piracicaba Precoce and five lots of collard seeds cv. Georgia were used. Tests of germination, first germination counting, seedling emergence, electrical conductivity and accelerated aging were accomplished. In this test three procedures were used: traditional (water, saturated NaCl solution (40 g/100 mL and diluted NaCl solution (11 g/100 mL, at 42°C for 48, 72 and 96 hours. The experiment followed a completely randomized design with four replicates and individual evaluations for each test. The tests of first germination counting and speed of seedling emergence presented potential for evaluation of the physiological potential of cabbage and broccoli seeds. For collard seeds, the tests of seedling emergence and electrical conductivity were the most efficient. The AAT was also efficient in the evaluation of the physiological potential of Brassica seeds. For cabbage, the best distinction among the physiological potential of the seeds through the AAT was obtained following the traditional procedure and with diluted NaCl solution, both for 48 and 72 hours, and with saturated NaCl solution for 72 and 96 hours. For broccoli seeds, all of tested AAT procedures were efficient in the identification of the seed lots of superior quality. For collard seeds, the best results were obtained with the AAT in the traditional methodology for 96 hours and with diluted NaCl solution for 72 hours. It was observed that, in comparison to the use of water, the use of saline solution in the AAT inhibited sensibly the fungi growth and development.

  16. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  17. Airbreathing Acceleration Toward Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  18. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  19. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  20. Computational Examination of Parameters Influencing Practicability of Ram Accelerator

    Directory of Open Access Journals (Sweden)

    Sunil Bhat

    2004-07-01

    Full Text Available The problems concerning practicability aspects of a ram accelerator, such as intense in-bore projectile ablation, large accelerator tube length to achieve high projectile muzzle velocity, and high entry velocity of projectile in the accelerator tube for starting the accelerator have been examined. Computational models of the processes like phenomenon of projectile ablation, flow in the aero-window used as accelerator tube-end closure device in case of high drive gas filling pressure in the ram accelerator tube have been presented. New projectile design to minimise the starting velocity of the ram accelerator is discussed. Possibility of deployment of ram accelerator in the defence-oriented role has been investigated to utilise its high velocity potential.

  1. Cosmic particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano; Perri, Silvia [Universita della Calabria, Dipartimento di Fisica, 87036 Rende (Italy)

    2014-07-01

    The most popular mechanism for the acceleration of cosmic rays, which is thought to operate in supernova remnant shocks as well as at heliospheric shocks, is the diffusive shock acceleration, which is a Fermi mechanism based on normal diffusion. On the other hand, in the last few years it has been shown that the transport of plasma particles in the presence of electric and magnetic turbulence can be superdiffusive rather than normal diffusive. The term 'superdiffusive' refers to the mean square displacement of particle positions growing superlinearly with time, as compared to the normal linear growth. In particular, superdiffusion is characterized by a non Gaussian statistical process called Levy random walk. We show how diffusive shock acceleration is modified by superdiffusion, and how this yields new predictions for the cosmic ray spectral index, for the acceleration time, and for the spatial profile of energetic particles. A comparison with observations of particle acceleration at heliospheric shocks and at supernova remnant shocks is done. We discuss how superdiffusive shock acceleration allows to explain the observations of hard ion spectra at the solar wind termination shock detected by Voyager 2, of hard radio spectra due to synchrotron emission of electrons accelerated at supernova remnant shocks, and how it can help to explain the observations of 'thin rims' in the X-ray synchrotron emission.

  2. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  3. Application of Accelerators and Storage Rings: Accelerators in Medicine

    CERN Document Server

    Amaldi, U

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '11.3 Accelerators in Medicine' of the Chapter '11 Application of Accelerators and Storage Rings' with the content: 11.3 Accelerators in Medicine 11.3.1 Accelerators and Radiopharmaceuticals 11.3.2 Accelerators and Cancer Therapy

  4. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  5. Vibration control in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  6. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  7. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  8. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  9. Dielectric assist accelerating structure

    Science.gov (United States)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  10. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  11. LHCb GPU Acceleration Project

    CERN Document Server

    AUTHOR|(SzGeCERN)744808; Campora Perez, Daniel Hugo; Neufeld, Niko; Vilasis Cardona, Xavier

    2016-01-01

    The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other accelerators. This paper describes the system and analyzes its performance.

  12. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  13. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  14. Analytical tools in accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  15. Accelerated Hypertension after Venlafaxine Usage

    Directory of Open Access Journals (Sweden)

    Yüksel Kıvrak

    2014-01-01

    Full Text Available Venlafaxine is the first antidepressant that acts via inhibiting serotonin and noradrenaline reuptake. Hypertension is observed in doses exceeding 300 mg/day and is the most feared complication. We report a patient with accelerated hypertension after venlafaxine use observed at a dose of 150 mg/day. A 23-year-old patient with symptoms of insomnia, depression, anhedonia, fatigue admitted our clinic. Venlafaxine at a dose of 75 mg/day was initiated after he was diagnosed with major depressive disorder. After 5 months, venlafaxine dose was uptitrated to 150 mg/day due to inadequate response to drug. After using venlafaxine for ten months at the dose of 150 mg/day, he admitted our clinic with headache and epistaxis. He was hospitalized after his blood pressure was measured as 210/170 mmHg. No secondary causes for hypertension were found, and venlafaxine treatment was considered possible etiologic factor. After stopping venlafaxine treatment, his blood pressure was reverted back to normal limits. While mild elevation of blood pressure could be observed after venlafaxine treatment, this case shows that accelerated hypertension with a diastolic blood pressure rise above 120 mmHg could be observed at relatively low doses of venlafaxine. Close monitoring of blood pressure is necessary after initiation of treatment, as accelerated hypertension could cause endorgan damage with potentially catastrophic results.

  16. Self-accelerating Warped Braneworlds

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela; Lykken, Joseph; /Fermilab; Park, Minjoon; /UC, Davis; Santiago, Jose; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, and the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.

  17. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  18. Accelerating DSMC data extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  19. Senescence-accelerated OXYS rats

    Science.gov (United States)

    Stefanova, Natalia A; Kozhevnikova, Oyuna S; Vitovtov, Anton O; Maksimova, Kseniya Yi; Logvinov, Sergey V; Rudnitskaya, Ekaterina A; Korbolina, Elena E; Muraleva, Natalia A; Kolosova, Nataliya G

    2014-01-01

    Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from Wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. In recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. In addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. With age, neurodegenerative changes in the brain of OXYS rats become amplified. We have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMD-like retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD. PMID:24552807

  20. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  1. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  2. Electron surfing acceleration in a current sheet of flares

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of electron acceleration in a current sheet of flares is studied by the analytical approximation solution and the test particle simulation. The electron can be trapped in a potential of propagating electrostatic wave. The trapped electron moving with the phase velocity vp of wave may be effectively accelerated by evc p× Bz force along the outflow direction in the current sheet, if a criterion condition K > 0 for electron surfing acceleration is satisfied. The electron will be accelerated continuously until the electron detrap from the wave potential at the turning point S.

  3. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  4. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  5. Uniform Acceleration in General Relativity

    CERN Document Server

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  6. Cosmic Plasma Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P

    2004-04-26

    Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.

  7. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  8. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  9. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  10. Photonic Crystal Laser Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  11. Studies of accelerated compact toruses

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  12. Microelectromechanical acceleration-sensing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  13. Electrophysical Systems Based On Charged Particle Accelerators

    CERN Document Server

    Vorogushin, M F

    2004-01-01

    The advancement of the charged particle accelerator engineering affects appreciably the modern tendencies of the scientific and technological progress in the world. In a number of advanced countries, this trend is one of the most dynamically progressing in the field of applied science and high-technology production. Such internationally known firms as VARIAN, SIEMENS, PHILIPS, ELECTA, IBA, HITACHI, etc., with an annual budget of milliards of dollars and growth rate of tens of percent may serve as an example. Although nowadays the projects of new large-scale accelerators for physical research are not implemented so quickly and frequently as desired, accelerating facilities are finding ever-widening application in various fields of human activities. The contribution made by Russian scientists into high-energy beams physics is generally known. High scientific and technical potential in this field, qualified personnel with a high creative potential, modern production and test facilities and state-of-the-art techn...

  14. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  15. Accelerating News Issue 4

    CERN Document Server

    Szeberenyi, A; Wildner, E

    2012-01-01

    In this winter issue, we are very pleased to announce the approval of EuCARD-2 by the European Commission. We look at the conclusions of EUROnu in proposing future neutrino facilities at CERN, a new milestone reached by CLIC and progress on the SPARC upgrade using C-band technology. We also report on recent events: second Joint HiLumi LHC-LARP Annual Meeting and workshop on Superconducting technologies for the Next Generation of Accelerators aiming at closer collaboration with industry. The launch of the Accelerators for Society brochure is also highlighted.

  16. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  17. Fermi Acceleration in Magnetic Reconnection Sites

    Science.gov (United States)

    de Gouveia Dal Pino, E. M.; Kowal, G.; Lazarian, A.

    2014-09-01

    The mechanisms that accelerate cosmic relativistic particles are not fully understood yet. A variety of processes has been investigated and the acceleration in magnetic reconnection sites has lately gained increasing attention from researchers not only for its potential importance in the solar system, but also beyond it, in astrophysical environments like compact stellar sources, AGNs and GRBs, and even in diffusive magnetized media as the interstellar medium (ISM) and the intergalactic medium (IGM). In this talk we review this process and, supported by three-dimensional MHD simulations with the injection of thousands of test particles, we show that they can be efficiently accelerated by magnetic reconnection through a first-order Fermi process within large scale magnetic current sheets, even in a collisional fluid (contrary to what was previously believed), especially when local turbulence is present which makes reconnection fast, the acceleration layer thicker and the overall process naturally three-dimensional. Tests of particle acceleration in pure MHD turbulent environments (i.e., without the presence of large scale current sheets), on the other hand, indicate that the dominant acceleration process is a second-order Fermi.

  18. Radiation Shielding at High-Energy Electron and Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.; /SLAC; Cossairt, J.Donald; /Fermilab; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  19. Combined generating-accelerating buncher for compact linear accelerators

    Science.gov (United States)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  20. The Role of natural gas and biomethane in the fuel mix of the future in Germany. Required action and potential solutions to accelerate adoption in transport applications; Erdgas und Biomethan im kuenftigen Kraftstoffmix. Handlungsbedarf und Loesungsansaetze fuer eine beschleunigte Etablierung im Verkehr

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The contribution under consideration reports on the need of action and on solution attempts for an accelerated establishment of natural gas and bio methane in the future fuel mix. The authors come to the following conclusions: The energy situation and climatic situation require a stronger diversification of fuels and drives. The targets for the amount of natural gas and bio methane as a fuel are not reached yet. The characteristics of natural gas speak for an accelerated establishment in the traffic sector. The admixture of bio methane can increase the climatic, environmental and resources advantages. In order to penetrate the market all participants involved must commit themselves to a concrete 'roadmap'. The contribution shows which measures must be converted by the participants involved in order to be able to utilize fully the potentials of the employment of natural gas and bio methane in the traffic sector.

  1. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  2. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  3. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  4. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  5. Acceleration and Special Relativity

    CERN Document Server

    Yahalomi, E M

    2000-01-01

    The integration of acceleration over time before reaching the uniformvelocity turns out to be the source of all the special relativity effects. Itexplains physical phenomena like clocks comparisons. The equations forspace-time, mass and energy are presented. This phenomenon complements theexplanation for the twins paradox. A Universal reference frame is obtained.

  6. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  7. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  8. The CERN accelerator complex

    CERN Multimedia

    Mobs, Esma Anais

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  9. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  10. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  11. Angular Accelerating White Light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2015-08-01

    Full Text Available Shaping XVI, 958104, San Diego, California, United States, 09 August 2015 Angular Accelerating White Light Angela Dudley*a,b, Christian Vetterc , Alexander Szameitc , and Andrew Forbesa,b a CSIR National Laser Centre, PO Box 395, Pretoria 0001...

  12. Test particle acceleration in torsional fan reconnection

    Science.gov (United States)

    Hosseinpour, M.

    2014-12-01

    Magnetic reconnection is understood to be a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. Torsional fan reconnection is one of the proposed mechanisms for steady-state three-dimensional (3D) magnetic reconnection. By using the magnetic and electric fields for `torsional fan reconnection', the features of test particle acceleration with input parameters for the solar corona are investigated numerically. We show that torsional fan reconnection is potentially an efficient particle accelerator and a proton can gain up to tens of MeV of kinetic energy within only a few milliseconds. Although the final kinetic energy of the accelerated particle depends on the injection position but there exists only one scenario for the particle's trajectory with different initial positions in which the particle is accelerated on the fan plane. Moreover, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory. These results are compared with those of torsional spine reconnection.

  13. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared range

  14. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared

  15. Microfabrication of Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2003-04-07

    We discuss the potential for using microfabrication techniques for laser-driven accelerator construction. We introduce microfabrication processes in general, and then describe our investigation of a particular trial process. We conclude by considering the issues microfabrication raises for possible future structures.

  16. New type scalar fields for cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A; Pakis, S [Department of Physics, National Technical University of Athens, GR-15773, Zografou, Athens (Greece)

    2007-05-15

    We present a model where a non-conventional scalar field may act like dark energy and leads to cosmic acceleration. The latter is driven by an appropriate field configuration, which result in an effective cosmological constant. The potential role of such a scalar in the cosmological constant problem is also discussed.

  17. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  18. Symmetry breaking and cosmic acceleration in scalar field models

    CERN Document Server

    Sadjadi, M Mohseni; Sepangi, H R

    2015-01-01

    We study the possible role of symmetry breaking in the onset of the acceleration of the Universe in a scalar field dark energy model. We propose a new scenario in which acceleration of the Universe is driven by a positive potential produced by means of symmetry breaking.

  19. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  20. CTF3 Drive Beam Accelerating Structures

    CERN Document Server

    Jensen, E

    2002-01-01

    The 3 GHz drive beam accelerator of the CLIC Test Facility CTF3, currently under construction at CERN, will be equipped with 16 novel SICA (Slotted Iris – Constant Aperture) accelerating structures. The slotted irises couple out the potentially disruptive induced transverse HOM energy to integrated silicon carbide loads (dipole mode Q's below 20). The use of nose cones for detuning allows a constant inner aperture (34 mm). The structures will be 1.2 m long and consist of 34 cells. A first 6 cell prototype structure has been tested successfully up to power levels of 100 MW (nominal: 30 MW), corresponding to surface electric field levels of 180 MV/m.

  1. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  2. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  3. Capacitive MEMS accelerometers for measuring high-g accelerations

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2017-05-01

    A possibility of creating a capacitive accelerometer for measuring high- g accelerations (up to 106 g and higher) is discussed. It is demonstrated that insertion of a thin electret film with a high surface potential into the gap between the electrodes ensures significant expansion of the frequency and amplitude ranges of acceleration measurements, whereas the size of the proposed device is smaller than that of available MEMS accelerometers for measuring high- g accelerations. A mathematical model of an electret accelerometer for high- g accelerations is developed, and the main specific features of accelerometer operation are analyzed.

  4. Acceleration sensing based on piezoresistive effect of carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    WEI Feng-yan; SHEN Hui-juan; CAO Chun-lan; LIAO Ke-jun; HU Chen-guo

    2006-01-01

    Based on piezoresistive effect,the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated.A three-point bending technique was presented to measure the piezoresistivity,which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine.The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration,and there is a linear relationship between the acceleration and the strain.These shed light on using carbon nanotube films as acceleration sensors for many potential applications.

  5. BBU design of linear induction accelerator cells for radiography application

    Energy Technology Data Exchange (ETDEWEB)

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.; Houck, T.L.; Molau, N.E.; Focklen, J.; Gregory, S.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  6. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  7. Ion acceleration in a scalable MEMS RF-structure for a compact linear accelerator

    CERN Document Server

    Persaud, A; Feinberg, E; Seidl, P A; Waldron, W L; Lal, A; Vinayakumar, K B; Ardanuc, S; Schenkel, T

    2016-01-01

    A new approach for a compact radio-frequency(rf) accelerator structure is presented. The idea is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC allowed scaling of rf-structure down to dimensions of centimeters while at the same time allowing for higher beam currents through parallel beamlets. Using micro-electro-mechanical systems (MEMS) for highly scalable fabrication, we reduce the critical dimension to the sub-millimeter regime, while massively scaling up the potential number of parallel beamlets. The technology is based on rf-acceleration components and electrostatic quadrupoles (ESQs) implemented in a silicon wafer based design where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach allows fast and cheap batch fabrication of the components and flexibility in system design for different applications. For prototyping these ...

  8. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  9. Accelerated Parallel Texture Optimization

    Institute of Scientific and Technical Information of China (English)

    Hao-Da Huang; Xin Tong; Wen-Cheng Wang

    2007-01-01

    Texture optimization is a texture synthesis method that can efficiently reproduce various features of exemplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthesis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to interactive editing of flow-guided synthesis.

  10. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  11. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  12. SUPERDIFFUSIVE SHOCK ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G. [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy)

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  13. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... the implementation of a large intervention undertaken in five project-based organizations in Denmark – the Project Half Double where the same project methodology has been applied in five projects, each of them in five distinct organizations in Denmark, as a bold attempt to realize double the benefit in half...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  14. Accelerating QDP++ using GPUs

    CERN Document Server

    Winter, Frank

    2011-01-01

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an ...

  15. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  16. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  17. NEW ACCELERATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1984-07-01

    But a glance at the Livingston chart, Fig. 1, of accelerator particle energy as a function of time shows that the energy has steadily, exponentially, increased. Equally significant is the fact that this increase is the envelope of diverse technologies. If one is to stay on, or even near, the Livingston curve in future years then new acceleration techniques need to be developed. What are the new acceleration methods? In these two lectures I would like to sketch some of these new ideas. I am well aware that they will probably not result in high energy accelerators within this or the next decade, but conversely, it is likely that these ideas will form the basis for the accelerators of the next century. Anyway, the ideas are stimulating and suffice to show that accelerator physicists are not just 'engineers', but genuine scientists deserving to be welcomed into the company of high energy physicists. I believe that outsiders will find this field surprisingly fertile and, certainly fun. To put it more personally, I very much enjoy working in this field and lecturing on it. There are a number of review articles which should be consulted for references to the original literature. In addition there are three books on the subject. Given this material, I feel free to not completely reference the material in the remainder of this article; consultation of the review articles and books will be adequate as an introduction to the literature for references abound (hundreds are given). At last, by way of introduction, I should like to quote from the end of Ref. 2 for I think the remarks made there are most germane. Remember that the talk was addressed to accelerator physicists: 'Finally, it is often said, I think by physicists who are not well-informed, that accelerator builders have used up their capital and now are bereft of ideas, and as a result, high energy physics will eventually--rather soon, in fact--come to a halt. After all, one can't build too many

  18. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  19. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  20. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  1. Teste de envelhecimento acelerado para avaliação do potencial fisiológico de sementes de urucum Accelerated aging test to evaluate the physiologic potential of annatto seeds

    Directory of Open Access Journals (Sweden)

    Salvador B Torres

    2009-03-01

    Full Text Available Urucum (Bixa orellana L. é uma cultura de grande interesse comercial, sendo o principal produto a semente, da qual se extraem os corantes bixina e norbixina, de valor nos mercados nacional e internacional. O presente trabalho teve por objetivo estudar a metodologia do teste de envelhecimento acelerado para obtenção do potencial fisiológico de sementes de urucum, utilizando-se quatro lotes de sementes da cultivar Casca Vermelha. A avaliação inicial desses lotes consistiu na determinação do grau de umidade, germinação, primeira contagem da germinação e emergência de plântulas em casa de vegetação. O envelhecimento acelerado foi implementado a 41ºC durante 48, 72 e 96 horas, com e sem uso de solução saturada de NaCl. O experimento foi conduzido em delineamento inteiramente casualizado. Dentre os procedimentos adotados no teste de envelhecimento acelerado, o período de exposição de 72 horas a 41ºC com uso de solução saturada de NaCl, revelou-se adequado para a avaliação do potencial fisiológico de sementes de urucum.Annatto (Bixa orellana L. is a crop of great commercial interest, from whose main product, the seed, is extracted the bixina and norbixina coloring, of great interest in the national and international market. The methodology of the accelerated aging test to achieve the physiological quality of annatto seeds was evaluated. The initial quality of the seeds was obtained through the tests of moisture content, germination, germination first count and seedling emergence in greenhouse. The accelerated aging test was conducted at 41ºC during 48, 72 and 96 hours, using the traditional and NaCl saturated solution. The research was conducted in a completely randomized design. The saturated salt accelerated aging test was efficient for vigor evaluation of annatto seeds, and the period of 72 hours at 41ºC was considered as the most adequate procedure to evaluate seed vigor levels.

  2. French nuclear physics accelerator opens

    Science.gov (United States)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  3. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  4. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  5. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  6. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  7. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  8. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  9. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  10. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  11. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  12. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  13. Accelerating in de Sitter spacetimes

    CERN Document Server

    Cotaescu, Ion I

    2014-01-01

    We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.

  14. Muon Acceleration - RLA and FFAG

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  15. VLHC accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  16. APT accelerator. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  17. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  18. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  19. 2014 CERN Accelerator Schools

    CERN Multimedia

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  20. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  1. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  2. Mechanisms of Plasma Acceleration in Coronal Jets

    Science.gov (United States)

    Soto, N.; Reeves, K.; Savcheva, A. S.

    2016-12-01

    Jets are small explosions that occur frequently in the Sun possibly driven by the local reconfiguration of the magnetic field, or reconnection. There are two types of coronal jets: standard jets and blowout jets. The purpose of this project is to determine which mechanisms accelerate plasma in two different jets, one that occurred in January 17, 2015 at the disk of the sun and another in October 24, 2015 at the limb. Two possible acceleration mechanisms are chromospheric evaporation and magnetic acceleration. Using SDO/AIA, Hinode/XRT and IRIS data, we create height-time plots, and calculate the velocities of each wavelength for both jets. We calculate the potential magnetic field of the jet and the general region around it to gain a more detailed understanding of its structure, and determine if the jet is likely to be either a standard or blowout jet. Finally, we calculate the magnetic field strength for different heights along the jet spire, and use differential emission measures to calculate the plasma density. Once we have these two values, we calculate the Alfven speed. When analyzing our results we are looking for certain patterns in our velocities. If the plasma in a jet is accelerated by chromospheric evaporation, we expect the velocities to increase as function of temperature, which is what we observed in the October 24th jet. The magnetic models for this jet also show the Eiffel Tower shaped structure characteristic of standard jets, which tend to have plasma accelerated by this mechanism. On the other hand, if the acceleration mechanism were magnetic acceleration, we would expect the velocities to be similar regardless of temperature. For the January 17th jet, we saw that along the spire, the velocities where approximately 200 km/s in all wavelengths, but the velocities of hot plasma detected at the base were closer to the Alfven speed, which was estimated to be about 2,000 km/s. These observations suggest that the plasma in the January 17th jet is

  3. Mass varying neutrinos, symmetry breaking, and cosmic acceleration

    Science.gov (United States)

    Sadjadi, H. Mohseni; Anari, V.

    2017-06-01

    We introduce a new proposal for the onset of cosmic acceleration based on mass varying neutrinos. When massive neutrinos become nonrelativistic, the Z2 symmetry breaks, and the quintessence potential becomes positive from its initially zero value. This positive potential behaves like a cosmological constant at the present era and drives the Universe's acceleration during the slow roll evolution of the quintessence. In contrast to Λ CDM model, the dark energy in our model is dynamical, and the acceleration is not persistent. Contrary to some of the previous models of dark energy with mass varying neutrinos, we do not use the adiabaticity condition, which leads to instability.

  4. 基于CFD前处理软件的潜艇加速度系数势流计算方法%A potential flow method for evaluation acceleration factor of submarine based on CFD pre-processor

    Institute of Scientific and Technical Information of China (English)

    林兆伟; 涂卫民; 郭传海; 李新汶

    2013-01-01

      A method of 3 D panel method combined CFD pre-processor was used to calculate the acceleration factor for submarine design in this paper, the improved method was presented instead of traditional panel method for enhancing work efficiency. To inspect calculation precision, a comparison between model test and calculations was investigated for three submarine models, the results show this method can effectively overcome the shortcomings of traditional method in the geometric description and helps enhance calculation precision obviously.%  采用CFD前处理软件和势流计算相结合的方法,解决潜艇设计中的加速度系数计算问题,对传统方法进行合理改进和优化,提高了工作效率。为检验该方法计算精度,文中计算了3种艇型模型,计算结果用模型试验验证。结果表明,此方法可以有效克服传统面元处理方法对潜艇复杂局部结构几何描述能力不足的缺陷,提高了计算精度。

  5. Acceleration without Temperature

    CERN Document Server

    Doria, Alaric

    2015-01-01

    We show that while some non-uniformly accelerating observers (NUAOs) do indeed see a Bose-Einstein distribution of particles for the expectation value of the number operator in the Minkowski vacuum state, the density matrix is non-thermal and therefore a definition of temperature is not warranted. This is due to the fact that our NUAOs do not see event horizons in the spacetime. More specifically, the Minkowski vacuum state is perceived by our NUAOs as a single-mode squeezed state as opposed to the two-mode squeezed state characteristic of uniformly accelerating observers. Both single and two-mode squeezed states are pure quantum states; however, tracing over degrees of freedom in one of the modes of the two-mode squeezed state reduces the pure density matrix to a thermal density matrix. It is this property in the two-mode squeezed state that allows one to consistently define a temperature. In the single-mode case, an equivalent tracing is neither required nor available.

  6. Particle acceleration mechanisms

    CERN Document Server

    Petrosyan, V

    2008-01-01

    We review the possible mechanisms for production of non-thermal electrons which are responsible for non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We briefly review acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We consider two scenarios for production of non-thermal radiation. The first is hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic particles. Non-thermal tails are produced by accelerating electrons from the background plasma with an initial Maxwellian distribution. However, these tails are accompanied by significant heating and they are present for a short time of <10^6 yr, which is also the time that the tail will be thermalised. Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission...

  7. Accelerator School Success

    CERN Multimedia

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  8. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  9. Staging and laser acceleration of ions in underdense plasma

    Science.gov (United States)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  10. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  11. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  12. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  13. Feasibility study of channeling acceleration experiment at the Fermilab ASTA facility

    CERN Document Server

    Shin, Young-Min; Still, Dean A; Shiltsev, Vladimir

    2015-01-01

    Crystal channeling technology has offered various opportunities in accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider in Energy Frontier. The major challenge of the channeling acceleration is that ultimate acceleration gradients might require high power driver at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon- based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper present beam-driven channeling acceleration concept with CNTs and discu...

  14. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  15. Testing Gravity on Accelerators

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  16. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  17. HIGH ENERGY PARTICLE ACCELERATOR

    Science.gov (United States)

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  18. Acceleration of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)], E-mail: berezhko@ikfia.ysn.ru

    2008-07-15

    Cosmic ray (CR) origin problem is briefly discussed. It is argued that CRs with energies up to 10{sup 17} eV are produced in galactic supernova remnants, whereas ultra high energy CRs are extragalactic. CR composition strongly changes within the transition from galactic to extragalactic CR component, therefore precise measurements of CR composition at energies 10{sup 17} - 10{sup 19} eV are needed for the reliable determination of this transition. The possible sources of extragalactic CRs are briefly discussed. It is argued that CR acceleration at the shock created by the expanding cocoons around active galactic nuclei has to be considered as a prime candidate for the sources of extragalactic CRs.

  19. Hadron accelerators for radiotherapy

    Science.gov (United States)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  20. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  1. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  2. Landing the uniformly accelerating observers

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Gruber, Ronald P.

    2006-01-01

    Observers of the uniformly accelerating observers or the observers who make up the system of uniformly accelerating observers reach the same velocity V at different times ti which depends on V and on theirs acceleration gi. Considering a platform that moves with constant velocity V, the observers can land smoothly on it. Their ages and locations in the inertial reference frame attached to the platform are reckoned and compared.

  3. NIIEFA accelerators for applied purposes

    Science.gov (United States)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  4. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  5. Thomas Precession by Uniform Acceleration

    CERN Document Server

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  6. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  7. UV photolysis for accelerating pyridine biodegradation.

    Science.gov (United States)

    Zhang, Yongming; Chang, Ling; Yan, Ning; Tang, Yingxia; Liu, Rui; Rittmann, Bruce E

    2014-01-01

    Pyridine, a nitrogen-containing heterocyclic compound, is slowly biodegradable, and coupling biodegradation with UV photolysis is a potential means to accelerate its biotransformation and mineralization. The initial steps of pyridine biodegradation involve mono-oxygenation reactions that have molecular oxygen and an intracellular electron carrier as cosubstrates. We employed an internal circulation baffled biofilm reactor for pyridine biodegradation following three protocols: direct biodegradation (B), biodegradation after photolysis (P+B), and biodegradation with succinic acid added (B+S). Succinic acid was the main UV-photolysis product from pyridine, and its catabolic oxidation generates internal electron carriers that may accelerate the initial steps of pyridine biodegradation. Compared with direct biodegradation of pyridine (B), the removal rate for the same concentration of photolyzed pyridine (P+B) was higher by 15 to 43%, depending on the initial pyridine concentrations (increasing through the range of 130 to 310 mg/L). Adding succinic acid alone (B+S) gave results similar to P+B, which supports that succinic acid was the main agent for accelerating the pyridine biodegradation rate. In addition, protocols P+B and B+S were similar in terms of increasing pyridine mineralization over 10 h: 84% and 87%, respectively, which were higher than with protocol B (72%). The positive impact of succinic acid-whether added directly or produced via UV photolysis-confirms that its catabolism, which produced intracellular electron carriers, accelerated the initial steps of pyridine biotransformation.

  8. Investigation of Beam-RF Interactions in Twisted Waveguide Accelerating Structures Using Beam Tracking Codes

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Jeffrey A [ORNL; Zhang, Yan [ORNL; Kang, Yoon W [ORNL; Galambos, John D [ORNL; Hassan, Mohamed H [ORNL; Wilson, Joshua L [ORNL

    2009-01-01

    Investigations of the RF properties of certain twisted waveguide structures show that they support favorable accelerating fields. This makes them potential candidates for accelerating cavities. Using the particle tracking code, ORBIT, We examine the beam - RF interaction in the twisted cavity structures to understand their beam transport and acceleration properties. The results will show the distinctive properties of these new structures for particle transport and acceleration, which have not been previously analyzed.

  9. Acceleration parameters for fluid physics with accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-06-01

    Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...

  10. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, I-87036 Rende (Italy)

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  11. Accelerated vaccine development against emerging infectious diseases.

    Science.gov (United States)

    Leblanc, Pierre R; Yuan, Jianping; Brauns, Tim; Gelfand, Jeffrey A; Poznansky, Mark C

    2012-07-01

    Emerging and re-emerging infectious diseases represent a major challenge to vaccine development since it involves two seemingly contradictory requirements. Rapid and flexible vaccine generation while using technologies and processes that can facilitate accelerated regulatory review. Development in the "-omics" in combination with advances in vaccinology offer novel opportunities to meet these requirements. Here we describe how a consortium of five different organizations from academia and industry is addressing these challenges. This novel approach has the potential to become the new standard in vaccine development allowing timely deployment to avert potential pandemics.

  12. KLYNAC: Compact linear accelerator with integrated power supply

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  13. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    Science.gov (United States)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  14. Bio methane in the cogeneration market and heating market. Status quo, potentials and recommendations for an accelerated market penetration; Biomethan im KWK- und Waermemarkt. Status Quo, Potenziale und Handlungsempfehlungen fuer eine beschleunigte Marktdurchdringung

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael; Rostek, Sandra (comps.)

    2010-07-15

    The current contribution of the German Energy Agency (Berlin, Federal Republic of Germany) reports on the present sale situation of bio methane on the coupled and uncoupled heating market. The contribution clarifies, why the existing support measures do not stimulate the demand for bio methane in the necessary order of magnitude. Without adjustment of the legal framework neither the considerable sales potentials can be established, nor the targets for the development of the biogas feeding can be achieved approximately. The low demand on bio methane led to a planning stop on the producer side. Direct need for action is required.

  15. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  16. Acceleration effects on missile aerodynamics

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Practical requirements are now arising in which significant acceleration takes place during flight; 5th generation missiles, such as A-Darter, execute turns at 100 g, where g is the acceleration due to gravity, and thrust from propulsion systems may...

  17. COMPASS Accelerator Design Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  18. Coulomb field of an accelerated charge physical and mathematical aspects

    CERN Document Server

    Alexander, F J; Alexander, Francis J.; Gerlach, Ulrich H.

    1991-01-01

    The Maxwell field equations relative to a uniformly accelerated frame, and the variational principle from which they are obtained, are formulated in terms of the technique of geometrical gauge invariant potentials. They refer to the transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge invariant "2+2" decomposition is used to see how the Coulomb field of a charge, static in an accelerated frame, has properties that suggest features of electromagnetism which are different from those in an inertial frame. In particular, (1) an illustrative calculation shows that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and the charge induced on the surface whose history is the event horizon, and (2) a spectral decomposition of the Coulomb potential in the accelerated frame suggests the possibility that the distortive effects of this charge on the Rindler vacuum are akin to those of a charge on a crystal lattice.

  19. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  20. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  1. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  2. Muon Collider Progress: Accelerators

    CERN Document Server

    Zisman, Michael S

    2011-01-01

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produce...

  3. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  4. The entangled accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Robles-Perez, Salvador [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)

    2009-08-31

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  5. Accelerated shallow water modeling

    Science.gov (United States)

    Gandham, Rajesh; Medina, David; Warburton, Timothy

    2015-04-01

    ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.

  6. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  7. Accelerating scientific publication in biology.

    Science.gov (United States)

    Vale, Ronald D

    2015-11-03

    Scientific publications enable results and ideas to be transmitted throughout the scientific community. The number and type of journal publications also have become the primary criteria used in evaluating career advancement. Our analysis suggests that publication practices have changed considerably in the life sciences over the past 30 years. More experimental data are now required for publication, and the average time required for graduate students to publish their first paper has increased and is approaching the desirable duration of PhD training. Because publication is generally a requirement for career progression, schemes to reduce the time of graduate student and postdoctoral training may be difficult to implement without also considering new mechanisms for accelerating communication of their work. The increasing time to publication also delays potential catalytic effects that ensue when many scientists have access to new information. The time has come for life scientists, funding agencies, and publishers to discuss how to communicate new findings in a way that best serves the interests of the public and the scientific community.

  8. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  9. The ISAC post-accelerator

    Science.gov (United States)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  10. Industrial accelerators and their applications

    CERN Document Server

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  11. Quasi-stable injection channels in a wakefield accelerator

    CERN Document Server

    Wiltshire-Turkay, Mara; Pukhov, Alexander

    2016-01-01

    Particle-driven plasma-wakefield acceleration is a promising alternative to conventional electron acceleration techniques, potentially allowing electron acceleration to energies orders of magnitude higher than can currently be achieved. In this work we investigate the dependence of the energy gain on the position at which electrons are injected into the wake. Test particle simulations show previously unobserved complex structure in the parameter space, with quasi-stable injection channels forming for particles injected in narrow regions away from the centre of the wake. The result is relevant to the planning and tuning of experiments making use of external injection.

  12. New solutions with accelerated expansion in string theory

    Science.gov (United States)

    Dodelson, Matthew; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo

    2014-12-01

    We present concrete solutions with accelerated expansion in string theory, requiring a small, tractable list of stress energy sources. We explain how this construction (and others in progress) evades previous no go theorems for simple accelerating solutions. Our solutions respect an approximate scaling symmetry and realize discrete sequences of values for the equation of state, including one with an accumulation point at w = -1 and another accumulating near w = -1 /3 from below. In another class of models, a density of defects generates scaling solutions with accelerated expansion. We briefly discuss potential applications to dark energy phenomenology, and to holography for cosmology.

  13. The Dust Accelerator Facility at CCLDAS

    Science.gov (United States)

    Shu, A. J.; Collette, A.; Drake, K.; Gruen, E.; Horanyi, M.; Leblanc, S.; Munsat, T.; Northway, P.; Robertson, S. H.; Srama, R.; Sternovsky, Z.; Thomas, E.; Wagner, M.; Colorado CenterLunar Dust; Atmospheric Studies

    2010-12-01

    At the Colorado Center for Lunar Dust and Atmospheric Science (CCLDAS) we are in the process of assembling a 3MV macroscopic (~1um) dust particle accelerator. The acceleration unit is being made by the National Electrostatics Corporation (NEC). The accelerator consists of a pelletron generator and potential rings encased in an enclosure held at 6 atm of SF6. A pulsed dust source is used to inject particles into the accelerator. Here we describe advancements in dust accelerator technology at CCLDAS to allow more functionality and ease of use, focusing primarily on dust source control, and the capability to select a precise range in dust mass and velocity. Previously, the dust source was controlled by long plastic rods turning potentiometers inside the SF6 environment providing little to no feedback and repeatability. We describe a fiber optic control system that allows full control of the pulse characteristics being sent to the dust source using a LabVIEW control program to increase usability. An electrostatic Einzel lens is being designed using the ion-optics code SIMION to determine the properties of the electrodes needed for the optimum focusing of the dust beam. Our simulations studies indicate that the dust beam can be directed into a 0.5mm diameter spot. Our planned experiments require a high degree of control over particles size, speed, charge and other characteristics. In order to ensure that only particles of the desired characteristics are allowed to pass into the target chamber, two deflection plates are used to eliminate unwanted particles from the beam. Further simulations are being done to determine the possibility of bending the beamline to allow active selection of particles. The current design of the selection unit uses nuclear accelerator techniques to determine the velocity and charge of each particle and digital timing and logic to choose particles that will be allowed to pass. This requires a high signal to noise ratio due to the need for a well

  14. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    Science.gov (United States)

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration.

  15. Axionic suppression of plasma wakefield acceleration

    Science.gov (United States)

    Burton, D. A.; Noble, A.; Walton, T. J.

    2016-09-01

    Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.

  16. High-field dipoles for future accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  17. Brane assisted quintessential inflation with transient acceleration

    CERN Document Server

    Bento, M C; Santos, N M C

    2008-01-01

    A simple model of quintessential inflation with the modified exponential potential exp(-\\alpha \\phi) [A + (\\phi-\\phi_0)^2] is analyzed in the braneworld context. Considering reheating via instant preheating, it is shown that the evolution of the scalar field \\phi from inflation to the present epoch is consistent with the observational constraints in a wide region of the parameter space. The model exhibits transient acceleration at late times for 0.96 < A \\alpha^2 < 1.3 and 271 < \\phi_0 \\alpha < 273, while permanent acceleration is obtained for 2.5 10^{-9} < A \\alpha^2 < 0.98 and 252 < \\phi_0 \\alpha < 273. The steep parameter \\alpha is constrained to be in the range 5.3 < \\alpha < 11.2.

  18. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Science.gov (United States)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  19. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    Science.gov (United States)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  20. Accelerated cleanup risk reduction

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  1. Operation of the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.C.; Batzka, B.; Billquist, P.J. [and others

    1995-08-01

    Fiscal Year 1994 was the first year of seven-day operation since ATLAS became a national user facility in 1985. ATLAS made the most of the opportunity this year by providing 5200 hours of beam on-target to the research program. A record number of 60 experiments were completed and the {open_quotes}facility reliability{close_quotes} remained near the 90% level. Seven-day operation was made possible with the addition to the staff of two operator positions providing single-operator coverage during the weekend period. The normally scheduled coverage was augmented by an on-call list of system experts who respond to emergencies with phone-in advice and return to the Laboratory when necessary. This staffing approach continues but we rearranged our staffing patterns so that we now have one cryogenics engineer working a shift pattern which includes 8-hour daily coverage during the weekend. ATLAS provided a beam mix to users consisting of 26 different isotopic species, 23% of which were for A>100 in FY 1994. Approximately 60% of the beam time was provided by the Positive Ion Injector, slightly less than the usage rate of FY 1993. Experiments using uranium or lead beams accounted for 16.4% of the total beam time. The ECR ion source and high-voltage platform functioned well throughout the year. A new technique for solid material production in the source was developed which uses a sputtering process wherein the sample of material placed near the plasma chamber wall is biased negatively. Plasma ions are accelerated into the sample and material is sputtered from the surface into the plasma. This technique is now used routinely for many elements. Runs of calcium, germanium, nickel, lead, tellurium, and uranium were carried out with this technique.

  2. Accelerated coffee pulp composting.

    Science.gov (United States)

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  3. "small ACCELERATORS" 24 May - 2 June 2005

    CERN Multimedia

    2005-01-01

    CERN Accelerator School and Kernfysisch Versneller Instituut (KVI) Groningen, the Netherlands announce a course on "Small Accelerators", Hotel Golden Tulip Drenthe, Zeegse, the Netherlands, 24 May - 2 June 2005. This specialised course is dedicated to the physics and the main applications of small accelerators. The course will review the different accelerator types as well as their specificities in terms of accelerator physics.

  4. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure.

    Science.gov (United States)

    Simakov, Evgenya I; Arsenyev, Sergey A; Buechler, Cynthia E; Edwards, Randall L; Romero, William P; Conde, Manoel; Ha, Gwanghui; Power, John G; Wisniewski, Eric E; Jing, Chunguang

    2016-02-12

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  5. Proton Acceleration at Oblique Shocks

    Science.gov (United States)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  6. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  7. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  8. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  9. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-03

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponents of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)

  10. SNEAP 80: symposium of Northeastern Accelerator personnel

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J.H. (ed.)

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  11. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  12. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  13. IGBT accelerated aging data set.

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary data from thermal overstress accelerated aging using the aging and characterization system. The data set contains aging data from 6 devices, one device...

  14. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  15. Accelerator structure work for NLC

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gluckstern, R. [Maryland Univ., College Park, MD (United States); Ko, K.; Kroll, N. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  16. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  17. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  18. Particle acceleration around SNR shocks

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G., E-mail: morlino@arcetri.astro.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze (Italy)

    2013-08-21

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non-linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non-linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  19. Particle acceleration around SNR shocks

    CERN Document Server

    Morlino, Giovanni

    2012-01-01

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  20. The KEK Digital Accelerator and Its Brothers

    Science.gov (United States)

    Takayama, Ken

    Circular induction accelerators developed in the last 10 years are discussed. They are characterized by induction acceleration of a charged beam bunch trapped in the barrier bucket. This property enables acceleration of any ion species from an extremely low energy to relativistic energy in a single accelerator ring. In the future, a racetrack-shaped fixed field induction accelerator (induction microtron) could be realized as a unique accelerator for cluster ions such as C-60 and Si-100.

  1. Experimental demonstration of 3D accelerating beam arrays.

    Science.gov (United States)

    Yu, Xianghua; Li, Runze; Yan, Shaohui; Yao, Baoli; Gao, Peng; Han, Guoxia; Lei, Ming

    2016-04-10

    Accelerating beams have attracted much attention in the frontiers of optical physics and technology owing to their unique propagation dynamics of nondiffracting, self-healing, and freely accelerating along curved trajectories. Such behaviors essentially arise from the particular phase factor occurring in their spatial frequency spectrum, e.g., the cubic phase associated to the spectrum of Airy beam. In this paper, we theoretically and experimentally demonstrate a sort of accelerating beam arrays, which are composed of spatially separated accelerating beams. By superimposing kinoforms of multifocal patterns into the spatial frequency spectrum of accelerating beams, different types of beam arrays, e.g., Airy beam arrays and two-main-lobe accelerating beam arrays, are generated and measured by scanning a reflection mirror near the focal region along the optical axis. The 3D intensity patterns reconstructed from the experimental data present good agreement with the theoretical counterparts. The combination of accelerating beams with optical beam arrays proposed here may find potential applications in various fields such as optical microscopes, optical micromachining, optical trapping, and so on.

  2. Accelerated Development of Organizational Talent

    OpenAIRE

    Korotov, Konstantin

    2007-01-01

    This working paper explores the challenges of accelerated development of organizational talent. The meaning of the word "accelerated" is that such development takes place at a pace that is significantly higher than that of "traditional" development that allows an individual to learn the intricacies of the current job, observe incumbents in a higher level position (usually, one level up), practice elements of the boss' job when being delegated tasks, undergoing formal training, or benefiting f...

  3. Hamiltonian mechanics of stochastic acceleration.

    Science.gov (United States)

    Burby, J W; Zhmoginov, A I; Qin, H

    2013-11-08

    We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

  4. BRIEF HISTORY OF FFAG ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    RUGGIERO, A.

    2006-12-04

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  5. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  6. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  7. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  8. Dark Energy or local acceleration?

    CERN Document Server

    Feoli, Antonio

    2016-01-01

    We find that an observer with a suitable acceleration relative to the frame comoving whit the cosmic fluid, in the context of the FRW decelerating universe, measures the same cosmological redshift as the LambdaCDM model. The estimated value of this acceleration is beta = 1.4x10^-9m/s^2. The problem of a too high peculiar velocity can be solved assuming, for the observer, a sort of helical motion.

  9. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  10. Numerical and laboratory simulations of auroral acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gunell, H.; De Keyser, J. [1Belgian Institute for Space Aeronomy, Avenue Circulaire 3, B-1180 Brussels (Belgium); Mann, I. [EISCAT Scientific Association, P.O. Box 812, SE-981 28 Kiruna, Sweden and Department of Physics, Umeå University, SE-901 87 Umeå (Sweden)

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  11. Simulations for Plasma and Laser Acceleration

    Science.gov (United States)

    Vay, Jean-Luc; Lehe, Rémi

    Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments, and will be a key component for turning plasma accelerators from a promising technology into a mainstream scientific tool. In this article, we present an overview of the numerical techniques used with the most popular approaches to model plasma-based accelerators: electromagnetic particle-in-cell, quasistatic and ponderomotive guiding center. The material that is presented is intended to serve as an introduction to the basics of those approaches, and to advances (some of them very recent) that have pushed the state of the art, such as the optimal Lorentz-boosted frame, advanced laser envelope solvers and the elimination of numerical Cherenkov instability. The particle-in-cell method, which has broader interest and is more standardized, is presented in more depth. Additional topics that are cross-cutting, such as azimuthal Fourier decomposition or filtering, are also discussed, as well as potential challenges and remedies in the initialization of simulations and output of data. Examples of simulations using the techniques that are presented have been left out of this article for conciseness, and because simulation results are best understood when presented together, and contrasted with theoretical and/or experimental results, as in other articles of this volume.

  12. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  13. Vacuum Brazing of Accelerator Components

    Science.gov (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  14. Tutorial on Superconducting Accelerator Magnets

    Science.gov (United States)

    Ball, M. J. Penny; Goodzeit, Carl L.

    1997-05-01

    A multimedia CD-ROM tutorial on the physics and engineering concepts of superconducting magnets for particle accelerators is being developed under a U.S. Dept. of Energy SBIR grant. The tutorial, scheduled for distribution this summer, is targeted to undergraduate junior or senior level science students. However, its unified presentation of the broad range of issues involved in the design of superconducting magnets for accelerators and the extensive detail about the construction process (including animations and video clips) will also be of value to staff of research institutes and industrial concerns with an interest in applied superconductivity or magnet development. The source material, which is based on the world-wide R and D programs to develop superconducting accelerator magnets, is organized in five units with the following themes: Introduction to magnets and accelerators; (2) Superconductors for accelerator magnets; (3) Magnetic design methods for accelerator magnets; (4) Electrical, mechanical, and cryogenic considerations for the final magnet package; (5) Performance characteristics and measurement methods. A detailed outline and examples will be shown.

  15. A Phenomenological Cost Model for High Energy Particle Accelerators

    CERN Document Server

    Shiltsev, Vladimir

    2014-01-01

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  16. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  17. Landscape of Future Accelerators at the Energy and Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M. J. [Northern Illinois U.; Chattopadhyay, S. [Northern Illinois U.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  18. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  19. Automatic Fall Detection using Smartphone Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Tran Tri Dang

    2016-12-01

    Full Text Available In this paper, we describe our work on developing an automatic fall detection technique using smart phone. Fall is detected based on analyzing acceleration patterns generated during various activities. An additional long lie detection algorithm is used to improve fall detection rate while keeping false positive rate at an acceptable value. An application prototype is implemented on Android operating system and is used to evaluate the proposed technique performance. Experiment results show the potential of using this app for fall detection. However, more realistic experiment setting is needed to make this technique suitable for use in real life situations.

  20. Quantum Radiation of Uniformly Accelerated Spherical Mirrors

    CERN Document Server

    Frolov, V

    2001-01-01

    We study quantum radiation generated by a uniformly accelerated motion of small spherical mirrors. To obtain Green's function for a scalar massless field we use Wick's rotation. In the Euclidean domain the problem is reduced to finding an electric potential in 4D flat space in the presence of a metallic toroidal boundary. The latter problem is solved by a separation of variables. After performing an inverse Wick's rotation we obtain the Hadamard function in the wave-zone regime and use it to calculate the vacuum fluctuations and the vacuum expectation for the energy density flux in the wave zone.

  1. Lorentz-Dirac force from QED for linear acceleration

    Science.gov (United States)

    Higuchi, Atsushi; Martin, Giles D.

    2004-10-01

    We investigate the motion of a wave packet of a charged scalar particle linearly accelerated by a static potential in quantum electrodynamics. We calculate the expectation value of the position of the charged particle after the acceleration to first order in the fine structure constant in the ℏ→0 limit. We find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics. We also point out that the one-loop correction to the potential may contribute to the position change in this limit.

  2. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  3. Accelerating incoherent dedispersion

    CERN Document Server

    Barsdell, Benjamin R; Barnes, David G; Fluke, Christopher J

    2012-01-01

    Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of 9x for the direct algorithm when compared to an optimised quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimi...

  4. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Document Server

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  5. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  6. Acceleration of injected electrons by the plasma beat wave accelerator

    Science.gov (United States)

    Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.

    1992-07-01

    In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.

  7. Acceleration schedules for a recirculating heavy-ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  8. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  9. DARHT II Scaled Accelerator Tests on the ETA II Accelerator*

    Energy Technology Data Exchange (ETDEWEB)

    Weir, J T; Anaya Jr, E M; Caporaso, G J; Chambers, F W; Chen, Y; Falabella, S; Lee, B S; Paul, A C; Raymond, B A; Richardson, R A; Watson, J A; Chan, D; Davis, H A; Day, L A; Scarpetti, R D; Schultze, M E; Hughes, T P

    2005-05-26

    The DARHT II accelerator at LANL is preparing a series of preliminary tests at the reduced voltage of 7.8 MeV. The transport hardware between the end of the accelerator and the final target magnet was shipped to LLNL and installed on ETA II. Using the ETA II beam at 5.2 MeV we completed a set of experiments designed reduce start up time on the DARHT II experiments and run the equipment in a configuration adapted to the reduced energy. Results of the beam transport using a reduced energy beam, including the kicker and kicker pulser system will be presented.

  10. Potential Application of Magnetohydrodynamic Acceleration to Hypersonic Environmental Testing

    Science.gov (United States)

    1990-08-01

    commercial MHD power conditions, e.g., around 10 Siemens /meter. The code has also been carefully compared with transport property calculations by AVCO, STD...Kg Xx 0𔃺& W.. ..,10ŕx.•. K / NX 0046 * 0-2 K X A * 10 Kg .. 3.N 0- . o K 0 ME cl XXXIx MCH 15 10- 4----T--0-0- 10 2 1 01 1 1 1 1 10 10- 3 to-2

  11. Potential of oncostatin M to accelerate diabetic wound healing.

    Science.gov (United States)

    Shin, Soo Hye; Han, Seung-Kyu; Jeong, Seong-Ho; Kim, Woo-Kyung

    2014-08-01

    Oncostatin M (OSM) is a multifunctional cytokine found in a variety of pathologic conditions, which leads to excessive collagen deposition. Current studies demonstrate that OSM is also a mitogen for fibroblasts and has an anti-inflammatory action. It was therefore hypothesised that OSM may play an important role in healing of chronic wounds that usually involve decreased fibroblast function and persist in the inflammatory stage for a long time. In a previous in vitro study, the authors showed that OSM increased wound healing activities of diabetic dermal fibroblasts. However, wound healing in vivo is a complex process involving multiple factors. Thus, the purpose of this study was to evaluate the effect of OSM on diabetic wound healing in vivo. Five diabetic mice were used in this study. Four full-thickness round wounds were created on the back of each mouse (total 20 wounds). OSM was applied on the two left-side wounds (n = 10) and phosphate-buffered saline was applied on the two right-side wounds (n = 10). After 10 days, unhealed wound areas of the OSM and control groups were compared using the stereoimage optical topometer system. Also, epithelialisation, wound contraction and reduction in wound volume in each group were compared. The OSM-treated group showed superior results in all of the tested parameters. In particular, the unhealed wound area and the reduction in wound volume demonstrated statistically significant differences (P healing of diabetic wounds. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  12. Potential Structures and Particle Acceleration on Auroral Field Lines.

    Science.gov (United States)

    2014-09-26

    90245 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Space Division 1 May 1985 Los Angeles Air Force Station 13. NUMBEROpt PAGES Los ,~glesCali...communications, lid&r, and electro- optics; cmmuniction sciences, applied electronics, semiconductor crystal and device physics, radiometric tmating

  13. Industrial Electron Accelerators Type ILU

    CERN Document Server

    Auslender, Vadim; Cheskidov, Vladimir; Faktorovich, Boris; Gorbunov, Vladimir; Gornakov, Igor; Nekhaev, V E; Panfilov, Alexander; Sidorov, Alexander; Tkachenko, Vadim; Tuvik, Alfred; Voronin, Leonid

    2005-01-01

    The report describes the electron accelerators of ILU series covering the energy range from 0.5 to 5 MeV with beam power up to 50 kW. The pulse linear accelerators type ILU are developed since 1970 in Budker institute of Nuclear Physics and are supplied to the industry. The ILU machines are purposed for wide application in various technological processes and designed for long continuous and round-the-clock work in industrial conditions. A principle of acceleration of electrons in the gap of HF resonator is used in the ILU machines. The HF resonator has toroidal form. The electron gun is placed in one of the protruding electrodes forming the accelerating gap of the resonator. The resonator is fed from HF autogenerator realized on the industrial triode, the feedback signal is given from the resonator. The absence of outer beam injection and usage of self-excited HF generator simplify the design of accelerator and ensure its reliable operation.

  14. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  15. 38 CFR 9.14 - Accelerated Benefits.

    Science.gov (United States)

    2010-07-01

    ...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...? ____ Yes__ No__ The patient applied for an accelerated benefit under his/her government life...

  16. Accelerator Technology Division annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  17. ACCELERATING CONSTRUCTION INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Mohan M. Kumaraswamy

    2006-06-01

    Full Text Available The needs for construction industry development are initially viewed from the broader perspectives of imperatives for infrastructure development and national development. All these are clearly more critical in developing countries. A non-exhaustive set of potential drivers and common barriers to construction industry development is identified from previous research. These suggest the usefulness of consolidating a cluster of recent proposals and exercises aiming at (a construction organization development in terms of an over-arching management support system model, as well as improved information and knowledge management; and (b project team development in the context of relationally integrated teams and supply chains, joint risk management and ‘technology and knowledge exchange’ in joint ventures, as well as longer term public private partnerships. These apparently disparate research thrusts are threaded together into a pattern that may inspire, if not feed, specific research and development (R & D agendas for construction industry development in different countries according to their own priorities, constraints and stages of infrastructure and national development.

  18. Accelerating incoherent dedispersion

    Science.gov (United States)

    Barsdell, B. R.; Bailes, M.; Barnes, D. G.; Fluke, C. J.

    2012-05-01

    Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present an analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of nine times for the direct algorithm when compared to an optimized quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimization is unnecessary to achieve real-time processing. Where further speed-ups are desirable, we find that the tree and sub-band algorithms are able to provide three to seven times better performance at the cost of certain smearing, memory consumption and development time trade-offs. We finish with a discussion of the implications of these results for future transient surveys. Our GPU dedispersion code is publicly available as a C library at .

  19. Accelerated Backward Warping

    Institute of Scientific and Technical Information of China (English)

    ZHANG YanCi(张严辞); LIU XueHui(刘学慧); WU EnHua(吴恩华)

    2003-01-01

    In this paper a plane-based backward warping algorithm is proposed to generate novel views from multiple reference images. First, depth information is employed to reconstruct space planes from individual reference images and calculate the potential occluding relationship between these planes. Then the planes which represent each identical space plane from different reference images are compared with each other to decide the one with the best sample rate to be preserved and used in the later warping period while the other samples are abandoned. While the image of a novel view is produced, traditional methods in computer graphics, such as visibility test and clipping, are used to process the planes reconstructed. Then the planes processed are projected onto the desired image from the knowledge on which plane the desired image pixels are warped from can be acquired. Finally, pixels' depth of the desired image is calculated and then a backward warping is performed from these pixels to the reference images to obtain their colors. The storage requirement in the algorithm is small and increases slowly with the number of reference images increases. By combining the strategy of only preserving the best sample parts and the backward warping algorithm, the sample problem could be well tackled.

  20. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  1. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  2. A Multibunch Plasma Wakefield Accelerator

    CERN Document Server

    Kallos, Efthymios; Ben-Zvi, Ilan; Katsouleas, Thomas C; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Yakimenko, Vitaly; Zhou, Feng

    2005-01-01

    We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.

  3. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  4. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  5. Virtual gap dielectric wall accelerator

    Science.gov (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  6. A reference accelerator scheme for ADS applications

    Energy Technology Data Exchange (ETDEWEB)

    Biarrotte, Jean-Luc [CNRS/IN2P3, Institut de Physique Nucleaire, 91406 Orsay (France)]. E-mail: biarrott@ipno.in2p3.fr; Bousson, Sebastien [CNRS/IN2P3, Institut de Physique Nucleaire, 91406 Orsay (France); Junquera, Tomas [CNRS/IN2P3, Institut de Physique Nucleaire, 91406 Orsay (France); Mueller, Alex C. [CNRS/IN2P3, Institut de Physique Nucleaire, 91406 Orsay (France); Olivier, Aurelia [CNRS/IN2P3, Institut de Physique Nucleaire, 91406 Orsay (France)

    2006-06-23

    Accelerator Driven Systems (ADS) for transmutation of nuclear waste typically require 350MeV-1GeV accelerators delivering proton fluxes of 5-10mA for demonstrators, and 20-50mA for large industrial systems. Thus, such machines belong to the category of the so-called HPPA (High-Power Proton Accelerators), with multi-megawatt beam power. HPPA are presently developed and constructed at great pace for their broad utility in fundamental or applied science. Compared to other HPPA, many features and requirements are similar for the ADS driver. However, there is a need for exceptional reliability: because of the induced thermal stress to the sub-critical core, the number of unwanted 'beam-trips' should not exceed a few per year, a requirement that is several orders of magnitude above usual performance. Consecutive to the work of the European Technical Working Group (ETWG) on ADS, the Preliminary Design Study of an Experimental ADS (PDS-XADS) was launched in 2001 as a 5th Framework Program EC project. A special Working Package (WP3) was dedicated to the accelerator design, taking especially into account that the issue of 'beam-trips' could be a potential 'show-stopper' for ADS technology in general. A reference solution, based on a linear superconducting accelerator with its associated doubly achromatic beam line, has been worked out to some detail. For high reliability, the proposed design is intrinsically fault tolerant, relying on highly modular 'de-rated' components associated to a fast digital feedback system. The proposed solution also appears to be robust concerning operational aspects like maintenance and radioprotection. A roadmap for construction as well as the required consolidated budget was elaborated. A program for the remaining R and D, focused on experimental reliability demonstration of prototypical components has been elaborated. This R and D will be performed in the 6th Framework Program EC project EUROTRANS, which

  7. Coupler Studies for PBG Fiber Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    England, J.; Ng, C.; Noble, R.; Spencer, J.; Wu, Z.; Xu, D.; /SLAC

    2011-08-17

    Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to {lambda} = 1.5-2.0 {micro}m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles. We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 {micro}m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end

  8. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  9. Accelerating cosmologies and a phase transition in M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Mattias N.R

    2003-06-19

    M-theory compactifies on a seven-dimensional time-dependent hyperbolic or flat space to a four-dimensional FLRW cosmology undergoing a period of accelerated expansion in Einstein conformal frame. The strong energy condition is violated by the scalar fields produced in the compactification, as is necessary to evade the no-go theorem for time-independent compactifications. The four-form field strength of eleven-dimensional supergravity smoothly switches on during the period of accelerated expansion in hyperbolic compactifications, whereas in flat compactifications, the three-form potential smoothly changes its sign. For small acceleration times, this behaviour is like a phase transition of the three-form potential, during which the cosmological scale factor approximately doubles.

  10. Accelerating Cosmologies and a Phase Transition in M-Theory

    CERN Document Server

    Wohlfarth, M N R

    2003-01-01

    M-theory compactifies on a seven-dimensional time-dependent hyperbolic or flat space to a four-dimensional FLRW cosmology undergoing a period of accelerated expansion in Einstein conformal frame. The strong energy condition is violated by the scalar fields produced in the compactification, as is necessary to evade the no-go theorem for time-independent compactifications. The four-form field strength of eleven-dimensional supergravity smoothly switches on during the period of accelerated expansion in hyperbolic compactifications, whereas in flat compactifications, the three-form potential smoothly changes its sign. For small acceleration times, this behaviour is like a phase transition of the three-form potential, during which the cosmological scale factor approximately doubles.

  11. Laser Technology for Advanced Acceleration: Accelerating Beyond TeV

    Science.gov (United States)

    Wheeler, Jonathan; Mourou, Gérard; Tajima, Toshiki

    The implementation of the suggestion of thin film compression (TFC) allows the newest class of high power, ultrafast laser pulses (typically 20fs at near-infrared wavelengths) to be compressed to the limit of a single-cycle laser pulse (2fs). Its simplicity and high efficiency, as well as its accessibility to a single-cycle laser pulse, introduce a new regime of laser-plasma interaction that enhances laser acceleration. Single-cycle laser acceleration of ions is a far more efficient and coherent process than the known laser-ion acceleration mechanisms. The TFC-derived single-cycle optical pulse is capable of inducing a single-cycle X-ray laser pulse (with a far shorter pulse length and thus an extremely high intensity) through relativistic compression. The application of such an X-ray pulse leads to the novel regime of laser wakefield acceleration of electrons in the X-ray regime, yielding a prospect of “TeV on a chip.” This possibility of single-cycle X-ray pulses heralds zeptosecond and EW lasers (and zeptoscience). The additional invention of the coherent amplification network (CAN) fiber laser pushes the frontier of high repetition, high efficiency lasers, which are the hallmark of needed applications such as laser-driven LWFA colliders and other, societal applications. CAN addresses the crucial aspect of intense lasers that have traditionally lacked the above properties.

  12. DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit and N.J. Fisch

    2009-06-17

    Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

  13. Electron Cloud Effects in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  14. Electron Cloud Effects in Accelerators

    CERN Document Server

    Furman, M A

    2013-01-01

    We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire "ECLOUD" series [122]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  15. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  16. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  17. Laser-propelled ram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasoh, A. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    2000-11-01

    The concept of 'laser-propelled ram accelerator (L-RAMAC)' is proposed. Theoretically it is capable of achieving a higher launch speed than that by a chemical ram accelerator because a higher specific energy can be input to the propellant gas. The laser beam is supplied through the muzzle, focused as an annulus behind the base of the projectile. The performance of L-RAMAC is analized based on generalized Rankine-Hugoniot relations, suggesting that a superorbital muzzle speed is achievable out of this device. (orig.)

  18. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  19. Double pulse laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changbum [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)], E-mail: chbkim@postech.ac.kr; Kim, Jin-Cheol B. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Kukhee [National Fusion Reserch Center, Daejeon 305-333 (Korea, Republic of); Ko, In Soo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Suk, Hyyong [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2007-10-22

    Two-dimensional simulation studies are performed for modified laser wakefield acceleration. After one laser pulse, another identical laser pulse is sent to the plasma to amplify the wake wave resonantly. The simulation results show that the number of injected electrons is bigger than that of the single pulse case and the beam energy is higher as well. In addition, increase of the transverse amplitude is noticed in the wake wave after the second laser pulse. This shows that the transverse motion of the wake wave enhances the wave breaking for strong injection and acceleration of electron beams.

  20. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  1. Geometric integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Etienne [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2006-05-12

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  2. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  3. Technology of magnetically driven accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  4. An MCNPX accelerator beam source

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elson, Jay S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jason, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Laurie S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-06-04

    MCNPX is a powerful Monte Carlo code that can be used to conduct sophisticated radiation-transport simulations involving complex physics and geometry. Although MCNPX possesses a wide assortment of standardized modeling tools, there are instances in which a user's needs can eclipse existing code capabilities. Fortunately, although it may not be widely known, MCNPX can accommodate many customization needs. In this article, we demonstrate source-customization capability for a new SOURCE subroutine as part of our development to enable simulations involving accelerator beams for active-interrogation studies. Simulation results for a muon beam are presented to illustrate the new accelerator-source capability.

  5. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  6. Thermodynamics of Accelerating Black Holes

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  7. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  8. Accelerated Gas Carburizing (URX Gas Carburizing)

    Institute of Scientific and Technical Information of China (English)

    Yoshikazu Shimosato; Mamoru Kamitani; Hiroyuki Nakatsu

    2004-01-01

    URX gas carburizing is an accelerated gas carburizing method with 50% CO + 50% H2 gas which comes from CH4 gas + CO2 gas. By using this gas composition, the carburizing reaction rate increases to the maximum and the controllability of carbon potential improves. A carbon mass flow rate is the product of the carburizing reaction rate multiplied by the difference of carbon percent between carbon potential of the gas and the carbon content of the surface of treated steel parts. We have obtained excellent results from the experimental tests at our laboratory as mentioned bellow. 1)Carburizing time can be shortened by 40% for 0.5 - 0.9 mm effective case depth. 2) Uniform carburizing case depth 3) Less internal oxidation with the same case depth. We have already developed the new roller hearth type continuous carburizing furnace and the new URX gas generator.

  9. Conflation: a new type of accelerated expansion

    Science.gov (United States)

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno

    2016-08-01

    In the framework of scalar-tensor theories of gravity, we construct a new kind of cosmological model that conflates inflation and ekpyrosis. During a phase of conflation, the universe undergoes accelerated expansion, but with crucial differences compared to ordinary inflation. In particular, the potential energy is negative, which is of interest for supergravity and string theory where both negative potentials and the required scalar-tensor couplings are rather natural. A distinguishing feature of the model is that, for a large parameter range, it does not significantly amplify adiabatic scalar and tensor fluctuations, and in particular does not lead to eternal inflation and the associated infinities. We also show how density fluctuations in accord with current observations may be generated by adding a second scalar field to the model. Conflation may be viewed as complementary to the recently proposed anamorphic universe of Ijjas and Steinhardt.

  10. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    OpenAIRE

    Calcagnile L.; Quarta G.

    2012-01-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be ...

  11. Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators

    CERN Document Server

    Knetsch, Alexander; Wittig, Georg; Groth, Henning; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James Benjamin; Bruhwiler, David Leslie; Smith, Johnathan; Jaroszynski, Dino Anthony; Sheng, Zheng-Ming; Manahan, Grace Gloria; Xia, Guoxing; Jamison, Steven; Hidding, Bernhard

    2014-01-01

    It is shown that the requirements for high quality electron bunch generation and trapping from an underdense photocathode in plasma wakefield accelerators can be substantially relaxed through localizing it on a plasma density downramp. This depresses the phase velocity of the accelerating electric field until the generated electrons are in phase, allowing for trapping in shallow trapping potentials. As a consequence the underdense photocathode technique is applicable by a much larger number of accelerator facilities. Furthermore, dark current generation is effectively suppressed.

  12. Feature-Based Analysis of Plasma-Based Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron G. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cormier-Michel, Estelle [Tech-X Corp., Boulder, CO (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  13. TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. M. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-03-23

    The development of high gradient acceleration and tight phase-space control of high power beams is a key element for future lepton and hadron colliders since the increasing demands for higher energy and luminosity significantly raise costs of modern HEP facilities. Atomic channels in crystals are known to consist of 10–100 V/Å potential barriers capable of guiding and collimating a high energy beam providing continuously focused acceleration with exceptionally high gradients (TeV/m). However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions, which has prevented crystals from being applied to high power accelerators. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This study presents the current status of CNT-channeling acceleration research at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  14. Post-LHC accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  15. Program Evaluation: Accelerating Retained Students

    Science.gov (United States)

    Juneau, Lisa

    2014-01-01

    The purpose of this program evaluation was to evaluate the first year of an acceleration program that allowed students who were retained a grade level for not performing on academic level in early elementary school an opportunity to rejoin their age appropriate class. The primary focus of the evaluation was to evaluate the effectiveness of an…

  16. CLIC Drive Beam Accelerating Structures

    CERN Document Server

    Wegner, Rolf

    2012-01-01

    Travelling structures for accelerating the high-current (4.2 A) CLIC Drive Beam to an energy of 2.37 GeV are presented. The structures are optimised for efficiency (full beam loading operation) and a desired filling time. Higher order modes are studied and are reduced by detuning along the structure and by damping with silicon carbide loads.

  17. Repair of overheating linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  18. Linear accelerators of the future

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G.A.

    1986-07-01

    Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains. (LEW)

  19. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  20. Petawatt pulsed-power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  1. Accelerator Physics Code Web Repository

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; /CERN; Payet, J.; /Saclay; Bartolini, R.; /RAL, Diamond; Farvacque, L.; /ESRF, Grenoble; Sen, T.; /Fermilab; Chin, Y.H.; Ohmi, K.; Oide, K.; /KEK, Tsukuba; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  2. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  3. Physics Needs for Future Accelerators

    CERN Document Server

    Lykken, J D

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  4. Observations of Collective Ion Acceleration.

    Science.gov (United States)

    1981-01-01

    possible benefit can be listed. In cancer therapy, radiation produced by ion beams may be more selectively directed into tumors. Ion beams in spallation...34Autoresonant Accelerator Concept," Phys. Rev. Lett. 31, 1234 (1973). 50. S. Humphries, J. J. Lee, and R. N. Sudan, "Generation of Incense Pulsed Ion Beams

  5. Cosmological Acceleration from Gravitational Waves

    CERN Document Server

    Marochnik, Leonid

    2015-01-01

    It is shown that the classical gravitational waves of super-horizon wavelengths are able to form the de Sitter accelerated expansion of the empty (with no matter fields) Universe. The contemporary Universe is about 70% empty and asymptotically is going to become completely empty, so the effect caused by emptiness should be already very noticeable. It could manifest itself as the dark energy.

  6. CERNois wins prestigious accelerator award

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    During the 2nd International Particle Accelerator Conference, CERN’s Rogelio Tomás García became the first Spaniard to receive the Frank Sacherer Prize for his work in particle beam optics.   Rogelio Tomás García at the 2nd International Particle Accelerator Conference. The Frank Sacherer Prize is awarded to physicists who have made a “significant, original contribution to the accelerator field" early on in their career. This year the prize was given to Rogelio Tomás García who, at only 35 years of age, has made important contributions to the optics design, optics measurement, and correction techniques applied at both the LHC and Brookhaven’s RHIC. “Tomás has had a vital impact on CERN’s beam optics studies and has made very impressive achievements in the field of beam optics,” says Oliver Brüning, Head of the Accelerators and Beam Physics...

  7. Accelerator Operators and Software Development

    Energy Technology Data Exchange (ETDEWEB)

    April Miller; Michele Joyce

    2001-11-01

    At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150.

  8. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to

  9. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  10. Ultrafast science using Laser Wakefield Accelerators

    Science.gov (United States)

    Thomas, Alec G. R.

    2016-10-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have considerable benefits for ultrafast science. Laser wakefield acceleration provides radiation pulses that have femtosecond duration and intrinsic synchronisation with the laser source, allowing for pump-probe measurements with unprecedented temporal resolution. These pulses can be used to study ultrafast dynamical phenomena in plasma and dense material, such as transient magnetic fields, rapidly evolving plasma dynamics and crystal lattice oscillations. In this talk, I will review recent experiments in laser wakefield acceleration and energetic photon generation using the laser systems HERCULES and Lambda-Cubed at the University of Michigan and their use for capturing the dynamics of laser-pumped samples. Studies of the electron beam hosing instability and the generation of annular phase space distributions increase X-ray flux while maintaining its femtosecond duration. Single-shot, spectrally resolved absorption measurements in laser pumped foils can be made on ultrafast timescales using this broadband photon source. Ultrafast electron radiography is able to temporally resolve relativistically expanding magnetic fields in high-intensity laser-solid interactions and the evolution of electric fields in low density plasma. Time-resolved electron diffraction captures structural dynamics in crystalline silicon. I will also discuss the technological needs for and potential impact of such revolutionary compact radiation sources for ultrafast science in the future. US Air Force Office of Scientific Research under Award Number FA9550-12-1-0310, the US National Science Foundation Grants No. 1054164, 0935197, 1535628 and 0810979, US Department of Energy Grant No. DE-NA0002372 and Army Research Office Grant No. W911NF1.

  11. Accelerated GPU based SPECT Monte Carlo simulations

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  12. Accelerated GPU based SPECT Monte Carlo simulations.

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  13. CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    CERN Document Server

    Herr, W

    2014-01-01

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.

  14. Accelerated cleanup Initiatives Putting the Acceleration Plans into Action

    Energy Technology Data Exchange (ETDEWEB)

    TYREE, G.T.

    2003-01-01

    This paper describes project successes during the last year and presents strategies for accomplishing work required to accelerate waste retrieval, treatment and closure of 177 large underground waste tanks at the Hanford Site. The tanks contain approximately 53 million gallons of liquid, sludge, and solid waste resulting from decades of national defense production. The Hanford Site is a 560 square-mile area in southeastern Washington State. One of the nation's largest rivers, the Columbia River, flows through the site and within seven miles of the waste tanks. The US. Department of Energy (DOE) Office of River Protection and CH2M HILL Hanford Group, Inc. (CH2M HILL) drew upon the recommendations in the DOE's Top-To-Bottom Review and the ideas that emerged from the Cleanup Challenges and Constraints Team (C3T) when creating new initiatives last fall in accelerated tank cleanup. The initiatives reflect discussions and planning during the last year by the DOE, regulatory,agencies, Hanford stakeholders, and CH2M HILL on how to accelerate tank cleanup and closure. The initiatives focus on near-term risk reduction, deployment of proven cleanup technologies, and completing the feed delivery and waste storage systems needed to support Hanford's Waste Treatment Plant. Working with the Office of River Protection, CH2M HILL is changing the way it does business to align with the new focus on accelerated tank cleanup initiatives. A key concept of this new approach is to deploy simple, proven technologies whenever possible to accomplish program goals. Finding existing technologies and evaluating whether they can be applied to or adapted to Hanford tank cleanup provide the best chance for success in achieving treatment of all of Hanford's tank waste by 2028.

  15. Mind Your Step: Exploring aspects in the application of long accelerating moving walkways

    NARCIS (Netherlands)

    Kusumaningtyas, I.

    2009-01-01

    Accelerating Moving Walkways (AMWs) are conveyor systems that accelerate pedestrians from a low speed at the entrance to a higher speed at the middle section, and then decelerate them to a low speed again at the exit. It is envisaged they can be a potential transport mode to fill the gap between sho

  16. Mind Your Step: Exploring aspects in the application of long accelerating moving walkways

    NARCIS (Netherlands)

    Kusumaningtyas, I.

    2009-01-01

    Accelerating Moving Walkways (AMWs) are conveyor systems that accelerate pedestrians from a low speed at the entrance to a higher speed at the middle section, and then decelerate them to a low speed again at the exit. It is envisaged they can be a potential transport mode to fill the gap between

  17. Secular Acceleration of Barnard's Star

    Science.gov (United States)

    Bartlett, Jennifer L.; Ianna, P. A.

    2009-01-01

    Barnard's Star should have significant secular acceleration because it lies close to the Sun and has the highest known proper motion along with a large radial velocity. It will pass within about 1.4 pc in another 9,750 years. Secular changes in proper motion and radial velocity are essentially the Coriolis and centrifugal accelerations, respectively, arising from use of a rotating coordinate system defined by the Sun-star radius vector. Although stellar space velocities measured with respect to the Sun are essentially constant, these perspective effects arise with changing distance and viewing angle. Hipparcos-2 plus Nidever et al. (2002) predict a perspective change in the proper motion of 1.285±0.006 mas yr-2 for Barnard's Star. Recent analysis of 900+ photographic plates between 1968 and 1998 with the 26.25-in (0.67-m) McCormick refractor detected a secular acceleration of 1.25±0.04 mas yr-2, which agrees with the predicted value within the measurement errors. Earlier, Benedict et al. (1999) measured its secular acceleration to be 1.2±0.2 mas yr-2 using 3 years of HST FGS observations. Similarly, a perspective change in radial velocity of 4.50±0.01 m s-1 yr-1 can be predicted for Barnard's Star. Kürster et al. (2003) detected variations in their observations of it that are largely attributable to secular acceleration along the line of sight with some contribution from stellar activity. Although secular acceleration effects have been limited for past studies of stellar motions, they can be significant for observations extending over decades or for high-precision measurements required to detect extrasolar planets. Future studies will need to consider this factor for the nearest stars and for those with large proper motions or radial velocities. NSF grant AST 98-20711; Litton Marine Systems; Peninsula Community Foundation Levinson Fund; UVa Governor's Fellowship, Dean's F&A Fellowship, and Graduate School of Arts and Sciences; and, US Naval Observatory

  18. The ultimate fate of life in an accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Katherine; Kinney, William H

    2003-04-10

    The ultimate fate of life in a universe with accelerated expansion is considered. Previous work [J.D. Barrow, F. Tipler, The Anthropic Cosmological Principle, Oxford Univ. Press, Oxford, 1986; L.M. Krauss, G.D. Starkman, Astrophys. J. 531 (2000) 22] showed that life cannot go on indefinitely in a universe dominated by a cosmological constant. In this Letter we consider instead other models of acceleration (including quintessence and Cardassian expansion). We find that it is possible in these cosmologies for life to persist indefinitely. As an example we study potentials of the form V{proportional_to}phi{sup n} and find the requirement n<-2.

  19. Accelerating Neuroimage Registration through Parallel Computation of Similarity Metric.

    Directory of Open Access Journals (Sweden)

    Yun-Gang Luo

    Full Text Available Neuroimage registration is crucial for brain morphometric analysis and treatment efficacy evaluation. However, existing advanced registration algorithms such as FLIRT and ANTs are not efficient enough for clinical use. In this paper, a GPU implementation of FLIRT with the correlation ratio (CR as the similarity metric and a GPU accelerated correlation coefficient (CC calculation for the symmetric diffeomorphic registration of ANTs have been developed. The comparison with their corresponding original tools shows that our accelerated algorithms can greatly outperform the original algorithm in terms of computational efficiency. This paper demonstrates the great potential of applying these registration tools in clinical applications.

  20. Economics of electron beam accelerator facilities: Concept vs actual

    Science.gov (United States)

    Minbiole, Paul R.

    1995-02-01

    Electron beam accelerator facilities continue to demonstrate their ability to "add value" to a wide range of industrial products. The power, energy, and reliability of commercially available accelerators have increased steadily over the past several decades. The high throughput potential of modern electron beam facilities, together with the broad spectrum of commercial applications, result in the concept that an electron beam facility is an effective tool for adding economic value to industrial products. However, the high capital costs of such a facility (including hidden costs), together with practical limitations to high throughput (including several layers of inefficiencies), result in profit-and-loss economics which are more tenuous than expected after first analysis.

  1. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  2. Coronal Jet Plasma Properties and Acceleration Mechanisms

    Science.gov (United States)

    Farid, Samaiyah; Reeves, Kathy; Savcheva, Antonia; Soto, Natalia

    2017-08-01

    Coronal jets are transient eruptions of plasma typically characterized by aprominent long spire and a bright base, and sometimes accompanied by a small filament. Jets are thought to be produced by magnetic reconnection when small-scale bipolar magnetic fields emerge into an overlying coronal field or move into a locally unipolar region. Coronal jets are commonly divided into two categories: standard jets and blowout jets, and are found in both quiet and active regions. The plasma properties of jets vary across type and location, therefore understanding the underlying acceleration mechanisms are difficult to pin down. In this work, we examine both blow-out and standard jets using high resolution multi-wavelength data. Although reconnection is commonly accepted as the primary acceleration mechanism, we also consider the contribution chromospheric evaporation to jet formation. We use seven coronal channels from SDO/AIA , Hinode/XRT Be-thin and IRIS slit-jaw data. In addition, we separate the Fe-XVIII line from the SDO/94Å channel. We calculate plasma properties including velocity, Alfven speed, and density as a function of wavelength and Differential Emission Measure (DEM). Finally, we explore the magnetic topology of the jets using Coronal Modeling System (CMS) to construct potential and non-linear force free models based on the flux rope insertion method.

  3. Adapted random sampling patterns for accelerated MRI.

    Science.gov (United States)

    Knoll, Florian; Clason, Christian; Diwoky, Clemens; Stollberger, Rudolf

    2011-02-01

    Variable density random sampling patterns have recently become increasingly popular for accelerated imaging strategies, as they lead to incoherent aliasing artifacts. However, the design of these sampling patterns is still an open problem. Current strategies use model assumptions like polynomials of different order to generate a probability density function that is then used to generate the sampling pattern. This approach relies on the optimization of design parameters which is very time consuming and therefore impractical for daily clinical use. This work presents a new approach that generates sampling patterns by making use of power spectra of existing reference data sets and hence requires neither parameter tuning nor an a priori mathematical model of the density of sampling points. The approach is validated with downsampling experiments, as well as with accelerated in vivo measurements. The proposed approach is compared with established sampling patterns, and the generalization potential is tested by using a range of reference images. Quantitative evaluation is performed for the downsampling experiments using RMS differences to the original, fully sampled data set. Our results demonstrate that the image quality of the method presented in this paper is comparable to that of an established model-based strategy when optimization of the model parameter is carried out and yields superior results to non-optimized model parameters. However, no random sampling pattern showed superior performance when compared to conventional Cartesian subsampling for the considered reconstruction strategy.

  4. Accelerate!

    Science.gov (United States)

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  5. Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten

    2011-01-01

    Elekta accelerators controlled by the current clinically used accelerator control system, Desktop 7.01 (D7), uses binned variable dose rate (BVDR) for volumetric modulated arc therapy (VMAT). The next version of the treatment control system (Integrity) supports continuously variable dose rate (CVDR......) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency...

  6. Three-dimensional nonparaxial accelerating beams from the transverse Whittaker integral

    Science.gov (United States)

    Zhang, Yiqi; Belić, Milivoj R.; Sun, Jia; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Zhang, Yanpeng

    2014-08-01

    We investigate three-dimensional nonparaxial linear accelerating beams arising from the transverse Whittaker integral. These beams accelerate along a semicircular trajectory, with almost invariant nondiffracting shapes. The transverse patterns of accelerating beams are determined by their angular spectra, which are constructed from the Mathieu functions, Weber functions, and Fresnel integrals. Our results not only enrich the understanding of multidimensional nonparaxial accelerating beams, but also display their real applicative potential —owing to the usefulness of Mathieu and Weber functions, and Fresnel integrals in describing a wealth of wave phenomena in nature.

  7. Three-dimensional nonparaxial accelerating beams from the transverse Whittaker integral

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Zhang, Yanpeng

    2014-01-01

    We investigate three-dimensional nonparaxial linear accelerating beams arising from the transverse Whittaker integral. They include different Mathieu, Weber, and Fresnel beams, among other. These beams accelerate along a semicircular trajectory, with almost invariant nondiffracting shapes. The transverse patterns of accelerating beams are determined by their angular spectra, which are constructed from the Mathieu functions, Weber functions, and Fresnel integrals. Our results not only enrich the understanding of multidimensional nonparaxial accelerating beams, but also display their real applicative potential -- owing to the usefulness of Mathieu and Weber functions, and Fresnel integrals in describing a wealth of wave phenomena in nature.

  8. Accelerating optimization by tracing valley

    Science.gov (United States)

    Li, Qing-Xiao; He, Rong-Qiang; Lu, Zhong-Yi

    2016-06-01

    We propose an algorithm to accelerate optimization when an objective function locally resembles a long narrow valley. In such a case, a conventional optimization algorithm usually wanders with too many tiny steps in the valley. The new algorithm approximates the valley bottom locally by a parabola that is obtained by fitting a set of successive points generated recently by a conventional optimization method. Then large steps are taken along the parabola, accompanied by fine adjustment to trace the valley bottom. The effectiveness of the new algorithm has been demonstrated by accelerating the Newton trust-region minimization method and the Levenberg-Marquardt method on the nonlinear fitting problem in exact diagonalization dynamical mean-field theory and on the classic minimization problem of the Rosenbrock's function. Many times speedup has been achieved for both problems, showing the high efficiency of the new algorithm.

  9. Naked singularities as particle accelerators

    CERN Document Server

    Patil, Mandar; 10.1103/PhysRevD.82.104049

    2010-01-01

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  10. Observational Probes of Cosmic Acceleration

    CERN Document Server

    Weinberg, David H; Eisenstein, Daniel J; Hirata, Christopher; Riess, Adam G; Rozo, Eduardo

    2012-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct meas...

  11. Greece welcomes CERN Accelerator School

    CERN Multimedia

    CAS School

    2011-01-01

    The CERN Accelerator School (CAS) and the University of the Aegean jointly organised a course on intermediate-level Accelerator Physics in Chios, Greece, from 19 to 30 September, 2011.   CAS Students pose for a group photo in Chios, Greece. This course followed the established format of the intermediate school, with lectures in the mornings and specialised courses in the afternoons. The latter provided “hands-on” education and experience in three topics: “RF Measurement Techniques”, “Beam Instrumentation and Diagnostics” and “Optics Design and Correction”.  Participants selected one of the three courses and followed the chosen topic throughout the school. Guided studies and tutorials on core subjects, seminars and a poster session completed the programme. An excursion included a visit to the Nea Moni monastery, a guided tour of two medieval villages, Pyrgi and Mesta, and finished with a typical Greek me...

  12. The US Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y.; /IIT, Chicago; Kirk, H.; /Brookhaven; Bross, A.; Geer, Steve; Shiltsev, Vladimir; /Fermilab; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  13. Industrial Applications of Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, Jaewon; Lee, Chanyoung; and others

    2013-02-15

    PEFP(Proton Engineering Frontier Project) put its aim on development of high power linear proton accelerator and its beam applications. So, it has, since late 1990's, accumulated accelerator and ion source technologies, supplied beam utilization service to related industry. As of now, right after 10 year long project(PEFP), many of its low energy beam technologies seem to be successfully utilized for industrial purpose to meet the market needs, especially in improvement of production process and manufacturing performance, new substance development, etc. In this context, it is high time to carry out in-depth industrialization development on PEFP's retained ion beam technology prowess: To help them diffused profitable markets as soon as possible. So, in this work, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products.

  14. The US Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y.; /IIT, Chicago; Kirk, H.; /Brookhaven; Bross, A.; Geer, Steve; Shiltsev, Vladimir; /Fermilab; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  15. Accelerating Expansion of the Universe

    CERN Document Server

    Chakraborty, Writambhara

    2011-01-01

    This thesis concentrates on the accelerated expansion of the Universe recently explored by measurements of redshift and luminosity-distance relations of type Ia Supernovae. We have considered a model of the universe filled with modified Chaplygin gas and barotropic fluid. The role of dynamical cosmological constant has been explored with Modified Chaplygin Gas as the background fluid. Various phenomenological models for \\Lambda have been studied in presence of the gravitational constant G to be constant or time dependent. A new form of the well known Chaplygin gas model has been presented by introducing inhomogeneity in the EOS. This model explains w=-1 crossing. An interaction of this model with the scalar field has also been investigated through a phenomenological coupling function. Tachyonic field has been depicted as dark energy model to represent the present acceleration of the Universe. A mixture of the tachyonic fluid has been considered with Generalized Chaplygin Gas to show the role of the later as a...

  16. History of hadron therapy accelerators.

    Science.gov (United States)

    Degiovanni, Alberto; Amaldi, Ugo

    2015-06-01

    In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.

  17. Hardware-Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-08-04

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester.

  18. Accelerating structure with linear excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.; Srinivasan-Rao, T.

    1988-03-01

    The switched power linac (SPL) structures require a ring-shaped laser beam pulse of uniform intensity to avoid transverse field components of the accelerating field at the center. In order to also utilize the reflection of the outgoing EM wave, the switching element has to be very close to the outer edge of the structure to ensure nearly synchronous superposition at the beam hole with the original inward going wave. It is sometimes easier to produce linear (flat) laser beams, e.g., from powerful excimer lasers which have beams of rectangular cross section. Such flat beams could be used to excite linear photocathode switches or be used to produce flat electron beam pulses in electron sources. In this paper, an accelerator structure is proposed which may be considered a variant of the SPL disk structure, but could be used with linear beams. The structure utilizes a double parabolic horn. 8 refs., 9 figs.

  19. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  20. String worldsheet for accelerating quark

    Science.gov (United States)

    Hubeny, Veronika E.; Semenoff, Gordon W.

    2015-10-01

    We consider the AdS bulk dual to an external massive quark in SYM following an arbitrary trajectory on Minkowski background. While a purely outgoing boundary condition on the gluonic field allows one to express the corresponding string worldsheet in a closed form, the setup has curious consequences. In particular, we argue that any quark whose trajectory on flat spacetime approaches that of a light ray in the remote past (as happens e.g. in the case of uniform acceleration) must necessarily be accompanied by an anti-quark. This is puzzling from the field theory standpoint, since one would expect that a sole quark following any timelike trajectory should be allowed. We explain the resolution in terms of boundary and initial conditions. We analyze the configuration in global AdS, which naturally suggests a modification to the boundary conditions allowing for a single accelerated quark without accompanying anti-quark. We contrast this resolution with earlier proposals.

  1. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  2. An accelerator worth fighting for

    CERN Multimedia

    1996-01-01

    Financial pressures from member states have upset the calculations of the European Laboratory for Particle Physics's (CERN) major accelerator, the Large Hadron Collider (LHC). Despite preference for domestic high energy programs, CERN members accord high priority to LHC physics. Converting to a global facility can help spread the high annual cost of subscription. But given the political realities, a revision of the LHC project appears more feasible. CERN's management needs to deploy its skills to overcome the financial obstacles to the facility.

  3. Accelerator Availability and Reliability Issues

    Energy Technology Data Exchange (ETDEWEB)

    Steve Suhring

    2003-05-01

    Maintaining reliable machine operations for existing machines as well as planning for future machines' operability present significant challenges to those responsible for system performance and improvement. Changes to machine requirements and beam specifications often reduce overall machine availability in an effort to meet user needs. Accelerator reliability issues from around the world will be presented, followed by a discussion of the major factors influencing machine availability.

  4. Accelerating Around an Unbanked Curve

    Science.gov (United States)

    Mungan, Carl E.

    2006-02-01

    The December 2004 issue of TPT presented a problem concerning how a car should accelerate around an unbanked curve of constant radius r starting from rest if it is to avoid skidding. Interestingly enough, two solutions were proffered by readers.2 The purpose of this note is to compare and contrast the two approaches. Further experimental investigation of various turning strategies using a remote-controlled car and overhead video analysis could make for an interesting student project.

  5. Radiation monitoring around accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)

    2000-07-01

    The present status of a network of radiation monitors (NORM) working at KEK is described in detail. NORM consists of there parts; stand-alone radiation monitors (SARM), local-monitoring stations (STATION) and a central data-handling system (CENTER). NORM has developed to a large-scaled monitoring system in which more than 250 SARMs are under operation for monitoring the radiation fields and radioactivities around accelerators in KEK. (author)

  6. Geometry for the accelerating universe

    CERN Document Server

    Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    The Lorentzian spacetime metric is replaced by an area metric which naturally emerges as a generalized geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the gravitational Einstein-Hilbert action is re-interpreted as dynamics for an area metric. Without the need for dark energy or fine-tuning, area metric cosmology explains the observed small acceleration of the late Universe.

  7. Symplectic maps for accelerator lattices

    Energy Technology Data Exchange (ETDEWEB)

    Warnock, R.L.; Ruth, R.; Gabella, W.

    1988-05-01

    We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.

  8. On the solutions to accelerating cosmologies

    CERN Document Server

    Ito, M

    2003-01-01

    Motivated by recent accelerating cosmological model, we derive the solutions to vacuum Einstein equation in $(d+1)$-dimensional Minkowski space with $n$-dimensional hyperbolic manifold. The conditions of accelerating expansion are given in such a set up.

  9. Research needs of the new accelerator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research.

  10. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  11. Accelerated Cure Project for Multiple Sclerosis

    Science.gov (United States)

    ... main content Accelerating research toward a cure for multiple sclerosis Home Contact Us Search form Search Connect Volunteer ... is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...

  12. Snowmass 2013 Computing Frontier: Accelerator Science

    CERN Document Server

    Spentzouris, P; Joshi, C; Amundson, J; An, W; Bruhwiler, D L; Cary, J R; Cowan, B; Decyk, V K; Esarey, E; Fonseca, R A; Friedman, A; Geddes, C G R; Grote, D P; Kourbanis, I; Leemans, W P; Lu, W; Mori, W B; Ng, C; Qiang, Ji; Roberts, T; Ryne, R D; Schroeder, C B; Silva, L O; Tsung, F S; Vay, J -L; Vieira, J

    2013-01-01

    This is the working summary of the Accelerator Science working group of the Computing Frontier of the Snowmass meeting 2013. It summarizes the computing requirements to support accelerator technology in both Energy and Intensity Frontiers.

  13. Symposium report on frontier applications of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  14. Injector Design for Advanced Accelerators

    Science.gov (United States)

    Henestroza, Enrique; Faltens, A.

    1996-11-01

    Accelerator designs intended to provide acceleration at a much lower cost per Joule than the ILSE or ELISE designs are under study. For these designs, which typically have many beams, an injector of significantly lower cost is needed. A goal, which from our design appears to be achievable, is to reduce the transverse dimension to half that of the 2 MeV, 800 mA ILSE injector(E. Henestroza, ``Injectors for Heavy Ion Fusion", Proc. of the 11th International Wkshp. on Laser Interaction and Related Plasma Phenomena, 1993.) while generating about the same current. A single channel of a lower cost injector includes an 800 kV column, accelerating a 700 mA beam extracted from a potassium source of 4 cm radius by a 120 kV electrode. The beam passes into a superconducting 7 T solenoid of 15 cm aperture and 15 cm length. This high-field solenoid provides the focusing needed for a small beam without increasing the electric field gradient. The injector and its matching section, also designed, fit within a 12 cm radius, which is small enough to allow construction of attractive multi-beam injectors. We will present solutions for the generation and transport of 700 mA potassium beams of up to 1.6 MeV within the same transverse constraint.

  15. Compensation Techniques in Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Hisham Kamal [Old Dominion Univ., Norfolk, VA (United States)

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  16. LEP superconducting accelerating cavity module

    CERN Multimedia

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was – and still is – the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson w...

  17. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  18. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.

  19. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  20. Stray-electron accumulation and effects in HIF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Friedman, A.; Furman, M.A.; Lund, S.M.; Molvik, A.W.; Stoltz, P.; Vay, J.-L.

    2003-05-07

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We highlight the distinguishing features of heavy-ion accelerators as they relate to stray-electron issues, and present first results from a sequence of simulations to characterize the electron cloud that follows from realistic ion distributions. Also, we present ion simulations with prescribed random electron distributions, undertaken to begin to quantify the effects of electrons on ion beam quality.

  1. Design of Octupole Channel for Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  2. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  3. Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Sensor.

    Science.gov (United States)

    Pang, Yao Kun; Li, Xiao Hui; Chen, Meng Xiao; Han, Chang Bao; Zhang, Chi; Wang, Zhong Lin

    2015-09-02

    A novel self-powered acceleration sensor based on triboelectric nanogenerator is proposed, which consists of an outer transparent shell and an inner mass-spring-damper mechanical system. The PTFE films on the mass surfaces can slide between two aluminum electrodes on an inner wall owing to the acceleration in the axis direction. On the basis of the coupling of triboelectric and electrostatic effects, the potential difference between the two aluminum electrodes is generated in proportion to the mass displacement, which can be used to characterize the acceleration in the axis direction with a detection range from about 13.0 to 40.0 m/s(2) at a sensitivity of 0.289 V·s(2)/m. With the integration of acceleration sensors in three axes, a self-powered 3D acceleration sensor is developed for vector acceleration measurement in any direction. The self-powered 3D acceleration sensor has excellent performance in the stability test, and the output voltages have a little decrease of ∼6% after 4000 cycles. Moreover, the self-powered acceleration sensor can be used to measure high collision acceleration, which has potential practicability in automobile security systems.

  4. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  5. Conceptual and technological evolutions of particle accelerators

    Institute of Scientific and Technical Information of China (English)

    Lee C.Teng

    2009-01-01

    We give here an ordered list of all types of particle accelerators and exhibit how each type evolves conceptually and/or technologically from the preceding.This is in contrast to the usual "history of particle accelerators" in which unrelated accelerator types are listed in the chronological order.It is hoped that this discussion and understanding of the rationale and logic in the evolution of one accelerator type to the next will help to educe future inventions.

  6. Heritable retinoblastoma and accelerated aortic valve disease

    Science.gov (United States)

    Abeyratne, L R; Kingston, J E; Onadim, Z; Dubrey, S W

    2013-01-01

    Heritable retinoblastoma is associated with a germline mutation in the tumour suppressor gene RBI. The Rb protein (pRb) arises from the RB1 gene, which was the first demonstrated cancer susceptibility gene in humans. 1 Second primary malignancies are recognised complications of retinoblastoma. Furthermore, pRb is implicated in valve remodelling in calcific aortic valve disease. 2 3 We report a family with hereditary retinoblastoma and associated secondary primary malignancies. There are two interesting aspects to this family. The first is the concept of ‘cancer susceptibility genes’; the RBI gene being the first reported in humans. A further feature of note is that two family members also have bicuspid aortic valves. We discuss a potential association between the gene defect responsible for retinoblastoma (with its associated propensity for further malignancies) and accelerated deterioration of the bicuspid aortic valve in the proband carrying this gene defect. PMID:23595191

  7. Nonlinear Acceleration Mechanism of Collisionless Magnetic Reconnection

    CERN Document Server

    Hirota, M; Ishii, Y; Yagi, M; Aiba, N

    2012-01-01

    A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven by electron inertia is analytically estimated by invoking the energy principle for the first time. Decrease of potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in acceleration of the reconnection. Release of free energy by such ideal fluid motion leads to unsteady and strong convective flow, which theoretically corroborates the inertia-driven collapse model of the sawtooth crash [D. Biskamp and J. F. Drake, Phys. Rev. Lett. 73, 971 (1994)].

  8. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  9. Tuning and Matching of Constant Impedance Travelling Wave Accelerating Structure

    Institute of Scientific and Technical Information of China (English)

    YANG; Jing-he; ZHU; Zhi-bin; WU; Qing-feng; ZENG; Zi-qiang; WANG; Xiu-long; ZHOU; Wen-zhen

    2015-01-01

    As the penetration depth of electron accelerated by 10MeV electron irradiating accelerator is deep,and the accelerator has broad application prospects.The performance of the accelerator is influenced,to a great extent,by the traveling wave accelerating tube,which is the core component of the accelerator.To develop the accelerator

  10. Ion acceleration through radiation pressure in quanto-electrodynamical regimes

    Science.gov (United States)

    Del Sorbo, Dario; Ridgers, Chris; Laser Plasmas; Fusion Team

    2016-10-01

    The strong radiation pressure carried by high-intensity lasers interacting with plasmas can accelerate ions over very short distances. The resulting compact particle accelerator could find applications in medical physics (radiotherapy) as well as in fundamental physics (hadron interactions). With next-generation multi-petawatt lasers, reaching focused intensity 1023Wcm-2 , ions could potentially reach GeV energies. However, the physics of laser-matter interactions at these extreme intensities is not well understood. In particular, on acceleration by the electromagnetic fields of the laser, the electrons in the plasma start to radiate hard photons prolifically. These hard photons can decay to electron-positron pairs, a cascade of pair production can ensue leading to the formation of an over-dense pair plasma which can absorb the laser-pulse. We have developed a self-consistent theory for both hole boring and light sail radiation pressure ion-acceleration, accounting for radiation-reaction and pair-creation. We show that the key role is played by a pair plasma that arises between the laser and the accelerated ions, strongly modifying the laser absorption.

  11. Progress on Diamond-Based Cylindrical Dielectric Accelerating Structures

    Science.gov (United States)

    Kanareykin, A.; Schoessow, P.; Conde, M.; Gai, W.

    2006-11-01

    The development of a high gradient diamond-based cylindrical dielectric loaded accelerator (DLA) is presented. A diamond-loaded DLA can potentially sustain accelerating gradients far in excess of the limits experimentally observed for conventional metallic accelerating structures. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerators: high rf breakdown level, extremely low dielectric losses and the highest available thermoconductive coefficient. We used the hot-filament Chemical Vapor Deposition (CVD) process to produce high quality 5-10 cm long cylindrical diamond layers. Our collaboration has also been developing a new method of CVD diamond surface preparation that reduces the secondary electron emission coefficient below unity. Special attention was paid to the numerical optimization of the waveguide to structure rf coupling section, where the surface magnetic and electric fields were minimized relative to the accelerating gradient and within known metal surface breakdown limits. We conclude with a brief overview of the use of diamond microstructures for use in compact rf sources.

  12. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  13. Surrogate headform accelerations associated with stick checks in girls' lacrosse.

    Science.gov (United States)

    Crisco, Joseph J; Costa, Laura; Rich, Ryan; Schwartz, Joel B; Wilcox, Bethany

    2015-04-01

    Girls' lacrosse is fundamentally a different sport than boys' lacrosse, and girls are not required to wear protective headgear. Recent epidemiological studies have found that stick checks are the leading cause of concussion injury in girls' lacrosse. The purpose of this study was to determine stick check speeds and estimate the head acceleration associated with direct checks to the head. In addition, we briefly examine if commercially available headgear can mitigate the accelerations. Seven (n = 7) experienced female lacrosse players checked, with varying severity, a NOSCAE and an ASTM headform. Stick speed at impact and the associated peak linear accelerations of the headform were recorded. The NOCSAE headform was fitted with four commercially available headgear and similar stick impact testing was performed. The median stick impact speed was 8.1 m/s and 777 deg/s. At these speeds, peak linear acceleration was approximately 60g. Three out of the four headgear significantly reduced the peak linear acceleration when compared with the bare headform. These data serve as baseline for understanding the potential mechanism and reduction of concussions from stick impacts in girls' lacrosse.

  14. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    Directory of Open Access Journals (Sweden)

    Billie F. Spencer Jr.

    2013-07-01

    Full Text Available Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM, earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.

  15. Resolving beam transport problems in electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Larson, J.D.

    1977-01-01

    A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance.

  16. Stochastic Particle Acceleration by Helical Turbulence in Solar Flares

    CERN Document Server

    Fleishman, Gregory D

    2012-01-01

    Flaring release of magnetic energy in solar corona is only possible if the magnetic field deviates from a potential one. We show that the linear MHD modes excited on top of the non-potential magnetic field possess a nonzero kinetic helicity. Accordingly, this necessarily results in a noticeable kinetic helicity of the turbulence, composed of these linear modes with various scales and random phases, generated at the flare site by the primary energy release, which may be important for many applications. In particular, a nonzero turbulence helicity has a potentially strong effect on the particle acceleration because the helical component of the turbulence induces a mean regular large-scale (DC) electric field capable of directly accelerating the charged particles in addition to the commonly considered stochastic turbulent electric field. In this paper, we derive the kinetic helicity density of the linear MHD modes excited on top of a twisted large-scale magnetic field, estimate the corresponding turbulence helic...

  17. Controlled electron injection using nanoparticles in laser wakefield acceleration

    Science.gov (United States)

    Cho, Myung Hoon; Pathak, Vishwa Bandhu; Kim, Hyung Taek; Nakajima, Kazuhisa; Nam, Chang Hee; CenterRelativistic Laser Science Team

    2016-10-01

    Laser wakefield acceleration is one of compact electron acceleration schemes due to its high accelerating gradient. Despite of the great progress of several GeV electron beams with high power lasers, the electron injection to the wakefield is still a critical issue for a very low density plasma 1017 electrons/cc. In this talk a novel method to control the injection using nanoparticles is proposed. We investigate the electron injection by analyzing the interaction of electrons with the two potentials - one created by a nanoparticle and the other by the wakefield. The nanoparticle creates a localized electric potential and this nanoparticle potential just slips the present wake potential. To confirm the Hamiltonian description of the interaction, a test particle calculation is performed by controlling the bubble and the nanoparticle potentials. A multi-dimensional particle-in-cell simulations are also presented as a proof-of-principle. Comparing theoretical estimates and PIC simulation, we suggest nanoparticle parameters of size and electron density depending on the background plasma density. Our scheme can be applicable for low plasma density to break though the limitation of self-injection toward extremely high energy electron energy.

  18. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  19. Accelerating stem cell trials for Alzheimer's disease.

    Science.gov (United States)

    Hunsberger, Joshua G; Rao, Mahendra; Kurtzberg, Joanne; Bulte, Jeff W M; Atala, Anthony; LaFerla, Frank M; Greely, Henry T; Sawa, Akira; Gandy, Sam; Schneider, Lon S; Doraiswamy, P Murali

    2016-02-01

    At present, no effective cure or prophylaxis exists for Alzheimer's disease. Symptomatic treatments are modestly effective and offer only temporary benefit. Advances in induced pluripotent stem cell (iPSC) technology have the potential to enable development of so-called disease-in-a-dish personalised models to study disease mechanisms and reveal new therapeutic approaches, and large panels of iPSCs enable rapid screening of potential drug candidates. Different cell types can also be produced for therapeutic use. In 2015, the US Food and Drug Administration granted investigational new drug approval for the first phase 2A clinical trial of ischaemia-tolerant mesenchymal stem cells to treat Alzheimer's disease in the USA. Similar trials are either underway or being planned in Europe and Asia. Although safety and ethical concerns remain, we call for the acceleration of human stem cell-based translational research into the causes and potential treatments of Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.