WorldWideScience

Sample records for accelerated search kinetics

  1. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  2. Search for Dark Photons with Accelerators

    Directory of Open Access Journals (Sweden)

    Merkel Harald

    2014-01-01

    Full Text Available A dark photon as the mediator of an interaction of the dark sector is a well motivated extension of the standard model. While possible dark matter particles are heavy and seem to be beyond the reach of current accelerators, the dark photon is not necessarily heavy and might have a mass in the range of existing accelerators. In recent years, an extensive experimental program at several accelerators for the search for dark photons were established. In this talk, recent results and progress in the determination of exclusion limits with accelerators is presented.

  3. Accelerated simulation methods for plasma kinetics

    Science.gov (United States)

    Caflisch, Russel

    2016-11-01

    Collisional kinetics is a multiscale phenomenon due to the disparity between the continuum (fluid) and the collisional (particle) length scales. This paper describes a class of simulation methods for gases and plasmas, and acceleration techniques for improving their speed and accuracy. Starting from the Landau-Fokker-Planck equation for plasmas, the focus will be on a binary collision model that is solved using a Direct Simulation Monte Carlo (DSMC) method. Acceleration of this method is achieved by coupling the particle method to a continuum fluid description. The velocity distribution function f is represented as a combination of a Maxwellian M (the thermal component) and a set of discrete particles fp (the kinetic component). For systems that are close to (local) equilibrium, this reduces the number N of simulated particles that are required to represent f for a given level of accuracy. We present two methods for exploiting this representation. In the first method, equilibration of particles in fp, as well as disequilibration of particles from M, due to the collision process, is represented by a thermalization/dethermalization step that employs an entropy criterion. Efficiency of the representation is greatly increased by inclusion of particles with negative weights. This significantly complicates the simulation, but the second method is a tractable approach for negatively weighted particles. The accelerated simulation method is compared with standard PIC-DSMC method for both spatially homogeneous problems such as a bump-on-tail and inhomogeneous problems such as nonlinear Landau damping.

  4. Acceleration-induced nonlocality: kinetic memory versus dynamic memory

    OpenAIRE

    Chicone, C.; Mashhoon, B.

    2001-01-01

    The characteristics of the memory of accelerated motion in Minkowski spacetime are discussed within the framework of the nonlocal theory of accelerated observers. Two types of memory are distinguished: kinetic and dynamic. We show that only kinetic memory is acceptable, since dynamic memory leads to divergences for nonuniform accelerated motion.

  5. Kinetic Simulations of Particle Acceleration at Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Damiano [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.

  6. Accelerator-based neutrino oscillation searches

    Science.gov (United States)

    Whitehouse, D. A.; Rameika, R.; Stanton, N.

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends on the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increased intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery cannot be overstated. The current experimental status and future possibilities are discussed.

  7. Dark Matter Searches at Accelerator Facilities

    CERN Document Server

    Dutta, Bhaskar

    2014-01-01

    About 80 percent of the matter content of the universe is dark matter. However, the particle origin of dark matter is yet to be established. Many extensions of the Standard Model (SM) contain candidates of dark matter. The search for the particle origin is currently ongoing at the large hadron collider (LHC). In this review, I will summarize the different search strategies for this elusive particle.

  8. Explicit Integration with GPU Acceleration for Large Kinetic Networks

    CERN Document Server

    Brock, Benjamin; Billings, Jay Jay; Guidry, Mike

    2014-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in compute time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractible, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  9. Fab 5: Noncanonical Kinetic Gravity, Self Tuning, and Cosmic Acceleration

    CERN Document Server

    Appleby, Stephen A; Linder, Eric V

    2012-01-01

    We investigate circumstances under which one can generalize Horndeski's most general scalar-tensor theory of gravity. Specifically we demonstrate that a nonlinear combination of purely kinetic gravity terms can give rise to an accelerating universe without the addition of extra propagating degrees of freedom on cosmological backgrounds, and exhibit self tuning to bring a large cosmological constant under control. This nonlinear approach leads to new properties that may be instructive for exploring the behaviors of gravity.

  10. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Science.gov (United States)

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  11. New limits on Magnetic Monopoles searches from accelerator and non-accelerator experiments

    CERN Document Server

    Cozzi, M

    2007-01-01

    Here the status of the searches for ``classical Dirac'' Magnetic Monopoles (MMs) at accelerators and for GUT MMs in the cosmic radiation is discussed. We present recent analysis for ``classical Dirac'' monopoles at accelerators and the lowest flux upper limit for Magnetic Monopoles in the mass range 10$^{5}$ - 10$^{12}$ GeV obtained with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.).

  12. Dancing on DNA : Kinetic Aspects of Search Processes on DNA

    NARCIS (Netherlands)

    Tafvizi, Anahita; Mirny, Leonid A.; van Oijen, Antoine M.

    2011-01-01

    Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the search for its target site, the DNA-associated protein is facing both thermodynamic and kinetic difficulties. The thermodynamic challenge

  13. Acceleration of saddle-point searches with machine learning.

    Science.gov (United States)

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  14. Acceleration of saddle-point searches with machine learning

    Science.gov (United States)

    Peterson, Andrew A.

    2016-08-01

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  15. Acceleration of calcite kinetics by abalone nacre proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G; Qiu, S R; Orme, C A; Morse, D E; De Yoreo, J J

    2005-06-09

    The fascinating shapes and hierarchical designs of biomineralized structures have long been an inspiration to materials scientists because of the potential they suggest for biomolecular control over synthesis of crystalline materials. One prevailing view is that mineral-associated macromolecules are responsible for initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineral surfaces. Indeed, numerous studies have demonstrated that bio-organic additives can dramatically alter crystal shapes and growth-rates in vitro. However, previous molecular-scale studies revealing mechanisms of growth modification focused on small molecules such as amino acids or peptides and always observed growth inhibition. In contrast, studies using full proteins were non-quantitative and underlying sources of growth modification were ill-defined. Here we investigate interactions between proteins isolated from abalone shell nacre and growing surfaces of calcite. We find that these proteins significantly accelerate the molecular-scale kinetics and, though much larger than atomic steps, alter growth morphology through step-specific interactions that lower their free energies. We propose that these proteins act as surfactants to promote ion attachment at calcite surfaces.

  16. Pulsar Acceleration Searches on the GPU for the Square Kilometre Array

    CERN Document Server

    Dimoudi, Sofia

    2015-01-01

    Pulsar acceleration searches are methods for recovering signals from radio telescopes, that may otherwise be lost due to the effect of orbital acceleration in binary systems. The vast amount of data that will be produced by next generation instruments such as the Square Kilometre Array (SKA) necessitates real-time acceleration searches, which in turn requires the use of HPC platforms. We present our implementation of the Fourier Domain Acceleration Search (FDAS) algorithm on Graphics Processor Units (GPUs) in the context of the SKA, as part of the Astro-Accelerate real-time data processing library, currently under development at the Oxford e-Research Centre (OeRC), University of Oxford.

  17. Sequence heterogeneity accelerates protein search for targets on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Alexey A.; Kolomeisky, Anatoly B., E-mail: tolya@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  18. GHOSTM: a GPU-accelerated homology search tool for metagenomics.

    Directory of Open Access Journals (Sweden)

    Shuji Suzuki

    Full Text Available BACKGROUND: A large number of sensitive homology searches are required for mapping DNA sequence fragments to known protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose, but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-generation sequencer. However, faster search tools, such as BLAT, do not have sufficient search sensitivity for metagenomic analysis. Thus, a sensitive and efficient homology search tool is in high demand for this type of analysis. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, highly efficient homology search algorithm suitable for graphics processing unit (GPU calculations that was implemented as a GPU system that we called GHOSTM. The system first searches for candidate alignment positions for a sequence from the database using pre-calculated indexes and then calculates local alignments around the candidate positions before calculating alignment scores. We implemented both of these processes on GPUs. The system achieved calculation speeds that were 130 and 407 times faster than BLAST with 1 GPU and 4 GPUs, respectively. The system also showed higher search sensitivity and had a calculation speed that was 4 and 15 times faster than BLAT with 1 GPU and 4 GPUs. CONCLUSIONS: We developed a GPU-optimized algorithm to perform sensitive sequence homology searches and implemented the system as GHOSTM. Currently, sequencing technology continues to improve, and sequencers are increasingly producing larger and larger quantities of data. This explosion of sequence data makes computational analysis with contemporary tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool as a potential solution to this problem.

  19. Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    One of the long-standing problems in the community is the question of how we can model “next-generation” laser-ion acceleration in a computationally tractable way. A new particle tracking capability in the LANL VPIC kinetic plasma modeling code has enabled us to solve this long-standing problem

  20. Extracting Realistic Kinetics of Rare Activated Processes from Accelerated Molecular Dynamics Using Kramers' Theory.

    Science.gov (United States)

    Doshi, Urmi; Hamelberg, Donald

    2011-03-08

    The cis-trans isomerization of peptide bonds is very slow, occurring in hundreds of seconds. Kinetic studies of such processes using straightforward molecular dynamics are currently not possible. Here, we use Kramers' rate theory in the high friction regime in combination with accelerated molecular dynamics in explicit solvent to successfully retrieve the normal rate of cis to trans switching in the glycyl-prolyl dipeptide. Our approach bypasses the time-reweighting problem of the hyperdynamics scheme, wherein the addition of the bias potential alters the transition state regions and avoids an accurate estimation of kinetics. By performing accelerated molecular dynamics at a few different levels of acceleration, the rate of isomerization is enhanced as much as 10(10) to 10(11) times. Remarkably, the normal rates obtained by simply extrapolating to zero bias are within an order of experimental estimates. This provides validation from a kinetic standpoint of the ω torsional parameters of the AMBER force field that were recently revised by matching to experimentally measured equilibrium properties. We also provide a comparative analysis of the performance of the widely used water models, i.e., TIP3P and SPC/E, in estimating the kinetics of cis-trans isomerization. Furthermore, we show that the dynamic properties of bulk water can be corrected by adjusting the collision frequency in a Langevin thermostat, which then allows for better reproduction of cis-trans isomerization kinetics and a closer agreement of rates between experiments and simulations.

  1. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Accelerating dark-matter axion searches with quantum measurement technology

    CERN Document Server

    Zheng, Huaixiu; Brierley, R T; Girvin, S M; Lehnert, K W

    2016-01-01

    The axion particle, a consequence of an elegant hypothesis that resolves the strong-CP problem of quantum chromodynamics, is a plausible origin for cosmological dark matter. In searches for axionic dark matter that detect the conversion of axions to microwave photons, the quantum noise associated with microwave vacuum fluctuations will soon limit the rate at which parameter space is searched. Here we show that this noise can be partially overcome either by squeezing the quantum vacuum using recently developed Josephson parametric devices, or by using superconducting qubits to count microwave photons.

  3. Search for New Physics in reactor and accelerator experiments

    Science.gov (United States)

    Di Iura, A.; Girardi, I.; Meloni, D.

    2016-01-01

    We consider two scenarios of New Physics: the Large Extra Dimensions (LED), where sterile neutrinos can propagate in a (4+d) -dimensional space-time, and the Non Standard Interactions (NSI), where the neutrino interactions with ordinary matter are parametrized at low energy in terms of effective flavour-dependent complex couplings \\varepsilon_{αβ} . We study how these models have an impact on oscillation parameters in reactor and accelerator experiments.

  4. Acceleration of stable interface structure searching using a kriging approach

    Science.gov (United States)

    Kiyohara, Shin; Oda, Hiromi; Tsuda, Koji; Mizoguchi, Teruyasu

    2016-04-01

    Crystalline interfaces have a tremendous impact on the properties of materials. Determination of the atomic structure of the interface is crucial for a comprehensive understanding of the interface properties. Despite this importance, extensive calculation is necessary to determine even one interface structure. In this study, we apply a technique called kriging, borrowed from geostatistics, to accelerate the determination of the interface structure. The atomic structure of simplified coincidence-site lattice interfaces were determined using the kriging approach. Our approach successfully determined the most stable interface structure with an efficiency almost 2 orders of magnitude better than the traditional “brute force” approach.

  5. Complementarity of Indirect and Accelerator Dark Matter Searches

    CERN Document Server

    Bertone, G; Fornasa, M; Pieri, L; de Austri, R Ruiz; Trotta, R

    2011-01-01

    Even if Supersymmetric particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the Dark Matter (DM) in the Universe using LHC data alone. We study the complementarity of LHC and DM indirect searches, working out explicitly the reconstruction of the DM properties for a specific benchmark model in the coannihilation region of a 24-parameters supersymmetric model. Combining mock high-luminosity LHC data with present-day null searches for gamma-rays from dwarf galaxies with the Fermi LAT, we show that current Fermi LAT limits already have the capability of ruling out a spurious Wino-like solution that would survive using LHC data only, thus leading to the correct identification of the cosmological solution. We also demonstrate that upcoming Planck constraints on the reionization history will have a similar constraining power, and discuss the impact of a possible detection of gamma-rays from DM annihilation in Draco with a CTA-like experiment. Our resu...

  6. libKEDF: An accelerated library of kinetic energy density functionals.

    Science.gov (United States)

    Dieterich, Johannes M; Witt, William C; Carter, Emily A

    2017-06-30

    Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital-free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Accelerating chemical database searching using graphics processing units.

    Science.gov (United States)

    Liu, Pu; Agrafiotis, Dimitris K; Rassokhin, Dmitrii N; Yang, Eric

    2011-08-22

    The utility of chemoinformatics systems depends on the accurate computer representation and efficient manipulation of chemical compounds. In such systems, a small molecule is often digitized as a large fingerprint vector, where each element indicates the presence/absence or the number of occurrences of a particular structural feature. Since in theory the number of unique features can be exceedingly large, these fingerprint vectors are usually folded into much shorter ones using hashing and modulo operations, allowing fast "in-memory" manipulation and comparison of molecules. There is increasing evidence that lossless fingerprints can substantially improve retrieval performance in chemical database searching (substructure or similarity), which have led to the development of several lossless fingerprint compression algorithms. However, any gains in storage and retrieval afforded by compression need to be weighed against the extra computational burden required for decompression before these fingerprints can be compared. Here we demonstrate that graphics processing units (GPU) can greatly alleviate this problem, enabling the practical application of lossless fingerprints on large databases. More specifically, we show that, with the help of a ~$500 ordinary video card, the entire PubChem database of ~32 million compounds can be searched in ~0.2-2 s on average, which is 2 orders of magnitude faster than a conventional CPU. If multiple query patterns are processed in batch, the speedup is even more dramatic (less than 0.02-0.2 s/query for 1000 queries). In the present study, we use the Elias gamma compression algorithm, which results in a compression ratio as high as 0.097.

  8. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    Science.gov (United States)

    Liang, Ji; Lin, Yu; Johnson, Jay R.; Wang, Zheng-Xiong; Wang, Xueyi

    2017-10-01

    Our previous study on the generation and signatures of kinetic Alfvén waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfvénic. As a result of wave-particle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. The ions are heated in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the perpendicular ion temperature T⊥ and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with T⊥>T∥ . The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall

  9. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    Science.gov (United States)

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  10. Reformed Solitary Kinetic Alfvén Waves due to Dissipations and Auroral Electron Acceleration

    Institute of Scientific and Technical Information of China (English)

    WU De-Jin; CHAO Jih-Kwin; LEE Luo-Chuan; FENG Xue-Shang

    2001-01-01

    The physical nature of the auroral electron acceleration has been an outstanding problem in space physics for decades.Some recent observations from the auroral orbit satellites,FREJA and FAST,showed that large amplitude solitary kinetic Alfvén waves (SKAWs) are a common electromagnetic active phenomenon in the auroral magnetosphere. In a Iow-ββ/2 (i.e.,β/2 < me/mi < 1) plasma,the drift velocity of electrons relative to ions within SKAWs is much larger than thermal velocities of both electrons and ions.This leads to instabilities and causes dissipations of SKAWs.In the present work,based on the analogy of classical particle motion in a potential well,it is shown that a shock-like structure can be formed from SKAWs if dissipation effects are included.The reformed SKAWs with a shock-like structure have a local density jump and a net field-aligned electric potential drop of order of mev2A/e over a characteristic width of several )e.As a consequence,the reformed SKAWs can efficiently accelerate electrons field-aligned to the order of the local Alfvén velocity.In particular,we argue that this electron acceleration mechanism by reformed SKAWs can play an important role in the auroral electron acceleration problem.The result shows that not only the location of acceleration regions predicted by this model is well consistent with the observed auroral electron acceleration region of I 2 RE above the auroral ionosphere,but also the accelerated electrons from this region can obtain an energy of several keV and carry a field-aligned current of several/A/m2 which are comparable to the observations of auroral electrons.

  11. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    Science.gov (United States)

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-01

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins. PMID:28106154

  12. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    Science.gov (United States)

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-01

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.

  13. Accelerated kinetics of amorphous silicon using an on-the-fly off-lattice kinetic Monte-Carlo method

    Science.gov (United States)

    Joly, Jean-Francois; El-Mellouhi, Fedwa; Beland, Laurent Karim; Mousseau, Normand

    2011-03-01

    The time evolution of a series of well relaxed amorphous silicon models was simulated using the kinetic Activation-RelaxationTechnique (kART), an on-the-fly off-lattice kinetic Monte Carlo method. This novel algorithm uses the ART nouveau algorithm to generate activated events and links them with local topologies. It was shown to work well for crystals with few defects but this is the first time it is used to study an amorphous material. A parallel implementation allows us to increase the speed of the event generation phase. After each KMC step, new searches are initiated for each new topology encountered. Well relaxed amorphous silicon models of 1000 atoms described by a modified version of the empirical Stillinger-Weber potential were used as a starting point for the simulations. Initial results show that the method is faster by orders of magnitude compared to conventional MD simulations up to temperatures of 500 K. Vacancy-type defects were also introduced in this system and their stability and lifetimes are calculated.

  14. Kinetic modeling of particle acceleration in a solar null point reconnection region

    DEFF Research Database (Denmark)

    Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke

    2013-01-01

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO...... applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan-plane of the null-point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub......-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms, featuring a power-law index of about -1.75. This work provides a first step towards bridging the gap between macroscopic scales...

  15. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  16. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  17. Thermal and Cure Kinetics of Epoxy Molding Compounds Cured with Thermal Latency Accelerators

    Directory of Open Access Journals (Sweden)

    Chean-Cheng Su

    2013-01-01

    Full Text Available The cure kinetics and mechanisms of a biphenyl type epoxy molding compounds (EMCs with thermal latency organophosphine accelerators were studied using differential scanning calorimetry (DSC. Although the use of triphenylphosphine-1,4-benzoquinone (TPP-BQ and triphenylphosphine (TPP catalysts in biphenyl type EMCs exhibited autocatalytic mechanisms, thermal latency was higher in the TPP-BQ catalyst in EMCs than in the TPP catalyst in EMCs. Analyses of thermal characteristics indicated that TPP-BQ is inactive at low temperatures. At high temperatures, however, TPP-BQ increases the curing rate of EMC in dynamic and isothermal curing experiments. The reaction of EMCs with the TPP-BQ latent catalyst also had a higher temperature sensitivity compared to the reaction of EMCs with TPP catalyst. In resin transfer molding, EMCs containing the TPP-BQ thermal latency accelerator are least active at a low temperature. Consequently, EMCs have a low melt viscosity before gelation, and the resins and filler are evenly mixed in the kneading process. Additionally, flowability is increased before the EMCs form a network structure in the molding process. The proposed kinetic model adequately describes curing behavior in EMCs cured with two different organophosphine catalysts up to the rubber state in the progress of curing.

  18. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    Science.gov (United States)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  19. Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    CERN Document Server

    Niemeyer, Kyle E

    2014-01-01

    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the met...

  20. Examining the limits of time reweighting and Kramers' rate theory to obtain correct kinetics from accelerated molecular dynamics.

    Science.gov (United States)

    Xin, Yao; Doshi, Urmi; Hamelberg, Donald

    2010-06-14

    Accelerated molecular dynamics simulations are routinely being used to recover the correct canonical probability distributions corresponding to the original potential energy landscape of biomolecular systems. However, the limits of time reweighting, based on transition state theory, in obtaining true kinetic rates from accelerated molecular dynamics for biomolecular systems are less obvious. Here, we investigate this issue by studying the kinetics of cis-trans isomerization of peptidic omega bond by accelerated molecular dynamics. We find that time reweighting is valid for obtaining true kinetics when the original potential is not altered at the transition state regions, as expected. When the original potential landscape is modified such that the applied boost potential alters the transition state regions, time reweighting fails to reproduce correct kinetics and the reweighted rate is much slower than the true rate. By adopting the overdamped limit of Kramers' rate theory, we are successful in recovering correct kinetics irrespective of whether or not the transition state regions are modified. Furthermore, we tested the validity of the acceleration weight factor from the path integral formalism for obtaining the correct kinetics of cis-trans isomerization. It was found that this formulation of the weight factor is not suitable for long time scale processes such as cis-trans isomerization with high energy barriers.

  1. A MiniBooNE Accelerator-Produced (sub)-GeV Dark Matter Search

    Science.gov (United States)

    Thornton, Remington; MiniBooNE-DM Collaboration

    2016-09-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments search for a nuclear recoil interaction produced by a DM relic particle and have a low-mass sensitivity edge of order 1 GeV. To detect DM with mass below 1 GeV, either the sensitivity of the experiments needs to be improved or use of accelerators producing boosted low-mass DM are needed. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and ν signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, ran for 10 years in ν and ν modes and is already well understood, making it desirable to search for accelerator-produced boosted low-mass DM. A search for DM produced by 8 GeV protons hitting a steel beam-dump has finished, collecting 1 . 86 ×1020 POT . Final analysis containing 90% confidence limits and a model independent fit will be presented.

  2. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    Science.gov (United States)

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  3. Acceleration of the solar wind in a spherical coordinate kinetic model

    Science.gov (United States)

    Dyadechkin, Sergey; Kallio, Esa; Alho, Markku; Semenov, Vladimir; Erkaev, Nikolay

    2015-04-01

    We have studied the acceleration of the solar wind protons by using a spherical coordinate kinetic hybrid model (HYBs). The model treats ions as particles while electrons form a massless, charge neutralizing fluid. The model includes the gravitation, the electron pressure and the jxB forces. We have studied a magnetized and a non-magnetized solar wind cases and performed simulations for different isothermal electron temperatures by using the same initial Maxwellian velocity distribution function for protons. We show in the presentation of how the bulk velocity, the plasma density, the electric potential and the velocity distribution function of protons depend on the radial distance from the Sun to several Astronomical Units. The derived velocity and density profiles are compared with those of the Parker's solar wind model. Finally, extensions of the model and its applicability for a space weather modelling are discussed.

  4. Accelerated search for biomolecular network models to interpret high-throughput experimental data

    Directory of Open Access Journals (Sweden)

    Sokhansanj Bahrad A

    2007-07-01

    Full Text Available Abstract Background The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables. Results Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics. Conclusion Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular

  5. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting

    CERN Document Server

    Rasouli, S M M

    2016-01-01

    By assuming the spatially flat~FLRW line-element and employing the Hamiltonian formalism, a noncommutative (NC) setting of the Brans-Dicke (BD) theory is introduced. We investigate gravity-driven acceleration and kinetic inflation in this NC BD cosmology. Despite to the commutative case, in which both the scale factor and BD scalar field are obtained in power-law forms (in terms of the cosmic time), in our herein NC model, we see that the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on not only the NC parameter but also the momentum conjugate associated to the BD scalar field. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome the problems within the standard BD cosmology in a more efficient manner. Moreover, we see that a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the NC parameter, we obtain a zero acc...

  6. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle.

    Science.gov (United States)

    Peiper, U; Knipp, S C; Thies, B; Henke, R

    1996-01-01

    Contraction kinetics of isolated rat tracheal smooth muscle were studied by analysing the increase of force subsequent to force-inhibiting passive length changes lasting 1 s (100 Hz, sinus, 5% of muscle length). Compared with carbachol activation, phorboldibutyrate (PDBu)-induced stimulation of protein kinase C (PKC) demonstrated no significant difference in the extent of force development in the polarized preparation [mean peak force 9.16 +/- 0.37 mN (carbachol) vs. 9.12 +/- 0.37 mN (PDBu)]. However, the time constant calculated for the slow component of post-vibration force recovery was 6.40 +/- 0.29 s after addition of PDBu vs. 22.39 +/- 1.40 s during carbachol activation, indicating a significant phorbol ester-induced acceleration of the cross-bridge cycling rate. In the K-depolarized preparation, treatment with 26.4 microM indolactam (IL) to activate PKC produced muscle relaxation (9.94 +/- 0.16 mN measured 0-30 min after the onset of depolarization vs. 4.13 +/- 0.05 mN measured during 30-60 min of IL treatment). Again, even in the presence of high sarcoplasmic Ca2+ resulting from tonic depolarization, PKC activation was associated with a distinct diminution of the time constant (25.99 +/- 0.79 s during the first 30 min of depolarization vs. 10.32 +/- 0.21 s during 30-60 min of IL treatment). In contrast, addition of 0.035 microM verapamil, 1.5 microM isoproterenol, and 32 microM dibutyryl-cAMP to the bathing medium induced relaxation without affecting the rate of post-vibration force recovery. The results suggest that the calcium-dependent signal cascade (agonist receptor/inositol trisphosphate/ Ca(2+)-calmodulin/myosin light chain kinase) hardly affects the regulation of contraction kinetics in the tonically activated intact smooth muscle preparation. PKC stimulation, however, accelerates actin/myosin interaction kinetics, possibly by inhibition of phosphatase(s).

  7. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  8. WIPO Re:Search: Accelerating anthelmintic development through cross-sector partnerships

    Directory of Open Access Journals (Sweden)

    Roopa Ramamoorthi

    2014-12-01

    Full Text Available Neglected tropical diseases (NTDs, malaria, and tuberculosis have a devastating effect on an estimated 1.6 billion people worldwide. The World Intellectual Property Organization (WIPO Re:Search consortium accelerates the development of new drugs, vaccines, and diagnostics for these diseases by connecting the assets and resources of pharmaceutical companies, such as compound libraries and expertise, to academic or nonprofit researchers with novel product discovery or development ideas. As the WIPO Re:Search Partnership Hub Administrator, BIO Ventures for Global Health (BVGH fields requests from researchers, identifies Member organizations able to fulfill these requests, and helps forge mutually beneficial collaborations. Since its inception in October 2011, WIPO Re:Search membership has expanded to more than 90 institutions, including leading pharmaceutical companies, universities, nonprofit research institutions, and product development partnerships from around the world. To date, WIPO Re:Search has facilitated over 70 research agreements between Consortium Members, including 11 collaborations focused on anthelmintic drug discovery.

  9. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  10. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC Earth system model (version 2.52

    Directory of Open Access Journals (Sweden)

    M. Alvanos

    2017-10-01

    Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 ×  and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 ×  speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  11. Accelerated damage visualization using binary search with fixed pitch-catch distance laser ultrasonic scanning

    Science.gov (United States)

    Park, Byeongjin; Sohn, Hoon

    2017-07-01

    Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full

  12. Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering.

    Directory of Open Access Journals (Sweden)

    Wei-Chang Yeh

    Full Text Available Data clustering is commonly employed in many disciplines. The aim of clustering is to partition a set of data into clusters, in which objects within the same cluster are similar and dissimilar to other objects that belong to different clusters. Over the past decade, the evolutionary algorithm has been commonly used to solve clustering problems. This study presents a novel algorithm based on simplified swarm optimization, an emerging population-based stochastic optimization approach with the advantages of simplicity, efficiency, and flexibility. This approach combines variable vibrating search (VVS and rapid centralized strategy (RCS in dealing with clustering problem. VVS is an exploitation search scheme that can refine the quality of solutions by searching the extreme points nearby the global best position. RCS is developed to accelerate the convergence rate of the algorithm by using the arithmetic average. To empirically evaluate the performance of the proposed algorithm, experiments are examined using 12 benchmark datasets, and corresponding results are compared with recent works. Results of statistical analysis indicate that the proposed algorithm is competitive in terms of the quality of solutions.

  13. Generating relevant kinetic Monte Carlo catalogs using temperature accelerated dynamics with control over the accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhijit [Los Alamos National Laboratory; Voter, Arthur [Los Alamos National Laboratory

    2009-01-01

    We develop a variation of the temperature accelerated dynamics (TAD) method, called the p-TAD method, that efficiently generates an on-the-fly kinetic Monte Carlo (KMC) process catalog with control over the accuracy of the catalog. It is assumed that transition state theory is valid. The p-TAD method guarantees that processes relevant at the timescales of interest to the simulation are present in the catalog with a chosen confidence. A confidence measure associated with the process catalog is derived. The dynamics is then studied using the process catalog with the KMC method. Effective accuracy of a p-TAD calculation is derived when a KMC catalog is reused for conditions different from those the catalog was originally generated for. Different KMC catalog generation strategies that exploit the features of the p-TAD method and ensure higher accuracy and/or computational efficiency are presented. The accuracy and the computational requirements of the p-TAD method are assessed. Comparisons to the original TAD method are made. As an example, we study dynamics in sub-monolayer Ag/Cu(110) at the time scale of seconds using the p-TAD method. It is demonstrated that the p-TAD method overcomes several challenges plaguing the conventional KMC method.

  14. INFILTRATION KINETICS MODEL OF LIQUID METAL INTO A FIBROUS PREFORM IN CENTRIFUGAL ACCELERATING FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The infiltration kinetics of the metal melt into a fibrous preform in centrifugal accelerating field is analyzed on the basis of Da rcy's law and the assumption that the fibrous preform is treated as “bundle of capillaries”. The critical rotating speed is analyzed with the established mo del. The influences of the metal melt mass,the rotating speed of the equipmen t,the casting height, the original outer radius of the metal melt and the fibrou s volume fraction in fibrous preform on infilatration are studied. The results show that the critical rotating speed is dependent on critical pressure, castin g height, metal melt mass and the character of fibrous preform. With the incr ease in the metal melt mass, rotating speed of the equipment and original outer radius of the metal melt, or the decrease in casting height and fibrous volume f raction in fibrous of the metal melt,or the decrease in casting height and fibro us volume fraction in fibrous preform,infiltration of metal melt for fibrous pre form becomes easier.

  15. Generalized Temporal Acceleration Scheme for Kinetic Monte Carlo Simulations of Surface Catalytic Processes by Scaling the Rates of Fast Reactions.

    Science.gov (United States)

    Dybeck, Eric Christopher; Plaisance, Craig Patrick; Neurock, Matthew

    2017-02-14

    A novel algorithm has been developed to achieve temporal acceleration during kinetic Monte Carlo (KMC) simulations of surface catalytic processes. This algorithm allows for the direct simulation of reaction networks containing kinetic processes occurring on vastly disparate timescales which computationally overburden standard KMC methods. Previously developed methods for temporal acceleration in KMC have been designed for specific systems and often require a priori information from the user such as identifying the fast and slow processes. In the approach presented herein, quasi-equilibrated processes are identified automatically based on previous executions of the forward and reverse reactions. Temporal acceleration is achieved by automatically scaling the intrinsic rate constants of the quasi-equilibrated processes, bringing their rates closer to the timescales of the slow kinetically relevant non-equilibrated processes. All reactions are still simulated directly, although with modified rate constants. Abrupt changes in the underlying dynamics of the reaction network are identified during the simulation and the reaction rate constants are rescaled accordingly. The algorithm has been utilized here to model the Fischer-Tropsch synthesis reaction over ruthenium nanoparticles. This reaction network has multiple timescale-disparate processes which would be intractable to simulate without the aid of temporal acceleration. The accelerated simulations are found to give reaction rates and selectivities indistinguishable from those calculated by an equivalent mean-field kinetic model. The computational savings of the algorithm can span many orders of magnitude in realistic systems and the computational cost is not limited by the magnitude of the timescale disparity in the system processes. Furthermore, the algorithm has been designed in a generic fashion and can easily be applied to other surface catalytic processes of interest.

  16. Effective closed form mathematical approach to determine kinetic constants of NR vulcanized with sulphur and accelerators at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Hanel, Thomas; Donetti, Raffaella [Pirelli Tyre, Via Alberto e Piero Pirelli 25, 20126 Milan (Italy); Milani, Federico [CHEMCO Consultant, Via J.F. Kennedy 2, 45030 Occhiobello (Italy)

    2015-03-10

    The basic reaction scheme due to Han and co-workers for NR vulcanized with sulphur is adopted and modified taking into account the single contributions of the different accelerators, focusing in particular on some experimental data ad hoc obtained at Pirelli’s laboratories, where NR was vulcanized at different temperatures (from 150 to 180 °C) and concentrations of sulphur, using TBBS and DPG in the mixture as co-agents. Typically, the chain reactions are initiated by the formation of macro-compounds that are responsible of the formation of the unmatured crosslinked polymer. This first reaction depends on the reciprocal concentrations of all components and their chemical nature. In presence of two accelerators, it was considered that the reactions between each single accelerator and the NR raw material occur in parallel, making the reasonable assumption that there are no mutual reactions between the two accelerators. From the kinetic scheme adopted, a closed form solution was found for the crosslink density, with the only limitation that the induction period is excluded from computations. Even kinetic constants are evaluated in closed form, avoiding a numerically demanding least-squares best fitting on rheometer experimental data. Two series of experiments available, relying into rheometer curves at different temperatures and different concentrations of sulphur and accelerator, are utilized to evaluate the fitting capabilities of the mathematical model. Very good agreement between numerical output and experimental data is experienced in all cases analysed.

  17. Accelerating the search for global minima on potential energy surfaces using machine learning

    Science.gov (United States)

    Carr, S. F.; Garnett, R.; Lo, C. S.

    2016-10-01

    Controlling molecule-surface interactions is key for chemical applications ranging from catalysis to gas sensing. We present a framework for accelerating the search for the global minimum on potential surfaces, corresponding to stable adsorbate-surface structures. We present a technique using Bayesian inference that enables us to predict converged density functional theory potential energies with fewer self-consistent field iterations. We then discuss how this technique fits in with the Bayesian Active Site Calculator, which applies Bayesian optimization to the problem. We demonstrate the performance of our framework using a hematite (Fe2O3) surface and present the adsorption sites found by our global optimization method for various simple hydrocarbons on the rutile TiO2 (110) surface.

  18. The kinetic activation-relaxation technique: an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search

    Science.gov (United States)

    Mousseau, Nomand

    2012-02-01

    While kinetic Monte Carlo algorithm has been proposed almost 40 years ago, its application in materials science has been mostly limited to lattice-based motion due to the difficulties associated with identifying new events and building usable catalogs when atoms moved into off-lattice position. Here, I present the kinetic activation-relaxation technique (kinetic ART) is an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search [1]. It combines ART nouveau [2], a very efficient unbiased open-ended activated method for finding transition states, with a topological classification [3] that allows a discrete cataloguing of local environments in complex systems, including disordered materials. In kinetic ART, local topologies are first identified for all atoms in a system. ART nouveau event searches are then launched for new topologies, building an extensive catalog of barriers and events. Next, all low energy events are fully reconstructed and relaxed, allowing to take complete account of elastic effects in the system's kinetics. Using standard kinetic Monte Carlo, the clock is brought forward and an event is then selected and applied before a new search for topologies is launched. In addition to presenting the various elements of the algorithm, I will discuss three recent applications to ion-bombarded silicon, defect diffusion in Fe and structural relaxation in amorphous silicon.[4pt] This work was done in collaboration with Laurent Karim B'eland, Peter Brommer, Fedwa El-Mellouhi, Jean-Francois Joly and Laurent Lewis.[4pt] [1] F. El-Mellouhi, N. Mousseau and L.J. Lewis, Phys. Rev. B. 78, 153202 (2008); L.K. B'eland et al., Phys. Rev. E 84, 046704 (2011).[2] G.T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996); E. Machado-Charry et al., J. Chem Phys. 135, 034102, (2011).[3] B.D. McKay, Congressus Numerantium 30, 45 (1981).

  19. Accelerated kinetics and mechanism of growth of boride layers on titanium under isothermal and cyclic diffusion

    Science.gov (United States)

    Sarma, Biplab

    2011-12-01

    The tendency of titanium (Ti) and its alloys to wear, gall and seize during high contact stresses between sliding surfaces severely limits their applications in bearings, gears etc. One way to mitigate these problems is to modify their surfaces by applying hard and wear resistant surface coatings. Boriding, which involves solid state diffusion of boron (B) into Ti, thereby forming hard surface layers consisting of TiB2 and TiB compounds has been shown to produce extremely high wear resistant surfaces in Ti and its alloys. The growth kinetics of these layers are, however, limited by the low diffusivities of B in the high melting TiB2 and TiB compounds. On the basis of the fact that HCP metals such as Ti show enhanced (anomalous) self-diffusion near the phase transition temperature, the first hypothesis of this work has been that the diffusivity enhancement should cause rapid ingress of B atoms, thereby accelerating the growth of the hard boride layers. Isothermal boriding experiments were performed close to phase transition temperature (890, 910, and 915°C) for time periods ranging from 3 to 24 hours. It was found that indeed a much deeper growth of TiB into the Ti substrate (˜75 mum) occurred at temperatures very close to the transition temperature (910°C), compared to that obtained at 1050°C. A diffusion model based on error-function solutions of Fick's second law was developed to quantitatively illustrate the combined effects of the normal B diffusion in the TiB phase and the anomalous B diffusion in Ti phase in accelerating TiB layer growth. Furthermore, isothermal boriding experiments close to transition temperature (900°C) for a period of 71 hours resulted in coating thickness well above 100 mum, while at 1050°C, the layer growth saturated after about 24 hours of treatment time. In the second part of this work, a novel approach named "cyclic-phase-changediffusion, (CPCD)," to create deeper TiB2 and TiB coating layers on CP-Ti by cyclic thermal processing

  20. JUMP KINETIC DETERMINANTS OF SPRINT ACCELERATION PERFORMANCE FROM STARTING BLOCKS IN MALE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Peter S. Maulder

    2006-06-01

    Full Text Available The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42} track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ, countermovement jump (CMJ, continuous straight legged jump (SLJ, single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg as a predictor of 10 m sprint performance from a block start (r = 0.79, r2 = 0.63, p<0.01, SEE = 0.04 (s, %SEE = 2.0. Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035 and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028 generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively to both result in a decrease of 0.01 s (0.5% in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively was predicted to result in a 0.01 s (0.5% reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start

  1. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  2. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  3. Estimating kinetic rates from accelerated molecular dynamics simulations: Alanine dipeptide in explicit solvent as a case study

    Science.gov (United States)

    de Oliveira, César Augusto F.; Hamelberg, Donald; McCammon, J. Andrew

    2007-11-01

    Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling methods have been proposed to address this issue, including the accelerated molecular dynamics method. In this work, we study the extent of sampling of the phi/psi space of alanine dipeptide in explicit water using accelerated molecular dynamics and present a framework to recover the correct kinetic rate constant for the helix to beta-strand transition. We show that the accelerated MD can drastically enhance the sampling of the phi/psi conformational phase space when compared to normal MD. In addition, the free energy density plots of the phi/psi space show that all minima regions are accurately sampled and the canonical distribution is recovered. Moreover, the kinetic rate constant for the helix to beta-strand transition is accurately estimated from these simulations by relating the diffusion coefficient to the local energetic roughness of the energy landscape. Surprisingly, even for such a low barrier transition, it is difficult to obtain enough transitions to accurately estimate the rate constant when one uses normal MD.

  4. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    Science.gov (United States)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  5. Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    CERN Document Server

    Siminos, E; Grech, M; Fülöp, T

    2016-01-01

    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.

  6. Assessment of two-dimensional induced, accelerations from measured kinematic and kinetic data

    NARCIS (Netherlands)

    Hof, AL; Otten, E

    2005-01-01

    A simple algorithm is presented to calculate the induced accelerations of body segments in human walking for the sagittal plane. The method essentially consists of setting up 2 x 4 force equations, 4 moment equations, 2 x 3 joint constraint equations and two constraints related to the foot-ground

  7. Accelerating finite-rate chemical kinetics with coprocessors: comparing vectorization methods on GPUs, MICs, and CPUs

    CERN Document Server

    Stone, Christopher P

    2016-01-01

    Efficient ordinary differential equation solvers for chemical kinetics must take into account the available thread and instruction-level parallelism of the underlying hardware, especially on many-core coprocessors, as well as the numerical efficiency. A stiff Rosenbrock and nonstiff Runge-Kutta solver are implemented using the single instruction, multiple thread (SIMT) and single instruction, multiple data (SIMD) paradigms with OpenCL. The performances of these parallel implementations were measured with three chemical kinetic models across several multicore and many-core platforms. Two runtime benchmarks were conducted to clearly determine any performance advantage offered by either method: evaluating the right-hand-side source terms in parallel, and integrating a series of constant-pressure homogeneous reactors using the Rosenbrock and Runge-Kutta solvers. The right-hand-side evaluations with SIMD parallelism on the host multicore Xeon CPU and many-core Xeon Phi co-processor performed approximately three ti...

  8. Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    Science.gov (United States)

    Siminos, Evangelos; Svedung Wettervik, Benjamin; Grech, Mickael; Fülöp, Tünde

    2016-10-01

    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread. This work was supported by the Knut and Alice Wallenberg Foundation (pliona project) and the European Research Council (ERC-2014-CoG Grant 647121).

  9. A cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA)

    Science.gov (United States)

    Bayati, Basil; Owhadi, Houman; Koumoutsakos, Petros

    2010-12-01

    We present a simple algorithm for the simulation of stiff, discrete-space, continuous-time Markov processes. The algorithm is based on the concept of flow averaging for the integration of stiff ordinary and stochastic differential equations and ultimately leads to a straightforward variation of the the well-known stochastic simulation algorithm (SSA). The speedup that can be achieved by the present algorithm [flow averaging integrator SSA (FLAVOR-SSA)] over the classical SSA comes naturally at the expense of its accuracy. The error of the proposed method exhibits a cutoff phenomenon as a function of its speed-up, allowing for optimal tuning. Two numerical examples from chemical kinetics are provided to illustrate the efficiency of the method.

  10. Computer-aided molecular design of solvents for accelerated reaction kinetics.

    Science.gov (United States)

    Struebing, Heiko; Ganase, Zara; Karamertzanis, Panagiotis G; Siougkrou, Eirini; Haycock, Peter; Piccione, Patrick M; Armstrong, Alan; Galindo, Amparo; Adjiman, Claire S

    2013-11-01

    Solvents can significantly alter the rates and selectivity of liquid-phase organic reactions, often hindering the development of new synthetic routes or, if chosen wisely, facilitating routes by improving rates and selectivities. To address this challenge, a systematic methodology is proposed that quickly identifies improved reaction solvents by combining quantum mechanical computations of the reaction rate constant in a few solvents with a computer-aided molecular design (CAMD) procedure. The approach allows the identification of a high-performance solvent within a very large set of possible molecules. The validity of our CAMD approach is demonstrated through application to a classical nucleophilic substitution reaction for the study of solvent effects, the Menschutkin reaction. The results were validated successfully by in situ kinetic experiments. A space of 1,341 solvents was explored in silico, but required quantum-mechanical calculations of the rate constant in only nine solvents, and uncovered a solvent that increases the rate constant by 40%.

  11. Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2003-01-01

    We investigate the problem of generalizing acceleration techniques as found in recent satisfiability engines for conjunctive normal forms (CNFs) to linear constraint systems over the Booleans. The rationale behind this research is that rewriting the propositional formulae occurring in e.g. bounde...

  12. The High Time Resolution Universe Pulsar Survey XII : Galactic plane acceleration search and the discovery of 60 pulsars

    CERN Document Server

    Ng, C; Bailes, M; Barr, E D; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Flynn, C M L; Jameson, A; Johnston, S; Keith, M J; Kramer, M; Levin, L; Petroff, E; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C; Eatough, R P; Lyne, A G

    2015-01-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD)...

  13. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    Science.gov (United States)

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2017-07-13

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Kinetics of Beta-14[14C] Carotene in a Human Subject Using Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dueker, S.R.; Lin, Y.; Follett, J.R.; Clifford, A.J.; Buchholz, B.A.

    2000-01-31

    {beta}-Carotene is a tetraterpenoid distributed widely throughout the plant kingdom. It is a member of a group of pigments referred to as carotenoids that have the distinction of serving as metabolic precursors to vitamin A in humans and many animals [1,2]. We used Accelerator Mass Spectrometry (AMS) [3] to determine the metabolic behavior of a physiologic oral dose of {beta}-[{sup 14}C]carotene (200 nanoCuries; 0.57 {micro}mol) in a healthy human subject. Serial blood specimens were collected for 210-d and complete urine and feces were collected for 17 and 10-d, respectively. Balance data indicated that the dose was 42% bioavailable. The absorbed {beta}-carotene was lost slowly via urine in accord with the slow body turnover of {beta}-carotene and vitamin A [4]. HPLC fractionation of plasma taken at early time points (0-24-h) showed the label was distributed between {beta}-carotene and retinyl esters (vitamin A) derived from intestinal metabolism.

  15. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-12-29

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [{sup 14}C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [{sup 14}C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 {micro}g of DNA. This sensitivity may allow the method to be used for clinical applications.

  16. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    Science.gov (United States)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  17. Using the fast fourier transform to accelerate the computational search for RNA conformational switches.

    Directory of Open Access Journals (Sweden)

    Evan Senter

    Full Text Available Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by [Formula: see text] base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time O(n(4 and quadratic space O(n(2, is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.

  18. Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.

    Science.gov (United States)

    Adamo, Mark E; Gerber, Scott A

    2016-09-07

    MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  19. Accelerating multicriterial optimization by the intensive exploitation of accumulated search data

    Science.gov (United States)

    Gergel, Victor; Kozinov, Evgeny

    2016-10-01

    The work proposed an efficient method for solving computationally difficult multicriterial optimization problems, which are widely used to model complex optimal decision making problems. Under the suggested approach, it is assumed that partial criteria can be multi-extremal and computationally intense, and finding a solution to multicriterial problems can require the sequential computation of several efficient (Pareto-optimal) alternatives. This multiple repetition of alternative searches leads to a substantial increase in computational costs, and the problem can be overcome by means of full usage of all search information obtained during the computations. The article provides a description of the developed approach, the efficiency of which has been substantiated by the results of computational experiments.

  20. SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.

    Directory of Open Access Journals (Sweden)

    Matija Korpar

    Full Text Available In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.

  1. Throughput Analysis for a High-Performance FPGA-Accelerated Real-Time Search Application

    Directory of Open Access Journals (Sweden)

    Wim Vanderbauwhede

    2012-01-01

    Full Text Available We propose an FPGA design for the relevancy computation part of a high-throughput real-time search application. The application matches terms in a stream of documents against a static profile, held in off-chip memory. We present a mathematical analysis of the throughput of the application and apply it to the problem of scaling the Bloom filter used to discard nonmatches.

  2. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    Science.gov (United States)

    Massimo, F.; Atzeni, S.; Marocchino, A.

    2016-12-01

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.

  3. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  4. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    Science.gov (United States)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  5. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  6. A Kinetic Transport Theory for Particle Acceleration and Transport in Regions of Multiple Contracting and Reconnecting Inertial-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O.

    2015-03-01

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  7. A KINETIC TRANSPORT THEORY FOR PARTICLE ACCELERATION AND TRANSPORT IN REGIONS OF MULTIPLE CONTRACTING AND RECONNECTING INERTIAL-SCALE FLUX ROPES

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J. A.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Khabarova, O., E-mail: jar0013@uah.edu [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation)

    2015-03-10

    Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.

  8. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  9. Universal proximity effect in target search kinetics in the few-encounter limit

    CERN Document Server

    Godec, A

    2016-01-01

    When does a diffusing particle reach its target for the first time? This first-passage time (FPT) problem is central to the kinetics of molecular reactions in chemistry and molecular biology. Here we explain the behavior of smooth FPT densities, for which all moments are finite, and demonstrate universal yet generally non-Poissonian long-time asymptotics for a broad variety of transport processes. While Poisson-like asymptotics arise generically in the presence of an effective repulsion in the immediate vicinity of the target, a time-scale separation between direct and reflected indirect trajectories gives rise to a universal proximity effect: Direct paths, heading more or less straight from the point of release to the target, become typical and focused, with a narrow spread of the corresponding first passage times. Conversely, statistically dominant indirect paths exploring the system size tend to be massively dissimilar. The initial distance to the target particularly impacts gene regulatory or competitive ...

  10. Improving Limit Surface Search Algorithms in RAVEN Using Acceleration Schemes: Level II Milestone

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    , subject of the analysis. These methodologies are named, in the RAVEN environment, adaptive sampling strategies. These methodologies infer system responses from surrogate models constructed from already existing samples (produced using high fidelity simulations) and suggest the most relevant location (coordinate in the input space) of the next sampling point to be explored in the uncertain/parametric domain. When using those methodologies, it is possible to understand features of the system response with a small number of carefully selected samples. This report focuses on the development and improvement of the limit surface search. The limit surface is an important concept in system reliability analysis. Without going into the details, which will be covered later in the report, the limit surface could be briefly described as an hyper-surface in the system uncertainty/parametric space separating the regions leading to a prescribed system outcome. For example, if the uncertainty/parametric space is the one generated by the reactor power level and the duration of the batteries, the system is a nuclear power plant and the system outcome discriminating variable is the clad failure in a station blackout scenario, then the limit surface separates the combinations of reactor power level and battery duration that lead to clad failure from the ones that do not.

  11. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.

    Science.gov (United States)

    Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil

    2013-04-04

    The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.

  12. GPU-accelerated nonparametric kinetic analysis of DCE-MRI data from glioblastoma patients treated with bevacizumab.

    Science.gov (United States)

    Hsu, Yu-Han H; Ferl, Gregory Z; Ng, Chee M

    2013-05-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is often used to examine vascular function in malignant tumors and noninvasively monitor drug efficacy of antivascular therapies in clinical studies. However, complex numerical methods used to derive tumor physiological properties from DCE-MRI images can be time-consuming and computationally challenging. Recent advancement of computing technology in graphics processing unit (GPU) makes it possible to build an energy-efficient and high-power parallel computing platform for solving complex numerical problems. This study develops the first reported fast GPU-based method for nonparametric kinetic analysis of DCE-MRI data using clinical scans of glioblastoma patients treated with bevacizumab (Avastin®). In the method, contrast agent concentration-time profiles in arterial blood and tumor tissue are smoothed using a robust kernel-based regression algorithm in order to remove artifacts due to patient motion and then deconvolved to produce the impulse response function (IRF). The area under the curve (AUC) and mean residence time (MRT) of the IRF are calculated using statistical moment analysis, and two tumor physiological properties that relate to vascular permeability, volume transfer constant between blood plasma and extravascular extracellular space (K(trans)) and fractional interstitial volume (ve) are estimated using the approximations AUC/MRT and AUC. The most significant feature in this method is the use of GPU-computing to analyze data from more than 60,000 voxels in each DCE-MRI image in parallel fashion. All analysis steps have been automated in a single program script that requires only blood and tumor data as the sole input. The GPU-accelerated method produces K(trans) and ve estimates that are comparable to results from previous studies but reduces computational time by more than 80-fold compared to a previously reported central processing unit-based nonparametric method. Furthermore, it is at

  13. Universal Proximity Effect in Target Search Kinetics in the Few-Encounter Limit

    Science.gov (United States)

    Godec, Aljaž; Metzler, Ralf

    2016-10-01

    When does a diffusing particle reach its target for the first time? This first-passage time (FPT) problem is central to the kinetics of molecular reactions in chemistry and molecular biology. Here, we explain the behavior of smooth FPT densities, for which all moments are finite, and demonstrate universal yet generally non-Poissonian long-time asymptotics for a broad variety of transport processes. While Poisson-like asymptotics arise generically in the presence of an effective repulsion in the immediate vicinity of the target, a time-scale separation between direct and reflected indirect trajectories gives rise to a universal proximity effect: Direct paths, heading more or less straight from the point of release to the target, become typical and focused, with a narrow spread of the corresponding first-passage times. Conversely, statistically dominant indirect paths exploring the entire system tend to be massively dissimilar. The initial distance to the target particularly impacts gene regulatory or competitive stochastic processes, for which few binding events often determine the regulatory outcome. The proximity effect is independent of details of the transport, highlighting the robust character of the FPT features uncovered here.

  14. Gesture Recognition from Data Streams of Human Motion Sensor Using Accelerated PSO Swarm Search Feature Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2015-01-01

    Full Text Available Human motion sensing technology gains tremendous popularity nowadays with practical applications such as video surveillance for security, hand signing, and smart-home and gaming. These applications capture human motions in real-time from video sensors, the data patterns are nonstationary and ever changing. While the hardware technology of such motion sensing devices as well as their data collection process become relatively mature, the computational challenge lies in the real-time analysis of these live feeds. In this paper we argue that traditional data mining methods run short of accurately analyzing the human activity patterns from the sensor data stream. The shortcoming is due to the algorithmic design which is not adaptive to the dynamic changes in the dynamic gesture motions. The successor of these algorithms which is known as data stream mining is evaluated versus traditional data mining, through a case of gesture recognition over motion data by using Microsoft Kinect sensors. Three different subjects were asked to read three comic strips and to tell the stories in front of the sensor. The data stream contains coordinates of articulation points and various positions of the parts of the human body corresponding to the actions that the user performs. In particular, a novel technique of feature selection using swarm search and accelerated PSO is proposed for enabling fast preprocessing for inducing an improved classification model in real-time. Superior result is shown in the experiment that runs on this empirical data stream. The contribution of this paper is on a comparative study between using traditional and data stream mining algorithms and incorporation of the novel improved feature selection technique with a scenario where different gesture patterns are to be recognized from streaming sensor data.

  15. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    Energy Technology Data Exchange (ETDEWEB)

    He, Yudong [California Univ., Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  16. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics.

    NARCIS (Netherlands)

    Elhamine, F.; Radke, M.H.; Pfitzer, G.; Granzier, H.; Gotthardt, M.; Stehle, R.

    2014-01-01

    Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mi

  17. Field-aligned particle acceleration on auroral field lines by interaction with transient density cavities stimulated by kinetic Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. A. Bespalov

    2006-09-01

    Full Text Available We consider the field-aligned acceleration of energetic ions and electrons which takes place on auroral field lines due to their interaction with time-varying density cavities stimulated by the strong oscillating field-aligned currents of kinetic Alfvén waves. It is shown that when the field-aligned current density of these waves increases, such that the electron drift speed exceeds the electron thermal speed, ion acoustic perturbations cease to propagate along the field lines and instead form purely-growing density perturbations. The rarefactions in these perturbations are found to grow rapidly to form density cavities, limited by the pressure of the bipolar electric fields which occur within them. The time scale for growth and decay of the cavities is much shorter than the period of the kinetic Alfvén waves. Energetic particles traversing these growing and decaying cavities will be accelerated by their time-varying field-aligned electric fields in a process that is modelled as a series of discrete random perturbations. The evolution of the particle distribution function is thus determined by the Fokker-Planck equation, with an energy diffusion coefficient that is proportional to the square of the particle charge, but is independent of the mass and energy. Steady-state solutions for the distribution functions of the accelerated particles are obtained for the case of an arbitrary energetic particle population incident on a scattering layer of finite length along the field lines, showing how the reflected and transmitted distributions depend on the typical "random walk" energy change of the particles within the layer compared to their initial energy. When this typical energy change is large compared to the initial energy, the reflected population is broadly spread in energy about a mean which is comparable with the initial energy, while the transmitted population has the form of a strongly accelerated field-aligned beam. We suggest that these

  18. Shelf-life and colour change kinetics of Aloe vera gel powder under accelerated storage in three different packaging materials

    National Research Council Canada - National Science Library

    Ramachandra, C T; Rao, P Srinivasa

    ...), biaxially oriented polypropylene (BOPP) and polypropylene (PP). The shelf-life of the powder was predicted on the basis of free flowness of product under accelerated storage condition (38 ± 1 °C, 90 ± 1% relative humidity...

  19. Stoichiometry-controlled two flexible interpenetrated frameworks: higher CO2 uptake in a nanoscale counterpart supported by accelerated adsorption kinetics.

    Science.gov (United States)

    Sikdar, Nivedita; Hazra, Arpan; Maji, Tapas Kumar

    2014-06-16

    Here, we report the synthesis, structural characterizations, and gas storage properties of two new 2-fold interpenetrated 3D frameworks, {[Zn2(bpdc)2(azpy)]·2H2O·2DMF}n (1) and {[Zn3(bpdc)3(azpy)]·4H2O·2DEF}n (2) [bpdc = 4,4'-biphenyldicarboxylate; azpy = 4,4'-azobipyridine], obtained from the same set of organic linkers. Furthermore, 1 has been successfully miniaturized to nanoscale (MOF1N) of spherical morphology to study size dependent adsorption properties through a coordination modulation method. The two different SBUs, dinuclear paddle-wheel {Zn2(COO)4} for 1 and trinuclear {Zn3(μ2-OCO)2(COO)4 }for 2, direct the different network topologies of the frameworks that render different adsorption characteristics into the systems. Both of the frameworks show guest induced structural transformations as supported by PXRD studies. Adsorption studies of 1 and 2 show CO2 selectivity over several other gases (such as N2, H2, O2, and Ar) under identical experimental conditions. Interestingly, MOF1N exhibits significantly higher CO2 storage capacity compared to bulk crystals of 1 and that can be attributed to the smaller diffusion barrier at the nanoscale that is supported by studies of adsorption kinetics in both states. Kinetic measurement based on water vapor adsorption clearly distinguishes between the rate of diffusion of bulk (1) and nanospheres (MOF1N). The respective kinetic rate constant (k, s(-1)) for MOF1N (k = 1.29 × 10(-2) s(-1)) is found to be considerably higher than 1 (k = 7.1 × 10(-3) s(-1)) as obtained from the linear driving force (LDF) model. This is the first account where a new interpenetrated MOF has been scaled down to nanoscale through a coordination modulation method, and their difference in gas uptake properties has been correlated through a higher rate of mass diffusion as obtained from kinetics of adsorption.

  20. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria

    Science.gov (United States)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  1. Coarse-Grained Langevin Approximations and Spatiotemporal Acceleration for Kinetic Monte Carlo Simulations of Diffusion of Interacting Particles

    Institute of Scientific and Technical Information of China (English)

    Sasanka ARE; Markos A.KATSOULAKIS; Anders SZEPESSY

    2009-01-01

    Kinetic Monte Carlo methods provide a powerful computational tool for the simulation of microscopic processes such as the diffusion of interacting particles on a surface, at a detailed atomistic level. However such algorithms are typically computationally expensive and are restricted to fairly small spatiotemporal scales. One approach towards overcoming this problem was the development of coarse-grained Monte Carlo algorithms. In recent literature, these methods were shown to be capable of efficiently describing much larger length scales while still incorporating information on microscopic interactions and fluctuations. In this paper, a coarse-grained Langevin system of stochastic differential equations as approximations of diffusion of interacting particles is derived, based on these earlier coarse-grained models. The authors demonstrate the asymptotic equivalence of transient and long time behavior of the Langevin approximation and the underlying microscopic process, using asymptotics methods such as large deviations for interacting particles systems, and furthermore, present corresponding numerical simulations, comparing statistical quantities like mean paths, auto correlations and power spectra of the microscopic and the approximating Langevin processes. Finally, it is shown that the Langevin approximations presented here are much more computationally efficient than conventional Kinetic Monte Carlo methods, since in addition to the reduction in the number of spatial degrees of freedom in coarse-grained Monte Carlo methods, the Langevin system of stochastic differential equations allows for multiple particle moves in a single timestep.

  2. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    CERN Document Server

    Yuan, Yajie; Zrake, Jonathan; East, William E; Blandford, Roger D

    2016-01-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short time scales. These are likely due to rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reaction. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased pol...

  3. Low-complexity feed-forward carrier phase estimation for M-ary QAM based on phase search acceleration by quadratic approximation.

    Science.gov (United States)

    Xiang, Meng; Fu, Songnian; Deng, Lei; Tang, Ming; Shum, Perry; Liu, Deming

    2015-07-27

    Blind phase search (BPS) algorithm for M-QAM has excellent tolerance to laser linewidth at the expense of rather high computation complexity (CC). Here, we first theoretically obtain the quadratic relationship between the test angle and corresponding distance matric during the BPS implementation. Afterwards, we propose a carrier phase estimation (CPE) based on a two-stage BPS with quadratic approximation (QA). Instead of searching the phase blindly with fixed step-size for the BPS algorithm, QA can significantly accelerate the speed of phase searching. As a result, a group factor of 2.96/3.05, 4.55/4.67 and 2.27/2.3 (in the form of multipliers/adders) reduction of CC is achieved for 16QAM, 64QAM and 256QAM, respectively, in comparison with the traditional BPS scheme. Meanwhile, a guideline for determining the summing filter block length is put forward during performance optimization. Under the condition of optimum filter block length, our proposed scheme shows similar performance as traditional BPS scheme. At 1 dB required E(S)/N(0) penalty @ BER = 10(-2), our proposed CPE scheme can tolerate a times symbol duration productΔf⋅T(S) of 1.7 × 10(-4), 6 × 10(-5) and 1.5 × 10(-5) for 16/64/256-QAM, respectively.

  4. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.

    Science.gov (United States)

    Jiang, Hanyu; Ganesan, Narayan

    2016-02-27

    HMMER software suite is widely used for analysis of homologous protein and nucleotide sequences with high sensitivity. The latest version of hmmsearch in HMMER 3.x, utilizes heuristic-pipeline which consists of MSV/SSV (Multiple/Single ungapped Segment Viterbi) stage, P7Viterbi stage and the Forward scoring stage to accelerate homology detection. Since the latest version is highly optimized for performance on modern multi-core CPUs with SSE capabilities, only a few acceleration attempts report speedup. However, the most compute intensive tasks within the pipeline (viz., MSV/SSV and P7Viterbi stages) still stand to benefit from the computational capabilities of massively parallel processors. A Multi-Tiered Parallel Framework (CUDAMPF) implemented on CUDA-enabled GPUs presented here, offers a finer-grained parallelism for MSV/SSV and Viterbi algorithms. We couple SIMT (Single Instruction Multiple Threads) mechanism with SIMD (Single Instructions Multiple Data) video instructions with warp-synchronism to achieve high-throughput processing and eliminate thread idling. We also propose a hardware-aware optimal allocation scheme of scarce resources like on-chip memory and caches in order to boost performance and scalability of CUDAMPF. In addition, runtime compilation via NVRTC available with CUDA 7.0 is incorporated into the presented framework that not only helps unroll innermost loop to yield upto 2 to 3-fold speedup than static compilation but also enables dynamic loading and switching of kernels depending on the query model size, in order to achieve optimal performance. CUDAMPF is designed as a hardware-aware parallel framework for accelerating computational hotspots within the hmmsearch pipeline as well as other sequence alignment applications. It achieves significant speedup by exploiting hierarchical parallelism on single GPU and takes full advantage of limited resources based on their own performance features. In addition to exceeding performance of other

  5. Search for major genes with progeny test data to accelerate the development of genetically superior loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    NCSU

    2003-12-30

    This research project is to develop a novel approach that fully utilized the current breeding materials and genetic test information available from the NCSU-Industry Cooperative Tree Improvement Program to identify major genes that are segregating for growth and disease resistance in loblolly pine. If major genes can be identified in the existing breeding population, they can be utilized directly in the conventional loblolly pine breeding program. With the putative genotypes of parents identified, tree breeders can make effective decisions on management of breeding populations and operational deployment of genetically superior trees. Forest productivity will be significantly enhanced if genetically superior genotypes with major genes for economically important traits could be deployed in an operational plantation program. The overall objective of the project is to develop genetic model and analytical methods for major gene detection with progeny test data and accelerate the development of genetically superior loblolly pine. Specifically, there are three main tasks: (1) Develop genetic models for major gene detection and implement statistical methods and develop computer software for screening progeny test data; (2) Confirm major gene segregation with molecular markers; and (3) Develop strategies for using major genes for tree breeding.

  6. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  7. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic.

    Directory of Open Access Journals (Sweden)

    Ying Yin

    Full Text Available BACKGROUND: Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4 primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV clearance. PRINCIPAL FINDINGS: Plasmids expressing HBV core protein (HBcAg or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc, CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI of pAAV/HBV1.2. HBV surface antigen (HBsAg and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. CONCLUSION: Viral clearance could be efficiently achieved by Th1/Th2-balanced

  8. Accelerated Cure Project for Multiple Sclerosis

    Science.gov (United States)

    ... main content Accelerating research toward a cure for multiple sclerosis Home Contact Us Search form Search Connect Volunteer ... is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...

  9. Studies of accelerated compact toruses

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  10. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yumin [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)]. E-mail: yumin.zhang@mpi.com; Tung, C.-H. [Center for Molecular Imaging Research, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 (United States); He Jiang [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Liu Ning [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Yanachkov, Ivan [GlSynthesis, Worcester, MA 01605 (United States); Liu Guozheng [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Rusckowski, Mary [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Vanderheyden, Jean-Luc [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2006-02-15

    The attempt to target the limited copies of messenger RNA (mRNA) in vivo with radiolabeled nucleobase oligomers as antisense probes is challenging. Selecting an antisense molecule with superior properties, enhancing the cellular kinetics, and improving the radiolabeling chemistry would be the reasonable approach to accomplish this goal. The present study reports a method to construct a chimera of phosphorodiamidate morpholino nucleobase oligomer (MORF) covalently conjugated to a peptide containing a cell membrane transduction Tat peptide and an N{sub 2}S{sub 2} chelator for technetium-99m ({sup 99m}Tc) radiolabeling (N{sub 2}S{sub 2}-Tat-MORF). The radiolabeling properties and cellular kinetics of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF were measured. As hypothesized, the preparation of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF could be achieved by an instant one-step method with labeling efficiency greater than 95%, and the {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF showed distinct properties in cell culture from those of a control, the same MORF sequence without Tat but with mercaptoacetyltriglycine (MAG{sub 3}) as chelator for {sup 99m}Tc ({sup 99m}Tc-MAG{sub 3}-MORF). {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF achieved maximum accumulation of about 35% within 2 h, while {sup 99m}Tc-MAG{sub 3}-MORF showed lower and steadily increasing accumulations but of less than 1% in 24 h. These preliminary results demonstrated that the proposed chimera has properties for easy labeling, and {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF prepared by this method possesses enhanced cellular kinetics and merits further investigation for in vivo mRNA targeting.

  11. Review of multi-dimensional large-scale kinetic simulation and physics validation of ion acceleration in relativistic laser-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hui-Chun [Los Alamos National Laboratory; Hegelich, B.M. [Los Alamos National Laboratory; Fernandez, J.C. [Los Alamos National Laboratory; Shah, R.C. [Los Alamos National Laboratory; Palaniyappan, S. [Los Alamos National Laboratory; Jung, D. [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B.J. [Los Alamos National Laboratory; Bowers, K. [Guest Scientist of XCP-6; Huang, C. [Los Alamos National Laboratory; Kwan, T.J. [Los Alamos National Laboratory

    2012-06-19

    Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.

  12. Kinetic Biochemistry

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2003-03-01

    Full Text Available Mathematics and computer programming have a major contribution to chemistry. Two directions can be identified: one that searches and tries (rich to explain the structural binding and shape of the chemical compounds [1] with major applications in QSPR/QSAR studies [2], and applied sciences such as engineering of materials or agriculture [3]; the second direction is to models the kinetic processes that are involved in chemical reactions [4]. Many such models are available here. The present paper describes three variants of well the known kinetic models and presents the mathematical equations associated with them. The differential equations are numerically solved and fitted with MathCad program. [1] Diudea M., Gutman I., Jäntschi L., Molecular Topology, Nova Science, Huntington, New York, 332 p., 2001, 2002. [2] Diudea M. V., Ed., QSPR / QSAR Studies by Molecular Descriptors, Nova Science, Huntington, New York, 438 p., 2001. [3] Jäntschi L., Microbiology and Toxicology. Phytochemistry Studies (in Romanian, Amici, Cluj-Napoca, 184 p., 2003. [4] Jäntschi L., Unguresan M., Physical Chemistry. Molecular Kinetic and Dynamic (in Romanian, Mediamira, Cluj-Napoca, 159 p., 2001.

  13. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System.

    Science.gov (United States)

    Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun

    2015-01-01

    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  14. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    Science.gov (United States)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  15. $A$ searches

    CERN Document Server

    Beacham, James

    The Standard Model of particle physics encompasses three of the four known fundamental forces of nature, and has remarkably withstood all of the experimental tests of its predictions, a fact solidified by the discovery, in 2012, of the Higgs boson. However, it cannot be the complete picture. Many measurements have been made that hint at physics beyond the Standard Model, and the main task of the high- energy experimental physics community is to conduct searches for new physics in as many di↵erent places and regimes as possible. I present three searches for new phenomena in three di↵erent high-energy collider experiments, namely, a search for events with at least three photons in the final state, which is sensitive to an exotic decay of a Higgs boson into four photons via intermediate pseudoscalar particles, a, with ATLAS, at the Large Hadron Collider; a search for a dark photon, also known as an A0 , with APEX, at Thomas Je↵erson National Accelerator Facility; and a search for a Higgs decaying into four...

  16. Chemical Kinetics Database

    Science.gov (United States)

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  17. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  18. Ground-Based Gamma-Ray Astronomy at Energies Above 10 TeV: Searching for Galactic PeV Cosmic-Ray Accelerators

    CERN Document Server

    Rowell, G; Plyasheshnikov, A

    2005-01-01

    The origin of Galactic CRs up the knee energy remains unanswered and provides strong motivation for the study of gamma-ray sources at energies above 10 TeV. We discuss recent results from ground-based gamma-ray Cherenkov imaging systems at these energies as well as future observational efforts in this direction. The exciting results of H.E.S.S. give clues as to the nature of Galactic CR accelerators, and suggest that there is a population of Galactic gamma-ray sources with emission extending beyond 10 TeV. A dedicated system of Cherenkov imaging telescopes optimised for higher energies appears to be a promising way to study the multi-TeV gamma-ray sky.

  19. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. The Heavy Photon Search experiment at Jefferson Laboratory

    Directory of Open Access Journals (Sweden)

    De Napoli Marzio

    2015-01-01

    Full Text Available Many beyond Standard Model theories predict a new massive gauge boson, aka “dark” or “heavy photon”, directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab, in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α′/α in the range 10−5 to 10−10. HPS will look for the e+e− decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  1. From Excessive Journal Self-Cites to Citation Stacking: Analysis of Journal Self-Citation Kinetics in Search for Journals, Which Boost Their Scientometric Indicators.

    Science.gov (United States)

    Heneberg, Petr

    2016-01-01

    Bibliometric indicators increasingly affect careers, funding, and reputation of individuals, their institutions and journals themselves. In contrast to author self-citations, little is known about kinetics of journal self-citations. Here we hypothesized that they may show a generalizable pattern within particular research fields or across multiple fields. We thus analyzed self-cites to 60 journals from three research fields (multidisciplinary sciences, parasitology, and information science). We also hypothesized that the kinetics of journal self-citations and citations received from other journals of the same publisher may differ from foreign citations. We analyzed the journals published the American Association for the Advancement of Science, Nature Publishing Group, and Editura Academiei Române. We found that although the kinetics of journal self-cites is generally faster compared to foreign cites, it shows some field-specific characteristics. Particularly in information science journals, the initial increase in a share of journal self-citations during post-publication year 0 was completely absent. Self-promoting journal self-citations of top-tier journals have rather indirect but negligible direct effects on bibliometric indicators, affecting just the immediacy index and marginally increasing the impact factor itself as long as the affected journals are well established in their fields. In contrast, other forms of journal self-citations and citation stacking may severely affect the impact factor, or other citation-based indices. We identified here a network consisting of three Romanian physics journals Proceedings of the Romanian Academy, Series A, Romanian Journal of Physics, and Romanian Reports in Physics, which displayed low to moderate ratio of journal self-citations, but which multiplied recently their impact factors, and were mutually responsible for 55.9%, 64.7% and 63.3% of citations within the impact factor calculation window to the three journals

  2. From Excessive Journal Self-Cites to Citation Stacking: Analysis of Journal Self-Citation Kinetics in Search for Journals, Which Boost Their Scientometric Indicators.

    Directory of Open Access Journals (Sweden)

    Petr Heneberg

    Full Text Available Bibliometric indicators increasingly affect careers, funding, and reputation of individuals, their institutions and journals themselves. In contrast to author self-citations, little is known about kinetics of journal self-citations. Here we hypothesized that they may show a generalizable pattern within particular research fields or across multiple fields. We thus analyzed self-cites to 60 journals from three research fields (multidisciplinary sciences, parasitology, and information science. We also hypothesized that the kinetics of journal self-citations and citations received from other journals of the same publisher may differ from foreign citations. We analyzed the journals published the American Association for the Advancement of Science, Nature Publishing Group, and Editura Academiei Române. We found that although the kinetics of journal self-cites is generally faster compared to foreign cites, it shows some field-specific characteristics. Particularly in information science journals, the initial increase in a share of journal self-citations during post-publication year 0 was completely absent. Self-promoting journal self-citations of top-tier journals have rather indirect but negligible direct effects on bibliometric indicators, affecting just the immediacy index and marginally increasing the impact factor itself as long as the affected journals are well established in their fields. In contrast, other forms of journal self-citations and citation stacking may severely affect the impact factor, or other citation-based indices. We identified here a network consisting of three Romanian physics journals Proceedings of the Romanian Academy, Series A, Romanian Journal of Physics, and Romanian Reports in Physics, which displayed low to moderate ratio of journal self-citations, but which multiplied recently their impact factors, and were mutually responsible for 55.9%, 64.7% and 63.3% of citations within the impact factor calculation window to the

  3. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  4. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored accelera......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...... an approach to facilitate implementation and realization of business ideas and is a lucrative approach to transform research into ventures and to revitalize regions and industries in transition. Investors have noticed that the accelerator approach is a way to increase the possibility of success by funnelling...

  5. Flash kinetics in liquefied noble gases: Studies of alkane activation and ligand dynamics at rhodium carbonyl centers, and a search for xenon-carbene adducts

    Energy Technology Data Exchange (ETDEWEB)

    Yeston, Jake Simon [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    A general introduction is given to place the subsequent chapters in context for the nonspecialist. Results are presented from a low temperature infrared (IR) flash kinetic study of C-H bond activation via photoinduced reaction of Cp*Rh(CO)2 (1) with linear and cyclic alkanes in liquid krypton and liquid xenon solution. No reaction was observed with methane; for all other hydrocarbons studied, the rate law supports fragmentation of the overall reaction into an alkane binding step followed by an oxidative addition step. For the binding step, larger alkanes within each series (linear and cyclic) interact more strongly than smaller alkanes with the Rh center. The second step, oxidative addition of the C-H bond across Rh, exhibits very little variance in the series of linear alkanes, while in the cyclic series the rate decreases with increasing alkane size. Results are presented from an IR flash kinetic study of the photoinduced chemistry of Tp*Rh(CO)2 (5; Tp* = hydridotris(3,5-dimethylpyrazolyl)borato) in liquid xenon solution at –50 °C. IR spectra of the solution taken 2 μs after 308 nm photolysis exhibit two transient bands at 1972-1980 cm-1 and 1992-2000 cm-1, respectively. These bands were assigned to (η3-Tp*)Rh(CO)•Xe and (η2-Tp*)Rh(CO)•Xe solvates on the basis of companion studies using Bp*Rh(CO)2 (9; Bp* = dihydridobis(3,5-dimethyl pyrazolyl)borato). Preliminary kinetic data for reaction of 5 with cyclohexane in xenon solution indicate that both transient bands still appear and that their rates of decay correlate with formation of the product Tp*Rh(CO)(C6H11)(H). The preparation and reactivity of the new complex Bp*Rh(CO)(pyridine) (11) are described. The complex reacts with CH3I to yield the novel Rh carbene hydride complex HB(Me2pz)2Rh(H)(I)(C5H5N)(C(O)Me) (12), resulting from formal addition of CH

  6. RECIRCULATING ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.; GARREN,A.A.; JOHNSTONE,C.

    2000-04-07

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous.

  7. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  8. Kinetic Atom.

    Science.gov (United States)

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  9. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  10. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  11. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  12. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  13. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  14. Future accelerators

    CERN Document Server

    Hübner, K

    1999-01-01

    An overview of the various schemes for electron-positron linear colliders is given and the status of the development of key components and the various test facilities is given. The present studies of muon-muon colliders and very large hadron colliders are summarized including the plans for component development and tests. Accelerator research and development to achieve highest gradients in linear accelerators is outlined. (44 refs).

  15. Accelerated Parallel Texture Optimization

    Institute of Scientific and Technical Information of China (English)

    Hao-Da Huang; Xin Tong; Wen-Cheng Wang

    2007-01-01

    Texture optimization is a texture synthesis method that can efficiently reproduce various features of exemplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthesis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to interactive editing of flow-guided synthesis.

  16. Professional Microsoft search fast search, Sharepoint search, and search server

    CERN Document Server

    Bennett, Mark; Kehoe, Miles; Voskresenskaya, Natalya

    2010-01-01

    Use Microsoft's latest search-based technology-FAST search-to plan, customize, and deploy your search solutionFAST is Microsoft's latest intelligent search-based technology that boasts robustness and an ability to integrate business intelligence with Search. This in-depth guide provides you with advanced coverage on FAST search and shows you how to use it to plan, customize, and deploy your search solution, with an emphasis on SharePoint 2010 and Internet-based search solutions.With a particular appeal for anyone responsible for implementing and managing enterprise search, this book presents t

  17. Accelerated Unification

    OpenAIRE

    Arkani-Hamed, Nima; Cohen, Andrew; Georgi, Howard

    2001-01-01

    We construct four dimensional gauge theories in which the successful supersymmetric unification of gauge couplings is preserved but accelerated by N-fold replication of the MSSM gauge and Higgs structure. This results in a low unification scale of $10^{13/N}$ TeV.

  18. Requirements for very high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1985-04-01

    In this introductory paper at the second Workshop on Laser Acceleration my main goal is to set what I believe to be the energy and luminosity requirements of the machines of the future. These specifications are independent of the technique of accelerations. But, before getting to these technical questions, I will briefly review where we are in particle physics, for it is the large number of unanswered questions in physics that motivates the search for effective accelerators.

  19. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  20. Characterization of the relation between energy landscape and the time evolution of complex materials using kinetic ART

    Science.gov (United States)

    N'tsouaglo, Kokou; Joly, Jean-Francois; Beland, Laurent; Brommer, Peter; Mousseau, Normand

    2013-03-01

    In the last two decades, there has been a considerable interest in the development of accelerated numerical methods for sampling the energy landscape of complex materials. Many of these methods are based on the kinetic Monte Carlo (KMC) algorithm introduced 40 years ago. This is the case of kinetic ART, for example, which uses a very efficient transition-state searching method, ART nouveau, coupled with a topological tool, NAUTY, to offer an off-lattice KMC method with on-the-fly catalog building to study complex systems, such as ion-bombarded and amorphous materials, on timescales of a second or more. Looking at two systems, vacancy aggregation in Fe and energy relaxation in ion-bombarded c-Si, we characterize the changes in the energy landscape and the relation to its time evolution with kinetic ART and its correspondence with the well-known Bell-Evans-Polanyi principle used in chemistry.

  1. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  2. MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  3. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  4. Kinetic Magnetorotational Turbulence and Dynamo

    Science.gov (United States)

    Kunz, Matthew; Stone, James; Quataert, Eliot

    2016-10-01

    Low-luminosity black-hole accretion flows, such as that at the Galactic center, are collisionless. A kinetic approach is thus necessary to understand the transport of heat and angular momentum, the acceleration of particles, and the growth and structure of the magnetic field in these systems. We present results from the first 6D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model. Special attention will be paid to the enhanced transport of angular momentum by field-aligned pressure anisotropies, as well as to the ion-Larmor-scale kinetic instabilities (firehose, mirror, ion-cyclotron) which regulate those anisotropies. Energy spectra and phase-space evolution will be discussed. Time permitting, dedicated nonlinear studies of firehose and mirror instabilities in a shearing plasma will also be presented as a complement to the study of the magnetorotational instability. The profits, perils, and price of using a kinetic approach will be briefly mentioned.

  5. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  6. Search Recipes

    Science.gov (United States)

    ... Tips A to Z Map Search Enter your search term 98 results • Advanced Search Everything News Videos e- ... usda.gov https://www.whatscooking.fns.usda.gov/search/solr-results/im_field_term_program/child-nutrition-cnp-163 We would like ...

  7. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  8. Search Patterns

    CERN Document Server

    Morville, Peter

    2010-01-01

    What people are saying about Search Patterns "Search Patterns is a delight to read -- very thoughtful and thought provoking. It's the most comprehensive survey of designing effective search experiences I've seen." --Irene Au, Director of User Experience, Google "I love this book! Thanks to Peter and Jeffery, I now know that search (yes, boring old yucky who cares search) is one of the coolest ways around of looking at the world." --Dan Roam, author, The Back of the Napkin (Portfolio Hardcover) "Search Patterns is a playful guide to the practical concerns of search interface design. It cont

  9. Kinetic Actviation Relaxation Technique

    CERN Document Server

    Béland, Laurent Karim; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-01-01

    We present a detailed description of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si, self-interstitial diffusion in Fe and structural relaxation in amorphous silicon.

  10. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  11. Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems

    Science.gov (United States)

    Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand

    2017-10-01

    In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.

  12. Final Report on Institutional Computing Project s15_hilaserion, “Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators as an Enabling Capability”

    Energy Technology Data Exchange (ETDEWEB)

    Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yin, Lin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stark, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    This proposal sought of order 1M core-hours of Institutional Computing time intended to enable computing by a new LANL Postdoc (David Stark) working under LDRD ER project 20160472ER (PI: Lin Yin) on laser-ion acceleration. The project was “off-cycle,” initiating in June of 2016 with a postdoc hire.

  13. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  14. Impact accelerations

    Science.gov (United States)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  15. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  16. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  17. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, David W. [Columbia Univ., New York, NY (United States)

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  18. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    Science.gov (United States)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  19. Personalized Search

    CERN Document Server

    AUTHOR|(SzGeCERN)749939

    2015-01-01

    As the volume of electronically available information grows, relevant items become harder to find. This work presents an approach to personalizing search results in scientific publication databases. This work focuses on re-ranking search results from existing search engines like Solr or ElasticSearch. This work also includes the development of Obelix, a new recommendation system used to re-rank search results. The project was proposed and performed at CERN, using the scientific publications available on the CERN Document Server (CDS). This work experiments with re-ranking using offline and online evaluation of users and documents in CDS. The experiments conclude that the personalized search result outperform both latest first and word similarity in terms of click position in the search result for global search in CDS.

  20. Search Combinators

    CERN Document Server

    Schrijvers, Tom; Wuille, Pieter; Samulowitz, Horst; Stuckey, Peter J

    2012-01-01

    The ability to model search in a constraint solver can be an essential asset for solving combinatorial problems. However, existing infrastructure for defining search heuristics is often inadequate. Either modeling capabilities are extremely limited or users are faced with a general-purpose programming language whose features are not tailored towards writing search heuristics. As a result, major improvements in performance may remain unexplored. This article introduces search combinators, a lightweight and solver-independent method that bridges the gap between a conceptually simple modeling language for search (high-level, functional and naturally compositional) and an efficient implementation (low-level, imperative and highly non-modular). By allowing the user to define application-tailored search strategies from a small set of primitives, search combinators effectively provide a rich domain-specific language (DSL) for modeling search to the user. Remarkably, this DSL comes at a low implementation cost to the...

  1. Visual search

    NARCIS (Netherlands)

    Toet, A.; Bijl, P.

    2003-01-01

    Visual search, with or without the aid of optical or electro-optical instruments, plays a significant role in various types of military and civilian operations (e.g., reconnaissance, surveillance, and search and rescue). Advance knowledge of human visual search and target acquisition performance is

  2. Hybrid Simulations of Particle Acceleration at Shocks

    CERN Document Server

    Caprioli, Damiano

    2014-01-01

    We present the results of large hybrid (kinetic ions - fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.

  3. Stochastic Particle Acceleration in Blazar Jets

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The bulk kinetic energy of jets can be dissipated via generating tur bulent plasma waves. We examine stochastic particle acceleration in blazar jets to explain the emissions of all blazars. We show that acceleration of electrons by plasma turbulence waves with a spectrum W(k) ~ k-4/3 produces a nonthermal population of relativistic electrons whose peak frequency of synchrotron emission can fit the observational trends in the spectral energy distribution of all blazars.The plasma nonlinear processes responsible for the formation of turbulent spectrum are investigated. Increases in the interaction time of turbulent waves can produce a flatter speckrum leading to efficient particle acceleration.

  4. A study of reflex tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Takao; Morinobu, Shunpei; Gono, Yasuyuki; Sagara, Kenji; Sugimitsu, Tsuyoshi; Mitarai, Shiro; Nakamura, Hiroyuki; Ikeda, Nobuo; Morikawa, Tsuneyasu [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1996-12-01

    An investigation on `developing research theme and its realizing experimental apparatus` based on the tandem accelerator facility is executed. At a standpoint of recognition on essentiality of preparation, improvement or novel technical development capable of extreme increase in capacity of the tandem accelerator facility to form COE with high uniqueness, proposal of numerous ideas and their investigations and searches were conducted. In this paper, consideration results of `beam reacceleration using tandem accelerator` were shown as follows: (1) Short life unstable nuclei formed by nuclear reaction using tandem acceleration primary beam is ionized to negative and to reaccelerate by using the same tandem accelerator. And (2) by combination of plural electrons with the tandem primary accelerated beam, numbers of charge is reduced to reaccelerate by the tandem. (G.K.)

  5. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    Science.gov (United States)

    Bingham, Robert

    2009-02-01

    as photon deceleration and acceleration and is the result of a modulational instability. Simulations reported by Trines et al using a photon-in-cell code or wave kinetic code agree extremely well with experimental observation. Ion acceleration is actively studied; for example the papers by Robinson, Macchi, Marita and Tripathi all discuss different types of acceleration mechanisms from direct laser acceleration, Coulombic explosion and double layers. Ion acceleration is an exciting development that may have great promise in oncology. The surprising application is in muon acceleration, demonstrated by Peano et al who show that counterpropagating laser beams with variable frequencies drive a beat structure with variable phase velocity, leading to particle trapping and acceleration with possible application to a future muon collider and neutrino factory. Laser and plasma accelerators remain one of the exciting areas of plasma physics with applications in many areas of science ranging from laser fusion, novel high-brightness radiation sources, particle physics and medicine. The guest editor would like to thank all authors and referees for their invaluable contributions to this special issue.

  6. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  7. The Heavy Photon Search experiment at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    De Napoli, Marzio [Istituto Nazionale di Fisica Nucleare (INFN), Catania (Italy). Lab. et al.

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  8. Faceted Search

    CERN Document Server

    Tunkelang, Daniel

    2009-01-01

    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more

  9. Performance analysis of acceleration resolution for radar signal

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Hongzhong; (赵宏钟); FU; Qiang; (付; 强)

    2003-01-01

    The high acceleration of moving targets has brought severe problems in radar signal processing, such as the decrease in output signal-noise-ratio and the deterioration of Doppler resolution. This paper presents an acceleration ambiguity function (AAF) for characterizing the acceleration effects and the acceleration resolution property in radar signal processing. The definition of the acceleration resolution based on AAF is also presented. Using AAF as an analyzing tool, some factors are derived including the loss factor of output SNR, the broadening factor of Doppler resolution, and the optimal accumulative time (OPT) caused by acceleration in linear-phase matched filtering. The convergent property of quadratic-phase matched-filter for searching for and estimating the acceleration is discussed. The results and conclusions are helpful for the quantitative analysis of the acceleration effects on signal processing, and for evaluation of the performance of acceleration in radar signal waveform design.

  10. Solar Hidden Photon Search

    CERN Document Server

    Schwarz, Matthias; Redondo, Javier; Ringwald, Andreas; Wiedemann, Guenter

    2011-01-01

    The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope.

  11. Solar Hidden Photon Search

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Matthias; Wiedemann, Guenter [Hamburg Univ. (Germany). Sternwarte; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany)

    2011-11-15

    The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope. (orig.)

  12. Searches for Magnetic Monopoles and ... beyond

    CERN Document Server

    Giacomelli, G; Sahnoun, Z

    2011-01-01

    The searches for classical Magnetic Monopoles (MMs) at accelerators, for GUT Superheavy MMs in the penetrating cosmic radiation and for Intermediate Mass MMs at high altitudes are discussed. The status of the search for other massive exotic particles such as nuclearites and Q-balls is briefly reviewed.

  13. Nonthermal Particle Acceleration in Magnetic Reconnection

    Science.gov (United States)

    Guo, Fan; Li, Hui; Zhang, Haocheng; Daughton, William; Liu, Yi-Hsin; Lloyd-Ronning, Nicole

    2017-08-01

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. In this study, we investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated plasma using fully kinetic simulations. We have studied the magnetically dominated regime by varying σe = 103-105 and mass ratios. The results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several (2-3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is 1 < p < 2 for both electrons and ions. We study particle acceleration in magnetic reconnection via large-scale 3D kinetic simulations to examine several effects that may be important, including pre-existing fluctuations, kink and secondary tearing instabilities, and open boundary conditions. The results show that particle acceleration in reconnection layers is surprisingly robust despite the development of 3D turbulence and instabilities. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. We discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions.

  14. The acceleration of a neutron in a static electric field

    Science.gov (United States)

    Cappelletti, R. L.

    2012-06-01

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov-Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov-Casher effect, there is no acceleration, while in Mott-Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction.

  15. Buprenorphine kinetics.

    Science.gov (United States)

    Bullingham, R E; McQuay, H J; Moore, A; Bennett, M R

    1980-11-01

    Buprenorphine kinetics was determined in surgical patients using radioimmunoassay. Buprenorphine was measured in the plasma of 24 patients who had received 0.3 mg buprenorphine intraoperatively. After 3 hr 10 of these patients then received a further 0.3 mg buprenorphine intravenously for postoperative pain relief, and 11 patients were given 0.3 mg intramuscularly; again, plasma levels were measured for 3 hr. The data fitted closely to a triexponential decay curve. There was a very fast initial phase, with a half-life (t1/2) of 2 min. The terminal t1/2 was slow, approximately 3 hr. Comparison of the kinetics of the same patient, awake and anesthetized, showed that the clearance was significantly lower in the anesthetized state. A notable feature of the drug given intramuscularly is rapid systemic availability, so that peaks are obtained in 2 to 5 min, and in 10 min the resulting levels are the same as for the intravenous and intramuscular routes.

  16. A New Search for $ \

    CERN Multimedia

    Dore, U; Kodama, K; Ushida, N; Loverre, P F

    2002-01-01

    % WA95\\\\ \\\\ The question whether neutrino flavours mix at some level - and the related question whether neutrinos have non-zero mass - is one of the remaining great challenges of experimental physics. Neutrinos from supernovae, from the sun, from the earth's atmosphere, from nuclear reactors and from radioactive decays are currently under study; in this frame, experiments using accelerators play a privileged role because the well known neutrino source properties allow high precision measurements and background control.\\\\ \\\\The main goal of the CHORUS experiment is to search for neutrino oscillations in the $\

  17. Search for persons

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H. [Asklepios Klinik St. Georg, Radiology, Lohmuehlenstr. 5 20099 Hamburg (Germany)], E-mail: Hermann.vogel@ak-stgeorg.lbk-hh.de

    2007-08-15

    X-rays and gamma-rays are used to detect hidden persons in vehicles, containers, and railway wagons. They are produced with accelerators, X-ray tubes, cobalt 60 and caesium 137. Fan beams adjusted to a line of digital detectors produce the image. The resolution is sufficient to recognise a human being. The recognition of persons with transmission images is limited by superimposition; backscatter imaging produces clearer images but of one single layer only. The future will bring new applications of search for persons with X-rays. Crimes and terrorist attacks will induce added demand for security, where search with X-rays and gamma-rays will keep its important role or even increase it.

  18. Oscillatory quintessence with nonminimal kinetic coupling

    CERN Document Server

    Sadjadi, H Mohseni

    2013-01-01

    The rapid oscillating scalar field is considered as the quintessence in the framework of nonminimal kinetic coupling model. Evolution of dark matter and dark energy in the spatially flat Friedmann-Robertson-Walker universe are studied and the possibility of reentrance of the universe to a normal expansion phase without acceleration, and also the coincidence problem are investigated.

  19. Diffusive Acceleration of Ions at Interplanetary Shocks

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Summerlin, Errol J.

    2005-01-01

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...

  20. Particle acceleration at a reconnecting magnetic separator

    CERN Document Server

    Threlfall, J; Parnell, C E; Oskoui, S Eradat

    2014-01-01

    While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains ...

  1. The crystal acceleration effect for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation); Berdnikov, Ya. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru; Kuznetsov, I. A.; Lasitsa, M. V.; Semenikhin, S. Yu., E-mail: ssy@pnpi.spb.ru; Vezhlev, E. O.; Voronin, V. V., E-mail: vvv@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation)

    2017-01-15

    A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to its homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.

  2. Cosmic-ray Acceleration and Propagation

    CERN Document Server

    Caprioli, Damiano

    2015-01-01

    The origin of cosmic rays (CRs) has puzzled scientists since the pioneering discovery by Victor Hess in 1912. In the last decade, however, modern supercomputers have opened a new window on the processes regulating astrophysical collisionless plasmas, allowing the study of CR acceleration via first-principles kinetic simulations. At the same time, a new-generation of X-ray and $\\gamma$-ray telescopes has been collecting evidence that Galactic CRs are accelerated in the blast waves of supernova remnants (SNRs). I present state-of-the-art particle-in-cells simulations of non-relativistic shocks, in which ion and electron acceleration efficiency and magnetic field amplification are studied in detail as a function of the shock parameters. I then discuss the theoretical and observational counterparts of these findings, comparing them with predictions of diffusive shock acceleration theory and with multi-wavelength observations of young SNRs. I especially outline some major open questions, such as the possible cause...

  3. Status of Searches for Magnetic Monopoles

    CERN Document Server

    Patrizii, L

    2015-01-01

    The searches for magnetic monopoles (Ms) is a fascinating interdisciplinary field with implications in fundamental theories, in particle physics, astrophysics, and cosmology. The quantum theory of Ms and its consistency with electrodynamics was derived by Dirac. This marked the start of the searches for classical monopoles at every new accelerator, up to the LHC. Magnetic monopoles are required by Grand Unification Theories, but unlike classical monopoles they would be incredibly massive, out of the reach of any conceivable accelerator. Large efforts have been made to search for them in the cosmic radiation as relic particles from the early Universe in the widest range of mass and velocity experimentally accessible. In this paper the status of the searches for classical Ms at accelerators, for GUT, superheavy Ms in the penetrating cosmic radiation and for Intermediate Mass Ms at high altitudes is discussed, with emphasis on the most recent results and future perspectives.

  4. Kinetic buffers.

    Science.gov (United States)

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New algorithms for radio pulsar search

    CERN Document Server

    Smith, Kendrick M

    2016-01-01

    The computational cost of searching for new pulsars is a limiting factor for upcoming radio telescopes such as SKA. We introduce four new algorithms: an optimal constant-period search, a coherent tree search which permits optimal searching with O(1) cost per model, a semicoherent search which combines information from coherent subsearches while preserving as much phase information as possible, and a hierarchical search which interpolates between the coherent and semicoherent limits. Taken together, these algorithms improve the computational cost of pulsar search by several orders of magnitude. In this paper, we consider the simple case of a constant-acceleration phase model, but our methods should generalize to more complex search spaces.

  6. Advancements in Catheter-Directed Ultrasound-Accelerated Thrombolysis

    NARCIS (Netherlands)

    Doomernik, Denise E.; Schrijver, A. Marjolein; Zeebregts, Clark J.; de Vries, Jean-Paul P. M.; Reijnen, Michel M. P. J.

    2011-01-01

    Purpose: To review all available literature on catheter-directed ultrasound-accelerated thrombolysis for peripheral artery occlusions, stroke, deep venous thrombosis, and pulmonary embolism. Methods: A systematic literature search was performed, using MEDLINE, EMBASE and Cochrane databases. A total

  7. Advancements in catheter-directed ultrasound-accelerated thrombolysis.

    NARCIS (Netherlands)

    Doomernik, D.E.; Schrijver, A.M.; Zeebregts, C.J.A.; Vries, J.P. de; Reijnen, M.M.P.J.

    2011-01-01

    PURPOSE: To review all available literature on catheter-directed ultrasound-accelerated thrombolysis for peripheral artery occlusions, stroke, deep venous thrombosis, and pulmonary embolism. METHODS: A systematic literature search was performed, using MEDLINE, EMBASE and Cochrane databases. A total

  8. Piezoelectric particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.; Franzi, Matthew

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  9. Autonomous search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Autonomous combinatorial search (AS) represents a new field in combinatorial problem solving. Its major standpoint and originality is that it considers that problem solvers must be capable of self-improvement operations. This is the first book dedicated to AS.

  10. Acceleration without Horizons

    CERN Document Server

    Doria, Alaric

    2015-01-01

    We derive the metric of an accelerating observer moving with non-constant proper acceleration in flat spacetime. With the exception of a limiting case representing a Rindler observer, there are no horizons. In our solution, observers can accelerate to any desired terminal speed $v_{\\infty} < c$. The motion of the accelerating observer is completely determined by the distance of closest approach and terminal velocity or, equivalently, by an acceleration parameter and terminal velocity.

  11. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators.

    Science.gov (United States)

    O'Shea, B D; Andonian, G; Barber, S K; Fitzmorris, K L; Hakimi, S; Harrison, J; Hoang, P D; Hogan, M J; Naranjo, B; Williams, O B; Yakimenko, V; Rosenzweig, J B

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m(-1) using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m(-1). Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

  12. Accelerating flight: Edge with arbitrary acceleration

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2011-11-01

    Full Text Available ? temporal scales ? Euler ? convection ? Reynolds ? translational viscous ? Ekman ? rotational viscous ? Translational acceleration ? related to g ? Rotational accleration ? Rossby ? Coriolis ? Centrifugal ? Gravitational ? CSIR 2009...

  13. Enhanced Sampling Methods for the Computation of Conformational Kinetics in Macromolecules

    Science.gov (United States)

    Grazioli, Gianmarc

    Calculating the kinetics of conformational changes in macromolecules, such as proteins and nucleic acids, is still very much an open problem in theoretical chemistry and computational biophysics. If it were feasible to run large sets of molecular dynamics trajectories that begin in one configuration and terminate when reaching another configuration of interest, calculating kinetics from molecular dynamics simulations would be simple, but in practice, configuration spaces encompassing all possible configurations for even the simplest of macromolecules are far too vast for such a brute force approach. In fact, many problems related to searches of configuration spaces, such as protein structure prediction, are considered to be NP-hard. Two approaches to addressing this problem are to either develop methods for enhanced sampling of trajectories that confine the search to productive trajectories without loss of temporal information, or coarse-grained methodologies that recast the problem in reduced spaces that can be exhaustively searched. This thesis will begin with a description of work carried out in the vein of the second approach, where a Smoluchowski diffusion equation model was developed that accurately reproduces the rate vs. force relationship observed in the mechano-catalytic disulphide bond cleavage observed in thioredoxin-catalyzed reduction of disulphide bonds. Next, three different novel enhanced sampling methods developed in the vein of the first approach will be described, which can be employed either separately or in conjunction with each other to autonomously define a set of energetically relevant subspaces in configuration space, accelerate trajectories between the interfaces dividing the subspaces while preserving the distribution of unassisted transition times between subspaces, and approximate time correlation functions from the kinetic data collected from the transitions between interfaces.

  14. Test particle acceleration in torsional fan reconnection

    Science.gov (United States)

    Hosseinpour, M.

    2014-12-01

    Magnetic reconnection is understood to be a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. Torsional fan reconnection is one of the proposed mechanisms for steady-state three-dimensional (3D) magnetic reconnection. By using the magnetic and electric fields for `torsional fan reconnection', the features of test particle acceleration with input parameters for the solar corona are investigated numerically. We show that torsional fan reconnection is potentially an efficient particle accelerator and a proton can gain up to tens of MeV of kinetic energy within only a few milliseconds. Although the final kinetic energy of the accelerated particle depends on the injection position but there exists only one scenario for the particle's trajectory with different initial positions in which the particle is accelerated on the fan plane. Moreover, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory. These results are compared with those of torsional spine reconnection.

  15. Perpendicular ion acceleration in whistler turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Saito, S. [Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601 (Japan); Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama 930-8555 (Japan)

    2014-04-15

    Whistler turbulence is an important contributor to solar wind turbulence dissipation. This turbulence contains obliquely propagating whistler waves at electron scales, and these waves have electrostatic components perpendicular to the mean magnetic field. In this paper, a full kinetic, two-dimensional particle-in-cell simulation shows that whistler turbulence can accelerate ions in the direction perpendicular to the mean magnetic field. When the ions pass through wave-particle resonances region in the phase space during their cyclotron motion, the ions are effectively accelerated in the perpendicular direction. The simulation results suggest that whistler turbulence contributes to the perpendicular heating of ions observed in the solar wind.

  16. Cosmic Ray Acceleration by Supernova Shocks

    CERN Document Server

    Berezhko, E G

    2008-01-01

    We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ~10^17 eV.

  17. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  18. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    CERN Document Server

    Guo, Z Y

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  19. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  20. Simulations of ion acceleration at non-relativistic shocks: i) Acceleration efficiency

    CERN Document Server

    Caprioli, Damiano

    2013-01-01

    We use 2D and 3D hybrid (kinetic ions - fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfv\\'enic Mach numbers, produces universal power-law spectra proportional to p^(-4), where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10-20% of the bulk kinetic energy can be converted to energetic particles, and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration, and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shoc...

  1. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  2. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  3. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  4. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  5. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  6. Internet Search Engines

    OpenAIRE

    Fatmaa El Zahraa Mohamed Abdou

    2004-01-01

    A general study about the internet search engines, the study deals main 7 points; the differance between search engines and search directories, components of search engines, the percentage of sites covered by search engines, cataloging of sites, the needed time for sites appearance in search engines, search capabilities, and types of search engines.

  7. Internet Search Engines

    Directory of Open Access Journals (Sweden)

    Fatmaa El Zahraa Mohamed Abdou

    2004-09-01

    Full Text Available A general study about the internet search engines, the study deals main 7 points; the differance between search engines and search directories, components of search engines, the percentage of sites covered by search engines, cataloging of sites, the needed time for sites appearance in search engines, search capabilities, and types of search engines.

  8. Kinetic activation-relaxation technique

    Science.gov (United States)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  9. Kinetic activation-relaxation technique.

    Science.gov (United States)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  10. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  11. Far field acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  12. Acceleration: It's Elementary

    Science.gov (United States)

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  13. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  14. A New Paradigm for Flare Particle Acceleration

    Science.gov (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  15. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  16. Kinetic Alfven wave turbulence in space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)

    2010-07-26

    This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.

  17. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  18. Industrial Application of Accelerators

    CERN Document Server

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  19. Acceleration in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  20. Search for $\

    OpenAIRE

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; J. Bouchez; Boyd, S.; A. Bueno; Bunyatov, S.

    2003-01-01

    Neutrinos; We present the results of a search for nu_mu → nu_e oscillations in the NOMAD experiment at Cern. The experiment looked for the appearance of nu_e in a predominantly nu_mu wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are Delta m^2 ~ 10 eV^2.

  1. Search for $\

    CERN Document Server

    Astier, Pierre; Baldisseri, Alberto; Baldo-Ceolin, Massimilla; Banner, M; Bassompierre, Gabriel; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A G; Bunyatov, S A; Camilleri, L L; Cardini, A; Cattaneo, Paolo Walter; Cavasinni, V; Cervera-Villanueva, A; Challis, R C; Chukanov, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R D; Daniels, D; De Santo, A; Degaudenzi, H M; Del Prete, T; Di Lella, L; Dignan, T; Dumarchez, J; Feldman, G J; Ferrari, A; Ferrari, R; Ferrère, D; Flaminio, Vincenzo; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S N; Godley, A; Gosset, J; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Gómez-Cadenas, J J; Gössling, C; Hagner, C; Hernando, J; Hong, T M; Hubbard, D B; Hurst, P; Hyett, N; Iacopini, E; Joseph, C L; Juget, F R; Kent, N; Kirsanov, M M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Kustov, D; La Rotonda, L; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; Laveder, M; Letessier-Selvon, A A; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Lévy, J M; Marchionni, A; Martelli, F; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Méchain, X; Naumov, D V; Nefedov, Yu A; Nguyen-Mau, C; Nédélec, P; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Popov, B; Poulsen, C; Rebuffi, L; Renò, R; Rico, J; Riemann, P; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M E; Shih, D; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, V V; Toropin, A N; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V Yu; Vannucci, François; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T G; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P; do Couto e Silva, E

    2003-01-01

    We present the results of a search for nu_mu → nu_e oscillations in the NOMAD experiment at Cern. The experiment looked for the appearance of nu_e in a predominantly nu_mu wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are Delta m^2 ~ 10 eV^2.

  2. Search for $\

    CERN Document Server

    Astier, Pierre; Baldisseri, Alberto; Baldo-Ceolin, Massimilla; Banner, M; Bassompierre, Gabriel; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A G; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, Paolo Walter; Cavasinni, V; Cervera-Villanueva, A; Challis, R C; Chukanov, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; Degaudenzi, H M; Del Prete, T; De Santo, A; Dignan, T; Di Lella, L; do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, Vincenzo; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S N; Godley, A; Gómez-Cadenas, J J; Gosset, J; Gössling, C; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Hagner, C; Hernando, J A; Hubbard, D B; Hurst, P; Hyett, N; Iacopini, E; Joseph, C L; Juget, F R; Kent, N; Kirsanov, M M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Kustov, D; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier-Selvon, A A; Lévy, J M; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Marchionni, A; Martelli, F; Méchain, X; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Naumov, D V; Nédélec, P; Nefedov, Yu A; Nguyen-Mau, C; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Popov, B; Poulsen, C; Rebuffi, L; Renò, R; Rico, J; Riemann, P; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M E; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G; Tereshchenko, V V; Toropin, A N; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V Y; Vannucci, François; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T G; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P

    2001-01-01

    We present the results of a search for nu(mu)-->nu(e) oscillations in the NOMAD experiment at CERN. The experiment looked for the appearance of nu(e) in a predominantly nu(mu) wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are delta m^2 10 eV^2.

  3. Arabic Stemmer for Search Engines Information Retrieval

    Directory of Open Access Journals (Sweden)

    Ahmed Khalid

    2016-01-01

    Full Text Available Arabic language is very different and difficult structure than other languages, that’s because it is a very rich language with complex morphology. Many stemmers have been developed for Arabic language but still there are many weakness and problems. There is still lack of usage of Arabic stemming in search engines. This paper introduces a rooted word Arabic stemmer technique. The results of the introduced technique for six Arabic sentences are used in famous search engines Google Chrome, Internet Explore and Mozilla Firefox to check the effect of using Arabic stemming in these search engines in terms of the total number of searched pages and the search time ratio for actual sentences and their stemming results. The results show that Arabic words stemming increase and accelerate the search engines output.

  4. CADGbased neighbor search and bounding box algorithms for geometry navigation acceleration in Monte Carlo particle transport simulation%基于CAD邻居列表和包围盒的蒙特卡罗粒子输运几何跟踪加速方法研究

    Institute of Scientific and Technical Information of China (English)

    陈珍平; 宋婧; 吴斌; 郝丽娟; 胡丽琴; 孙光耀

    2016-01-01

    Geometry navigation plays the most fundamental role in Monte Carlo particle transport simulation. It’s mainly responsible for locating a particle inside which geometry volume it is and computing the distance to the volume boundary along the certain particle traj ectory during each particle history. Geometry navigation directly affects the run-time performance of the Monte Carlo particle transport simulation, especially for complicated fusion reactor models. Thus, two CAD-based geometry acceleration algorithms,the neighbor search and the bounding box,are presented for improving geometry navigation performance. The algorithms have been implemented in the Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC). The fusion reactors of FDS-Ⅱ and ITER benchmark models have been tested to highlight the efficiency gains that can be achieved by using the acceleration algorithms. Testing results showed that efficiency of Monte Carlo simulation can be considerably enhanced by 50% to 60% with the acceleration algorithms.%几何跟踪主要进行蒙特卡罗粒子输运计算中粒子位置和径迹长度的计算,它是蒙特卡罗粒子输运计算的关键技术之一。由于聚变堆几何结构极其复杂,使得几何跟踪在整个蒙特卡罗粒子输运计算中占据30%~80%的计算时间,因此几何跟踪方法的效率是决定聚变堆蒙特卡罗粒子输运计算效率的重要因素之一。本文提出了基于CAD的邻居列表和包围盒加速方法,并基于 FDS 团队自主研发的超级蒙特卡罗核计算仿真软件系统 SuperMC进行实现。利用聚变堆 FDS-Ⅱ和 ITER模型对本文方法进行了数值验证,测试结果表明本文方法不影响计算结果,并能使程序计算效率提高50%~60%,证明了本文方法的正确性和有效性。

  5. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  6. Leaky Fermi accelerators

    CERN Document Server

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  7. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  8. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  9. Autonomous Search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the

  10. Search in

    OpenAIRE

    Gaona Román, Alejandro

    2015-01-01

    "Search in" consiste en una instalación artística compuesta por escultura y video con un trasfondo conceptual sobre la identidad. Es una obra que invita al espectador a rodearla e introducirse en ella viéndose así como parte de la obra, al igual que el concepto de identidad puede vivirse desde la sensación del “yo” separado del mundo y a su vez desde el “yo” como parte de la sociedad. Nos hace viajar desde nuestros inicios como sociedad y seres conscientes hasta la actualidad, la era de las c...

  11. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    Science.gov (United States)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano

    2016-04-01

    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion

  12. Effect of Particle Acceleration Process on the Flare Characteristics of Blazars

    Indian Academy of Sciences (India)

    S. Bhattacharyya; S. Sahayanathan; C. L. Kaul

    2002-03-01

    Following the kinetic equation approach, we study the flare processes in blazars in the optical-to-X-ray region, considering energy dependent acceleration time-scale of electrons and synchrotron and adiabatic cooling as their dominant energy loss processes.

  13. Power Converters for Accelerators

    CERN Document Server

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  14. Miniaturization Techniques for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, James E.

    2003-05-27

    The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

  15. FFAGS for rapid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  16. FFAGS FOR MUON ACCELERATION.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.KAHN,S.PALMER,R.TRBOJEVIC,D.JOHNSTONE,C.KEIL,Y.OGITSU,T.OHMORI,C.SESSLER,A.KOSCIELNIAK,S.

    2003-06-26

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed.

  17. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. Non-Isothermal Kinetics.

    Science.gov (United States)

    Brown, M. E.; Phillpotts, C. A. R.

    1978-01-01

    Discusses the principle of nonisothermal kinetics and some of the factors involved in such reactions, especially when considering the reliability of the kinetic parameters, compared to those of isothermal conditions. (GA)

  19. Interdisciplinary glossary — particle accelerators and medicine

    Science.gov (United States)

    Dmitrieva, V. V.; Dyubkov, V. S.; Nikitaev, V. G.; Ulin, S. E.

    2016-02-01

    A general concept of a new interdisciplinary glossary, which includes particle accelerator terminology used in medicine, as well as relevant medical concepts, is presented. Its structure and usage rules are described. An example, illustrating the quickly searching technique of relevant information in this Glossary, is considered. A website address, where one can get an access to the Glossary, is specified. Glossary can be refined and supplemented.

  20. Final report on the LLNL compact torus acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.

    1995-03-19

    In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts.

  1. Methods of nonlinear kinetics

    OpenAIRE

    Gorban, A. N.; Karlin, I.V.

    2003-01-01

    Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...

  2. Efficient estimation of rare-event kinetics

    CERN Document Server

    Trendelkamp-Schroer, Benjamin

    2014-01-01

    The efficient calculation of rare-event kinetics in complex dynamical systems, such as the rate and pathways of ligand dissociation from a protein, is a generally unsolved problem. Markov state models can systematically integrate ensembles of short simulations and thus effectively parallelize the computational effort, but the rare events of interest still need to be spontaneously sampled in the data. Enhanced sampling approaches, such as parallel tempering or umbrella sampling, can accelerate the computation of equilibrium expectations massively - but sacrifice the ability to compute dynamical expectations. In this work we establish a principle to combine knowledge of the equilibrium distribution with kinetics from fast "downhill" relaxation trajectories using reversible Markov models. This approach is general as it does not invoke any specific dynamical model, and can provide accurate estimates of the rare event kinetics. Large gains in sampling efficiency can be achieved whenever one direction of the proces...

  3. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  4. COLLECTIVE-FIELD ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  5. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  6. KEK digital accelerator

    Science.gov (United States)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  7. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  8. Web Search Engines: Search Syntax and Features.

    Science.gov (United States)

    Ojala, Marydee

    2002-01-01

    Presents a chart that explains the search syntax, features, and commands used by the 12 most widely used general Web search engines. Discusses Web standardization, expanded types of content searched, size of databases, and search engines that include both simple and advanced versions. (LRW)

  9. Web Search Engines: Search Syntax and Features.

    Science.gov (United States)

    Ojala, Marydee

    2002-01-01

    Presents a chart that explains the search syntax, features, and commands used by the 12 most widely used general Web search engines. Discusses Web standardization, expanded types of content searched, size of databases, and search engines that include both simple and advanced versions. (LRW)

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. The Accelerated Kepler Problem

    CERN Document Server

    Namouni, Fathi

    2007-01-01

    The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.

  12. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  13. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria.

    Science.gov (United States)

    Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M

    2014-01-01

    Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs.

  14. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  15. Kinetic partitioning mechanism of HDV ribozyme folding

    Science.gov (United States)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  16. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  17. On the isolation of elemental carbon (EC for micro-molar 14C accelerator mass spectrometry: development of a hybrid reference material for 14C-EC accuracy assurance, and a critical evaluation of the thermal optical kinetic (TOK EC isolation procedure

    Directory of Open Access Journals (Sweden)

    L. A. Currie

    2005-01-01

    Full Text Available The primary objective of the research reported here has been the development of a hybrid reference material (RM to serve as a test of accuracy for elemental carbon (EC isotopic (14C speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of 'soot' (EC, the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust, showed a range of results, but since the 'truth' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC of measurement validity (Currie et al., 2002. Components of the new Hybrid RM (DiesApple, however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically. NIST SRM 2975 (Forklift Diesel Soot has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure. The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK and thermal optical transmission (TOT methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS. As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1 both methods exhibited biomass-C 'leakage'; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC isolated contained about 3% of the original biomass-C.; (2 the initial isothermal oxidation stage

  18. Physiologic growth hormone replacement improves fasting lipid kinetics in patients with HIV lipodystrophy syndrome

    Science.gov (United States)

    HIV lipodystrophy syndrome (HLS) is characterized by accelerated lipolysis, inadequate fat oxidation, increased hepatic reesterification, and a high frequency of growth hormone deficiency (GHD). The effect of growth hormone (GH) replacement on these lipid kinetic abnormalities is unknown. We aimed ...

  19. Stochastic Particle Acceleration by Helical Turbulence in Solar Flares

    CERN Document Server

    Fleishman, Gregory D

    2012-01-01

    Flaring release of magnetic energy in solar corona is only possible if the magnetic field deviates from a potential one. We show that the linear MHD modes excited on top of the non-potential magnetic field possess a nonzero kinetic helicity. Accordingly, this necessarily results in a noticeable kinetic helicity of the turbulence, composed of these linear modes with various scales and random phases, generated at the flare site by the primary energy release, which may be important for many applications. In particular, a nonzero turbulence helicity has a potentially strong effect on the particle acceleration because the helical component of the turbulence induces a mean regular large-scale (DC) electric field capable of directly accelerating the charged particles in addition to the commonly considered stochastic turbulent electric field. In this paper, we derive the kinetic helicity density of the linear MHD modes excited on top of a twisted large-scale magnetic field, estimate the corresponding turbulence helic...

  20. Evidence and Search for Sterile Neutrinos at Accelerators

    Directory of Open Access Journals (Sweden)

    W. C. Louis

    2013-01-01

    Full Text Available The LSND short-baseline neutrino experiment has published evidence for antineutrino oscillations at a mass scale of ~1 eV2. The MiniBooNE experiment, designed to test this evidence for oscillations at an order of magnitude higher neutrino energy and distance, observes excesses of events in both neutrino mode and antineutrino mode. While the MiniBooNE neutrino excess has a neutrino energy spectrum that is softer than expected from LSND, the MiniBooNE antineutrino excess is consistent with neutrino oscillations and with the LSND oscillation signal. When combined with oscillation measurements at the solar and atmospheric mass scales, assuming that the LSND and MiniBooNE signals are due to neutrino oscillations, these experiments imply the existence of more than three neutrino mass states and, therefore, one or more sterile neutrinos. Such sterile neutrinos, if proven to exist, would have a big impact on particle physics, nuclear physics, and astrophysics and would contribute to the dark matter of the universe. Future experiments under construction or proposed at Fermilab, ORNL, CERN, and in Japan will provide a definitive test of short-baseline neutrino oscillations and will have the capability of proving the existence of sterile neutrinos.

  1. Search for Krypton 81 at Alice Accelerator Facility

    Science.gov (United States)

    Sabir, A.; Brissaud, I.; Kalifa, J.; Laurent, H.; Roynette, J. C.

    1982-08-01

    81Kr concentration measurements is a good clock for the old groundwater dating because of its chemical stability and of its atmospheric production. Unfortunately its presence in natural samples is very low. In this paper we report an experiment to measure the 81Kr concentration by means of the ALICE facility.

  2. Proton acceleration by RF TE{sub 11} mode in a cylindrical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Masaaki; Yoshikawa, Kiyoshi; Ohnishi, Masami; Yamamoto, Yasushi; Masuda, Kai [Kyoto Univ., Uji (Japan). Inst. of Advanced Energy

    1997-03-01

    We found that protons are accelerated significantly by RF TE{sub 11} mode in a cylindrical cavity. In this method, protons get the perpendicular kinetic energy, so we thought it might be a compact accelerator, and studied the feasibility by numerical simulation. (author)

  3. Particle acceleration by plasma

    CERN Document Server

    Ogata, A

    2002-01-01

    Plasma acceleration is carried out by using potential of plasma wave. It is classified by generation method of plasma wave such as the laser wake-field acceleration and the beat wave acceleration. Other method using electron beam is named the plasma wake-field acceleration (or beam wake-field acceleration). In this paper, electron acceleration by laser wake-field in gas plasma, ion source by laser radiation of solid target and nanoion beam generation by one component of plasma in trap are explained. It is an applicable method that ions, which run out from the solid target irradiated by laser, are used as ion source of accelerator. The experimental system using 800 nm laser, 50 mJ pulse energy and 50 fs pulse width was studied. The laser intensity is 4x10 sup 1 sup 6 Wcm sup - sup 2 at the focus. The target film of metal and organic substance film was used. When laser irradiated Al target, two particles generated, in front and backward. It is new fact that the neutral particle was obtained in front, because it...

  4. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  5. Cosmic particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano; Perri, Silvia [Universita della Calabria, Dipartimento di Fisica, 87036 Rende (Italy)

    2014-07-01

    The most popular mechanism for the acceleration of cosmic rays, which is thought to operate in supernova remnant shocks as well as at heliospheric shocks, is the diffusive shock acceleration, which is a Fermi mechanism based on normal diffusion. On the other hand, in the last few years it has been shown that the transport of plasma particles in the presence of electric and magnetic turbulence can be superdiffusive rather than normal diffusive. The term 'superdiffusive' refers to the mean square displacement of particle positions growing superlinearly with time, as compared to the normal linear growth. In particular, superdiffusion is characterized by a non Gaussian statistical process called Levy random walk. We show how diffusive shock acceleration is modified by superdiffusion, and how this yields new predictions for the cosmic ray spectral index, for the acceleration time, and for the spatial profile of energetic particles. A comparison with observations of particle acceleration at heliospheric shocks and at supernova remnant shocks is done. We discuss how superdiffusive shock acceleration allows to explain the observations of hard ion spectra at the solar wind termination shock detected by Voyager 2, of hard radio spectra due to synchrotron emission of electrons accelerated at supernova remnant shocks, and how it can help to explain the observations of 'thin rims' in the X-ray synchrotron emission.

  6. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  7. Influence of Accelerated Aging on Detonation Performance of Explosives

    Institute of Scientific and Technical Information of China (English)

    GAO Da-yuan; HUA Cheng; WANG Xiang; HAN Yong

    2010-01-01

    To understand the aging effects on detonation performances of explosives, an accelerated aging mechanism and effect of explosives were analyzed. Based on the thermo-gravimetric (TG) curves of explosives under the heat rate of 5, 10 and 20 K·min-1, the thermal decomposition activation energy, pre-exponential factor, mechanism function and kinetic equation of the explosives were calculated by Ozawa's equation and decomposition extents. Then, according to the derived kinetic equation, the density, composition and heat of formation of GI-1, PBX-1 and PBX-2 explosive in different decompo-sition extents were calculated at accelerated aging temperatures of 70 ℃ and 75 ℃, respectively. Furthermore, the detona-tion parameters of GI-1, PBX-1 and PBX-2 explosives were found out by means of VLWR code. The results show that after accelerated aging, the density are decrease, the detonation velocity and pressure are all decreased slightly.

  8. Optimizing direct intense-field laser acceleration of ions

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, D-64291 Darmstadt (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2011-11-15

    The dynamics of ion acceleration in tightly focused laser beams is investigated in relativistic simulations. Studies are performed to find the optimal parameters which maximize the energy gain, beam quality, and flux. The exit ionic kinetic energy and its uncertainty are improved and the number of accelerated particles is increased by orders of magnitude over our earlier results, especially when working with a longer laser wavelength. Laser beams of powers of 0.1-10 petawatts and focused to subwavelength spot radii are shown to directly accelerate protons and bare nuclei of helium, carbon, and oxygen from a few to several hundred MeV/nucleon. Variation of the volume of the initial ionic ensemble, as well as the introduction of a pulse shape on the laser fields, have been investigated and are shown to influence the exit particle kinetic energies only slightly.

  9. Application of Accelerators and Storage Rings: Accelerators in Medicine

    CERN Document Server

    Amaldi, U

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '11.3 Accelerators in Medicine' of the Chapter '11 Application of Accelerators and Storage Rings' with the content: 11.3 Accelerators in Medicine 11.3.1 Accelerators and Radiopharmaceuticals 11.3.2 Accelerators and Cancer Therapy

  10. FOCUSING AND ACCELERATION OF BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.; ZADOROZHNY,V.

    2000-04-07

    A new approach to solving the kinetic equation for the beam distribution function, (very useful from the practical point of view), is discussed, in which the authors also obtain a complement to the Skrinsky's condition for the self-focused bunched beam. This problem belongs to the theory of nonlinear systems in which both regular and chaotic motion is possible. The kinetic approach, based on Vlasov-Poisson equations, are used to investigate the focusing and acceleration of bunched beam. Special attention is given to the studies of stability in a bunched beam by means of the two norm, which may be used to describe t!he motion of high-energy particles.

  11. Local kinetic effects in two-dimensional plasma turbulence.

    Science.gov (United States)

    Servidio, S; Valentini, F; Califano, F; Veltri, P

    2012-01-27

    Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.

  12. Confronting Twin Paradox Acceleration

    Science.gov (United States)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  13. Improved Scatter Search Using Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Ahmed T.Sadiq Al-Obaidi

    2013-02-01

    Full Text Available The Scatter Search (SS is a deterministic strategy that has been applied successfully to some combinatorial and continuous optimization problems. Cuckoo Search (CS is heuristic search algorithm which is inspired by the reproduction strategy of cuckoos. This paper presents enhanced scatter search algorithm using CS algorithm. The improvement provides Scatter Search with random exploration for search space of problem and more of diversity and intensification for promising solutions. The original and improved Scatter Search has been tested on Traveling Salesman Problem. A computational experiment with benchmark instances is reported. The results demonstrate that the improved Scatter Search algorithms produce better performance than original Scatter Search algorithm. The improvement in the value of average fitness is 23.2% comparing with original SS. The developed algorithm has been compared with other algorithms for the same problem, and the result was competitive with some algorithm and insufficient with another.

  14. Shock acceleration in partially neutral plasmas

    CERN Document Server

    Morlino, G; Blasi, P; Caprioli, D

    2010-01-01

    We present the non-linear theory of shock acceleration applied to SNRs expanding into partially neutral plasma. Using this theory we show how the Balmer lines detected from young SNRs can be used to test the efficiency of shocks in the production of cosmic rays. In particular we investigate the effect of charge-exchange between protons and neutral hydrogen occurring in the precursor formed ahead of the shock. In this precursor the CR pressure accelerate the ionized component of the plasma and a relative velocity between protons and neutral hydrogen is established. On the other hand the charge-exchange process tends to equilibrate ions and neutrals resulting in the heating of both components. We show that even when the shock converts only a few per cent of the total bulk kinetic energy into CRs, the heating is efficient enough to produce a detectable broadening of the narrow Balmer lines emitted by the neutral hydrogen.

  15. Vibration control in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  16. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  17. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  18. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  19. Dielectric assist accelerating structure

    Science.gov (United States)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  20. Diffusive Shock Acceleration at Cosmological Shock Waves

    CERN Document Server

    Kang, Hyesung

    2012-01-01

    We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model the CR acceleration efficiency is determined mainly by the sonic Mach number Ms, while the MFA factor depends on the Alfv'enic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfv'en speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock C...

  1. DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-02-10

    We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large-scale structure of the universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfvenic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfvenic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model, the CR acceleration efficiency is determined mainly by the sonic Mach number M{sub s} , while the MFA factor depends on the Alfvenic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfven speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock CR pressure saturates roughly at {approx}20% of the shock ram pressure for strong shocks with M{sub s} {approx}> 10. In the test-particle regime (M{sub s} {approx}< 3), it is expected that the magnetic field is not amplified and the Alfvenic drift effects are insignificant, although relevant plasma physical processes at low Mach number shocks remain largely uncertain.

  2. LHCb GPU Acceleration Project

    CERN Document Server

    AUTHOR|(SzGeCERN)744808; Campora Perez, Daniel Hugo; Neufeld, Niko; Vilasis Cardona, Xavier

    2016-01-01

    The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other accelerators. This paper describes the system and analyzes its performance.

  3. Accelerating News Issue 2

    CERN Document Server

    Kahle, K; Wildner, E

    2012-01-01

    In this summer issue we look at how developments in collimator materials could have applications in aerospace and beyond, and how Polish researchers are harnessing accelerators for medical and industrial uses. We see how the LHC luminosity upgrade is linking with European industry and US researchers, and how the neutrino oscillation community is progressing. We find out the mid-term status of TIARA-PP and how it is mapping European accelerator education resources.

  4. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  5. Kinetics of methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. R.; Hashimoto, A. G.

    1978-01-01

    The kinetics on methane fermentation are described using published data for livestock residue, sewage sludge, and municipal refuse. Methods are presented to determine the kinetic constants and the finally attainable methane production using steady-state methane production data. The effects of temperature, loading rate, and influent substrate concentration on methane fermentation kinetics are discussed. These relationships were used to predict the rate of methane production of a pilot-scale fermentor with excellent results.

  6. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  7. Accelerators for America's Future

    Science.gov (United States)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  8. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  9. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  10. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  11. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Science.gov (United States)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  12. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    Science.gov (United States)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  13. Shock acceleration in gamma-ray bursts; Acceleration de choc dans des sursauts gamma

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, M. [Institut d' astrophysique de Paris, CNRS, universite Pierre and Marie Curie, 98, bis boulevard Arago, 75014 Paris (France); Pelletier, G. [Laboratoire d' astrophysique de Grenoble, CNRS. universite Joseph-Fourier II, BP 53, 38041 Grenoble (France)

    2011-04-15

    Gamma-ray bursts offer a rather unique window on the fundamental astrophysics of particle acceleration. Sources of high-energy gamma rays, they are also likely sources of cosmic rays, possibly of the so-called ultra-high energy cosmic rays, and they may well turn out to be the strongest sources of high energy neutrinos. Through the interaction of their outflow with the circum-burst medium, these explosions generate ultra-relativistic shock waves that convert part of the bulk kinetic energy into particle energy, ultimately giving rise to the impressive photon power law spectra of the afterglow. The prompt emission may well occur through the interactions of disturbances moving with mildly relativistic relative velocity within the flow itself. However, the detailed acceleration mechanism is not yet understood. This chapter discusses the progress made in the past decade in our understanding of relativistic shock acceleration and its relation to gamma-ray burst phenomenology. It notably discusses the intimate relationship between the electromagnetic micro-instabilities upstream of the collisionless shock and the accelerated particles. It also briefly discusses the possibility of accelerating particles to ultra-high energies and the production of secondary neutrino signals. It concludes with a list of open questions and some perspectives. (authors)

  14. Production and Acceleration of Antinuclei in Supernova Shockwaves

    Science.gov (United States)

    Tomassetti, Nicola; Oliva, Alberto

    2017-08-01

    We compute the energy spectra of antideuterons (\\overline{{{d}}}) and antihelium (\\overline{{He}}) in cosmic rays (CRs) in a scenario where hadronic interactions inside supernova remnants (SNRs) can produce a diffusively shock-accelerated “source component” of secondary antinuclei. The key parameters that specify the SNR environment and the interstellar CR transport are tightly constrained with the new measurements provided by the AMS experiment on the B/C ratio and on the \\bar{p}/p ratio. The best-fit models obtained from the two ratios are found to be inconsistent with each other, as the \\bar{p}/p data require enhanced secondary production. Thus, we derive conservative (i.e., B/C-driven) and speculative (\\bar{p}/p-driven) upper limits to the SNR flux contributions for the \\overline{{{d}}} and \\overline{{He}} spectra in CRs, along with their standard secondary component expected from CR collisions in the interstellar gas. We find that the source component of antinuclei can be appreciable at kinetic energies above a few ˜10 GeV n-1, but it is always sub-dominant below a few GeV n-1, that is the energy window where dark matter (DM) annihilation signatures are expected to exceed the level of secondary production. We also find that the total (standard + SNR) flux of secondary \\overline{{{d}}} and \\overline{{He}} is tightly constrained by the data. Thus, the presence of interaction processes in SNRs does not critically affect the total background for DM searches.

  15. Small type accelerator. Try for accelerator driven system

    CERN Document Server

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  16. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    Science.gov (United States)

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration.

  17. Google Ajax Search API

    CERN Document Server

    Fitzgerald, Michael

    2007-01-01

    Use the Google Ajax Search API to integrateweb search, image search, localsearch, and other types of search intoyour web site by embedding a simple, dynamicsearch box to display search resultsin your own web pages using a fewlines of JavaScript. For those who do not want to write code,the search wizards and solutions builtwith the Google Ajax Search API generatecode to accomplish common taskslike adding local search results to a GoogleMaps API mashup, adding videosearch thumbnails to your web site, oradding a news reel with the latest up todate stories to your blog. More advanced users can

  18. Dielectric laser accelerators

    Science.gov (United States)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  19. EIDOSCOPE: particle acceleration at plasma boundaries

    Science.gov (United States)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  20. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  1. Thermal analysis and combustion kinetic of heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G. [Centre for Petroleum Studies, State University of Campinas(Brazil); Vargas, J.A.V.; Trevisan, O.V. [Department of Petroleum Engineering, Faculty of Mechanical Engineering, State University of Campinas (Brazil)

    2011-07-01

    In the oilfield sector, a thermal method named in-situ combustion (ISC) is used as an enhanced recovery method. ISC consists of the injection of gas into the reservoir, a combustion front is created producing heat which reduces the oil viscosity. For this method to be successful, understanding of the thermal and kinetic parameters involved is required; the aim of this paper is to evaluate those parameters for different crude oils. Experiments were conducted using accelerating rate calorimetry on Brazilian heavy oil samples under a heat-wait-seek-mode. Results showed that accelerating rate calorimetry is efficient in resolving the three main regions of reaction of the oil and that between 200 degree C and 300 degree C oxygen addition reactions are dominant while bond scission reactions dominate from 350 degree C. This study demonstrated that accelerating rate calorimetry is an efficient method to determine thermal and kinetic parameters of oxidation reaction of heavy oil.

  2. Uniform Acceleration in General Relativity

    CERN Document Server

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  3. Cosmic Plasma Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P

    2004-04-26

    Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.

  4. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  5. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  6. Microelectromechanical acceleration-sensing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  7. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  8. Acceleration Factor Harmonious Particle Swarm Optimizer

    Institute of Scientific and Technical Information of China (English)

    Jie Chen; Feng Pan; Tao Cai

    2006-01-01

    A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and restrictive conditions, which can affect the performance of the algorithm. In this paper, the sufficient conditions for the asymptotic stability of an acceleration factor and inertia weight are deduced, the value of the inertia weight ω is enhanced to (-1, 1).Furthermore a new adaptive PSO algorithm - Acceleration Factor Harmonious PSO (AFHPSO) is proposed, and is proved to be a global search algorithm. AFHPSO is used for the parameter design of a fuzzy controller for a linear motor driving servo system. The performance of the nonlinear model for the servo system demonstrates the effectiveness of the optimized fuzzy controller and AFHPSO.

  9. Impact of the mass and other parameters of charged particles on the results of laser resonance acceleration

    Directory of Open Access Journals (Sweden)

    Adam Dubik

    2014-03-01

    Full Text Available Theoretical and numerical analyses are presented concerning the conditions at which the charged particles of different masses can be accelerated to significant kinetic energy in the circularly polarized laser or maser beams and a static magnetic field. The studies are carried out using the analytical derivations of the particles dynamics and theirs kinetic energy. The presented illustrations enabled interpretation of the complex motion of particles and the possibilities of their acceleration. At the examples of an electron, proton and deuteron, the velocity, kinetic energy and trajectory as a function of the acceleration time at the resonance condition are illustrated in the appropriate graphs. The particles with larger masses require the application of enhanced magnetic field intensity at the resonance condition. However, this field intensity can be significantly reduced if the particles are preaccelerated. [b]Keywords[/b]: optoelectronics, acceleration of charged particles, laser, maser, relativistic dynamics, kinetic energy of a particle, electron, proton, deuteron

  10. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  11. Accelerated Peer-Review Journal Usage Technique for Undergraduates

    Science.gov (United States)

    Wallace, J. D.

    2008-01-01

    The internet has given undergraduate students ever-increasing access to academic journals via search engines and online databases. However, students typically do not have the ability to use these journals effectively. This often poses a dilemma for instructors. The accelerated peer-review journal usage (APJU) technique provides a way for…

  12. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  13. Accelerating News Issue 4

    CERN Document Server

    Szeberenyi, A; Wildner, E

    2012-01-01

    In this winter issue, we are very pleased to announce the approval of EuCARD-2 by the European Commission. We look at the conclusions of EUROnu in proposing future neutrino facilities at CERN, a new milestone reached by CLIC and progress on the SPARC upgrade using C-band technology. We also report on recent events: second Joint HiLumi LHC-LARP Annual Meeting and workshop on Superconducting technologies for the Next Generation of Accelerators aiming at closer collaboration with industry. The launch of the Accelerators for Society brochure is also highlighted.

  14. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  15. Role of cosolutes in the aggregation kinetics of monoclonal antibodies.

    Science.gov (United States)

    Nicoud, Lucrèce; Sozo, Margaux; Arosio, Paolo; Yates, Andrew; Norrant, Edith; Morbidelli, Massimo

    2014-10-16

    We propose a general strategy based on kinetic analysis to investigate how cosolutes affect the aggregation behavior of therapeutic proteins. We apply this approach to study the impact of NaCl and sorbitol on the aggregation kinetics of two monoclonal antibodies, an IgG1 and an IgG2. By using a combination of size exclusion chromatography and light scattering techniques, we study the impact of the cosolutes on the monomer depletion, as well as on the formation of dimers, trimers, and larger aggregates. We analyze these macroscopic effects in the frame of a kinetic model based on Smoluchowski's population balance equations modified to account for nucleation events. By comparing experimental data with model simulations, we discriminate the effect of cosolutes on the elementary steps which contribute to the global aggregation process. In the case of the IgG1, it is found that NaCl accelerates the kinetics of aggregation by promoting specifically aggregation events, while sorbitol delays the kinetics of aggregation by specifically inhibiting protein unfolding. In the case of the IgG2, whose monomer depletion kinetics is limited by dimer formation, NaCl and sorbitol are found respectively to accelerate and inhibit conformational changes and aggregation events to the same extent.

  16. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Science.gov (United States)

    López, Rodrigo A.; Viñas, Adolfo F.; Araneda, Jaime A.; Yoon, Peter H.

    2017-08-01

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave-particle interactions.

  17. An algorithm for online optimization of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2013-10-01

    We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.

  18. Application of accelerator mass spectrometry in aluminum metabolism studies

    Science.gov (United States)

    Meirav, O.; Sutton, R. A. L.; Fink, D.; Middleton, R.; Klein, J.; Walker, V. R.; Halabe, A.; Vetterli, D.; Johnson, R. R.

    1990-12-01

    The recent recognition that aluminum causes toxicity in uremie patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as in humans.

  19. The acceleration of a neutron in a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cappelletti, R.L., E-mail: ron.cappelletti@nist.gov [NIST Center for Neutron Research, Gaithersburg, MD 20899 (United States)

    2012-06-18

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov–Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov–Casher effect, there is no acceleration, while in Mott–Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction. -- Highlights: ► Acceleration of a neutron in an E field is orthogonal to velocity. KE is conserved. ► For the Aharonov–Casher (AC) effect, acceleration is 0. ► The AC phase arises from the field term in the canonical momentum. ► In a static B field there is no field term in the canonical momentum. ► In a static B field KE is exchanged with Zeeman energy to conserve energy.

  20. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  1. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  2. Web Search Engines

    OpenAIRE

    Rajashekar, TB

    1998-01-01

    The World Wide Web is emerging as an all-in-one information source. Tools for searching Web-based information include search engines, subject directories and meta search tools. We take a look at key features of these tools and suggest practical hints for effective Web searching.

  3. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  4. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  5. Kinetic treatment of radiation reaction effects

    Science.gov (United States)

    Noble, Adam; Gratus, Jonathan; Burton, David; Ersfeld, Bernhard; Islam, M. Ranaul; Kravets, Yevgen; Raj, Gaurav; Jaroszynski, Dino

    2011-05-01

    Modern accelerators and light sources subject bunches of charged particles to quasiperiodic motion in extremely high electric fields, under which they may emit a substantial fraction of their energy. To properly describe the motion of these particle bunches, we require a kinetic theory of radiation reaction. We develop such a theory based on the notorious Lorentz-Dirac equation, and explore how it reduces to the usual Vlasov theory in the appropriate limit. As a simple illustration of the theory, we explore the radiative damping of Langmuir waves.

  6. Combined generating-accelerating buncher for compact linear accelerators

    Science.gov (United States)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  7. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  8. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  9. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  10. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  11. Acceleration and Special Relativity

    CERN Document Server

    Yahalomi, E M

    2000-01-01

    The integration of acceleration over time before reaching the uniformvelocity turns out to be the source of all the special relativity effects. Itexplains physical phenomena like clocks comparisons. The equations forspace-time, mass and energy are presented. This phenomenon complements theexplanation for the twins paradox. A Universal reference frame is obtained.

  12. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  13. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  14. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  15. The CERN accelerator complex

    CERN Multimedia

    Mobs, Esma Anais

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  16. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  17. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  18. Angular Accelerating White Light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2015-08-01

    Full Text Available Shaping XVI, 958104, San Diego, California, United States, 09 August 2015 Angular Accelerating White Light Angela Dudley*a,b, Christian Vetterc , Alexander Szameitc , and Andrew Forbesa,b a CSIR National Laser Centre, PO Box 395, Pretoria 0001...

  19. Large Neighborhood Search

    DEFF Research Database (Denmark)

    Pisinger, David; Røpke, Stefan

    2010-01-01

    Heuristics based on large neighborhood search have recently shown outstanding results in solving various transportation and scheduling problems. Large neighborhood search methods explore a complex neighborhood by use of heuristics. Using large neighborhoods makes it possible to find better...... candidate solutions in each iteration and hence traverse a more promising search path. Starting from the large neighborhood search method,we give an overview of very large scale neighborhood search methods and discuss recent variants and extensions like variable depth search and adaptive large neighborhood...... search....

  20. The human ocular torsion position response during yaw angular acceleration.

    Science.gov (United States)

    Smith, S T; Curthoys, I S; Moore, S T

    1995-07-01

    Recent results by Wearne [(1993) Ph.D. thesis] using the scleral search-coil method of measuring eye position indicate that changes in ocular torsion position (OTP) occur during yaw angular acceleration about an earth vertical axis. The present set of experiments, using an image processing method of eye movement measurement free from the possible confound of search coil slippage, demonstrates the generality and repeatability of this phenomenon and examines its possible causes. The change in torsion position is not a linear vestibulo-ocular reflex (LVOR) response to interaural linear acceleration stimulation of the otoliths, but rather the effect is dependent on the characteristics of the angular acceleration stimulus, commencing at the onset and decaying at the offset of the angular acceleration. In the experiments reported here, the magnitude of the angular acceleration stimulus was varied and the torsion position response showed corresponding variations. We consider that the change in torsion position observed during angular acceleration is most likely to be due to activity of the semicircular canals.

  1. Research on laser induced particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Natascha; Buescher, Markus [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Willi, Oswald; Jung, Ralph [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet Duesseldorf (Germany); Seltmann, Michael [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); FH Aachen (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany)

    2009-07-01

    By directing a high-power, ultrashort laser pulse onto a thin foil, it is now possible to produce electron, proton and ion beams. However, for realizing reliable laser-driven accelerators one must still overcome fundamental and technological limitations. One current challenge is to continuously provide mass-limited targets into the laser focus in which its energy can be effectively converted into kinetic energy of the accelerated ions. IKP and ILPP have initiated a corresponding joint project based on a worldwide unique frozen pellet target that can provide a regular flux of frozen spheres of e.g. H2, N2, Ar and Xe, and the 100-TW laser system PULSAR at ILPP. As a first step measurements are carried out with conventional gas and foil targets. These measurements include detector developement for fast particle detection and magnetic focusing of the particle beam as well as optical probing of the plasma itself, in order to better understand the ion-acceleration mechanisms. The talk outlines the status of the research and the results of the first measurements.

  2. Impact Accelerations of Barefoot and Shod Running.

    Science.gov (United States)

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact.

  3. Neurodegeneration in accelerated aging.

    Science.gov (United States)

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  4. Electrodynamic acceleration of dielectric bodies in a rail gun in the constant current regime

    Science.gov (United States)

    Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.; Savel'Ev, M. A.; Iuferov, S. V.

    1991-04-01

    Rail gun experiments are reported in which dielectric bodies were accelerated magnetohydrodynamically by a plasma piston to velocities at which the kinetic energy per each atom became comparable with or greater than the chemical bond energy. In the constant current approximation, a simple expression is obtained which unambiguously relates the acceleration path length to the amount of electricity passing through the system, irrespective of the acceleration rate and final velocity of the body. Practically constant accelerations of about 3 x 10 exp 6 g were achieved for polycarbonate projectiles with a linear current density close to the limit of explosive electrode evaporation (about 60 kA/mm)

  5. Kinetic equations: computation

    CERN Document Server

    Pareschi, Lorenzo

    2013-01-01

    Kinetic equations bridge the gap between a microscopic description and a macroscopic description of the physical reality. Due to the high dimensionality the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity.

  6. Thermal kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  7. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel

    Directory of Open Access Journals (Sweden)

    Yutaka Kazoe

    2016-08-01

    Full Text Available Microfluidics has been used to perform various chemical operations for pL–nL volumes of samples, such as mixing, reaction and separation, by exploiting diffusion, viscous forces, and surface tension, which are dominant in spaces with dimensions on the micrometer scale. To further develop this field, we previously developed a novel microfluidic device, termed a microdroplet collider, which exploits spatially and temporally localized kinetic energy. This device accelerates a microdroplet in the gas phase along a microchannel until it collides with a target. We demonstrated 6000-fold faster mixing compared to mixing by diffusion; however, the droplet acceleration was not optimized, because the experiments were conducted for only one droplet size and at pressures in the 10–100 kPa range. In this study, we investigated the acceleration of a microdroplet using a high-pressure (MPa control system, in order to achieve higher acceleration and kinetic energy. The motion of the nL droplet was observed using a high-speed complementary metal oxide semiconductor (CMOS camera. A maximum droplet velocity of ~5 m/s was achieved at a pressure of 1–2 MPa. Despite the higher fluid resistance, longer droplets yielded higher acceleration and kinetic energy, because droplet splitting was a determining factor in the acceleration and using a longer droplet helped prevent it. The results provide design guidelines for achieving higher kinetic energies in the microdroplet collider for various microfluidic applications.

  8. The Search Performance Evaluation and Prediction in Exploratory Search

    OpenAIRE

    2016-01-01

    The exploratory search for complex search tasks requires an effective search behavior model to evaluate and predict user search performance. Few studies have investigated the relationship between user search behavior and search performance in exploratory search. This research adopts a mixed approach combining search system development, user search experiment, search query log analysis, and multivariate regression analysis to resolve the knowledge gap. Through this study, it is shown that expl...

  9. The Search Performance Evaluation and Prediction in Exploratory Search

    OpenAIRE

    Liu, Fei

    2016-01-01

    The exploratory search for complex search tasks requires an effective search behavior model to evaluate and predict user search performance. Few studies have investigated the relationship between user search behavior and search performance in exploratory search. This research adopts a mixed approach combining search system development, user search experiment, search query log analysis, and multivariate regression analysis to resolve the knowledge gap. Through this study, it is shown that expl...

  10. Electrochemical kinetics theoretical aspects

    CERN Document Server

    Vetter, Klaus J

    1967-01-01

    Electrochemical Kinetics: Theoretical Aspects focuses on the processes, methodologies, reactions, and transformations in electrochemical kinetics. The book first offers information on electrochemical thermodynamics and the theory of overvoltage. Topics include equilibrium potentials, concepts and definitions, electrical double layer and electrocapillarity, and charge-transfer, diffusion, and reaction overvoltage. Crystallization overvoltage, total overvoltage, and resistance polarization are also discussed. The text then examines the methods of determining electrochemical reaction mechanisms

  11. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  12. Photon Acceleration at Shock Breakout of Trans-Relativistic Supernova

    CERN Document Server

    Li, Zhuo; Waxman, Eli; Meszaros, Peter

    2007-01-01

    The predicted thermal flash from SN shock breakout might have been detected for the first time by Swift in GRB 060218/SN 2006aj. The detected thermal X-ray emission in this event implies emergence of a trans-relativistic (TR) SN shock with kinetic energy of E_k>1E49 erg. During TRSN shock breakout, the thermal photons could be "accelerated" by the shock through repeated bulk Compton scattering, forming a nonthermal gamma/X-ray component with dominant energy over thermal one. This mechanism of "photon acceleration" at TRSN shock breakout might also account for gamma-rays in the other similar low-luminosity GRBs, implying that they are atypical GRBs with only TR outflows. TRSNe form a peculiar type of SNe with large kinetic energy, >1E49 erg, in TR ejecta, \\Gamma\\beta ~2.

  13. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  14. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  15. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  16. SUPERDIFFUSIVE SHOCK ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G. [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy)

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  17. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... the implementation of a large intervention undertaken in five project-based organizations in Denmark – the Project Half Double where the same project methodology has been applied in five projects, each of them in five distinct organizations in Denmark, as a bold attempt to realize double the benefit in half...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  18. Accelerating QDP++ using GPUs

    CERN Document Server

    Winter, Frank

    2011-01-01

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an ...

  19. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  20. Hardware Accelerated Simulated Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  1. NEW ACCELERATION METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1984-07-01

    But a glance at the Livingston chart, Fig. 1, of accelerator particle energy as a function of time shows that the energy has steadily, exponentially, increased. Equally significant is the fact that this increase is the envelope of diverse technologies. If one is to stay on, or even near, the Livingston curve in future years then new acceleration techniques need to be developed. What are the new acceleration methods? In these two lectures I would like to sketch some of these new ideas. I am well aware that they will probably not result in high energy accelerators within this or the next decade, but conversely, it is likely that these ideas will form the basis for the accelerators of the next century. Anyway, the ideas are stimulating and suffice to show that accelerator physicists are not just 'engineers', but genuine scientists deserving to be welcomed into the company of high energy physicists. I believe that outsiders will find this field surprisingly fertile and, certainly fun. To put it more personally, I very much enjoy working in this field and lecturing on it. There are a number of review articles which should be consulted for references to the original literature. In addition there are three books on the subject. Given this material, I feel free to not completely reference the material in the remainder of this article; consultation of the review articles and books will be adequate as an introduction to the literature for references abound (hundreds are given). At last, by way of introduction, I should like to quote from the end of Ref. 2 for I think the remarks made there are most germane. Remember that the talk was addressed to accelerator physicists: 'Finally, it is often said, I think by physicists who are not well-informed, that accelerator builders have used up their capital and now are bereft of ideas, and as a result, high energy physics will eventually--rather soon, in fact--come to a halt. After all, one can't build too many

  2. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  3. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  4. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  5. French nuclear physics accelerator opens

    Science.gov (United States)

    Dumé, Belle

    2016-12-01

    A new €140m particle accelerator for nuclear physics located at the French Large Heavy Ion National Accelerator (GANIL) in Caen was inaugurated last month in a ceremony attended by French president François Hollande.

  6. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  7. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  8. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  9. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  10. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  11. Proposed Inclusive Dark Photon Search at LHCb

    Science.gov (United States)

    Ilten, Philip; Soreq, Yotam; Thaler, Jesse; Williams, Mike; Xue, Wei

    2016-06-01

    We propose an inclusive search for dark photons A' at the LHCb experiment based on both prompt and displaced dimuon resonances. Because the couplings of the dark photon are inherited from the photon via kinetic mixing, the dark photon A'→μ+μ- rate can be directly inferred from the off-shell photon γ*→μ+μ- rate, making this a fully data-driven search. For run 3 of the LHC, we estimate that LHCb will have sensitivity to large regions of the unexplored dark-photon parameter space, especially in the 210-520 MeV and 10-40 GeV mass ranges. This search leverages the excellent invariant-mass and vertex resolution of LHCb, along with its unique particle-identification and real-time data-analysis capabilities.

  12. Proposed Inclusive Dark Photon Search at LHCb.

    Science.gov (United States)

    Ilten, Philip; Soreq, Yotam; Thaler, Jesse; Williams, Mike; Xue, Wei

    2016-06-24

    We propose an inclusive search for dark photons A^{'} at the LHCb experiment based on both prompt and displaced dimuon resonances. Because the couplings of the dark photon are inherited from the photon via kinetic mixing, the dark photon A^{'}→μ^{+}μ^{-} rate can be directly inferred from the off-shell photon γ^{*}→μ^{+}μ^{-} rate, making this a fully data-driven search. For run 3 of the LHC, we estimate that LHCb will have sensitivity to large regions of the unexplored dark-photon parameter space, especially in the 210-520 MeV and 10-40 GeV mass ranges. This search leverages the excellent invariant-mass and vertex resolution of LHCb, along with its unique particle-identification and real-time data-analysis capabilities.

  13. Inclusive Dark Photon Search at LHCb

    CERN Document Server

    Ilten, Philip; Thaler, Jesse; Williams, Mike; Xue, Wei

    2016-01-01

    We propose an inclusive search for dark photons $A'$ at the LHCb experiment based on both prompt and displaced di-muon resonances. Because the couplings of the dark photon are inherited from the photon via kinetic mixing, the dark photon $A' \\to \\mu^+ \\mu^-$ rate can be directly inferred from the off-shell photon $\\gamma^* \\to \\mu^+ \\mu^-$ rate, making this a fully data-driven search. For Run 3 of the LHC, we estimate that LHCb will have sensitivity to large regions of the unexplored dark-photon parameter space, especially in the 210-520 MeV and 10-40 GeV mass ranges. This search leverages the excellent invariant-mass and vertex resolution of LHCb, along with its unique particle-identification and real-time data-analysis capabilities.

  14. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  15. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  16. Thermal Decomposition Kinetics of HMX

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; Weese, R K

    2004-11-18

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of thermal analysis data types, including mass loss for isothermal and constant rate heating in an open pan and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol range for open pan experiments and about 150 to 165 kJ/mol for sealed pan experiments. Our activation energies tend to be slightly lower than those derived from data supplied by the University of Utah, which we consider the best previous thermal analysis work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated in closed pan experiments, and one global reaction appears to fit the data well. Comparison of our rate measurements with additional literature sources for open and closed low temperature pyrolysis from Sandia gives a likely activation energy of 165 kJ/mol at 10% conversion.

  17. Thermal Decomposition Kinetics of HMX

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; Weese, R K

    2004-05-05

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. Our activation energies are about 10% lower than those derived from data supplied by the University of Utah, which we consider the best previous work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  18. Thermal Decomposition Kinetics of HMX

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; Weese, R K

    2005-03-17

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol regime for open pan experiments and about 150-165 kJ/mol for sealed-pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction fits the data fairly well. Our A-E values lie in the middle of the values given in a compensation-law plot by Brill et al. (1994). Comparison with additional open and closed low temperature pyrolysis experiments support an activation energy of 165 kJ/mol at 10% conversion.

  19. Kinetics of DNA tile dimerization.

    Science.gov (United States)

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  20. Accelerating in de Sitter spacetimes

    CERN Document Server

    Cotaescu, Ion I

    2014-01-01

    We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a result with a reasonable physical meaning.

  1. Acceleration and improvement of dental implants’ osseointegration. Current perspective

    Directory of Open Access Journals (Sweden)

    Gregory VENETIS

    2014-03-01

    Full Text Available The possibility to accelerate osseointegration and/or to improve bone quality around an implant is the subject of the present literature review. The following key words were searched on Pubmed: ac-celerate, improvement, osseointegration. The publication date span was set from 2009 to 2013. Combinations of the search terms retrieved the following results: a ac-celerate and osseointegration: 78 papers; b improve-ment and sseointegration: 206 papers. A supplementary search on the surgical techniques available for alveolar ridge augmentation for the last 10 years, found 457 pa-pers. After a systematic review of the above papers the following are concluded: 1. Guided bone regeneration (GBR is the most thor-oughly examined technique of bone growth around a dental implant placed into a poor alveolar bone. 2. The dental implants’ surface treatment trends aim to less invasive and more sophisticated techniques, with the use of nanotechnology. 3. Implant surface coating with adhesion peptides and/or inorganic calcium compounds in thin layers may amplify the biochemistry of osseointegration. 4. Other, non-biochemical methods, are being tested ex-perimentally to inhibit or decrease the alveolar bone loss around an implant and finally 5. The systemic administration of osteoclastic inhibitors, such as bisphosphonates or strontium seems to acceler-ate the initial stage of osseointegration. These findings represent an approximate prediction for the future development of osseointegration research and pose research questions for further study

  2. Minimizing Head Acceleration in Soccer: A Review of the Literature.

    Science.gov (United States)

    Caccese, Jaclyn B; Kaminski, Thomas W

    2016-11-01

    Physicians and healthcare professionals are often asked for recommendations on how to keep athletes safe during contact sports such as soccer. With an increase in concussion awareness and concern about repetitive subconcussion, many parents and athletes are interested in mitigating head acceleration in soccer, so we conducted a literature review on factors that affect head acceleration in soccer. We searched electronic databases and reference lists to find studies using the keywords 'soccer' OR 'football' AND 'head acceleration'. Because of a lack of current research in soccer heading biomechanics, this review was limited to 18 original research studies. Low head-neck segment mass predisposes athletes to high head acceleration, but head-neck-torso alignment during heading and follow-through after contact can be used to decrease head acceleration. Additionally, improvements in symmetric neck flexor and extensor strength and neuromuscular neck stiffness can decrease head acceleration. Head-to-head impacts and unanticipated ball contacts result in the highest head acceleration. Ball contacts at high velocity may also be dangerous. The risk of concussive impacts may be lessened through the use of headgear, but headgear may also cause athletes to play more recklessly because they feel a sense of increased security. Young, but physically capable, athletes should be taught proper heading technique in a controlled setting, using a carefully planned progression of the skill.

  3. On Solar Wind Origin and Acceleration: Measurements from ACE

    Science.gov (United States)

    Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico; Tracy, Patrick; Zurbuchen, Thomas H.

    2016-10-01

    The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed from the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.

  4. Multiple alternative substrate kinetics.

    Science.gov (United States)

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  5. Onsager reciprocity principle for kinetic models and kinetic schemes

    CERN Document Server

    Mahendra, Ajit Kumar

    2013-01-01

    Boltzmann equation requires some alternative simpler kinetic model like BGK to replace the collision term. Such a kinetic model which replaces the Boltzmann collision integral should preserve the basic properties and characteristics of the Boltzmann equation and comply with the requirements of non equilibrium thermodynamics. Most of the research in development of kinetic theory based methods have focused more on entropy conditions, stability and ignored the crucial aspect of non equilibrium thermodynamics. The paper presents a new kinetic model formulated based on the principles of non equilibrium thermodynamics. The new kinetic model yields correct transport coefficients and satisfies Onsager's reciprocity relationship. The present work also describes a novel kinetic particle method and gas kinetic scheme based on this linkage of non-equilibrium thermodynamics and kinetic theory. The work also presents derivation of kinetic theory based wall boundary condition which complies with the principles of non-equili...

  6. X-band Dielectric Loaded Rf Driven Accelerator Structures Theoretical And Experimental Investigations

    CERN Document Server

    Zou, P

    2001-01-01

    An important area of application of high-power radio frequency (RF) and microwave sources is particle acceleration. A major challenge for the current worldwide research and development effort in linear accelerator is the search for a compact and affordable very-high-energy accelerator technology for the next generation supercolliders. It has been recognized for sometime that dielectric loaded accelerator structures are attractive candidates for the next generation very-high-energy linear accelerators, because they possess several distinct advantages over conventional metallic iris- loaded accelerator structures. However, some fundamental issues, such as RF breakdown in the dielectric, Joule heating, and vacuum properties of dielectric materials, are still the subjects of intense investigation, requiring the validation by experiments conducted at high power levels. An X-band traveling-wave accelerator based on dielectric-lined waveguide has been designed and constructed. Numerical calculation, bench measuremen...

  7. Automated Transition State Theory Calculations for High-Throughput Kinetics.

    Science.gov (United States)

    Bhoorasingh, Pierre L; Slakman, Belinda L; Seyedzadeh Khanshan, Fariba; Cain, Jason Y; West, Richard Henry

    2017-08-18

    A scarcity of known chemical kinetic parameters leads to the use of many reaction rate estimates, which are not always sufficiently accurate, in the construction of detailed kinetic models. To reduce the reliance on these estimates and improve the accuracy of predictive kinetic models, we have developed a high-throughput, fully automated, reaction rate calculation method, AutoTST. The algorithm integrates automated saddle-point geometry search methods and a canonical transition state theory kinetics calculator. The automatically calculated reaction rates compare favorably to existing estimated rates. Comparison against high level theoretical calculations show the new automated method performs better than rate estimates when the estimate is made by a poor analogy. The method will improve by accounting for internal rotor contributions and by improving methods to determine molecular symmetry.

  8. Fast Structural Search in Phylogenetic Databases

    Directory of Open Access Journals (Sweden)

    William H. Piel

    2005-01-01

    Full Text Available As the size of phylogenetic databases grows, the need for efficiently searching these databases arises. Thanks to previous and ongoing research, searching by attribute value and by text has become commonplace in these databases. However, searching by topological or physical structure, especially for large databases and especially for approximate matches, is still an art. We propose structural search techniques that, given a query or pattern tree P and a database of phylogenies D, find trees in D that are sufficiently close to P . The “closeness” is a measure of the topological relationships in P that are found to be the same or similar in a tree D in D. We develop a filtering technique that accelerates searches and present algorithms for rooted and unrooted trees where the trees can be weighted or unweighted. Experimental results on comparing the similarity measure with existing tree metrics and on evaluating the efficiency of the search techniques demonstrate that the proposed approach is promising

  9. Searching Databases with Keywords

    Institute of Scientific and Technical Information of China (English)

    Shan Wang; Kun-Long Zhang

    2005-01-01

    Traditionally, SQL query language is used to search the data in databases. However, it is inappropriate for end-users, since it is complex and hard to learn. It is the need of end-user, searching in databases with keywords, like in web search engines. This paper presents a survey of work on keyword search in databases. It also includes a brief introduction to the SEEKER system which has been developed.

  10. Integrated vs. Federated Search

    DEFF Research Database (Denmark)

    Løvschall, Kasper

    2009-01-01

    Oplæg om forskelle og ligheder mellem integrated og federated search i bibliotekskontekst. Holdt ved temadag om "Integrated Search - samsøgning i alle kilder" på Danmarks Biblioteksskole den 22. januar 2009.......Oplæg om forskelle og ligheder mellem integrated og federated search i bibliotekskontekst. Holdt ved temadag om "Integrated Search - samsøgning i alle kilder" på Danmarks Biblioteksskole den 22. januar 2009....

  11. Routing Optimization Based on Taboo Search Algorithm for Logistic Distribution

    Directory of Open Access Journals (Sweden)

    Hongxue Yang

    2014-04-01

    Full Text Available Along with the widespread application of the electronic commerce in the modern business, the logistic distribution has become increasingly important. More and more enterprises recognize that the logistic distribution plays an important role in the process of production and sales. A good routing for logistic distribution can cut down transport cost and improve efficiency. In order to cut down transport cost and improve efficiency, a routing optimization based on taboo search for logistic distribution is proposed in this paper. Taboo search is a metaheuristic search method to perform local search used for logistic optimization. The taboo search is employed to accelerate convergence and the aspiration criterion is combined with the heuristics algorithm to solve routing optimization. Simulation experimental results demonstrate that the optimal routing in the logistic distribution can be quickly obtained by the taboo search algorithm

  12. Using optical lines to study particle acceleration at supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, Giovanni [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States)

    2014-11-15

    The shocks of several young supernova remnants (SNR) are often associated with very thin optical filaments dominated by Balmer emission resulting from charge-exchange and collisional excitation between neutral Hydrogen from the interstellar medium and shocked protons and electrons. Optical lines are a direct probe of the conditions at the shock, in particular the width of the narrow and broad components reflect the temperature upstream and downstream of the shock, respectively. When the shock accelerate efficiently non-thermal particles, the shock structure changes producing anomalous Balmer lines and it is possible to use their line shape and their spatial profile to check the efficiency of SNR shocks in accelerating cosmic rays. Here we illustrate the kinetic theory of shock acceleration in presence of neutrals with some applications to young SNRs. We show that in three cases (RCW 86, SNR 0509-67.5 and Tycho) anomalous Balmer lines can be explained assuming that a fraction of ∼ 10% of the total shock kinetic energy is converted into not thermal particles, while in one single case, the northwestern part of SN 1006, there is no evidence of efficient acceleration.

  13. How doctors search

    DEFF Research Database (Denmark)

    Lykke, Marianne; Price, Susan; Delcambre, Lois

    2012-01-01

    to context-specific aspects of the main topic of the documents. We have tested the model in an interactive searching study with family doctors with the purpose to explore doctors’ querying behaviour, how they applied the means for specifying a search, and how these features contributed to the search outcome...

  14. The Information Search

    Science.gov (United States)

    Doraiswamy, Uma

    2011-01-01

    This paper in the form of story discusses a college student's information search process. In this story we see Kuhlthau's information search process: initiation, selection, exploration, formulation, collection, and presentation. Katie is a student who goes in search of information for her class research paper. Katie's class readings, her interest…

  15. Search and the city

    NARCIS (Netherlands)

    P.A. Gautier; C.N. Teulings

    2009-01-01

    We develop a model of an economy with several regions, which differ in scale. Within each region, workers have to search for a job-type that matches their skill. They face a trade-off between match quality and the cost of extended search. This trade-off differs between regions, because search is mor

  16. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  17. FIRST-ORDER PARTICLE ACCELERATION IN MAGNETICALLY DRIVEN FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Beresnyak, Andrey [Naval Research Laboratory, Washington, DC 20375 (United States); Li, Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-10

    We demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution in magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.

  18. POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Directory of Open Access Journals (Sweden)

    Mariapompea Cutroneo

    2015-06-01

    Full Text Available Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer.

  19. Accelerator mass spectrometry in biomedical research

    Science.gov (United States)

    Vogel, J. S.; Turteltaub, K. W.

    1994-06-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  20. Efficient Acceleration of Relativistic Magnetohydrodynamic Jets

    CERN Document Server

    Toma, Kenji

    2013-01-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...

  1. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  2. Muon Acceleration - RLA and FFAG

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  3. VLHC accelerator physics

    Energy Technology Data Exchange (ETDEWEB)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  4. APT accelerator. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  5. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael

    2016-01-01

    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  6. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    Science.gov (United States)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  7. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  8. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  9. 2014 CERN Accelerator Schools

    CERN Multimedia

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  10. Hardware Accelerated Power Estimation

    CERN Document Server

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  11. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  12. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  13. Faceted Semantic Search for Personalized Social Search

    CERN Document Server

    Mas, Massimiliano Dal

    2012-01-01

    Actual social networks (like Facebook, Twitter, Linkedin, ...) need to deal with vagueness on ontological indeterminacy. In this paper is analyzed the prototyping of a faceted semantic search for personalized social search using the "joint meaning" in a community environment. User researches in a "collaborative" environment defined by folksonomies can be supported by the most common features on the faceted semantic search. A solution for the context-aware personalized search is based on "joint meaning" understood as a joint construal of the creators of the contents and the user of the contents using the faced taxonomy with the Semantic Web. A proof-of concept prototype shows how the proposed methodological approach can also be applied to existing presentation components, built with different languages and/or component technologies.

  14. Keyword Search in Databases

    CERN Document Server

    Yu, Jeffrey Xu; Chang, Lijun

    2009-01-01

    It has become highly desirable to provide users with flexible ways to query/search information over databases as simple as keyword search like Google search. This book surveys the recent developments on keyword search over databases, and focuses on finding structural information among objects in a database using a set of keywords. Such structural information to be returned can be either trees or subgraphs representing how the objects, that contain the required keywords, are interconnected in a relational database or in an XML database. The structural keyword search is completely different from

  15. Acceleration without Temperature

    CERN Document Server

    Doria, Alaric

    2015-01-01

    We show that while some non-uniformly accelerating observers (NUAOs) do indeed see a Bose-Einstein distribution of particles for the expectation value of the number operator in the Minkowski vacuum state, the density matrix is non-thermal and therefore a definition of temperature is not warranted. This is due to the fact that our NUAOs do not see event horizons in the spacetime. More specifically, the Minkowski vacuum state is perceived by our NUAOs as a single-mode squeezed state as opposed to the two-mode squeezed state characteristic of uniformly accelerating observers. Both single and two-mode squeezed states are pure quantum states; however, tracing over degrees of freedom in one of the modes of the two-mode squeezed state reduces the pure density matrix to a thermal density matrix. It is this property in the two-mode squeezed state that allows one to consistently define a temperature. In the single-mode case, an equivalent tracing is neither required nor available.

  16. Particle acceleration mechanisms

    CERN Document Server

    Petrosyan, V

    2008-01-01

    We review the possible mechanisms for production of non-thermal electrons which are responsible for non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We briefly review acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We consider two scenarios for production of non-thermal radiation. The first is hard X-ray emission due to non-thermal Bremsstrahlung by nonrelativistic particles. Non-thermal tails are produced by accelerating electrons from the background plasma with an initial Maxwellian distribution. However, these tails are accompanied by significant heating and they are present for a short time of <10^6 yr, which is also the time that the tail will be thermalised. Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission...

  17. Accelerator School Success

    CERN Multimedia

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  18. Evaluating search effectiveness of some selected search engines ...

    African Journals Online (AJOL)

    Evaluating search effectiveness of some selected search engines. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... seek for information on the World Wide Web (WWW) using variety of search engines.

  19. Judging the Capability of Search Engines and Search Terms

    National Research Council Canada - National Science Library

    Anna Kaushik

    2012-01-01

    .... The present study aims to judge the capability of five selected search engines and search terms on the basis of first ten results and to identify most appropriate search term and search engine...

  20. Acceleration in Linear and Circular Motion

    Science.gov (United States)

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  1. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  2. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  3. Database of atomistic reaction mechanisms with application to kinetic Monte Carlo.

    Science.gov (United States)

    Terrell, Rye; Welborn, Matthew; Chill, Samuel T; Henkelman, Graeme

    2012-07-07

    Kinetic Monte Carlo is a method used to model the state-to-state kinetics of atomic systems when all reaction mechanisms and rates are known a priori. Adaptive versions of this algorithm use saddle searches from each visited state so that unexpected and complex reaction mechanisms can also be included. Here, we describe how calculated reaction mechanisms can be stored concisely in a kinetic database and subsequently reused to reduce the computational cost of such simulations. As all accessible reaction mechanisms available in a system are contained in the database, the cost of the adaptive algorithm is reduced towards that of standard kinetic Monte Carlo.

  4. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  5. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  6. Kinetic Gravity Separation

    NARCIS (Netherlands)

    Van Kooy, L.; Mooij, M.; Rem, P.

    2004-01-01

    Separations by density, such as the separation of non-ferrous scrap into light and heavy alloys, are often realized by means of heavy media. In principle, kinetic gravity separations in water can be faster and cheaper, because they do not rely on suspensions or salt solutions of which the density

  7. Accelerated degradation studies of encapsulation polymers

    Science.gov (United States)

    Weiss, Karl-Anders; Huelsmann, Jan Philip; Kaltenbach, Thomas; Philipp, Daniel; Schuhmacher, Tanja; Wirth, Jochen; Koehl, Michael

    2008-08-01

    The estimation of PV-modules lifetime facilitates the further development and helps to lower risks for producers and investors. One base for this extensive testing and simulation work is the knowledge of the chemical degradation processes and their kinetics, as well as of the permeation of water and oxygen into the module, especially of the encapsulant. Besides ethylen-vinylacetate copolymer (EVA), which is the dominant material for encapsulation, new materials become available and need the assessment of their properties and the durability impact. Accelerated durability tests were performed on different EVA materials. The paper reports on several measurement methods for analysis of the polymers that were used, FT-IR with attenuated total reflection (ATR), and Raman microscopy, e.g. It is very important to identify degradation products and intermediates in order to identify the leading degradation processes and their kinetics as well as potential interactions between different processes. Another important factor for the degradation of the PV-modules and the concerned polymers in particular is the permeation of reactive substances, especially of water vapor, into and inside the modules. The paper shows results of permeation measurements of the new materials, as well as FEM-based numerical simulations of the humidity diffusion within a PV-module what is an important step towards the calculation of the chemical degradation using numerical simulation tools in the future.

  8. Investigation on laser accelerators. Plasma beat wave accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-04-01

    Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)

  9. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  10. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  11. University Students' Online Information Searching Strategies in Different Search Contexts

    Science.gov (United States)

    Tsai, Meng-Jung; Liang, Jyh-Chong; Hou, Huei-Tse; Tsai, Chin-Chung

    2012-01-01

    This study investigates the role of search context played in university students' online information searching strategies. A total of 304 university students in Taiwan were surveyed with questionnaires in which two search contexts were defined as searching for learning, and searching for daily life information. Students' online search strategies…

  12. [Advanced online search techniques and dedicated search engines for physicians].

    Science.gov (United States)

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  13. Multiscale dynamics based on kinetic simulation of collisionless magnetic reconnection

    Science.gov (United States)

    Fujimoto, Keizo; Takamoto, Makoto

    2016-07-01

    Magnetic reconnection is a natural energy converter which allows explosive energy release of the magnetic field energy into plasma kinetic energy. The reconnection processes inherently involve multi-scale process. The breaking of the field lines takes place predominantly in a small region called the diffusion region formed near the x-line, while the fast plasma jets resulting from reconnection extend to a distance far beyond the ion kinetic scales from the x-line. There has been a significant gap in understanding of macro-scale and micro-scale processes. The macro-scale model of reconnection has been developed using the magnetohydrodynamics (MHD) equations, while the micro-scale processes around the x-line have been based on kinetic equations including the ion and electron inertia. The problem is that these two kinds of model have significant discrepancies. It has been believed without any guarantee that the microscopic model near the x-line would connect to the macroscopic model far downstream of the x-line. In order to bridge the gap between the macro and micro-scale processes, we have performed large-scale particle-in-cell simulations with the adaptive mesh refinement. The simulation results suggest that the microscopic processes around the x-line do not connect to the previous MHD model even in the region far downstream of the x-line. The slow mode shocks and the associated plasma acceleration do not appear at the exhaust boundary of kinetic reconnection. Instead, the ions are accelerated due to the Speiser motion in the current layer extending to a distance beyond the kinetic scales. The different acceleration mechanisms between the ions and electrons lead to the Hall current system in broad area of the exhaust. Therefore, the previous MHD model could be inappropriate for collisionless magnetic reconnection. Ref. K. Fujimoto & M. Takamoto, Phys. Plasmas, 23, 012903 (2016).

  14. A kinetic model of plasma turbulence

    Science.gov (United States)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.

    2015-01-01

    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature

  15. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  16. Testing Gravity on Accelerators

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  17. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  18. Dynamics of pyroelectric accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, R.; Davani, F. Abbasi, E-mail: fabbasi@sbu.ac.ir [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  19. HIGH ENERGY PARTICLE ACCELERATOR

    Science.gov (United States)

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  20. Acceleration of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)], E-mail: berezhko@ikfia.ysn.ru

    2008-07-15

    Cosmic ray (CR) origin problem is briefly discussed. It is argued that CRs with energies up to 10{sup 17} eV are produced in galactic supernova remnants, whereas ultra high energy CRs are extragalactic. CR composition strongly changes within the transition from galactic to extragalactic CR component, therefore precise measurements of CR composition at energies 10{sup 17} - 10{sup 19} eV are needed for the reliable determination of this transition. The possible sources of extragalactic CRs are briefly discussed. It is argued that CR acceleration at the shock created by the expanding cocoons around active galactic nuclei has to be considered as a prime candidate for the sources of extragalactic CRs.

  1. Hadron accelerators for radiotherapy

    Science.gov (United States)

    Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan

    2014-04-01

    Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.

  2. Performance Evaluation of Full Search Equivalent Pattern Matching Algorithms.

    Science.gov (United States)

    Wanli Ouyang; Tombari, F; Mattoccia, S; Di Stefano, L; Wai-Kuen Cham

    2012-01-01

    Pattern matching is widely used in signal processing, computer vision, and image and video processing. Full search equivalent algorithms accelerate the pattern matching process and, in the meantime, yield exactly the same result as the full search. This paper proposes an analysis and comparison of state-of-the-art algorithms for full search equivalent pattern matching. Our intention is that the data sets and tests used in our evaluation will be a benchmark for testing future pattern matching algorithms, and that the analysis concerning state-of-the-art algorithms could inspire new fast algorithms. We also propose extensions of the evaluated algorithms and show that they outperform the original formulations.

  3. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  4. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  5. Landing the uniformly accelerating observers

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Gruber, Ronald P.

    2006-01-01

    Observers of the uniformly accelerating observers or the observers who make up the system of uniformly accelerating observers reach the same velocity V at different times ti which depends on V and on theirs acceleration gi. Considering a platform that moves with constant velocity V, the observers can land smoothly on it. Their ages and locations in the inertial reference frame attached to the platform are reckoned and compared.

  6. NIIEFA accelerators for applied purposes

    Science.gov (United States)

    Vorogushin, M. F.; Strokach, A. P.; Filatov, O. G.

    2016-12-01

    Since the foundation of the institute, we have designed and delivered more than three hundred different accelerators to Russia and abroad: cyclotrons, linear accelerators, and neutron generators. The technical characteristics of our equipment makes it competitive on the international market. Here we present the application, main parameters, and status of accelerators manufactured by NIIEFA, as well as prospects for the development of electrophysical systems for applied purposes.

  7. Project X: Accelerator Reference Design

    CERN Document Server

    Holmes, S D; Chase, B; Gollwitzer, K; Johnson, D; Kaducak, M; Klebaner, A; Kourbanis, I; Lebedev, V; Leveling, A; Li, D; Nagaitsev, S; Ostroumov, P; Pasquinelli, R; Patrick, J; Prost, L; Scarpine, V; Shemyakin, A; Solyak, N; Steimel, J; Yakovlev, V; Zwaska, R

    2013-01-01

    Part 1 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". Part 1 contains the volume Preface and a description of the conceptual design for a high-intensity proton accelerator facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Subjects covered include performance goals, the accelerator physics design, and the technological basis for such a facility.

  8. Effect of mixing on reaction-diffusion kinetics for protein hydrogel-based microchips.

    Science.gov (United States)

    Zubtsov, D A; Ivanov, S M; Rubina, A Yu; Dementieva, E I; Chechetkin, V R; Zasedatelev, A S

    2006-03-09

    Protein hydrogel-based microchips are being developed for high-throughput evaluation of the concentrations and activities of various proteins. To shorten the time of analysis, the reaction-diffusion kinetics on gel microchips should be accelerated. Here we present the results of the experimental and theoretical analysis of the reaction-diffusion kinetics enforced by mixing with peristaltic pump. The experiments were carried out on gel-based protein microchips with immobilized antibodies under the conditions utilized for on-chip immunoassay. The dependence of fluorescence signals at saturation and corresponding saturation times on the concentrations of immobilized antibodies and antigen in solution proved to be in good agreement with theoretical predictions. It is shown that the enhancement of transport with peristaltic pump results in more than five-fold acceleration of binding kinetics. Our results suggest useful criteria for the optimal conditions for assays on gel microchips to balance high sensitivity and rapid fluorescence saturation kinetics.

  9. Thomas Precession by Uniform Acceleration

    CERN Document Server

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  10. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  11. Supporting complex search tasks

    DEFF Research Database (Denmark)

    Gäde, Maria; Hall, Mark; Huurdeman, Hugo

    2015-01-01

    There is broad consensus in the field of IR that search is complex in many use cases and applications, both on the Web and in domain specific collections, and both professionally and in our daily life. Yet our understanding of complex search tasks, in comparison to simple look up tasks, is fragme......There is broad consensus in the field of IR that search is complex in many use cases and applications, both on the Web and in domain specific collections, and both professionally and in our daily life. Yet our understanding of complex search tasks, in comparison to simple look up tasks......, and recommendations, and supporting exploratory search to sensemaking and analytics, UI and UX design pose an overconstrained challenge. How do we know that our approach is any good? Supporting complex search task requires new collaborations across the whole field of IR, and the proposed workshop will bring together...

  12. Adaptive Large Neighbourhood Search

    DEFF Research Database (Denmark)

    Røpke, Stefan

    Large neighborhood search is a metaheuristic that has gained popularity in recent years. The heuristic repeatedly moves from solution to solution by first partially destroying the solution and then repairing it. The best solution observed during this search is presented as the final solution....... This tutorial introduces the large neighborhood search metaheuristic and the variant adaptive large neighborhood search that dynamically tunes parameters of the heuristic while it is running. Both heuristics belong to a broader class of heuristics that are searching a solution space using very large...... neighborhoods. The tutorial also present applications of the adaptive large neighborhood search, mostly related to vehicle routing problems for which the heuristic has been extremely successful. We discuss how the heuristic can be parallelized and thereby take advantage of modern desktop computers...

  13. Search on Rugged Landscapes

    DEFF Research Database (Denmark)

    Billinger, Stephan; Stieglitz, Nils; Schumacher, Terry

    2014-01-01

    This paper presents findings from a laboratory experiment on human decision-making in a complex combinatorial task. We find strong evidence for a behavioral model of adaptive search. Success narrows down search to the neighborhood of the status quo, while failure promotes gradually more explorative...... search. Task complexity does not have a direct effect on behavior, but systematically affects the feedback conditions that guide success-induced exploitation and failure-induced exploration. The analysis also shows that human participants were prone to over-exploration, since they broke off the search...... for local improvements too early. We derive stylized decision rules that generate the search behavior observed in the experiment and discuss the implications of our findings for individual decision-making and organizational search....

  14. Supporting complex search tasks

    DEFF Research Database (Denmark)

    Gäde, Maria; Hall, Mark; Huurdeman, Hugo;

    2015-01-01

    There is broad consensus in the field of IR that search is complex in many use cases and applications, both on the Web and in domain specific collections, and both professionally and in our daily life. Yet our understanding of complex search tasks, in comparison to simple look up tasks......, is fragmented at best. The workshop addressed the many open research questions: What are the obvious use cases and applications of complex search? What are essential features of work tasks and search tasks to take into account? And how do these evolve over time? With a multitude of information, varying from...... introductory to specialized, and from authoritative to speculative or opinionated, when to show what sources of information? How does the information seeking process evolve and what are relevant differences between different stages? With complex task and search process management, blending searching, browsing...

  15. Quintessence dynamics with two scalar fields and mixed kinetic terms

    CERN Document Server

    van de Bruck, Carsten

    2009-01-01

    The dynamical properties of a model of dark energy in which two scalar fields are coupled by a non-canonical kinetic term are studied. We show that overall the addition of the coupling has only minor effects on the dynamics of the two-field system for both potentials studied, even preserving many of the features of the assisted quintessence scenario. The coupling of the kinetic terms enlarges the regions of stability of the critical points. When the potential is of an additive form, we find the kinetic coupling has an interesting effect on the dynamics of the fields as they approach the inflationary attractor, with the result that the combined equation of state of the scalar fields can approach -1 during the transition from a matter dominated universe to the recent period of acceleration.

  16. Repopulation Kinetics and the Linear-Quadratic Model

    Science.gov (United States)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  17. A global heuristically search algorithm for DNA encoding

    Institute of Scientific and Technical Information of China (English)

    Zhang Kai; Pan Linqiang; Xu Jin

    2007-01-01

    A new efficient algorithm is developed to design DNA words with equal length for DNA computing. The algorithm uses a global heuristic optimizing search approach and converts constraints to a carry number to accelerate the convergence, which can generate a DNA words set satisfying some thermodynamic and combinatorial constraints. Based on the algorithm, a software for DNA words design is developed.

  18. Accelerator mass spectrometry – from DNA to astrophysics

    Directory of Open Access Journals (Sweden)

    Kutschera Walter

    2013-12-01

    Full Text Available A brief review of accelerator mass spectrometry (AMS is presented. The present work touches on a few technical aspects and recent developments of AMS, and describes two specific applications of AMS, the dating of human DNA with the 14C bomb peak and the search for superheavy elements in nature. Since two extended general reviews on technical developments in AMS [1] and applications of AMS [2] will appear in 2013, frequent reference to these reviews is made.

  19. Producing Massive Neutral Intermediate Vector Bosons with Existing Accelerators

    CERN Document Server

    Rubbia, C; Cline, D

    1978-01-01

    We outline a scheme of searching for the massive weak boson (M = 50 – 200 GeV/c2). An antiproton source is added either to the Fermilab or the CERN SPS machines to transform a conventional 400 GeV accelerator into a pp̄ colliding beam facility with 800 GeV in the center of mass (Eeq = 320,000 GeV). Reliable estimates of production cross sections along with a high luminosity make the scheme feasible.

  20. Federated Search Scalability

    OpenAIRE

    Txurruka Alberdi, Beñat

    2015-01-01

    The search of images on the internet has become a natural process for the internet surfer. Most of the search engines use complex algorithms to look up for images but their metadata is mostly ignored, in part because many image hosting sites remove metadata when the image is uploaded. The JPSearch standard has been developed to handle interoperability in metadata based searches, but it seems that the market is not interested on supporting it. The starting point of this proje...

  1. Mastering ElasticSearch

    CERN Document Server

    Kuc, Rafal

    2013-01-01

    A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.

  2. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2013-01-01

    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  3. Test particle acceleration in torsional spine magnetic reconnection

    Science.gov (United States)

    Hosseinpour, M.

    2014-10-01

    Three-dimensional (3D) magnetic reconnection is taking place commonly in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. One of the proposed mechanisms for steady-state 3D magnetic reconnection is "torsional spine reconnection". By using the magnetic and electric fields for "torsional spine reconnection", we numerically investigate the features of test particle acceleration with input parameters for the solar corona. We show that efficient acceleration of a relativistic proton is possible near the null point where it can gain up to 100 MeV of kinetic energy within a few milliseconds. However, varying the injection position results in different scenarios for proton acceleration. A proton is most efficiently accelerated when it is injected at the point where the magnetic field lines change their curvature in the fan plane. Moreover, a proton injected far away from the null point cannot be accelerated and, even in some cases, it is trapped in the magnetic field. In addition, adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  4. Acceleration parameters for fluid physics with accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-06-01

    Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...

  5. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, I-87036 Rende (Italy)

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  6. Google Power Search

    CERN Document Server

    Spencer, Stephan

    2011-01-01

    Behind Google's deceptively simple interface is immense power for both market and competitive research-if you know how to use it well. Sure, basic searches are easy, but complex searches require specialized skills. This concise book takes you through the full range of Google's powerful search-refinement features, so you can quickly find the specific information you need. Learn techniques ranging from simple Boolean logic to URL parameters and other advanced tools, and see how they're applied to real-world market research examples. Incorporate advanced search operators such as filetype:, intit

  7. Delaying information search

    Directory of Open Access Journals (Sweden)

    Yaniv Shani

    2012-11-01

    Full Text Available In three studies, we examined factors that may temporarily attenuate information search. People are generally curious and dislike uncertainty, which typically encourages them to look for relevant information. Despite these strong forces that promote information search, people sometimes deliberately delay obtaining valuable information. We find they may do so when they are concerned that the information might interfere with future pleasurable activities. Interestingly, the decision to search or to postpone searching for information is influenced not only by the value and importance of the information itself but also by well-being maintenance goals related to possible detrimental effects that negative knowledge may have on unrelated future plans.

  8. Kinetic Damage from Meteorites

    Science.gov (United States)

    Cooke, W.; Brown, P.; Matney, M.

    2017-01-01

    Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.

  9. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  10. Kinetic Tetrazolium Microtiter Assay

    Science.gov (United States)

    Pierson, Duane L.; Stowe, Raymond; Koenig, David

    1993-01-01

    Kinetic tetrazolium microtiter assay (KTMA) involves use of tetrazolium salts and Triton X-100 (or equivalent), nontoxic, in vitro color developer solubilizing colored metabolite formazan without injuring or killing metabolizing cells. Provides for continuous measurement of metabolism and makes possible to determine rate of action of antimicrobial agent in real time as well as determines effective inhibitory concentrations. Used to monitor growth after addition of stimulatory compounds. Provides for kinetic determination of efficacy of biocide, greatly increasing reliability and precision of results. Also used to determine relative effectiveness of antimicrobial agent as function of time. Capability of generating results on day of test extremely important in treatment of water and waste, disinfection of hospital rooms, and in pharmaceutical, agricultural, and food-processing industries. Assay also used in many aspects of cell biology.

  11. Flocculation Kinetics of Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 林志艳; 陈东辉

    2003-01-01

    Under the various conditions, the experiments of flocculation of bentonite solution with chitosan were carried out. And the flocculation kinetics was studied by the changes of floc size along with time. The results show that hydraulic gradient G (s-1) plays a key role in growing up of floc size and both of molecular weight and initial turbidity of bentonite solution influence the floc size in steady state and the time needed for steady floc size.

  12. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  13. DECAY ACCELERATING FACTOR AND COLORECTAL CANCER

    Institute of Scientific and Technical Information of China (English)

    高雪芹; 鲁艳芹; 韩金祥

    2004-01-01

    Objective: To review the significance of decay accelerating factor (DAF) in the eolorectal cancer, we searched the data from PubMed and selected the related articles for review. It was found that DAF were expressed in the adenomas and adenocarcinoma of colorectal tissues. The release of DAF in the stool of the patients was also detectable. It increased more significantly in the stool of patients with colorectal cancer than other gastrointestinal cancer. Its detection by ELISA method may render a good test for the noninvasive diagnosis of colorectal cancer. It can be concluded that DAF is expressed extensively in colorectal cancer. And the detection of DAF released in the stool of colorectal cancer patients may be a good noninvasive method for the diagnosis of colorectal cancer.

  14. Investigation of kinetic friction using an iPhone

    Science.gov (United States)

    Baldock, Clive; Johnson, Roger

    2016-11-01

    The iPhone is particularly suitable for mechanics experiments using the in-built acceleration sensor or accelerometer in-conjunction with the on-board data collection facility and a downloadable so-called ‘app’. In this work the iPhone has been used to investigate the acceleration due to gravity and determine the coefficient of kinetic friction, μ k of the iPhone as an object sliding down an inclined plane. This method is more accurate than that usually employed in the laboratory where the ‘fits and starts’ of the block sliding down the inclined plane potentially invalidate the required assumption that the velocity is constant. In its simplest form the measurement of acceleration is required to be undertaken for only 2 angles.

  15. SearchResultFinder: federated search made easy

    OpenAIRE

    Trieschnigg, Rudolf Berend; Tjin-Kam-Jet, Kien; Hiemstra, Djoerd

    2013-01-01

    Building a federated search engine based on a large number existing web search engines is a challenge: implementing the programming interface (API) for each search engine is an exacting and time-consuming job. In this demonstration we present SearchResultFinder, a browser plugin which speeds up determining reusable XPaths for extracting search result items from HTML search result pages. Based on a single search result page, the tool presents a ranked list of candidate extraction XPaths and al...

  16. Computational Search for Improved Ammonia Storage Materials

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles of natural...

  17. Strong evidence for hadron acceleration in Tycho's supernova remnant

    Science.gov (United States)

    Morlino, G.; Caprioli, D.

    2012-02-01

    Context. Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS have provided new fundamental pieces of information for understanding particle acceleration and nonthermal emission in SNRs. Aims: We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics, and multiwavelength emission by accounting for particle acceleration at the forward shock via first-order Fermi mechanism. Methods: We adopt here a quick and reliable semi-analytical approach to nonlinear diffusive shock acceleration. It includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. Results: We find that Tycho's forward shock accelerates protons up to at least 500 TeV, channelling into CRs about 10% of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidence of very efficient magnetic field amplification (up to ~300 μG). In such a strong magnetic field, the velocity of the Alfvén waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction ∝ E-2. This effect is crucial for explaining GeV-to-TeV gamma-ray spectrum as the result of neutral pions decay produced in nuclear collisions between accelerated nuclei and the background gas. Conclusions: The self-consistency of such hadronic scenario, along with the inability of the concurrent leptonic mechanism (inverse Compton scattering of relativistic electrons on several photon backgrounds) to reproduce both the shape and the normalization of the detected gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.

  18. Citation Searching: Search Smarter & Find More

    Science.gov (United States)

    Hammond, Chelsea C.; Brown, Stephanie Willen

    2008-01-01

    The staff at University of Connecticut are participating in Elsevier's Student Ambassador Program (SAmP) in which graduate students train their peers on "citation searching" research using Scopus and Web of Science, two tremendous citation databases. They are in the fourth semester of these training programs, and they are wildly successful: They…

  19. Citation Searching: Search Smarter & Find More

    Science.gov (United States)

    Hammond, Chelsea C.; Brown, Stephanie Willen

    2008-01-01

    The staff at University of Connecticut are participating in Elsevier's Student Ambassador Program (SAmP) in which graduate students train their peers on "citation searching" research using Scopus and Web of Science, two tremendous citation databases. They are in the fourth semester of these training programs, and they are wildly successful: They…

  20. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  1. Acceleration effects on missile aerodynamics

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Practical requirements are now arising in which significant acceleration takes place during flight; 5th generation missiles, such as A-Darter, execute turns at 100 g, where g is the acceleration due to gravity, and thrust from propulsion systems may...

  2. COMPASS Accelerator Design Technical Overview

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  3. Simulations of ion acceleration at non-relativistic shocks: ii) magnetic field amplification and particle diffusion

    CERN Document Server

    Caprioli, Damiano

    2014-01-01

    We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...

  4. Phase speed of electrostatic waves: The critical parameter for efficient electron surfing acceleration

    CERN Document Server

    Dieckmann, M E; Parviainen, M; Shukla, P K; Sircombe, N J

    2006-01-01

    Particle acceleration by means of non-linear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and PIC (Particle In Cell) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100 m_e c^2) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilisation of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  5. Phase speed of electrostatic waves: the critical parameter for efficient electron surfing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Sircombe, N J [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Parviainen, M [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Shukla, P K [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Dendy, R O [UKAEA Culham Division, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2006-04-15

    Particle acceleration by means of nonlinear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and particle-in-cell (PIC) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100m{sub e}c{sup 2}) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilization of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  6. Research on the Mechanism of Accelerator for Photocurable Resin in 3D Printing

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-tao; MO Jian-hua; HUANG Xiao-mao

    2009-01-01

    The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy (RT-FTIR). The consumption rates of epoxy group and oxetane group as a function of time were obtained by monitoring of the absorption peaks in the 789 cm-1 and 981 cm-1. The effect of accelerators type and the accelerating mechanism were discussed. In general, benzyl alcohol and its analogues with electron-donating substituents are useful accelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane. Activated monomer mechanism and free-radical chain-induced decomposition of onium salt cationic photoinitiator account for the observed accelerating effect on the polymerization rate.

  7. Numerically optimized structures for dielectric asymmetric dual-grating laser accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Aimidula, A. [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); Physics Department, University of Liverpool, Liverpool (United Kingdom); Bake, M. A.; Wan, F.; Xie, B. S., E-mail: bsxie@bnu.edu.cn [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Welsch, C. P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); Physics Department, University of Liverpool, Liverpool (United Kingdom); Xia, G.; Mete, O. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Uesaka, M.; Matsumura, Y. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokai 319-1188 (Japan); Yoshida, M.; Koyama, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-15

    Optical scale dielectric structures are promising candidates to realize future compact, low cost particle accelerators, since they can sustain high acceleration gradients in the range of GeV/m. Here, we present numerical simulation results for a dielectric asymmetric dual-grating accelerator. It was found that the asymmetric dual-grating structures can efficiently modify the laser field to synchronize it with relativistic electrons, therefore increasing the average acceleration gradient by ∼10% in comparison to symmetric structures. The optimum pillar height which was determined by simulation agrees well with that estimated analytically. The effect of the initial kinetic energy of injected electrons on the acceleration gradient is also discussed. Finally, the required laser parameters were calculated analytically and a suitable laser is proposed as energy source.

  8. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  9. Actinides, accelerators and erosion

    Science.gov (United States)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  10. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  11. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  12. Muon Collider Progress: Accelerators

    CERN Document Server

    Zisman, Michael S

    2011-01-01

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produce...

  13. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  14. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  15. The entangled accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Robles-Perez, Salvador [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)

    2009-08-31

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  16. Accelerated shallow water modeling

    Science.gov (United States)

    Gandham, Rajesh; Medina, David; Warburton, Timothy

    2015-04-01

    ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.

  17. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  18. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  19. The ISAC post-accelerator

    Science.gov (United States)

    Laxdal, R. E.; Marchetto, M.

    2014-01-01

    The acceleration chain of the ISAC facility boosts the energy of both radioactive and stable light and heavy ions for beam delivery to both a medium energy area in ISAC-I and a high energy area in ISAC-II. The post-accelerator comprises a 35.4 MHz RFQ to accelerate beams of A/q ≤ 30 from 2 keV/u to 150 keV/u and a post stripper, 106.1 MHz variable energy drift tube linac (DTL) to accelerate ions of A/q ≤ 6 to a final energy between 0.15 MeV/u to 1.5 MeV/u. A 40 MV superconducting linac further accelerates beam from 1.5 MeV/u to energies above the Coulomb barrier. All linacs operate cw to preserve beam intensity.

  20. Shear Acceleration in Expanding Flows

    CERN Document Server

    Rieger, F M

    2016-01-01

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets of active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi-Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge ...