WorldWideScience

Sample records for accelerating potential

  1. Accelerating cosmologies from exponential potentials

    International Nuclear Information System (INIS)

    Neupane, Ishwaree P.

    2003-11-01

    It is learnt that exponential potentials of the form V ∼ exp(-2cφ/M p ) arising from the hyperbolic or flux compactification of higher-dimensional theories are of interest for getting short periods of accelerated cosmological expansions. Using a similar potential but derived for the combined case of hyperbolic-flux compactification, we study a four-dimensional flat (or open) FRW cosmologies and give analytic (and numerical) solutions with exponential behavior of scale factors. We show that, for the M-theory motivated potentials, the cosmic acceleration of the universe can be eternal if the spatial curvature of the 4d spacetime is negative, while the acceleration is only transient for a spatially flat universe. We also briefly discuss about the mass of massive Kaluza-Klein modes and the dynamical stabilization of the compact hyperbolic extra dimensions. (author)

  2. Determination of nominal accelerating potential

    International Nuclear Information System (INIS)

    Nizin, P.; Kase, K.

    1986-01-01

    We present a simple linear relationship between the nominal accelerating potential (NAP) and the ratios of ionization measurements made with constant source--detector distance and at two different phantom thicknesses. This relationship can be used as a standard, unambiguous method for determining NAP for use in dosimetry and quality control

  3. Transient accelerating scalar models with exponential potentials

    International Nuclear Information System (INIS)

    Cui Wen-Ping; Zhang Yang; Fu Zheng-Wen

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient. We find that, although a decelerating era will return in the future, when extrapolating the model back to earlier stages (z ≳ 4), scalar dark energy becomes dominant over matter. So these models do not have the desired tracking behavior, and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology. When couplings between the scalar field and matter are introduced, the models still have the same problem; only the time when deceleration returns will be varied. To achieve re-deceleration, one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  4. Awakening the potential of plasma acceleration

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Civil engineering has begun for the new AWAKE experiment, which looks to push the boundaries of particle acceleration. This proof-of-principle experiment will harness the power of wakefields generated by proton beams in plasma cells, producing accelerator gradients hundreds of times higher than those used in current RF cavities.   Civil engineering works are currently ongoing at the AWAKE facility. As one of CERN's accelerator R&D experiments, the AWAKE project is rather unique. Like all of CERN's experiments, AWAKE is a collaborative endeavour with institutes and organisations participating around the world. "But unlike fixed-target experiments, where the users take over once CERN has delivered the facility, in AWAKE, the synchronised proton, electron and laser beams provided by CERN are an integral part of the experiment," explains Edda Gschwendtner, CERN AWAKE project leader. "So, of course, CERN's involvement in the project goes well...

  5. Potential application of electron accelerators in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair; Mohd Dahlan, Khairul Zaman [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing.

  6. Potential application of electron accelerators in Malaysia

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid; Khairul Zaman Mohd Dahlan

    1994-01-01

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing

  7. A theoretical investigation of the collective acceleration of cluster ions with accelerated potential waves

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya

    1984-01-01

    A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)

  8. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  9. Potential Impacts of Accelerated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, L. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-31

    This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhance NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.

  10. Electromagnetic forming - a potentially viable technique for accelerator technology

    International Nuclear Information System (INIS)

    Rajawat, R.K.; Desai, S.V.; Kulkarni, M.R.; Dolly Rani; Nagesh, K.V.; Sethi, R.C.

    2003-01-01

    Modern day accelerator development encompasses a myriad technologies required for their diverse needs. Whereas RF, high voltage, vacuum, cryogenics etc., technologies meet their functional requirements, high finish lapping processes, ceramic-metal joining, oven brazing, spark erosion or wire cutting etc., are a must to meet their fabrication requirements. Electromagnetic (EM) forming technique falls in the latter category and is developed as a special technology. It is currently catering to the development as a nuclear reactor technology, but has the potential to meet accelerator requirements too. This paper highlights the general principle of its working, simple design guidelines, advantages, and suggests some specific areas where this could benefit accelerator technologies

  11. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  12. Late-time acceleration with steep exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, GCAP-CASPER, Department of Physics, Waco, TX (United States)

    2017-12-15

    In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and Om diagnostics to distinguish dark energy models among themselves and with ΛCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope. (orig.)

  13. Late-time acceleration with steep exponential potentials

    International Nuclear Information System (INIS)

    Shahalam, M.; Yang, Weiqiang; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and Om diagnostics to distinguish dark energy models among themselves and with ΛCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope. (orig.)

  14. The use and potential application of electron accelerator in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2003-01-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  15. The use and potential application of electron accelerator in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  16. Situations of potential exposure in self-shielding electron accelerators

    International Nuclear Information System (INIS)

    Rios, D.A.S.; Rios, P.B.; Sordi, G.M.A.A.; Carneiro, J.C.G.G.

    2017-01-01

    The study discusses situations in the industrial environment that may lead to potential exposure of Occupationally Exposed Individuals and Public Individuals in self-shielding electron accelerators. Although these exposure situations are unlikely, simulation exercises can lead to improvements in the operating procedure as well as suggest changes in production line design in order to increase radiation protection at work. These studies can also be used in training and demonstrate a solid application of the ALARA principle in the daily activities of radiative installations

  17. Substantial increase in acceleration potential of pyroelectric crystals

    International Nuclear Information System (INIS)

    Tornow, W.; Lynam, S. M.; Shafroth, S. M.

    2010-01-01

    We report on a substantial increase in the acceleration potential achieved with a LiTaO 3 pyroelectric crystal. With a single 2.5 cm diameter and 2.5 cm long z-cut crystal without electric field-enhancing nanotip we produced positive ion beams with maximal energies between 300 and 310 keV during the cooling phase when the crystal was exposed to 5 mTorr of deuterium gas. These values are about a factor of 2 larger than previously obtained with single pyroelectric crystals.

  18. Postactivation potentiation of sprint acceleration performance using plyometric exercise.

    Science.gov (United States)

    Turner, Anthony P; Bellhouse, Sam; Kilduff, Liam P; Russell, Mark

    2015-02-01

    Postactivation potentiation (PAP), an acute and temporary enhancement of muscular performance resulting from previous muscular contraction, commonly occurs after heavy resistance exercise. However, this method of inducing PAP has limited application to the precompetition practices (e.g., warm-up) of many athletes. Very few studies have examined the influence of plyometric activity on subsequent performance; therefore, we aimed to examine the influence of alternate-leg bounding on sprint acceleration performance. In a randomized crossover manner, plyometric-trained men (n = 23) performed seven 20-m sprints (with 10-m splits) at baseline, ∼15 seconds, 2, 4, 8, 12, and 16 minutes after a walking control (C) or 3 sets of 10 repetitions of alternate-leg bounding using body mass (plyometric, P) and body mass plus 10% (weighted plyometric, WP). Mean sprint velocities over 10 and 20 m were similar between trials at baseline. At ∼15 seconds, WP impaired 20-m sprint velocity by 1.4 ± 2.5% when compared with C (p = 0.039). Thereafter, 10- and 20-m sprint velocities improved in WP at 4 minutes (10 m: 2.2 ± 3.1%, p = 0.009; 20 m: 2.3 ± 2.6%, p = 0.001) and 8 minutes (10 m: 2.9 ± 3.6%, p = 0.002; 20 m: 2.6 ± 2.8%, p = 0.001) compared with C. Improved 10-m sprint acceleration performance occurred in P at 4 minutes (1.8 ± 3.3%, p = 0.047) relative to C. Therefore, sprint acceleration performance is enhanced after plyometric exercise providing adequate recovery is given between these activities; however, the effects may differ according to whether additional load is applied. This finding presents a practical method to enhance the precompetition practices of athletes.

  19. Potential Application of Magnetohydrodynamic Acceleration to Hypersonic Environmental Testing

    Science.gov (United States)

    1990-08-01

    homopolar generators, and compulsators should be evaluated along with solid-state converters. 86 AEDC-TR-90-6 B.4.2 Design Study of Control and...heater as a source of hot air for accelerator research. One could consider using motor generator power supplies for the arc heater as d3ne tor the

  20. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I

    2017-01-01

    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  1. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  2. Evaluating the Potential of Commercial GIS for Accelerator Configuration Management

    International Nuclear Information System (INIS)

    Larrieu, T.L.; Roblin, Y.R.; White, K.; Slominski, R.

    2005-01-01

    The Geographic Information System (GIS) is a tool used by industries needing to track information about spatially distributed assets. A water utility, for example, must know not only the precise location of each pipe and pump, but also the respective pressure rating and flow rate of each. In many ways, an accelerator such as CEBAF (Continuous Electron Beam Accelerator Facility) can be viewed as an ''electron utility''. Whereas the water utility uses pipes and pumps, the ''electron utility'' uses magnets and RF cavities. At Jefferson lab we are exploring the possibility of implementing ESRI's ArcGIS as the framework for building an all-encompassing accelerator configuration database that integrates location, configuration, maintenance, and connectivity details of all hardware and software. The possibilities of doing so are intriguing. From the GIS, software such as the model server could always extract the most-up-to-date layout information maintained by the Survey and Alignment for lattice modeling. The Mechanical Engineering department could use ArcGIS tools to generate CAD drawings of machine segments from the same database. Ultimately, the greatest benefit of the GIS implementation could be to liberate operators and engineers from the limitations of the current system-by-system view of machine configuration and allow a more integrated regional approach. The commercial GIS package provides a rich set of tools for database-connectivity, versioning, distributed editing, importing and exporting, and graphical analysis and querying, and therefore obviates the need for much custom development. However, formidable challenges to implementation exist and these challenges are not only technical and manpower issues, but also organizational ones. The GIS approach would crosscut organizational boundaries and require departments, which heretofore have had free reign to manage their own data, to cede some control and agree to a centralized framework

  3. Evaluating the Potential of Commercial GIS for Accelerator Configuration Management

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Larrieu; Y.R. Roblin; K. White; R. Slominski

    2005-10-10

    The Geographic Information System (GIS) is a tool used by industries needing to track information about spatially distributed assets. A water utility, for example, must know not only the precise location of each pipe and pump, but also the respective pressure rating and flow rate of each. In many ways, an accelerator such as CEBAF (Continuous Electron Beam Accelerator Facility) can be viewed as an ''electron utility''. Whereas the water utility uses pipes and pumps, the ''electron utility'' uses magnets and RF cavities. At Jefferson lab we are exploring the possibility of implementing ESRI's ArcGIS as the framework for building an all-encompassing accelerator configuration database that integrates location, configuration, maintenance, and connectivity details of all hardware and software. The possibilities of doing so are intriguing. From the GIS, software such as the model server could always extract the most-up-to-date layout information maintained by the Survey & Alignment for lattice modeling. The Mechanical Engineering department could use ArcGIS tools to generate CAD drawings of machine segments from the same database. Ultimately, the greatest benefit of the GIS implementation could be to liberate operators and engineers from the limitations of the current system-by-system view of machine configuration and allow a more integrated regional approach. The commercial GIS package provides a rich set of tools for database-connectivity, versioning, distributed editing, importing and exporting, and graphical analysis and querying, and therefore obviates the need for much custom development. However, formidable challenges to implementation exist and these challenges are not only technical and manpower issues, but also organizational ones. The GIS approach would crosscut organizational boundaries and require departments, which heretofore have had free reign to manage their own data, to cede some control and agree to a

  4. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  5. Altitude Distribution of the Auroral Acceleration Potential Determined from Cluster Satellite Data at Different Heights

    International Nuclear Information System (INIS)

    Marklund, Goeran T.; Sadeghi, Soheil; Karlsson, Tomas; Lindqvist, Per-Arne; Nilsson, Hans; Forsyth, Colin; Fazakerley, Andrew; Lucek, Elizabeth A.; Pickett, Jolene

    2011-01-01

    Aurora, commonly seen in the polar sky, is a ubiquitous phenomenon occurring on Earth and other solar system planets. The colorful emissions are caused by electron beams hitting the upper atmosphere, after being accelerated by quasistatic electric fields at 1-2 R E altitudes, or by wave electric fields. Although aurora was studied by many past satellite missions, Cluster is the first to explore the auroral acceleration region with multiprobes. Here, Cluster data are used to determine the acceleration potential above the aurora and to address its stability in space and time. The derived potential comprises two upper, broad U-shaped potentials and a narrower S-shaped potential below, and is stable on a 5 min time scale. The scale size of the electric field relative to that of the current is shown to depend strongly on altitude within the acceleration region. To reveal these features was possible only by combining data from the two satellites.

  6. On potential distribution in accelerating structure with RF-quadrupole focusing

    International Nuclear Information System (INIS)

    Lymar', A.G.; Martynenko, P.A.; Khizhnyak, N.A.

    1993-01-01

    Results of the calculation of electric potential distribution between electrodes of an accelerating system, which is drift tubes arranged in the form of match boxes are presented. Three-dimensional Laplace equation solved by the finite-difference method has been used in the calculations. 6 refs., 1 fig

  7. The influence of potential exposure to radiation protection system of accelerator installation TESLA

    International Nuclear Information System (INIS)

    Orlic, M.; Cuknic, O.

    2000-01-01

    Potential exposure of individuals at big nuclear machines like Accelerator Installation Tesla (AIT) generates direct requirements to reliability of radiation protection system. Starting from technical characteristics of AlT and international recommendation concerning potential exposure and the probability of death has been calculated. The reference risk has been specified. Comparing then we calculated the probability of the failure of the protective system. The reliability of the system has to be better (author)

  8. A model for the determination of the nominal potential for a linear accelerator

    International Nuclear Information System (INIS)

    Gutt, F.; Silva, P.; Guerrero, R.; Diaz, J.; Colmenares, J.

    1998-01-01

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm 2 field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  9. Accelerated aging and controlled deterioration for the determination of the physiological potential of onion seeds

    Directory of Open Access Journals (Sweden)

    Rodo Angelica Brod

    2003-01-01

    Full Text Available International research on vegetable seed vigor is not at the same level attained for grain crops species. This study was conducted to identify reliable procedures for the accelerated aging and controlled deterioration tests to rank onion (Allium cepa L. seed lots according to their physiological potential. Six seed lots of the cultivars Aurora and Petroline were evaluated in the laboratory for germination, first count, seedling vigor classification, traditional and saturated salt accelerated aging (41masculineC / 48 and 72 h, controlled deterioration (24% of water / 45masculineC / 24 h and seedling emergence tests. Seed moisture content after the saturated salt accelerated aging test was lower and uniform, which is considered an important advantage in comparison to the traditional procedure. The saturated salt accelerated aging (41masculineC / 48 and 72 h and controlled deterioration (moisture content adjusted to 24% / 45masculineC / 24 h tests were the best procedures to assess the physiological potential of onion seeds, and are indicated for use in quality control programs.

  10. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    Science.gov (United States)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  11. Electron beam potential measurements on an inductive-store, opening-switch accelerator

    International Nuclear Information System (INIS)

    Riordan, J.C.; Goyer, J.R.; Kortbawi, D.; Meachum, J.S.; Mendenhall, R.S.; Roth, I.S.

    1993-01-01

    Direct measurement of the accelerating potential in a relativistic electron beam accelerator is difficult, particularly when the diode is downstream from a plasma opening switch. An indirect potential measurement can be obtained from the high energy tail of the bremsstrahlung spectrum generated as the electron beam strikes the anode. The authors' time-resolved spectrometer contains 7 silicon pin diode detectors filtered with 2 to 15 mm of lead to span an electron energy range of 0.5 to 2 MeV. A Monte-Carlo transport code was used to provide calibration curves, and the resulting potential measurements have been confirmed in experiments on the PITHON accelerator. The spectrometer has recently been deployed on PM1, an inductive-store, opening-switch testbed. The diode voltage measurements from the spectrometer are in good agreement with the diode voltage measured upstream and corrected using transmission line relations. The x-ray signal and spectral voltage rise 10 ns later than the corrected electrical voltage, however, indicating plasma motion between the opening switch and the diode

  12. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    Science.gov (United States)

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  13. Molasses melanoidin promotes copper uptake for radish sprouts: the potential for an accelerator of phytoextraction.

    Science.gov (United States)

    Hatano, Ken-Ichi; Kanazawa, Kazuki; Tomura, Hiroki; Yamatsu, Takeshi; Tsunoda, Kin-Ichi; Kubota, Kenji

    2016-09-01

    Phytoextraction has been proposed as an alternative remediation technology for heavy metal contamination, and it is well known that chelators may alter the toxicity of heavy metals and the bioavailability in plants. Our previous work demonstrated that an adsorbent-column chromatography can effectively separate melanoidin-like product (MLP) from sugarcane molasses. The aim of this study was to examine the chelating property of MLP and to evaluate the facilitatory influence on the phytoextraction efficiency of Japanese radish. The result showed that MLP binds to all the metal ions examined and the binding capacity of MLP toward Cu(2+) seems to be the highest among them. The metal detoxification by MLP followed the order of Pb(2+) > Zn(2+) > Ni(2+) > Cu(2+) > Fe(2+) > Cd(2+) > Co(2+). Furthermore, in the phytoextraction experiment using copper sulfate, the application of MLP accelerated the detoxification of copper and the bioavailability in radish sprouts. Thus, these results suggest that MLP possesses the potential for an accelerator of phytoextraction in the copper-contaminated media.

  14. Electric potential structures of auroral acceleration region border from multi-spacecraft Cluster data

    Science.gov (United States)

    Sadeghi, S.; Emami, M. R.

    2018-04-01

    This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.

  15. On the estimation of the wake potential for an ultrarelativistic charge in an accelerating structure

    International Nuclear Information System (INIS)

    Novokhatskij, A.V.

    1988-01-01

    The method to derive the analytic estimations for wake fields of an ultrarelativistic charge in an accelerating structure, that are valid in the range of distances smalller or compared to the effective structure dimensions. The method is based on the approximate space-time domain integrating of the maxwell equations in the Kirchhoff formulation. the method is demonstrated on the examples of obtaining the wake potentials for energy loss of a bunch traversing a scraper, a cavity or periodic iris-loaded structure. Likewise formulae are derived for Green functions that describe transverse force action of wake fields. Simple formulae for the total energy loss evaluation of a bunch with the Gaussian charge density distribution are derived as well. The derived estimations are compared with the computer results and predictions of other models

  16. Impact of accelerated electrons on activating process and foaming potential of sludge

    International Nuclear Information System (INIS)

    Cuba, V.; Pospisil, M.; Mucka, V.; Silber, R.; Jenicek, P.; Dohanyos, M.; Zabranska, J.

    2002-01-01

    Complete text of publication follows. Presently, anaerobic and/or aerobic biological treatment is the cheapest and the most effective method of wastewater and sludge processing. However, due to some non-biodegradable substances present in wastewater and also due to limited capacity of wastewater treatment plants, it is necessary to find effective processes, that would be complementary to existing sludge treatment methods. Beside chemical and physical processes, radiation technology seems to offer improvement of effectivity of biological treatment. The paper describes possibilities of irradiation in activating process. Activated sludge can be affected in all its parameters, including physico chemical properties, such as sedimentation rate, or resulting volume of sludge. For the purpose of this research, laboratory experimental reactors simulating activating process were operated. According to previous results, accelerated electrons were used for irradiation, for e-beam seems to be more expedient than gamma irradiation. Reactor with irradiated sludge has been compared with the one without irradiation. It is shown, that pre-irradiation of sludge can positively affect following process of activation. Beside the activating process, another goal has been pursued. Radiation can strongly affect sludge foaming potential. Biological foaming caused by surfactant microorganisms, represents quite serious problem in many wastewater treatment plants, especially in digesters. It was proved that after irradiation foaming potential of sludge decreases. Pre-irradiation of activated sludge with relatively low doses also results in reduction of number of pathogenic microorganisms, presented in sludge

  17. Mastication accelerates Go/No-go decisional processing: An event-related potential study.

    Science.gov (United States)

    Sakamoto, Kiwako; Nakata, Hiroki; Yumoto, Masato; Sadato, Norihiro; Kakigi, Ryusuke

    2015-11-01

    The purpose of the present study was to investigate the effect of mastication on Go/No-go decisional processing using event-related potentials (ERPs). Thirteen normal subjects underwent seven sessions of a somatosensory Go/No-go paradigm for approximately 4min; Pre, and Post 1, 2, 3, 4, 5, and 6. The Control condition included the same seven sessions. The RT and standard deviation were recorded, and the peak amplitude and latency of the N140 and P300 components were analyzed. The RT was significantly shorter in Mastication than in Control at Post 1-3 and 4-6. The peak latency of N140 was earlier in Mastication than in Control at Post 4-6. The latency of N140 was shortened by repeated sessions in Mastication, but not by those in Control. The peak latency of P300 was significantly shorter in Mastication than in Control at Post 4-6. The peak latency of P300 was significantly longer in Control with repeated sessions, but not in Mastication. These results suggest that mastication may influence response execution processing in Go trials, as well as response inhibition processing in No-go trials. Mastication accelerated Go/No-go decisional processing in the human brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. An evaluation of the potential of GPUs to accelerate tracking algorithms for the ATLAS trigger

    CERN Document Server

    Baines, JTM; The ATLAS collaboration; Emeliyanov, D; Howard, JR; Kama, S; Washbrook, AJ; Wynne, BM

    2014-01-01

    The potential of GPUs has been evaluated as a possible way to accelerate trigger algorithms for the ATLAS experiment located at the Large Hadron Collider (LHC). During LHC Run-1 ATLAS employed a three-level trigger system to progressively reduce the LHC collision rate of 20 MHz to a storage rate of about 600 Hz for offline processing. Reconstruction of charged particles trajectories through the Inner Detector (ID) was performed at the second (L2) and third (EF) trigger levels. The ID contains pixel, silicon strip (SCT) and straw-tube technologies. Prior to tracking, data-preparation algorithms processed the ID raw data producing measurements of the track position at each detector layer. The data-preparation and tracking consumed almost three-quarters of the total L2 CPU resources during 2012 data-taking. Detailed performance studies of a CUDA™ implementation of the L2 pixel and SCT data-preparation and tracking algorithms running on a Nvidia® Tesla C2050 GPU have shown a speed-up by a factor of 12 for the ...

  19. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  20. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  1. Small-volume amnioinfusion: a potential stimulus of intrapartum fetal heart rate accelerations.

    Science.gov (United States)

    Wax, Joseph R; Flaherty, Nina; Pinette, Michael G; Blackstone, Jacquelyn; Cartin, Angelina

    2004-02-01

    We describe a recurrent nonreassuring fetal heart rate pattern in which small-volume amnioinfusions apparently evoked fetal heart rate accelerations suggested fetal well-being, allowing that progressive labor that culminated in the vaginal delivery of a healthy infant.

  2. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  3. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  4. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.

    Science.gov (United States)

    Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei

    2016-09-01

    Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  5. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  7. Potential Impact of Accelerating the Primary Dose of Rotavirus Vaccine in Infants

    OpenAIRE

    Halvorson, Elizabeth E.; Peters, Timothy R.; Snively, Beverly M.; Poehling, Katherine A.

    2012-01-01

    We estimated the potential impact of administering the first dose of rotavirus vaccine at 6 weeks (42 days of life) instead of 2 months of age, which is permissible for all U.S. vaccines recommended at 2 months of age, on rotavirus hospitalization rates. We used published data for hospitalization rates, vaccine coverage, and vaccine efficacy after one dose and assumed a two-week delay in seroconversion after vaccine administration in the United States. Administering the first dose of rotaviru...

  8. Online monitoring method using Equipotential Switching Direct Current potential drop for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Lee, Tae Hyun; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2010-01-01

    The flow accelerated corrosion (FAC) phenomenon persistently impacts plant reliability and personnel safety. We have shown that Equipotential Switching Direct Current Potential Drop (ES-DCPD) can be employed to detect piping wall loss induced by FAC. It has been demonstrated to have sufficient sensitivity to cover both long and short lengths of piping. Based on this, new FAC screening and inspection approaches have been developed. For example, resolution of ES-DCPD can be adjusted according to its monitoring purpose. The developed method shows good integrity during long test periods. It also shows good reproducibility. The Seoul National University FAC Accelerated Simulation Loop (SFASL) has been constructed for ES-DCPD demonstration purposes. During one demonstration, the piping wall was thinned by 23.7% through FAC for a 13,000 min test period. In addition to the ES-DCPD method, ultrasonic technique (UT) has been applied to SFASL for verification while water chemistry was continually monitored and controlled using electrochemical sensors. Developed electrochemical sensors showed accurate and stable water conditions in the SFASL during the test period. The ES-DCPD results were also theoretically predicted by the Sanchez-Caldera's model. The UT, however, failed to detect thinning because of its localized characteristics. Online UT that covers only local areas cannot assure the detection of wall loss.

  9. A model for the determination of the nominal potential for a linear accelerator; Un modelo para la determinacion del potencial nominal de un acelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gutt, F.; Silva, P.; Guerrero, R.; Diaz, J.; Colmenares, J. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Laboratorio Secundario de Calibracion Dosimetrica (LSCD), Apartado 21827, Caracas 1020 A (Venezuela)

    1998-12-31

    The objective of the present work is to find a physical mathematical model based on the reason of the dose percentages at 10 and 20 cm depth, at 100 cm DFS and a 10 x 10 cm{sup 2} field. It was utilized literature data of new manufactured accelerators and those are in use in hospitals, which allow to prove the model under different conditions. Our objective consists only to obtain a model that verifies the nominal potential for a linear accelerator, but without pretending that such a model to be used to calculate any one factor to determination of absorbed dose. (Author)

  10. Potential of gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) in flavor research.

    Science.gov (United States)

    Fay, Laurent B; Newton, Anthony; Simian, Hervé; Robert, Fabien; Douce, David; Hancock, Peter; Green, Martin; Blank, Imre

    2003-04-23

    Gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) is an emerging technique offering a straightforward access to a resolving power up to 7000. This paper deals with the use of GC-oaTOFMS to identify the flavor components of a complex seafood flavor extract and to quantify furanones formed in model Maillard reactions. A seafood extract was selected as a representative example for complex food flavors and was previously analyzed using GC-quadrupole MS, leaving several molecules unidentified. GC-oaTOFMS analysis was focused on these unknowns to evaluate its potential in flavor research, particularly for determining exact masses. N-Methyldithiodimethylamine, 6-methyl-5-hepten-2-one, and tetrahydro-2,4-dimethyl-4H-pyrrolo[2,1-d]-1,3,5-dithiazine were successfully identified on the basis of the precise mass determination of their molecular ions and their major fragments. A second set of experiments was performed to test the capabilities of the GC-oaTOFMS for quantification. Calibration curves were found to be linear over a dynamic range of 10(3) for the quantification of furanones. The quantitative data obtained using GC-oaTOFMS confirmed earlier results that the formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone was favored in the xylose/glycine model reaction and 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone in the xylose/alanine model reaction. It was concluded that GC-oaTOFMS may become a powerful analytical tool for the flavor chemist for both identification and quantification purposes, the latter in particular when combined with stable isotope dilution assay.

  11. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  12. Topics in quantum chromodynamics: two loop Feynman gauge calculation of the meson nonsinglet evolution potential and fourier acceleration of the calculation of the fermion propagator in lattice QCD

    International Nuclear Information System (INIS)

    Katz, G.R.

    1986-01-01

    Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration

  13. Cardiac acceleration at the onset of exercise: a potential parameter for monitoring progress during physical training in sports and rehabilitation.

    Science.gov (United States)

    Hettinga, Florentina J; Monden, Paul G; van Meeteren, Nico L U; Daanen, Hein A M

    2014-05-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were searched to retrieve studies investigating HRonset. In total 652 studies were retrieved. These articles were then classified as having emphasis on HRonset in a sports or rehabilitation setting, which resulted in 8 of 112 studies with a sports application and 6 of 68 studies with a rehabilitation application that met inclusion criteria. Two co-existing mechanisms underlie HRonset: feedforward (central command) and feedback (mechanoreflex, metaboreflex, baroreflex) control. A number of studies investigated HRonset during the first few seconds of exercise (HRonsetshort), in which central command and the mechanoreflex determine vagal withdrawal, the major mechanism by which heart rate (HR) increases. In subsequent sports and rehabilitation studies, interest focused on HRonset during dynamic exercise over a longer period of time (HRonsetlong). Central command, mechanoreflexes, baroreflexes, and possibly metaboreflexes contribute to HRonset during the first seconds and minutes of exercise, which in turn leads to further vagal withdrawal and an increase in sympathetic activity. HRonset has been described as the increase in HR compared with resting state (delta HR) or by exponential modeling, with measurement intervals ranging from 0-4 s up to 2 min. Delta HR was used to evaluate HRonsetshort over the first 4 s of exercise, as well as for analyzing HRonsetlong. In exponential modeling, the HR response to dynamic exercise is biphasic, consisting of fast (parasympathetic, 0-10 s) and slow (sympathetic, 1-4 min) components. Although available studies differed largely in measurement protocols, cross-sectional and longitudinal training studies showed that studies analyzing HRonset

  14. Cardiac Acceleration at the Onset of Exercise : A Potential Parameter for Monitoring Progress During Physical Training in Sports and Rehabilitation

    NARCIS (Netherlands)

    Hettinga, Florentina J.; Monden, Paul G.; van Meeteren, Nico L. U.; Daanen, Hein A. M.

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were

  15. Cardiac acceleration at the onset of exercise: A potential parameter for monitoring progress during physical training in sports and rehabilitation

    NARCIS (Netherlands)

    Hettinga, F.J.; Monden, P.G.; Meeteren, N.L.U. van; Daanen, H.A.M.

    2014-01-01

    There is a need for easy-to-use methods to assess training progress in sports and rehabilitation research. The present review investigated whether cardiac acceleration at the onset of physical exercise (HRonset) can be used as a monitoring variable. The digital databases of Scopus and PubMed were

  16. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    OpenAIRE

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 G...

  17. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  18. A SERS protocol as a potential tool to access 6-mercaptopurine release accelerated by glutathione-S-transferase.

    Science.gov (United States)

    Wang, Ying; Sun, Jie; Yang, Qingran; Lu, Wenbo; Li, Yan; Dong, Jian; Qian, Weiping

    2015-11-21

    The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields. In this work, we have developed a SERS technique to monitor the absorbance behaviour of 6-mercaptopurine (6-MP) and its glutathione-S-transferase (GST)-accelerated glutathione (GSH)-triggered release behaviour on the surface of gold nanoflowers (GNFs), using the GNFs as excellent SERS substrates. The SERS signal was used as an indicator of absorbance or release of 6-MP on the gold surface. We found that GST can accelerate GSH-triggered release behaviour of 6-MP from the gold surface. We speculated that GST catalyzes nucleophilic GSH to competitively bind with the electrophilic substance 6-MP. Experimental results have proved that the presented SERS protocol can be utilized as an effective tool for accessing the release of anticancer drugs.

  19. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    Czech Academy of Sciences Publication Activity Database

    Amato, E.; Italiano, A.; Margarone, Daniele; Pagano, B.; Baldari, S.; Korn, Georg

    2016-01-01

    Roč. 11, Apr (2016), 1-7, č. článku C04007. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606; GA ČR(CZ) GA15-02964S Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : accelerator applications * radiotherapy concepts Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.220, year: 2016

  20. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  1. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  2. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  3. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  4. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  5. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  6. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells - Effect of Humidification

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Zhong, Lijie

    2018-01-01

    In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 textdegreeC (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either...... with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h...

  7. Half-times of irradiation recovery in accelerated partialbreast irradiation: Incomplete recovery as a potentially dangerous enhancer of radiation damage

    Directory of Open Access Journals (Sweden)

    Fowler JF

    2013-12-01

    Full Text Available Purpose: To compare clinical results from accelerated partial breast irradiation with predictions from different half-times of recovery of radiation damage. Method: Three published results of excessive late complications led to an editorial which was a “wake up call” to the possible hazards of fractions spaced close together such as two fractions of 3.85 Gy a day on five consecutive days. These results are re-examined here using linear quadratic modelling with mono-exponential and bi-exponential recovery kinetics. Results: Although clinical results showed rather high proportions of severe complications, only in one of the three studies discussed in reference [1] complications were severe enough to cause it to be terminated. Since then other studies with the same doses have reported acceptable results. However, none of these complication rates are predicted to be tolerable, if mono-exponential kinetics with a single T ½ of ~4 hours is assumed. Conclusions: Better matches to clinical results can be found by assuming bi-exponential recovery with 50%-50% components of 0.3 hand 4 h, and α/β = 3 Gy, for late complications. There is continuing need for data from more clinical results, especially concerning various tumour types.

  8. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  9. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  10. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kühr, Marietta; Wolfgarten, Matthias; Stölzle, Marco; Leutner, Claudia; Höller, Tobias; Schrading, Simone; Kuhl, Christiane; Schild, Hans; Kuhn, Walther; Braun, Michael

    2011-01-01

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size ≤3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget’s disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  11. Potential Impact of Preoperative Magnetic Resonance Imaging of the Breast on Patient Selection for Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuehr, Marietta, E-mail: marietta.kuehr@ukb.uni-bonn.de [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Wolfgarten, Matthias; Stoelzle, Marco [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany); Leutner, Claudia [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Hoeller, Tobias [Department of Medical Statistics and Epidemiology, University of Bonn, Bonn (Germany); Schrading, Simone; Kuhl, Christiane; Schild, Hans [Department of Radiology, Center of Integrated Oncology, University of Bonn, Bonn (Germany); Kuhn, Walther; Braun, Michael [Department of Obstetrics and Gynecology and Center of Integrated Oncology, University of Bonn, Bonn (Germany)

    2011-11-15

    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving therapy is currently under investigation in prospective randomized studies. Multifocality and multicentricity are exclusion criteria for APBI. Preoperative breast magnetic resonance imaging (MRI) can detect ipsilateral and contralateral invasive tumor foci or ductal carcinoma in situ in addition to conventional diagnostic methods (clinical examination, mammography, and ultrasonography). The objective of this retrospective study was to evaluate the impact of preoperative MRI on patient selection for APBI. Methods and Materials: From 2002 to 2007, a total of 579 consecutive, nonselected patients with newly diagnosed early-stage breast cancer received preoperative breast MRI in addition to conventional imaging studies at the Bonn University Breast Cancer Center. In retrospect, 113 patients would have met the criteria for APBI using conventional imaging workup (clinical tumor size {<=}3 cm; negative axillary lymph node status; unifocal disease; no evidence of distant metastases; no invasive lobular carcinoma, ductal and lobular carcinoma in situ, or Paget's disease). We analyzed the amount of additional ipsilateral and contralateral tumor foci detected by MRI. Results: MRI detected additional tumor foci in 8.8% of patients eligible for APBI (11 tumor foci in 10 of 113 patients), either ipsilateral (n = 7, 6.2%) or contralateral (n = 4, 3.5%). In 1 patient, MRI helped detect additional tumor focus both ipsilaterally and contralaterally. Conclusions: Preoperative breast MRI is able to identify additional tumor foci in a clinically relevant number of cases in this highly selected group of patients with low-risk disease and may be useful in selecting patients for APBI.

  12. Debye potentials, electromagnetic reciprocity and impedance boundary conditions for efficient analytic approximation of coupling impedances in complex heterogeneous accelerator pipes

    Energy Technology Data Exchange (ETDEWEB)

    Petracca, S [Salerno Univ. (Italy)

    1996-08-01

    Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)

  13. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    Science.gov (United States)

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  14. Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus jake 01 by CaCl2 induced deflocculation.

    Science.gov (United States)

    Kavitha, S; Saranya, T; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-01-01

    The present study investigates the impacts of phase separated disintegration through CaCl2 (calcium chloride) mediated biosurfactant producing bacterial pretreatment. In the initial phase of the study, the flocs were disintegrated (deflocculation) with 0.06g/gSS of CaCl2. In the subsequent phase, the sludge biomass was disintegrated (cell disintegration) through potent biosurfactant producing new novel bacteria, Planococcus jake 01. The pretreatment showed that suspended solids reduction and chemical oxygen demand solubilization for deflocculated - bacterially pretreated sludge was found to be 17.14% and 14.14% which were comparatively higher than flocculated sludge (treated with bacteria alone). The biogas yield potential of deflocculated - bacterially pretreated, flocculated, and control sludges were observed to be 0.322(L/gVS), 0.225(L/gVS) and 0.145(L/gVS) respectively. To our knowledge, this is the first study to present the thorough knowledge of biogas production potential through a novel phase separated biosurfactant bacterial pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  16. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  17. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments

    International Nuclear Information System (INIS)

    Wei Shuhe; Wang Shanshan; Zhou Qixing; Zhan Jie; Ma Lihui; Wu Zhijie; Sun Tieheng; Prasad, M.N.V.

    2010-01-01

    Phytoextraction and phytostabilization are well-established sub-processes of phytoremediation that are being followed for in situ remediation of soils contaminated with toxic metals. Taraxacum mongolicum Hand-Mazz, a newly reported Cd accumulator has shown considerable potential for phytoextracting Cd. This paper investigated the effects of urea and chicken manure on T. mongolicum phytoextracting Cd from soil using pot culture experiments. The results showed that urea application did not affect the Cd concentrations in root, leaf, inflorescence and shoot of T. mongolicum, but chicken manure significantly decreased them (p -1 ) of T. mongolicum to Cd by 3-5-fold due to the increase in shoot biomass (increased 4-7 folds). Further, addition of urea and chicken manure increased organic matter, nitrogen, phosphorus and potassium, the microorganism count, urease and phosphatase activities of soil indicating their eco-friendly function. Urea is ideal for optimizing phytoextraction of T. mongolicum to Cd, while chicken manure is appropriate for phytostabilization.

  18. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments

    Energy Technology Data Exchange (ETDEWEB)

    Wei Shuhe, E-mail: shuhewei@yahoo.com.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang Shanshan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Qixing, E-mail: zhouqx523@yahoo.com.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Zhan Jie [Department of Biotechnology, Liaoning University of Traditional Chinese Medicine, Shenyang 110101 (China); Ma Lihui [Huayou Industrial Company, Liaohe Petroleum Exploration Bureau, Panjin 124010 (China); Wu Zhijie; Sun Tieheng [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500046 (India)

    2010-09-15

    Phytoextraction and phytostabilization are well-established sub-processes of phytoremediation that are being followed for in situ remediation of soils contaminated with toxic metals. Taraxacum mongolicum Hand-Mazz, a newly reported Cd accumulator has shown considerable potential for phytoextracting Cd. This paper investigated the effects of urea and chicken manure on T. mongolicum phytoextracting Cd from soil using pot culture experiments. The results showed that urea application did not affect the Cd concentrations in root, leaf, inflorescence and shoot of T. mongolicum, but chicken manure significantly decreased them (p < 0.05) by 23.5%, 31.5%, 24.8% and 30.4% owing to decreased extractable Cd. Urea and chicken manure significantly increased (p < 0.05) the phytoextraction capacities ({mu}g pot{sup -1}) of T. mongolicum to Cd by 3-5-fold due to the increase in shoot biomass (increased 4-7 folds). Further, addition of urea and chicken manure increased organic matter, nitrogen, phosphorus and potassium, the microorganism count, urease and phosphatase activities of soil indicating their eco-friendly function. Urea is ideal for optimizing phytoextraction of T. mongolicum to Cd, while chicken manure is appropriate for phytostabilization.

  19. Monte Carlo evaluation of the potential benefits of flattening filter free beams from the Oncor® clinical linear accelerator.

    Science.gov (United States)

    Asadi, Amin; Razavi-Ratki, Seid Kazem; Jabbari, Keyvan; Najafzadeh, Milad; Nickfarjam, Abolfazl

    2018-01-01

    To evaluate the potential privileges of flattening filter-free (FFF) photon beams from Oncor® linac for 6 MV and 18 MV energies. A Monte Carlo (MC) model of Oncor® linac was built using BEAMnrc MCCode and verified by the measured data using 6 MV and 18 MV energies. A comprehensive set of data was also characterized for MC model of Oncor® machine running with and without flattening filter (FF) for 6 MV and 18 MV beams in six field sizes. The investigated characteristics included mean energy, energy spectrum, photon spatial fluence, superficial dose, percent depth dose (PDD), dose output, and out-of-field dose with two indexes of lateral dose profile and isodose curve at three depths. Using FFF enhanced the energy uniformity 3.4±0.11% (6 MV) and 2.05±0.09% (18 MV) times and improved dose output by factor of 2.91 (6 MV) and 4.2 (18 MV) on the central axis, respectively. Using FFF also reduced the PDD dependencies by 9.1% (6 MV) and 5.57% (18 MV). In addition, using FFF had a lower out-of-field dose due to the reduced head scatter and softer spectra. The findings in this study suggested that using FFF, Oncor® machine could achieve better treatment results with lower dose toxicity and a shorter beam-on time.

  20. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design

    Science.gov (United States)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Verhagen Metman, Leo; Corcos, Daniel M.

    2013-06-01

    Objective. We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and essential tremor (ET). Approach. The tremor prediction algorithm uses a set of spectral (Fourier and wavelet) and nonlinear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results. The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance. The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle and the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage.

  1. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    Science.gov (United States)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  2. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Directory of Open Access Journals (Sweden)

    Kyoung-Rok Lee

    2013-12-01

    Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  3. Damage limits of accelerator equipment

    CERN Document Server

    Rosell, Gemma

    2014-01-01

    Beam losses occur in particle accelerators for various reasons. The effect of lost particles on accelerator equipment becomes more severe with the increasing energies and intensities. The present study is focused on the damage potential of the proton beam as a function of particle energy and beam size. Injection and extraction energies of different accelerators at CERN were considered.

  4. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  5. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  6. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  7. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  8. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  9. Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A GPU-accelerated molecular dynamics software

    Science.gov (United States)

    Yang, Lin; Zhang, Feng; Wang, Cai-Zhuang; Ho, Kai-Ming; Travesset, Alex

    2018-04-01

    We present an implementation of EAM and FS interatomic potentials, which are widely used in simulating metallic systems, in HOOMD-blue, a software designed to perform classical molecular dynamics simulations using GPU accelerations. We first discuss the details of our implementation and then report extensive benchmark tests. We demonstrate that single-precision floating point operations efficiently implemented on GPUs can produce sufficient accuracy when compared against double-precision codes, as demonstrated in test simulations of calculations of the glass-transition temperature of Cu64.5Zr35.5, and pair correlation function g (r) of liquid Ni3Al. Our code scales well with the size of the simulating system on NVIDIA Tesla M40 and P100 GPUs. Compared with another popular software LAMMPS running on 32 cores of AMD Opteron 6220 processors, the GPU/CPU performance ratio can reach as high as 4.6. The source code can be accessed through the HOOMD-blue web page for free by any interested user.

  10. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  11. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  12. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  13. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  14. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  15. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  16. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  17. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  18. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  19. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  20. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  1. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    Science.gov (United States)

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-11-30

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

  2. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    Science.gov (United States)

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  3. The potential of a human rights approach for accelerating the implementation of comprehensive restrictions on the marketing of unhealthy foods and non-alcoholic beverages to children.

    Science.gov (United States)

    Granheim, Sabrina Ionata; Vandevijvere, Stefanie; Torheim, Liv Elin

    2018-01-05

    Overweight and obesity in children is rising at the global level, particularly in low- and middle-income countries. Among the causes for this increase is the marketing of unhealthy food and beverage products, which affects children's food preferences, purchasing requests and consumption patterns. The need to address harmful marketing to children has been recognized at the World Health Organization, with Member States having agreed in 2010 to implement a set of recommendations to restrict such practices. Concurrently, there is an increasing understanding of unhealthy food and malnutrition as human rights concerns. This paper explores the potential of existing legally and non-legally binding human rights instruments for accelerating the implementation of comprehensive restrictions to reduce harmful marketing of unhealthy foods and beverages to children. Four relevant themes were identified in existing human rights instruments: (i) the best interest of the child should be considered above all other interests; (ii) the rights to health and adequate food cannot be realized without supportive healthy environments; (iii) children should be protected from economic exploitation; and (iv) the persuasive marketing of unhealthy food and beverage products is explicitly recognized as a threat to the rights to food and health. In conclusion, existing human rights instruments could be harnessed to advance public health measures to restrict the marketing of unhealthy food and beverage products to children. Policy-makers and advocates should draw from these instruments and refer to State's obligations within international and domestic human rights law to strengthen their efforts to restrict harmful marketing practices to children. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  5. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  6. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  7. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  8. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  9. Coherent multimoded dielectric wakefield accelerators

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  10. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  11. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  12. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  13. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  14. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  15. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  16. A Critical Theory Perspective on Accelerated Learning.

    Science.gov (United States)

    Brookfield, Stephen D.

    2003-01-01

    Critically analyzes accelerated learning using concepts from Herbert Marcuse (rebellious subjectivity) and Erich Fromm (automaton conformity). Concludes that, by providing distance and separation, accelerated learning has more potential to stimulate critical autonomous thought. (SK)

  17. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  18. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  19. Quantitative assessment of alkali silica reaction potential of quartz-rich aggregates: comparison of chemical test and accelerated mortar bar test improved by SEM-PIA

    Czech Academy of Sciences Publication Activity Database

    Šachlová, Š.; Kuchařová, A.; Pertold, Z.; Přikryl, R.; Fridrichová, Michaela

    2017-01-01

    Roč. 76, č. 1 (2017), s. 133-144 ISSN 1435-9529 R&D Projects: GA ČR(CZ) GAP104/12/0915 Institutional support: RVO:67985831 Keywords : accelerated mortar bar test * Alkali silica reaction * chemical test * electron microscopy * petrographic image analysis Subject RIV: DD - Geochemistry OBOR OECD: Environmental and geological engineering , geotechnics Impact factor: 1.901, year: 2016

  20. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  1. Medical uses of accelerators

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1981-01-01

    A variety of particle accelerators have either potential or already demonstrated uses in connection with medically-related research, diagnosis, and treatment. For cancer radiotherapy, nuclear particles including protons, neutrons, heavy ions, and negative pi mesons have advantages compared to conventional radiations in terms of dose localization and/or biological effectiveness. Clinical evaluations of these particles are underway at a number of institutions. Accelerator-produced radionuclides are in widespread use for research and routine diagnostic purposes. Elemental analysis techniques with charged particles and neutrons are being applied to bone, blood, and other tissues. Finally, low-dose medical imaging can be accomplished with accelerated protons and heavy ions. The status and future of these programs are discussed

  2. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  3. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  4. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  5. Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-01

    Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technical feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by

  6. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  7. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  8. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  9. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  10. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  11. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  12. Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Capacio, B.R.; Harris, L.W.; Anderson, D.R.; Lennox, W.J.; Gales, V.

    1992-12-31

    The accelerating rotarod was used to assess motor performance decrement in rats after administration of candidate anticonvulsant compounds (acetazolamide, amitriptyline, chlordiazepoxide, diazepan, diazepam-lysine, lorazepam, loprazolam, midazolam, phenobarbital and scopolamine) against nerve agent poisoning. AH compounds were tested as the commercially available injectable preparation except for diazepam-lysine and loprazolam, which are not FDA approved. A peak effect time, as well as a dose to decrease performance time by 50% from control (PDD50), was determined. The calculated PDD50 (micrometer ol/kg) values and peak effect tunes were midazolam, 1.16 at 15 min; loprazolam, 1.17 at 15 min; diazepam-lysine, 4.17 at 30 min; lorazepwn, 4.98 at 15 min; diazepam, 5.27 at 15 min; phenobarbital, 101.49 at 45 min; chlordiazepoxide, 159.21 at 30 min; scopolamine, amitriptyline and acetazolamide did not demonstrate a performance decrement at any of the doses tested. The PDD50 values were compared with doses which have been utilized against nerve agent-induced convulsions or published ED50 values from standard anticonvulsant screening tests (maximal electroshock MES and subcutaneous pentylenetetrazol (scMET)). I serve agents, anticonvulsants, diazepam, accelerating rotarod, motor performance.

  13. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  14. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  15. Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8

    Directory of Open Access Journals (Sweden)

    Nobuhiro Wada

    2016-12-01

    Full Text Available This study investigates effects of dipeptide balenine, as a major component of whale meat extract (hereafter, WME, supplementation on senescence-accelerated mouse prone 8 (SAMP8, an Alzheimer's disease (AD model at level of learning and memory formation and brain expression profiles genome-wide in brain. Mice fed experimental balenine (+WME supplemented diet for 26 weeks were subjected to four behavioral tests – open field, Y-maze, novel object recognition, and water-filled multiple T-maze – to examine effects on learning and memory. Brain transcriptome of SAMP8 mice-fed the WME diet over control low-safflower oil (LSO diet-fed mice was delineated on a 4 × 44 K mouse whole genome DNA microarray chip. Results revealed the WME diet not only induced improvements in the learning and memory formation but also positively modulated changes in the brain of the SAMP8 mouse; the gene inventories are publically available for analysis by the scientific community. Interestingly, the SAMP8 mouse model presented many genetic characteristics of AD, and numerous novel molecules (Slc2a5, Treh, Fbp1, Aldob, Ppp1r1a, DNase1, Agxt2l1, Cyp2e1, Acsm1, Acsm2, and Pah were revealed over the SAMR1 (senescence-accelerated mouse resistant 1 mouse, to be oppositely regulated/recovered under the balenine (+WME supplemented diet regime by DNA microarray and bioinformatics analyses. Our present study demonstrates an experimental strategy to understand the effects of dipeptide balenine, prominetly contained in meat diet, on SAMP8, providing new insight into whole brain transcriptome changes genome-wide. The gene expression data has been deposited into the Gene Expression Omnibus (GEO: GSE76459. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

  16. Situations of potential exposure in self-shielding electron accelerators; Situações de exposição potencial em aceleradores de elétrons autoblindados

    Energy Technology Data Exchange (ETDEWEB)

    Rios, D.A.S.; Rios, P.B., E-mail: denise@inovafi.com.br [Inovafi Física aplicada à Inovação Ltda, Sorocaba, SP (Brazil); Sordi, G.M.A.A.; Carneiro, J.C.G.G. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The study discusses situations in the industrial environment that may lead to potential exposure of Occupationally Exposed Individuals and Public Individuals in self-shielding electron accelerators. Although these exposure situations are unlikely, simulation exercises can lead to improvements in the operating procedure as well as suggest changes in production line design in order to increase radiation protection at work. These studies can also be used in training and demonstrate a solid application of the ALARA principle in the daily activities of radiative installations.

  17. High-energy cosmic-ray acceleration

    OpenAIRE

    Bustamante, M; Carrillo Montoya, G; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi accelera...

  18. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  19. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  20. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  1. Collective acceleration investigations with the ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.; VanDevender, J.P.; Owyoung, A.; Pearlman, J.S.

    1977-01-01

    Part I of a three part program to demonstrate feasibility of the Ionization Front Accelerator (IFA) has been completed and is successful. Experiments describing intense relativistic electron beam (IREB) propagation in Cs are reported. The threshold pressure for electron beam ionization of Cs is found to agree with earlier theoretical predictions. These results experimentally establish Cs as a feasible working gas for the IFA. Numerical simulation results are also reported which demonstrate controlled potential well motion and collective ion acceleration with the IFA

  2. Food processing with linear accelerators

    International Nuclear Information System (INIS)

    Wilmer, M.E.

    1987-01-01

    The application of irradiation techniques to the preservation of foods is reviewed. The utility of the process for several important food groups is discussed in the light of work being done in a number of institutions. Recent findings in food chemistry are used to illustrate some of the potential advantages in using high power accelerators in food processing. Energy and dosage estimates are presented for several cases to illustrate the accelerator requirements and to shed light on the economics of the process

  3. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  4. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  5. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  6. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  7. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  8. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  9. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  10. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  11. Prototype of industrial electrons accelerator

    International Nuclear Information System (INIS)

    Lopez, V.H.; Valdovinos, A.M.

    1992-01-01

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NO x and SO 2 ) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  12. Electron accelerators and nanomaterials - a symbiosis

    International Nuclear Information System (INIS)

    Dixit, Kavita P.; Mittal, K.C.

    2011-01-01

    Electron Accelerators and Nanomaterials share a symbiotic relationship. While electron accelerators are fast emerging as popular tools in the field of nanomaterials, use of nanomaterials so developed for sub-systems of accelerators is being explored. Material damage studies, surface modification and lithography in the nanometre scale are some of the areas in which electron accelerators are being extensively used. New methods to characterize the structure of nanoparticles use intense X-ray sources, generated from electron accelerators. Enhancement of field emission properties of carbon nanotubes using electron accelerators is another important area that is being investigated. Research on nanomaterials for use in the field of accelerators is still in the laboratory stage. Yet, new trends and emerging technologies can effectively produce materials which can be of significant use in accelerators. Properties such as enhanced field emission can be put to use in cathodes of electron guns. Superconducting properties some materials may also be useful in accelerators. This paper focusses on the electron accelerators used for synthesis, characterization and property-enhancement of nanomaterials. The details of electron accelerators used for these applications will be highlighted. Some light will be thrown on properties of nano materials which can have potential use in accelerators. (author)

  13. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  14. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  15. Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis.

    Science.gov (United States)

    Gadau, S; Emanueli, C; Van Linthout, S; Graiani, G; Todaro, M; Meloni, M; Campesi, I; Invernici, G; Spillmann, F; Ward, K; Madeddu, P

    2006-02-01

    Benfotiamine, a vitamin B1 analogue, reportedly prevents diabetic microangiopathy. The aim of this study was to evaluate whether benfotiamine is of benefit in reparative neovascularisation using a type I diabetes model of hindlimb ischaemia. We also investigated the involvement of protein kinase B (PKB)/Akt in the therapeutic effects of benfotiamine. Streptozotocin-induced diabetic mice, given oral benfotiamine or vehicle, were subjected to unilateral limb ischaemia. Reparative neovascularisation was analysed by histology. The expression of Nos3 and Casp3 was evaluated by real-time PCR, and the activation state of PKB/Akt was assessed by western blot analysis and immunohistochemistry. The functional importance of PKB/Akt in benfotiamine-induced effects was investigated using a dominant-negative construct. Diabetic muscles showed reduced transketolase activity, which was corrected by benfotiamine. Importantly, benfotiamine prevented ischaemia-induced toe necrosis, improved hindlimb perfusion and oxygenation, and restored endothelium-dependent vasodilation. Histological studies revealed the improvement of reparative neovascularisation and the inhibition of endothelial and skeletal muscle cell apoptosis. In addition, benfotiamine prevented the vascular accumulation of advanced glycation end products and the induction of pro-apoptotic caspase-3, while restoring proper expression of Nos3 and Akt in ischaemic muscles. The benefits of benfotiamine were nullified by dominant-negative PKB/Akt. In vitro, benfotiamine stimulated the proliferation of human EPCs, while inhibiting apoptosis induced by high glucose. In diabetic mice, the number of circulating EPCs was reduced, with the deficit being corrected by benfotiamine. We have demonstrated, for the first time, that benfotiamine aids the post-ischaemic healing of diabetic animals via PKB/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. In addition, benfotiamine combats the diabetes-induced deficit in

  16. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  17. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  18. Ion acceleration in the plasma source sheath

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    This note is a calculation of the potential drop for a planar plasma source, across the source sheath, into a uniform plasma region defined by vector E = 0 and/or perhaps ∂ 2 PHI/∂ x 2 = 0. The calculation complements that of Bohm who obtained the potential drop at the other end of a plasma, at a planar collector sheath. The result is a relation between the source ion flux and the source sheath potential drop and the accompanying ion acceleration. This planar source sheath ion acceleration mechanism (or that from a distributed source) can provide the pre-collector-sheath ion acceleration as found necessary by Bohm. 3 refs

  19. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  20. Centralized digital control of accelerators

    International Nuclear Information System (INIS)

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  1. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  2. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  3. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  4. Other people's accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  5. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  6. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  7. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  8. Unified accelerator libraries

    International Nuclear Information System (INIS)

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  9. YEREVAN: Acceleration workshop

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  10. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  11. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  12. Accelerator-timing system

    International Nuclear Information System (INIS)

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  13. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  14. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  15. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  16. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  17. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  18. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  19. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  20. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  1. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  2. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  3. Single atom counting with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Woelfli, W [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1984-02-01

    Direct detection of radioisotopes with conventional mass spectrometers is possible when the potential background atoms, in particular stable isotopes of the same mass (isobars) or molecules of similar mass are present in sufficiently low concentrations. Most of the long lived radioisotopes of interest for dating purposes however, occur in such small concentrations that their peak in the mass spectrum is obscured by the stable isobar and molecule distributions. The key idea of the new AMS technique which allows us to measure directly such small concentrations is the acceleration of the sample atoms to MeV energies and to use various filter processes and particle identification techniques developed for nuclear physics research to eliminate the isobaric and molecular interferences. The detection methods used for each radioisotope depend on the dominant background atoms and these in turn depend on the specific accelerator used. The problems encountered in transforming an existing particle accelerator into a high precision dating tool are considerable and have been solved only recently for one type of accelerator, notably the tandem Van de Graaff. For this reason the description of the AMS method and some of its applications is restricted to this type of accelerator only.

  4. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  5. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  6. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  7. Far field acceleration

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  8. Operating Characteristics of the low energy accelerator

    International Nuclear Information System (INIS)

    Abd El-Baki, M.M.; Abd El-Rahman, M.M.

    2000-01-01

    The main purpose of this work is to describe the construction and operation of low energy accelerator with energy in the range from (zero to 100 KeV.). This accelerator includes an ion source of the cold cathode penning type (with pierce geometry for ion beam extraction), an accelerating tube (with 8 electrodes) and faraday cup for measuring ion current. A vacuum system which gives vacuum of the order 3.0 x 10 8 torr is used. A palladium tube is used to supply the source with pure hydrogen atoms. It was possible to operate this accelerator with an energy 50 KeV. at minimum hydrogen pressure. 6.3 x 10 6 torr. The total resistance applied between the accelerating electrodes R T = 31.5 M OMEGA. These data includes the influence of the pressure in the accelerating tube, the magnetic field of the ion source, the extraction potential and the accelerating potential on the collector ion current. It was possible to accelerate protons with an energy 50 KeV with current about 100 MU A at pressure 6.3 x 10 6 Torr, the source magnetic field + 1100 gauss (I B = 2A), the current = 0.4 A and the extraction potential = 10 K. V

  9. Complex calculation and improvement of beam shaping and accelerating system of the ''Sokol'' small-size electrostatic accelerator

    International Nuclear Information System (INIS)

    Simonenko, A.V.; Pistryak, V.M.; Zats, A.V.; Levchenko, Yu.Z.; Kuz'menko, V.V.

    1987-01-01

    Features of charged particle accelerated beam shaping in the electrostatic part of the ''Sokol'' small-size accelerator are considered in complex taking into account the electrode real geometry. Effect of the extracting, accelerating electorde potential and accelerator total voltage on beam behaviour is investigated. A modified variation of the beam shaping system, allowing to decrease 2 times the required interval of accelerating electrode potential adjustment and to decrease the beam size in the starting acceleration region, is presented. It permits to simplify the construction and to improve accelerator operation. Comparison of experimental and calculational data on the beam in the improved accelerator variation is carried out. Effect of peripheral parts of accelerating tube electrodes on the beam is investigated

  10. Ion accelerator based on plasma vircator

    CERN Document Server

    Onishchenko, I N

    2001-01-01

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation.

  11. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  12. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  13. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  14. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  15. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  16. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  17. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  18. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  19. Accelerations in Flight

    Science.gov (United States)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  20. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  1. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  2. Lasers and new methods of particle acceleration

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements

  3. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  4. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  5. Scattering of accelerated wave packets

    Science.gov (United States)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  6. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  7. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  8. 2014 Accelerators meeting, Grenoble

    International Nuclear Information System (INIS)

    Lucotte, Arnaud; Lamy, Thierry; De Conto, Jean-Marie; Fontaine, Alain; Revol, Jean-Luc; Nadolski, Laurent S.; Kazamias, Sophie; Vretenar, Maurizio; Ferrando, Philippe; Laune, Bernard; Vedrine, Pierre

    2014-10-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Laboratory of subatomic physics and cosmology - LPSC-Grenoble (Lucotte, Arnaud; Lamy, Thierry); 2 - Presentation of the Accelerators division of the French Society of Physics (Fontaine, Alain; Revol, Jean-Luc); 3 - Presentation of Grenoble's master diplomas in Accelerator physics (Nadolski, Laurent S.); 4 - Presentation of Paris' master diplomas in big instruments (Kazamias, Sophie); 5 - Particle accelerators and European Union's projects (Vretenar, Maurizio); 6 - French research infrastructures (Ferrando, Philippe); 7 - Coordination of accelerators activity in France (Laune, Bernard; Vedrine, Pierre)

  9. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  10. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  11. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  12. Dummy accelerating tube as a matching lens for 14UD Pelletron Accelerator, BARC-TIFR, Mumbai

    International Nuclear Information System (INIS)

    Surendran, P.; Nair, J.P.; Bhagwat, P.V.

    2003-01-01

    14UD Pelletron Accelerator Facility has been operational since 1989. The potential grading in the accelerator column and tube is achieved by corona points. At present column and tube corona points are replaced by resistance. The resistance per module in the column and tube are 36 GΩ and 33 GΩ respectively

  13. The design of the accelerating gaps for the linear induction accelerator RADLAC II

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Miller, R.B.; Poukey, J.W.

    1987-01-01

    In high current (50 kA) linear induction accelerators, the accelerating gaps can excite large radial oscillations. A gap was designed that minimized the radial oscillations and reduced potential depressions. The envelope equation predicted radial oscillation amplitudes of 1 mm which agreed with experimental measurements

  14. Japan Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  15. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  16. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  17. CONFERENCE: Computers and accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-01-15

    In September of last year a Conference on 'Computers in Accelerator Design and Operation' was held in West Berlin attracting some 160 specialists including many from outside Europe. It was a Europhysics Conference, organized by the Hahn-Meitner Institute with Roman Zelazny as Conference Chairman, postponed from an earlier intended venue in Warsaw. The aim was to bring together specialists in the fields of accelerator design, computer control and accelerator operation.

  18. Japan Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation.

  19. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The CERN Accelerator School (CAS) recently held its Advanced Accelerator Physics course in Greece on the island of Rhodes. Complementing the general course in Finland last year, this course was organized together with the University of Athens and NCSR. Demokritos. Accelerator specialists from Europe, CIS, Japan and USA followed two weeks of ''state-of-theart'' lectures designed to complete their education in the field

  20. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  1. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  2. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  3. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  4. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  5. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  6. Interacting with accelerators

    International Nuclear Information System (INIS)

    Dasgupta, S.

    1994-01-01

    Accelerators are research machines which produce energetic particle beam for use as projectiles to effect nuclear reactions. These machines along with their services and facilities may occupy very large areas. The man-machine interface of accelerators has evolved with technological changes in the computer industry and may be partitioned into three phases. The present paper traces the evolution of man-machine interface from the earliest accelerators to the present computerized systems incorporated in modern accelerators. It also discusses the advantages of incorporating expert system technology for assisting operators. (author). 8 ref

  7. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  8. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  9. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  10. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  11. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  12. Potencial fisiológico de sementes de brássicas com ênfase no teste de envelhecimento acelerado Physiological potential of Brassica seeds with emphasis to the accelerated aging test

    Directory of Open Access Journals (Sweden)

    Caroline J Costa

    2008-06-01

    different tests for the evaluation of the physiological potential of Brassica seeds with emphasis to the accelerated aging test (AAT. Four lots of cabbage seeds cv. Coração de Boi, four lots of broccoli seeds cv. Piracicaba Precoce and five lots of collard seeds cv. Georgia were used. Tests of germination, first germination counting, seedling emergence, electrical conductivity and accelerated aging were accomplished. In this test three procedures were used: traditional (water, saturated NaCl solution (40 g/100 mL and diluted NaCl solution (11 g/100 mL, at 42°C for 48, 72 and 96 hours. The experiment followed a completely randomized design with four replicates and individual evaluations for each test. The tests of first germination counting and speed of seedling emergence presented potential for evaluation of the physiological potential of cabbage and broccoli seeds. For collard seeds, the tests of seedling emergence and electrical conductivity were the most efficient. The AAT was also efficient in the evaluation of the physiological potential of Brassica seeds. For cabbage, the best distinction among the physiological potential of the seeds through the AAT was obtained following the traditional procedure and with diluted NaCl solution, both for 48 and 72 hours, and with saturated NaCl solution for 72 and 96 hours. For broccoli seeds, all of tested AAT procedures were efficient in the identification of the seed lots of superior quality. For collard seeds, the best results were obtained with the AAT in the traditional methodology for 96 hours and with diluted NaCl solution for 72 hours. It was observed that, in comparison to the use of water, the use of saline solution in the AAT inhibited sensibly the fungi growth and development.

  13. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    2002-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  14. Clearance of materials from accelerator facilities

    Directory of Open Access Journals (Sweden)

    Rokni Sayed H.

    2017-01-01

    Full Text Available A new Technical Standard that supports the clearance of materials and equipment (personal property from U.S. Department of Energy (DOE accelerator facilities has been developed. The Standard focuses on personal property that has the potential to be radiologically impacted by accelerator operations. It addresses material clearance programs and protocols for off-site releases without restriction on use. Common metals with potential volumetric activation are of main interest with technical bases provided in Appendices of the Standard. The clearance protocols in the Standard include three elements: 1 clearance criteria, 2 process knowledge, and 3 measurement methods. This paper presents the technical aspects of the new Standard, discusses operational experience gained in clearance of materials and equipment from several accelerator facilities at SLAC and examples as to how this Standard can be applied to benefit the entirety of the DOE Accelerator Complex.

  15. Laser acceleration... now with added fibre

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Laser acceleration technology is plagued by two main issues: efficiency and repetition rates. In other words, lasers consume too much power and cannot sustain accelerating particles long enough to produce collisions. ICAN, a new EU-funded project, is examining how fibre lasers may help physicists tackle these issues.   A diode-pumped fibre laser. (Image courtesy of Laser Zentrum Hannover.) The International Coherent Amplification Network (ICAN) is studying the potential of lasers for collision physics. CERN is a beneficiary of the project and will collaborate with 15 other institutes from around the world, including KEK in Japan, Fermilab in the USA, and DESY in Germany. “The network is looking into existing fibre laser technology, which we believe has fantastic potential for accelerators,” says Gerard Mourou, ICAN co-ordinator at the École Polytechnique in France. “The hope is to make laser acceleration competitive with traditional radio-fre...

  16. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  17. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  18. CERN Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford.

  19. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  20. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  1. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  2. Hamburg Accelerator Conference (2)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-11-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval.

  3. Charged particle accelerator

    International Nuclear Information System (INIS)

    Arakawa, Kazuo.

    1969-01-01

    An accelerator is disclosed having a device which permits the electrodes of an accelerator tube to be readily conditioned in an uncomplicated manner before commencing operation. In particle accelerators, it is necessary to condition the accelerator electrodes before a stable high voltage can be applied. Large current accelerators of the cockcroft-walton type require a complicated manual operation which entails applying to the electrodes a low voltage which is gradually increased to induce a vacuum discharge and then terminated. When the discharge attains an extremely low level, the voltage is again impressed and again raised to a high value in low current type accelerators, a high voltage power supply charges the electrodes once to induce discharge followed by reapplying the voltage when the vacuum discharge reaches a low level, according to which high voltage is automatically applied. This procedure, however, requires that the high voltage power supply be provided with a large internal resistance to limit the current to within several milliamps. The present invention connects a high voltage power supply and an accelerator tube through a discharge current limiting resistor wired in parallel with a switch. Initially, the switch is opened enabling the power supply to impress a voltage limited to a prescribed value by a suitably chosen resistor. Conditioning is effected by allowing the voltage between electrodes to increase and is followed by closing the switch through which high voltage is applied directly to the accelerator for operation. (K.J. Owens)

  4. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  5. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  6. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford

  7. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  8. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  9. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  10. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  11. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... uses microwave technology (similar to that used for radar) to accelerate electrons in a part of the accelerator called the "wave guide," then allows ... risk of accidental exposure is extremely low. top of page This page was ... No Please type your comment or suggestion into the following text ...

  12. Hamburg Accelerator Conference (2)

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  13. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  14. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  15. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  16. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  17. Measurement of gravitational acceleration of antimatter

    International Nuclear Information System (INIS)

    Rouhani, S.

    1989-12-01

    The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs

  18. Wake fields and wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e + e - linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures

  19. GPU-Accelerated Text Mining

    International Nuclear Information System (INIS)

    Cui, X.; Mueller, F.; Zhang, Y.; Potok, Thomas E.

    2009-01-01

    Accelerating hardware devices represent a novel promise for improving the performance for many problem domains but it is not clear for which domains what accelerators are suitable. While there is no room in general-purpose processor design to significantly increase the processor frequency, developers are instead resorting to multi-core chips duplicating conventional computing capabilities on a single die. Yet, accelerators offer more radical designs with a much higher level of parallelism and novel programming environments. This present work assesses the viability of text mining on CUDA. Text mining is one of the key concepts that has become prominent as an effective means to index the Internet, but its applications range beyond this scope and extend to providing document similarity metrics, the subject of this work. We have developed and optimized text search algorithms for GPUs to exploit their potential for massive data processing. We discuss the algorithmic challenges of parallelization for text search problems on GPUs and demonstrate the potential of these devices in experiments by reporting significant speedups. Our study may be one of the first to assess more complex text search problems for suitability for GPU devices, and it may also be one of the first to exploit and report on atomic instruction usage that have recently become available in NVIDIA devices

  20. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  1. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  2. 2016 Accelerators meeting

    International Nuclear Information System (INIS)

    Spiro, Michel; Revol, Jean-Luc; Biarrotte, Jean-Luc; Napoly, Olivier; Jardin, Pascal; Chautard, Frederic; Thomas, Jean Charles; Petit, Eric

    2016-09-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Ganil - Grand accelerateur national d'ions lourds/Big national heavy-ion accelerator, Caen (Jardin, Pascal); 2 - Presentation of the Accelerators division of the French Society of Physics (Revol, Jean-Luc); 3 - Forward-looking and Prospective view (Napoly, Olivier); 4 - Accelerators at the National Institute of Nuclear and particle physics, situation, Forward-looking and Prospective view (Biarrotte, Jean-Luc); 5 - GANIL-SPIRAL2, missions and goals (Thomas, Jean Charles); 6 - The SPIRAL2 project (Petit, Eric)

  3. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  4. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  5. Laser-controlled collective ion accelerator

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Destler, W.W.; Rodgers, J.; Segalov, Z.

    1986-01-01

    We report first results from a new collective accelerator experiment in which a laser-controlled channel of ionization is used to control the propagation of the potential well at the front of an intense relativistic electron beam injected at currents above the space-charge limit. The controlled acceleration of protons at the rate of 40 MeV/m over a distance of 45 cm is reported, in good agreement with experimental design values

  6. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  7. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  8. Operational experience with compressed geometry acceleration tubes in the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Jones, C.M.; Haynes, D.L.; Juras, R.C.; Meigs, M.J.; Ziegler, N.F.

    1989-01-01

    Installation of compressed geometry acceleration tubes and other associated modifications have increased the effective voltage capability of the Oak Ridge 25URC tandem accelerator by about 3 MV. Since mid-September 1988, the accelerator has been operated routinely at terminal potentials up to 24 MV and occasionally near 25 MV. In 3500 hours of full-column operation, including 1100 hours at potentials about 22 MV, no significant spark-included damage was observed. Some considerations related to further improvements in voltage performance are discussed. 7 refs., 5 figs

  9. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  10. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  11. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  12. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  13. New accelerator ideas

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow

  14. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  15. ACCELERATORS: School report

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The expanded 1987 US Particle Accelerator School, held at Fermilab from 20 July to 14 August, included two two-week sessions. In the first, 101 students covered three university-style courses, listed as upper-division University of Chicago physics, covering the fundamentals of particle beams, magnetic optics and acceleration; relativistic electronics; and high energy storage rings. The 180 participants in the second session profited from 24 short courses presented by experts and covering a wide variety of topics in the physics and technology of particle accelerators.

  16. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  17. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  18. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  19. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    Terebilo, Andrei

    2001-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  20. RF linear accelerators

    CERN Document Server

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  1. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  2. New accelerator ideas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow.

  3. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  4. Accelerators Spanish steps

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    In September, the CERN Accelerator School (CAS) held its third General Accelerator Physics Course, the venue this time being Salamanca, the oldest university in Spain. Spain, which rejoined CERN in 1982, now has a vigorous and steadily growing high energy physics community making substantial contributions to physics detector development and successfully involving Spanish industry. However the embryonic accelerator community cannot yet generate an equivalent level of activity, and this important channel for introducing new high technology into industry has yet to be fully exploited

  5. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  6. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  7. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  8. Future accelerators: physics issues

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1977-11-01

    High energy physics of the future using future accelerators is discussed. The proposed machines and instruments, physics issues and opportunities including brief sketches of outstanding recent results, and the way the proposed machines address these issues are considered. 42 references

  9. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  10. The accelerator breeder

    International Nuclear Information System (INIS)

    Johansson, E.

    1986-01-01

    Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)

  11. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  12. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  13. Accelerated test program

    Science.gov (United States)

    Ford, F. E.; Harkness, J. M.

    1977-01-01

    A brief discussion on the accelerated testing of batteries is given. The statistical analysis and the various aspects of the modeling that was done and the results attained from the model are also briefly discussed.

  14. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  15. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  16. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  17. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  18. Iteration and accelerator dynamics

    International Nuclear Information System (INIS)

    Peggs, S.

    1987-10-01

    Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

  19. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  20. Vancouver Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-06-15

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc.

  1. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  2. Ion optics for accelerators

    International Nuclear Information System (INIS)

    Enge, H.A.

    1974-01-01

    A review is given of ion-optic devices used in particle accelerators, including electrostatic lenses, magnetic quadrupoles, and deflecting magnets. Tube focusing in dc accelerators is also treated, and a novel scheme for shaping the electrodes to produce strong focusing is described. The concepts of emittance (phase space) and emittance conservation are briefly discussed. Chromatic and spatial aberrations are introduced, and it is shown how they can be calculated and sometimes substantially reduced. Some examples are given

  3. An active particle accelerator

    International Nuclear Information System (INIS)

    Goldman, T.

    1991-01-01

    Although a static charge is difficult to maintain on macroscopic particles, it is straightforward to construct a small object with a regularly oscillating electric dipole moment. For objects of a given size, one may then construct an accelerator by appropriately matching the frequency and separations of an external array of electrodes to this size. Physically feasible size ranges, an accelerator design, and possible applications of such systems are discussed. 8 refs., 9 figs

  4. Vancouver Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc

  5. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    Chao, Y C; Drury, M; Hovater, C; Hutton, A; Krafft, G A; Poelker, M; Reece, C; Tiefenback, M

    2011-01-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  6. Collective field accelerator

    International Nuclear Information System (INIS)

    Luce, J.S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a ν/γ of approx. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam

  7. Accelerated Hypertension after Venlafaxine Usage

    Directory of Open Access Journals (Sweden)

    Yüksel Kıvrak

    2014-01-01

    Full Text Available Venlafaxine is the first antidepressant that acts via inhibiting serotonin and noradrenaline reuptake. Hypertension is observed in doses exceeding 300 mg/day and is the most feared complication. We report a patient with accelerated hypertension after venlafaxine use observed at a dose of 150 mg/day. A 23-year-old patient with symptoms of insomnia, depression, anhedonia, fatigue admitted our clinic. Venlafaxine at a dose of 75 mg/day was initiated after he was diagnosed with major depressive disorder. After 5 months, venlafaxine dose was uptitrated to 150 mg/day due to inadequate response to drug. After using venlafaxine for ten months at the dose of 150 mg/day, he admitted our clinic with headache and epistaxis. He was hospitalized after his blood pressure was measured as 210/170 mmHg. No secondary causes for hypertension were found, and venlafaxine treatment was considered possible etiologic factor. After stopping venlafaxine treatment, his blood pressure was reverted back to normal limits. While mild elevation of blood pressure could be observed after venlafaxine treatment, this case shows that accelerated hypertension with a diastolic blood pressure rise above 120 mmHg could be observed at relatively low doses of venlafaxine. Close monitoring of blood pressure is necessary after initiation of treatment, as accelerated hypertension could cause endorgan damage with potentially catastrophic results.

  8. Accelerator research studies. Progress report

    International Nuclear Information System (INIS)

    1984-06-01

    Progress is reported in both experimental studies as well as theoretical understanding of the beam transport problem. Major highlights are: (a) the completion of the first channel section with 12 periods and two matching solenoids, (b) measurements of beam transmission and emittance in this 12-lens channel, (c) extensive analytical and numerical studies of the beam transport problem in collaboration with GSI (W. Germany), (d) detailed measurements and calculations of beam propagation through one lens with spherical aberration and space charge, and (e) completion of the emittance grids at the Rutherford-Appleton Laboratory. Our main objectives in Task B of our research program are: (a) study of collective acceleration of positive ions from a localized plasma source by an intense relativistic electron beam (IREB), (b) external control of the IREB beam front by a slow-wave structure to achieve higher ion energies - the Beam Front Accelerator (BFA) concept, (c) study of ion and electron acceleration and other applications of a plasma focus device, and (d) theoretical studies in support of (a) and (b). Our research in these areas has been oriented towards obtaining an improved understanding of the physical processes at work in these experiments and, subsequently, achieving improved performance for specific potential applications

  9. Analytical tools in accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  10. Analytical tools in accelerator physics

    International Nuclear Information System (INIS)

    Litvinenko, V.N.

    2010-01-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev (Kolomensky), but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz (Landau). A large number of short notes covering various techniques are placed in the Appendices.

  11. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  12. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  13. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  14. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  15. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  16. Vacuum electron acceleration by coherent dipole radiation

    International Nuclear Information System (INIS)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-01-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. copyright 1999 The American Physical Society

  17. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  18. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  19. The radiofrequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Puglisi, M.

    1986-01-01

    This seminar is aimed to give a comprehensive picture of an RFQ. After a short description of the accelerating structure the T-K expansion is treated and the fundamental formula for the potential is derived. The vane tips shaping, completed to first order is followed by the physics of the machine where the most important parameters are listed and illustrated. Since the RFQ is essentially a cavity resonator this topic has been given particular attention. Design and other technical considerations complete the picture, while in the last paragraph the new ideas are briefly outlined. (Auth.)

  20. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  1. Accelerator business in Japan expanding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  2. Beam transport through electrostatic accelerators and matching into post accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1986-01-01

    Ion beam transport through electrostatic acceleration is briefly reviewed. Topics discussed include injection, matching into the low-energy acceleration stage, matching from the terminal stripper into the high-energy stage, transport to a post accelerator, space charge, bunching isochronism, dispersion and charge selection. Beam transport plans for the proposed Vivitron accelerator are described. (orig.)

  3. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  4. ORNL pellet acceleration program

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.

    1978-01-01

    The Oak Ridge National Laboratory (ORNL) pellet fueling program is centered around developing equipment to accelerate large pellets of solidified hydrogen to high speeds. This equipment will be used to experimentally determine pellet-plasma interaction physics on contemporary tokamaks. The pellet experiments performed on the Oak Ridge Tokamak (ORMAK) indicated that much larger, faster pellets would be advantageous. In order to produce and accelerate pellets of the order of 1 to 6 mm in diameter, two apparatuses have been designed and are being constructed. The first will make H 2 pellets by extruding a filament of hydrogen and mechanically chopping it into pellets. The pellets formed will be mechanically accelerated with a high speed arbor to a speed of 950 m/sec. This technique may be extended to speeds up to 5000 m/sec, which makes it a prime candidate for a reactor fueling device. In the second technique, a hydrogen pellet will be formed, loaded into a miniature rifle, and accelerated by means of high pressure hydrogen gas. This technique should be capable of speeds of the order of 1000 m/sec. While this technique does not offer the high performance of the mechanical accelerator, its relative simplicity makes it attractive for near-term experiments

  5. Accelerator development at Bates

    International Nuclear Information System (INIS)

    Sargent, C.P.

    1983-01-01

    The past year has seen the completion of a major expansion of the Bates Accelerator Laboratory. A second experimental hall, South Hall, and several magnetic spectrometers have been constructed. The accelerator's maximum energy has been raised from 400 to 750 MeV by means of beam recirculation. A current two-year project for the fabrication of an additional RF transmitter plus a 30% increase in RF peak power capability will increase energy further to ca. 1 GeV. During the same period pulse-to-pulse beam sharing between the high-resolution spectrometer area and South Hall will become available. In January 1981 the Laboratory submitted their ''Proposal for a Long-Range Expansion Program'' to DOE-NSF. The proposed development consists of three stages. Stage I calls for the addition of a pulse stretcher ring to furnish a CW beam to the South Hall beam lines. Additional experimental space for internal target experiments and photon tagging research are also included. Stage II increases the accelerator energy to 2.1 GeV (at 140 microamps) by means of a five-pass head-to-tail recirculator. Stage III is, at this time, a plan rather than a proposal. It increases accelerator energy to 4 GeV by extending the accelerator length and power and adds another pulse stretcher ring and three new experimental areas for the higher energy work. This paper discusses each of these stages in detail and recommends their funding and scheduling

  6. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  7. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  8. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  9. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  10. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  11. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  12. The Role of natural gas and biomethane in the fuel mix of the future in Germany. Required action and potential solutions to accelerate adoption in transport applications; Erdgas und Biomethan im kuenftigen Kraftstoffmix. Handlungsbedarf und Loesungsansaetze fuer eine beschleunigte Etablierung im Verkehr

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The contribution under consideration reports on the need of action and on solution attempts for an accelerated establishment of natural gas and bio methane in the future fuel mix. The authors come to the following conclusions: The energy situation and climatic situation require a stronger diversification of fuels and drives. The targets for the amount of natural gas and bio methane as a fuel are not reached yet. The characteristics of natural gas speak for an accelerated establishment in the traffic sector. The admixture of bio methane can increase the climatic, environmental and resources advantages. In order to penetrate the market all participants involved must commit themselves to a concrete 'roadmap'. The contribution shows which measures must be converted by the participants involved in order to be able to utilize fully the potentials of the employment of natural gas and bio methane in the traffic sector.

  13. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  14. Need for accelerating electrons

    International Nuclear Information System (INIS)

    Kerst, D.W.

    1987-01-01

    Photons for nuclear disintegration experiments were not abundantly available in the early days of nuclear physics, whereas accelerated ions led the way. When electrons could be accelerated into the 20--30 MeV range, they found application not only to nuclear disintegration of the elements of the periodic table but also to x-ray radiography and to deep therapy. Energies of interest for probing nuclear structure by electron scattering and for meson production followed soon after. The elementary nature of the electron has now made it a valuable tool for present day particle physics; and the synchrotron radiation, which is an obstacle for some accelerating processes, has become a much sought after source of photons for experiments at atomic structure energies

  15. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  16. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  17. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  18. Universality of accelerating change

    Science.gov (United States)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  19. Future accelerators in Japan

    International Nuclear Information System (INIS)

    Toge, Nobu

    1993-01-01

    This paper presents a brief report on the present status of future accelerator projects at the National Laboratory for High Energy Physics (KEK), Japan. The KEK laboratory has been successfully operating the TRISTAN accelerator complex since 1986. It consists of a 2.5 GeV electron/positron linac, an 8 GeV Accumulation Ring (AR) and a 29 GeV Main Ring (MR). Concurrently with this operation, in response to recommendations by the Japanese High Energy Physics Committee, survey studies have been continued on new accelerator facilities at KEK. They have two major future projects, namely, the asymmetric e + e - B-factory based on TRISTAN (TRISTAN-II) and the Japan Linear Collider (JLC). The purpose of this paper is to outline those research activities and to present an update on their status

  20. JKJ accelerator timing system

    International Nuclear Information System (INIS)

    Ohmori, C.; Mori, Y.; Yoshii, M.; Yamamoto, M.

    2001-01-01

    The JKJ (JAERl-KEK Joint Project) accelerator complex consists of the linear accelerator, 3 GeV and 50 GeV synchrotrons. To minimize the beam loss during the beam transfer from the 3 GeV synchrotron to the 50 GeV one, the synchronization of the two RF system of the rings is very important. To reduce the background from the high and low momentum neutron, the neutron beam chopper will be employed. The 3 GeV RF will be also synchronized to the chopper timing when the beam goes to the neutron facility. The whole timing control system of these accelerators and chopper will be described. (author)

  1. Accelerators for therapy

    International Nuclear Information System (INIS)

    Pohlit, W.

    1994-01-01

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  2. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  3. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  4. Accelerating the culture change!

    Science.gov (United States)

    Klunk, S W; Panetta, J; Wooten, J

    1996-11-01

    Exide Electronics, a major supplier of uninterruptible power system equipment, embarked on a journey of changing a culture to improve quality, enhance customer responsiveness, and reduce costs. This case study examines the evolution of change over a period of seven years, with particular emphasis on the most recent years, 1992 through 1995. The article focuses on the Raleigh plant operations and describes how each succeeding year built on the successes and fixed the shortcomings of the prior years to accelerate the culture change, including corrective action and continuous improvement processes, organizational structures, expectations, goals, achievements, and pitfalls. The real challenge to changing the culture was structuring a dynamic approach to accelerate change! The presentation also examines how the evolutionary process itself can be created and accelerated through ongoing communication, regular feedback of progress and goals, constant evaluation and direction of the process, and measuring and paying for performance.

  5. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  6. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  7. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  8. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  9. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  10. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  11. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  12. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  13. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  14. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  15. Photocathodes in accelerator applications

    International Nuclear Information System (INIS)

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs 3 Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera

  16. "Light sail" acceleration reexamined.

    Science.gov (United States)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  17. 'Light Sail' Acceleration Reexamined

    International Nuclear Information System (INIS)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-01-01

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  18. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  19. Plasma wave accelerator. II

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.

    1982-01-01

    It was shown that the insertion of a cross magnetic field prevents the particles from getting out of phase with the electric field of the plasma wave in the beat wave accelerator scheme. Thus, using a CO 2 laser, n/sub c//n/sub e/ = (ω 0 /ω/sub p/) 2 approx. 35, and a 300 kG magnetic field, electrons can be (in principle) accelerated to 100 GeV in 2 meters. For comparison without the magnetic field, the same energies may be obtained in a n/sub c//n/sub e/ approx. 10 5 plasma over a distance of 100 meters

  20. An accelerator technology legacy

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1994-01-01

    Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production

  1. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  2. Accelerator research studies: Progress report, Task B

    International Nuclear Information System (INIS)

    1985-06-01

    The main objectives in Task B of the research program are summarized as follows: (1) studies of the collective acceleration of positive ions from a localized plasma source by an intense relativistic electron beam (IREB), (2) studies of ways in which external control may be achieved over the electron beam front in order to achieve higher ion energies - the Beam Front Accelerator (BFA) concept, and (3) study of electron and ion beam generation in a new kind of compact pulsed accelerator in which energy is stored inductively and switched using a plasma focus opening switch. During the past year, substantial progress was made in each of these areas. Our exploratory research on the collective acceleration of laser-produced ions has confirmed the acceleration of C, Al, and Fe ions to peak energies in excess of 10 MeV/amu. In addition, studies of the relation between collective ion acceleration and electron beam propagation in vacuum have shed new light on the experimental processes that lead to energy transfer from electrons to ions. Meanwhile, extensive progress has been made in our attempts to use analytical theory and numerical simulation to model ion acceleration in these systems. Our resultant improved understanding of the processes that limit the peak ion energy has had a profound impact on our plans for further research in this area. Studies of the Compact Pulsed Accelerator have included both ion and electron beam extraction from the device. Its potential to reduce the volume of pulse power sources by an order of magnitude has already been demonstrated, and plans are currently underway to scale the experiment up to voltages in the 1 MV range

  3. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared

  4. Developing MESA : an accelerated reliability test

    NARCIS (Netherlands)

    Baskoro, G.; Rouvroye, J.L.; Bacher, W.; Brombacher, A.C.

    2003-01-01

    This paper describes the on-going research on an accelerated reliability test strategy called MESA (Multiple Environment Stress Analysis) intended to find in a fast and efficient manner (potential) reliability problems during the design phase of high volume consumer products. This test has shown

  5. Use of large sources and accelerators

    International Nuclear Information System (INIS)

    1969-01-01

    A comprehensive review of applications of large radiation sources and accelerators in industrial processing was made at a symposium held in Munich during August. Reports presented dealt with industrial work already proved to be practical, projects in an advanced stage of development and with others in which there appears to be significant potential. (author)

  6. Accelerators in the sky

    International Nuclear Information System (INIS)

    Setti, G.

    1977-01-01

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  7. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  8. Accelerating with industry

    International Nuclear Information System (INIS)

    Southworth, Brian

    1992-01-01

    At the end of March, Berlin was the scene of the third biennial European Particle Accelerator Conference (EPAC). It carried the usual news from the front-line machines in the high energy physics Laboratories and reports on progress with the latest technologies

  9. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  10. Hamburg Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-10-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn.

  11. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Dacal, A.

    1989-01-01

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  12. Radioisotope Dating with Accelerators.

    Science.gov (United States)

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  13. The CERN accelerator complex

    CERN Multimedia

    Mobs, Esma Anais

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  14. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  15. Ion sources for accelerators

    International Nuclear Information System (INIS)

    Alton, G.D.

    1974-01-01

    A limited review of low charge sate positive and negative ion sources suitable for accelerator use is given. A brief discussion is also given of the concepts underlying the formation and extraction of ion beams. Particular emphasis is placed on the technology of ion sources which use solid elemental or molecular compounds to produce vapor for the ionization process

  16. BNL accelerator plans

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1986-01-01

    The Brookhaven National Laboratory plan for high energy and heavy ion physics accelerator use for the next ten-year period is described. The two major initiatives are in the construction of the Relativistic Heavy Ion Collider and the upgrade of the Alternating Gradient Synchrotron to a ''Mini Kaon Factory''

  17. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  18. Accelerating with industry

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Brian

    1992-06-15

    At the end of March, Berlin was the scene of the third biennial European Particle Accelerator Conference (EPAC). It carried the usual news from the front-line machines in the high energy physics Laboratories and reports on progress with the latest technologies.

  19. Accelerating News Issue 5

    CERN Document Server

    Szeberenyi, A

    2013-01-01

    In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

  20. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  1. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  2. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  3. The ATOMKI Accelerator Center

    International Nuclear Information System (INIS)

    Biri, S.; Kormany, Z.; Berzi, I.; Hunyadi, M.

    2009-01-01

    In 2009 a new division was established in our institute: the ATOMKI Accelerator Center (AAC). Before this time the facilities and staff of AAC belonged to other departments of the institute. The re-organization however, was necessary. It was understood that the translocation of all the accelerators into a centralized unit is advantageous in numerous fields. Here we just mention some of them. The submission of any instrumentation type proposal (EU or domestic) will be easier and has a higher chance to be supported. The organization and distribution of the beamtimes will be more equal and optimal. The usage of the maintenance and spare tools can became better and cheaper. The operating staff (cca. 20 person) can serve at more than one accelerator and the teams can help each other. The accelerator center actually became a fourth new basic unit of the institute besides the three traditional scientific divisions (see the Atomki homepage for the organization chart). The following six main facilities belong to the accelerator center: Cyclotron; VdG-5 accelerator; VdG-1 accelerator; ECR ion source; Isotope separator; Tandetron (under installation). In figure 1 the placements of these machines are shown in an artistic 3D map of the Atomki. The table 1 summarizes the main parameters of the accelerators. More detailed technical specification of the machines can be found in the new homepage of the center. In 2009 all the accelerators operated as scheduled, safely and without major breakdowns. After the experiences in the first months it can be concluded that the new center works well both for technical and human point of views. In the next sub-chapters the 2009 operation and development details of the individual accelerators are summarized. Cyclotron operation. The operation of the cyclotron in 2009 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 2009 hours; the time

  4. Wakeless triple soliton accelerator

    International Nuclear Information System (INIS)

    Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.

    1986-09-01

    We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber

  5. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  6. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  7. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  8. Menopause accelerates biological aging

    Science.gov (United States)

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  9. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  10. Teste de envelhecimento acelerado para avaliação do potencial fisiológico de sementes de urucum Accelerated aging test to evaluate the physiologic potential of annatto seeds

    Directory of Open Access Journals (Sweden)

    Salvador B Torres

    2009-03-01

    Full Text Available Urucum (Bixa orellana L. é uma cultura de grande interesse comercial, sendo o principal produto a semente, da qual se extraem os corantes bixina e norbixina, de valor nos mercados nacional e internacional. O presente trabalho teve por objetivo estudar a metodologia do teste de envelhecimento acelerado para obtenção do potencial fisiológico de sementes de urucum, utilizando-se quatro lotes de sementes da cultivar Casca Vermelha. A avaliação inicial desses lotes consistiu na determinação do grau de umidade, germinação, primeira contagem da germinação e emergência de plântulas em casa de vegetação. O envelhecimento acelerado foi implementado a 41ºC durante 48, 72 e 96 horas, com e sem uso de solução saturada de NaCl. O experimento foi conduzido em delineamento inteiramente casualizado. Dentre os procedimentos adotados no teste de envelhecimento acelerado, o período de exposição de 72 horas a 41ºC com uso de solução saturada de NaCl, revelou-se adequado para a avaliação do potencial fisiológico de sementes de urucum.Annatto (Bixa orellana L. is a crop of great commercial interest, from whose main product, the seed, is extracted the bixina and norbixina coloring, of great interest in the national and international market. The methodology of the accelerated aging test to achieve the physiological quality of annatto seeds was evaluated. The initial quality of the seeds was obtained through the tests of moisture content, germination, germination first count and seedling emergence in greenhouse. The accelerated aging test was conducted at 41ºC during 48, 72 and 96 hours, using the traditional and NaCl saturated solution. The research was conducted in a completely randomized design. The saturated salt accelerated aging test was efficient for vigor evaluation of annatto seeds, and the period of 72 hours at 41ºC was considered as the most adequate procedure to evaluate seed vigor levels.

  11. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  12. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  13. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  14. A new straight accelerator tube with U diaphragm

    International Nuclear Information System (INIS)

    Liu Jinhong; Lai Weiquan; Deng Yushen; Zhang Jidong

    1994-01-01

    After calculating the potential distribution and the particle trajectories in electrostatic accelerator tubes, a new straight tube with U diaphragm to suppress secondary particles is proposed. It's properties are demonstrated by the high voltage tests and the γ-rays measurements in the accelerator

  15. Deflation acceleration of lattice QCD simulations

    International Nuclear Information System (INIS)

    Luescher, Martin

    2007-01-01

    Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved

  16. Deflation acceleration of lattice QCD simulations

    CERN Document Server

    Lüscher, Martin

    2007-01-01

    Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved.

  17. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  18. Cost optimisation studies of high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R.; Nightingale, M.P.S.; Godden, D. [AEA Technology, Oxon (United Kingdom)] [and others

    1995-10-01

    Cost optimisation studies are carried out for an accelerator based neutron source consisting of a series of linear accelerators. The characteristics of the lowest cost design for a given beam current and energy machine such as power and length are found to depend on the lifetime envisaged for it. For a fixed neutron yield it is preferable to have a low current, high energy machine. The benefits of superconducting technology are also investigated. A Separated Orbit Cyclotron (SOC) has the potential to reduce capital and operating costs and intial estimates for the transverse and longitudinal current limits of such machines are made.

  19. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  20. SALOME: An Accelerator for the Practical Course in Accelerator Physics

    OpenAIRE

    Miltchev, Velizar; Riebesehl, Daniel; Roßbach, Jörg; Trunk, Maximilian; Stein, Oliver

    2014-01-01

    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will ...

  1. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  2. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  3. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  4. Electrostatic field distributions in the Harwell Tandem accelerator

    International Nuclear Information System (INIS)

    Read, P.M.

    1981-11-01

    The electrostatic field distributions in the Harwell Tandem accelerator have been precisely calculated using the electrostatics program FINALE. The results indicate that the accelerator which presently has an upper voltage limit of 6.5 MV has the potential to operate at 8 MV. Such an upgrade could be achieved by a modification to the high voltage terminal. Replacement of the existing accelerator tubes with accelerator tubes capable of a gradient of 1.8 MV/m would also be required. The existing stack may also require replacement. The terminal modification itself would reduce the terminal to tank breakdown frequency. (author)

  5. Continuity of Accelerator Operations during an Extended Pandemic

    International Nuclear Information System (INIS)

    Noel Okay

    2010-01-01

    The Operations group for the Continuous Electron Accelerator Facility in Newport News Virginia has developed a Continuity of Operations plan for pandemic conditions when high absenteeism may impact accelerator control room operations. Protocols to address both the potential spread of illnesses in the control room environment as well as maintaining minimum staffing requirements for contiguous accelerator operation will be presented. During acute pandemic conditions local government restrictions may prevent continued operations but during extended periods of high absenteeism accelerator operations can continue when some added precautionary measures and staffing adjustments are made in the way business is done.

  6. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  7. Experimental studies of the laser-controlled collective ion accelerator

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; Segalov, Z.

    1989-01-01

    Detailed experimental studies of a collective acceleration experiment in which a time-sequenced laser-generated ionization channel is used to control the propagation of an intense relativistic electron beamfront are presented. Ions trapped in the potential well at the beamfront are accelerated as the velocity of the beamfront is increased in a manner controlled by the time-dependent axial extent of the ionization channel. Beamfront propagation data for two different accelerating gradients are presented, together with results of ion acceleration studies for both gradients

  8. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  9. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  10. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  11. Magnetotail phenomena and auroral acceleration

    International Nuclear Information System (INIS)

    Giles, M.J.

    1980-01-01

    It is suggested that localised electrostatic potential wells could be generated in the plasma sheet by large amplitude electrostatic ion cyclotron waves. It is shown from a consideration of a simple one dimensional model that such wells could possess a double structure of oppositely directed fields elongated in longitude. The possibility that the waves could evolve from a turbulent ion wave cascade driven by Earthward streaming protons is discussed and the magnitude of the potentials that could be established in this way is estimated using results for condensed state turbulent equilibria. The projections of these wells along the highly conducting geomagnetic field lines form potential valleys across the field lines in the high latitude auroral plasma. It is shown that these valleys would be of the scale and depth needed to establish electrostatic shocks which would be of sufficient intensity to accelerate electrons to energies comparable to those observed in 'inverted-V' events. Potential wells are formed predominantly in the midnight sector of the plasma sheet and propagate Earthwards. This implies a corresponding equatorwards motion of the valley which, typically, would have a velocity of a few hundred m s -1 . (author)

  12. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  13. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  14. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is being used to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. The goal is to produce a 24 MeV, 50 mA device with a 2% duty factor. Specific features of the GTA -- injector, beam optics, rf linac structures, diagnostics, control and rf power systems are described. The first four steps in commissioning have been completed. The RFQ predicted and measured performances are in good agreement; however, the transmission is lower than specifications. Input emittance is larger than design specifications and increases the effects of image charge and multipoles. Displacement of steering magnets in either the horizontal or vertical plane caused beam displacements in both planes. It is suspected that quadrupole rotation is the cause of the coupled motion. 9 figs., 5 tabs., 11 refs

  15. Accelerator research studies

    International Nuclear Information System (INIS)

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  16. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  17. Accelerator research studies

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  18. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  19. Hardware Accelerated Simulated Radiography

    International Nuclear Information System (INIS)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists

  20. Review of accelerator instrumentation

    International Nuclear Information System (INIS)

    Pellegrin, J.L.

    1980-05-01

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included

  1. Laser beam accelerator

    International Nuclear Information System (INIS)

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  2. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor

  3. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  4. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  5. Accelerator research studies

    International Nuclear Information System (INIS)

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  6. Accelerators for cancer therapy

    International Nuclear Information System (INIS)

    Lennox, Arlene J.

    2000-01-01

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy

  7. Ion accelerators for space

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Potvin, L.

    1991-01-01

    The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space

  8. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  9. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  10. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  11. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  12. Impulsive ion acceleration in earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.; Belian, R.D.

    1985-01-01

    Considerable observational evidence is found that ions are accelerated to high energies in the outer magnetosphere during geomagnetic disturbances. The acceleration often appears to be quite impulsive causing temporally brief (10's of seconds), very intense bursts of ions in the distant plasma sheet as well as in the near-tail region. These ion bursts extend in energy from 10's of keV to over 1 MeV and are closely associated with substorm expansive phase onsets. Although the very energetic ions are not of dominant importance for magnetotail plasma dynamics, they serve as an important tracer population. Their absolute intensity and brief temporal appearance bespeaks a strong and rapid acceleration process in the near-tail, very probably involving large induced electric fields substantially greater than those associated with cross-tail potential drops. Subsequent to their impulsive acceleration, these ions are injected into the outer trapping regions forming ion ''drift echo'' events, as well as streaming tailward away from their acceleration site in the near-earth plasma sheet. Most auroral ion acceleration processes occur (or are greatly enhanced) during the time that these global magnetospheric events are occurring in the magnetotail. A qualitative model relating energetic ion populations to near-tail magnetic reconnection at substorm onset followed by global redistribution is quite successful in explaining the primary observational features. Recent measurements of the elemental composition and charge-states have proven valuable for showing the source (solar wind or ionosphere) of the original plasma population from which the ions were accelerated

  13. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5. 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future

  14. ATLAS accelerator laboratory report

    International Nuclear Information System (INIS)

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector

  15. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  16. Modulational effects in accelerators

    International Nuclear Information System (INIS)

    Satogata, T.

    1997-01-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed

  17. Neutrino physics and accelerators

    International Nuclear Information System (INIS)

    Kaftanov, V.

    1978-01-01

    The history is described of experiments aimed at the study of direct neutrino-matter interactions conducted in the past twenty years. Experiments are outlined carried out with the objective of proving the existence of the intermediate W meson which had been predicted by the weak interaction theory. The methods of obtaining neutrino beams using accelerators and the detectors used are briefly shown. Also described are experiments to be conducted in the near future in different laboratories. (Z.J.)

  18. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5, 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future. copyright 1995 American Institute of Physics

  19. Future Accelerator Magnet Needs

    International Nuclear Information System (INIS)

    Devred, Arnaud; Gourlay, Stephen A.; Yamamoto, Akira

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R and D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb 3 Sn along with fabrication and cost issues are also discussed

  20. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  1. Introduction to Accelerators Physics

    International Nuclear Information System (INIS)

    Variola, A.

    2007-01-01

    This short course aims at giving to high energy physics students a preliminary introduction to accelerators basics. The arguments and the style were selected in this perspective. Consequently, topics such as the definition of beam parameters and luminosity were preferred to much more technical aspects. The calculation details were neglected to allow more important highlights on concepts and definitions. Some examples and exercises were suggested to summarize the different topics of the lessons

  2. Operation of the accelerator

    International Nuclear Information System (INIS)

    GANIL Team

    1992-01-01

    The operation of the GANIL accelerator during 1991 and the first half of 1992 is reported. Results obtained with new beams, metallic beams and the first tests with the new injector system using an ECR source installed on a 100 kV platform are also given. Statistics of operation and beam characteristics are presented. The computer control system is also discussed. (K.A.) 7 refs.; 3 figs.; 8 tabs

  3. Accelerating News Issue 3

    CERN Document Server

    Kahle, K; Tanguy, C; Wildner, E

    2012-01-01

    This summer saw CERN announce to a worldwide audience the discovery of a Higgs-like boson, so this issue takes a look at the machine behind the discovery, the LHC, as well as future plans for a possible Higgs factory in the form of LEP3. Looking ahead too are European strategies for particle physics and accelerator-based neutrino physics. In addition, taking stock of the work so far, HiLumi LHC and EuCARD showcase their latest results.

  4. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    Arons, Jonathan.

    1980-06-01

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  5. Basic accelerator optics

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    1985-01-01

    A complete derivation, from first principles, of the concepts and methods applied in linear accelerator and beamline optics will be presented. Particle motion and beam motion in systems composed of linear magnets, as well as weak and strong focusing and special insertions are treated in mathematically simple terms, and design examples for magnets and systems are given. This series of five lectures is intended to provide all the basic tools required for the design and operation of beam optical systems.

  6. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  7. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  8. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  9. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  10. Equipartitioning in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1982-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined. At the same time, Hofmann has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. Evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  11. Equipartitioning in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined below. At the same time, Hofmann, using powerful analytical and computational methods, has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. This is an important generalization. Work that he will present at this conference shows that the results are essentially the same in r-z coordinates for transport systems, and evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems also. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  12. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  13. SSC accelerator physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Accelerator physicists at LBL began intensive work on the SSC in 1983, in support of the proposed 6.5-T magnet design, which, in turn, became reference design A during the Reference Designs Study. In that same study, LBL physicists formed the core of the accelerator physics group led by Fermilab's Don Edwards. In a period of only a few months, that group established preliminary parameters for a near-optimal design, produced conceptual designs based on three magnet types, addressed all significant beam lifetime and stability issues, and identified areas requiring further R and D. Since the conclusion of the Reference Designs Study, work has focused on the key SSC design issue, namely, single-particle stability in an imperfect magnetic field. At the end of fiscal 1984, much of the LBL accelerator physics group took its place in the SSC Central Design Group, whose headquarters at LBL will be the focus of nationwide SSC R and D efforts over the next several years

  14. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  15. Turbulence and particle acceleration

    International Nuclear Information System (INIS)

    Scott, J.S.

    1975-01-01

    A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed

  16. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  17. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  18. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  19. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  20. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  1. Collective focusing ion accelerator

    International Nuclear Information System (INIS)

    Goldin, F.J.

    1986-01-01

    The principal subject of this dissertation is the trapping confinement of pure electron plasmas in bumpy toroidal magnetic fields, with particular attention given to the trapping procedure and the behavior of the plasma during the final equilibrium. The most important aspects of the equilibrium studied were the qualitative nature of the plasma configuration and motion and its density, distribution and stability. The motivation for this study was that an unneutralized cloud of electrons contained in a toroidal system, sufficiently dense and stable, may serve to electrostatically focus ions (against centrifugal and self space charge forces) in a cyclic ion accelerator. Such an accelerator, known as a Collective Focusing Ion Accelerator (CFIA) could be far smaller than conventional designs (which use external magnetic fields directly to focus the ions) due to the smaller gyro-radium of an electron in a magnetic field of given strength. The electron cloud generally drifted poloidally at a finite radius from the toroidal minor axis. As this would preclude focusing ions with such clouds, damping this motion was investigated. Finite resistance in the normally perfectly conductive vessel wall did this. In further preparation for a working CFIA, additional experiments studied the effect of ions on the stability of the electron cloud

  2. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  3. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  4. Overview of accelerators in medicine

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  5. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  6. Stochastic acceleration by hydromagnetic turbulence

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1979-03-01

    A general theory for particle acceleration by weak hydromagnetic turbulence with a given spectrum of waves is described. Various limiting cases, corresponding to Fermi acceleration and magnetic pumping, are discussed and two numerical examples illustrating them are given. An attempt is made to show that the expression for the rate of Fermi acceleration is valid for finite amplitudes

  7. ACCELERATORS: Nonlinear dynamics in Sardinia

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981

  8. New techniques for particle accelerators

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers. 26 refs., 5 figs., 1 tab

  9. ACCELERATORS: Nonlinear dynamics in Sardinia

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981.

  10. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  11. Modern accelerators in ancient Rome

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    For the first time, the achievements and hopes of the broad European accelerator community were brought together in a European Particle Accelerator Conference, held in Rome in June. Ranging from the vast machines at CERN to the small medical accelerators operating in thousands of hospitals, the programme underlined how modern civilization has benefited from the ability to handle charged particle beams

  12. Modern accelerators in ancient Rome

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    For the first time, the achievements and hopes of the broad European accelerator community were brought together in a European Particle Accelerator Conference, held in Rome in June. Ranging from the vast machines at CERN to the small medical accelerators operating in thousands of hospitals, the programme underlined how modern civilization has benefited from the ability to handle charged particle beams.

  13. Theoretical problems in accelerator physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following research on accelerators: computational methods; higher order mode suppression in accelerators structures; overmoded waveguide components and application to SLED II and power transport; rf sources; accelerator cavity design for a B factory asymmetric collider; and photonic band gap cavities

  14. Industrial use of electron accelerators

    International Nuclear Information System (INIS)

    Tabata, Y.

    1980-01-01

    Use of accelerators in various fields of Japan is reviewed. The total number of accelerators in Japan and its relation with others fields, the number of accelerators for use in radiation processing, comparison between the use of low and high energy machines, etc... is done. (E.G.) [pt

  15. Acceleration processes in the magnetospheric plasma: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, A [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1975-01-01

    Our present knowledge on the acceleration process in the magnetospheric plasma is reviewed and major problems are summarized. Acceleration processes can be classified into three categories. First, acceleration can be made by the reconnection process in the magnetotail. The occurrence of reconnection during substorm expansion phases has been confirmed, but details of the energy conversion mechanism need be clarified. Second, acceleration by the electric potential drop along magnetic field lines has been strongly suggested from observations of precipitating particles. The position and structure of the potential layer, however, have not been clarified, and theoretical understanding of the process is still in the early stage of development. Third, particles can be adiabatically heated as they are driven toward the earth in the course of their convective motion. Spatial structure and dynamical development of the auroral precipitation pattern represent both challenge and clue to the understanding of the magnetospheric acceleration process.

  16. Open cell conducting foams for high synchrotron radiation accelerators

    Directory of Open Access Journals (Sweden)

    S. Petracca

    2014-08-01

    Full Text Available The possible use of open cell conductive foams in high synchrotron radiation particle accelerators is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  17. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  18. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. This paper is intended to review the current progress, expectations, and limitations of the different approaches. (author)

  19. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. A review is given of the current progress, expectations, and limitations of the different approaches

  20. Resource letter for Accelerated Matter Program

    International Nuclear Information System (INIS)

    Rossi, F.

    1989-07-01

    This resource letter covers diverse literature(400 titles) relevant to the Accelerated Matter Program in the Particles and Fields Group at the University of Melbourne. Specifically, the research areas covered are: inertia induced electric fields in accelerated matter; strain induced contact potentials; the patch effect/surface potentials. There are no claims made for completeness. The areas of gravity, acceleration and strain induced effects in matter, and drift tube experiments with matter/antimatter are extensively covered, if not complete. The literature on acceleration/inertia induced effects in metals has a long history dating back to the 19th century and the reader is referred to the review by Barnett (1935) for an extensive list of references not included here. All other work following this 1935 review, has been included here. The literature on surface physics is very extensive and no attempt has been made to cover it all. Every major paper on metal surfaces has been cited. Several other references have been included which fall only loosely into the above areas and they represent useful and/or interesting material for this research program

  1. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  2. Plasma-focused cyclic accelerators

    International Nuclear Information System (INIS)

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. This paper discusses an alternative means of plasma production for IFR, viz. by using RF breakdown. For this approach the accelerator chamber acts as a waveguide. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  3. APT accelerator. Topical report

    International Nuclear Information System (INIS)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation's stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century

  4. VLHC accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  5. APT accelerator. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  6. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  7. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  8. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  9. Accelerated testing of composites

    Science.gov (United States)

    Papazian, H. A.

    1983-01-01

    It is shown that the Zhurkov method for testing the strength of solids can be applied to dynamic tension and to cyclic loading and provides a viable approach to accelerated testing of composites. Data from the literature are used to demonstrate a straightforward application of the method to dynamic tension of glass fiber and cyclic loading for glass/polymer, metal matrix, and graphite/epoxy composites. Zhurkov's equation can be used at relatively high loads to obtain failure times at any temperature of interest. By taking a few data points at one or two other temperatures the spectrum of failure times can be expanded to temperatures not easily accessible.

  10. ACCELERATOR SCHOOL: Casting light

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-07-15

    A booming spinoff from high energy physics is the synchrotron radiation sector which exploits the intense radiation given off when beams of charged particles are bent. With particle physics and the applications of synchrotron radiation very different, and with new dedicated laboratories being built for the latter, there is a natural tendency for the two communities to drift apart. However a step in the other direction came with the course 'Synchrotron Radiation and Free Electron Lasers' organized by the CERN Accelerator School (CAS) and the Daresbury Laboratory, held in Chester, UK.

  11. TESLA accelerator installation

    International Nuclear Information System (INIS)

    Neskovic, N.; Ostojic, R.; Susini, A.; Milinkovic, Lj.; Ciric, D.; Dobrosavljevic, A.; Brajuskovic, B.; Cirkovic, S.; Bojovic, B.; Josipovic, M.

    1992-01-01

    The TESLA accelerator Installation is described. Its main parts are the VINCY Cyclotron, the multiply charged heavy-ion mVINIS Ion Source, and the negative light-ion pVINIS Ion Source. The Installation should be the principal installation of a regional center for basic and applied research in nuclear physics, atomic physics, surface physics and solid state physics, for production of radioisotopes, for research and therapy in nuclear medicine. The first extraction of the ion beam from the Cyclotron is planned for 1995. (R.P.) 3 refs.; 1 fig

  12. Beam front accelerators

    International Nuclear Information System (INIS)

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed

  13. Neutron physics with accelerators

    Science.gov (United States)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  14. Linear particle accelerator

    International Nuclear Information System (INIS)

    Richards, J.A.

    1977-01-01

    A linear particle accelerator which provides a pulsed beam of charged particles of uniform energy is described. The accelerator is in the form of an evacuated dielectric tube, inside of which a particle source is located at one end of the tube, with a target or window located at the other end of the dielectric tube. Along the length of the tube are externally located pairs of metal plates, each insulated from each other in an insulated housing. Each of the plates of a pair are connected to an electrical source of voltage of opposed polarity, with the polarity of the voltage of the plates oriented so that the plate of a pair, nearer to the particle source, is of the opposed polarity to the charge of the particle emitted by the source. Thus, a first plate about the tube located nearest the particle source, attracts a particle which as it passes through the tube past the first plate is then repelled by the reverse polarity of the second plate of the pair to continue moving towards the target

  15. Chicago particle accelerator conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1989-01-01

    Naturally, emphasis at the Particle Accelerator Conference in Chicago in March was on work in the US, just as the newly instituted European Particle Accelerator Conference places emphasis on work in the 'old continent'. All will come together at the international conference in Japan in August. The proposed US Superconducting Supercollider (SSC) was highlighted in the opening talk at Chicago. Progress on this inchoate project to explore the TeV (1000 GeV) energy region by colliding 20 TeV proton beams was reported by the recently-appointed Director of the SSC Laboratory, Roy Schwitters. He reviewed the physics challenges and described progress and plans towards full authorization of construction.This year, the SSC conceptual design will be transformed into a 'site specific' report, now that the location at Waxahachie in Ellis County, Texas, has been selected. The Central Design Group, based in Berkeley for the past few years, will soon move to the Waxahachie region. The top management structure is taking shape and an International Advisory Committee is being formed

  16. Broadband accelerator control network

    International Nuclear Information System (INIS)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  17. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Osonka, P.L.

    1985-01-01

    Transverse (to the velocity, v-bar, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasms by either an electromagnetic wave or by the field of charged particles traveling parallel to v-bar. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d≅2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E 2 /sub L/). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  18. Superconducting Magnets for Accelerators

    Science.gov (United States)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  19. Accelerator School Success

    CERN Multimedia

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  20. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1985-01-01

    Transverse (to the velocity, v, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasmas by either an electromagnetic wave or by the field of charged particles traveling parallel to v. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d approx. = 2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E/sub L/ 2 ). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E