WorldWideScience

Sample records for accelerated search kinetics

  1. Acceleration transforms and statistical kinetic models

    International Nuclear Information System (INIS)

    LuValle, M.J.; Welsher, T.L.; Svoboda, K.

    1988-01-01

    For a restricted class of problems a mathematical model of microscopic degradation processes, statistical kinetics, is developed and linked through acceleration transforms to the information which can be obtained from a system in which the only observable sign of degradation is sudden and catastrophic failure. The acceleration transforms were developed in accelerated life testing applications as a tool for extrapolating from the observable results of an accelerated life test to the dynamics of the underlying degradation processes. A particular concern of a physicist attempting to interpreted the results of an analysis based on acceleration transforms is determining the physical species involved in the degradation process. These species may be (a) relatively abundant or (b) relatively rare. The main results of this paper are a theorem showing that for an important subclass of statistical kinetic models, acceleration transforms cannot be used to distinguish between cases a and b, and an example showing that in some cases falling outside the restrictions of the theorem, cases a and b can be distinguished by their acceleration transforms

  2. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  3. Search for Dark Photons with Accelerators

    Directory of Open Access Journals (Sweden)

    Merkel Harald

    2014-01-01

    Full Text Available A dark photon as the mediator of an interaction of the dark sector is a well motivated extension of the standard model. While possible dark matter particles are heavy and seem to be beyond the reach of current accelerators, the dark photon is not necessarily heavy and might have a mass in the range of existing accelerators. In recent years, an extensive experimental program at several accelerators for the search for dark photons were established. In this talk, recent results and progress in the determination of exclusion limits with accelerators is presented.

  4. Kinetic theory in maximal-acceleration invariant phase space

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)

  5. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  6. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Science.gov (United States)

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-06

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  7. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    Science.gov (United States)

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  8. The search for new accelerator techniques

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The European Committee for Future Accelerators, ECFA, organized a Conference from 27-30 September under the title The Challenge of Ultra-high Energies'. The aims were to discuss possible new acceleration techniques and, if possible, to help identify the most promising and encourage further research on them. Appropriately enough this search for the new took place in the dignified setting of New College Oxford. The fact that New College is many centuries old should have helped put things in perspective

  9. Explicit integration with GPU acceleration for large kinetic networks

    International Nuclear Information System (INIS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  10. Study of strength kinetics of sand concrete system of accelerated hardening

    Science.gov (United States)

    Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.

    2018-04-01

    Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.

  11. Expections for future neutrino searches at accelerators

    International Nuclear Information System (INIS)

    Reay, N.W.

    1995-01-01

    Anomalies in the flux of solar and atmosphere neutrinos have motivated a renaissance in the study of neutrino oscillations. Among many new experiments proposed, approved or commencing to run are several which rely on neutrino beams created at accelerators. These latter can be divided into short-baseline efforts searching at ultra-small mixing for neutrino masses in the cosmologically interesting mass range, and long-baseline efforts searching at larger mixing for oscillations in the mass range suggested by the atmosphere anomaly. A brief summary of these searches will be presented

  12. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.

    Science.gov (United States)

    Zoladz, J A; Korzeniewski, B; Grassi, B

    2006-11-01

    It is well known that the oxygen uptake kinetics during rest-to-work transition (V(O2) on-kinetics) in trained subjects is significantly faster than in untrained individuals. It was recently postulated that the main system variable that determines the transition time (t(1/2)) of the V(O2) on-kinetics in skeletal muscle, at a given moderate ATP usage/work intensity, and under the assumption that creatine kinase reaction works near thermodynamic equilibrium, is the absolute (in mM) decrease in [PCr] during rest-to-work transition. Therefore we postulate that the training-induced acceleration of the V(O2) on-kinetics is a marker of an improvement of absolute metabolic stability in skeletal muscles. The most frequently postulated factor responsible for enhancement of muscle metabolic stability is the training-induced increase in mitochondrial proteins. However, the mechanism proposed by Gollnick and Saltin (1982) can improve absolute metabolic stability only if training leads to a decrease in resting [ADP(free)]. This effect is not observed in many examples of training causing an acceleration of the V(O2) on-kinetics, especially in early stages of training. Additionally, this mechanism cannot account for the significant training-induced increase in the relative (expressed in % or as multiples of the resting values) metabolic stability at low work intensities, condition in which oxidative phosphorylation is not saturated with [ADP(free)]. Finally, it was reported that in the early stage of training, acceleration in the V(O2) on-kinetics and enhancement of muscle metabolic stability may precede adaptive responses in mitochondrial enzymes activities or mitochondria content. We postulate that the training-induced acceleration in the V(O2) on-kinetics and the improvement of the metabolite stability during moderate intensity exercise in the early stage of training is mostly caused by an intensification of the "parallel activation" of ATP consumption and ATP supply pathways

  13. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  14. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation.

    Science.gov (United States)

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 µM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 µm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.

  15. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    Science.gov (United States)

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  16. Fast Search and Adaptive Resolution for Complex Particle Kinetics

    Science.gov (United States)

    Larson, David J.

    2005-10-01

    A new plasma simulation algorithm, intended to bridge the gap between Eulerian fluid and kinetic regimes, is now being used for a variety of applications in ICF and weapon effects. The CPK method (Complex Particle Kinetic) concept [1] uses an ensemble of macro-particles with a Gaussian spatial profile and a Mawellian velocity distribution to represent particle distributions in phase space. Time evolution is modeled by a combination of Lagrangian motion and internal evolution within each individual macro-particle. Collisional particle-particle interactions [2] are facilitated by sorting particles into bins depending of the particle size. Different bin levels are connected by a linked list. Searching for neighboring particles is highly efficient because the search is limited to particles in neighboring bins with the possibility of interaction. The bin structure also allows the computation of various spatial moments at different resolutions. Combining the results of the moment calculations yields information on where and when increased resolution is necessary. We will present details of the particle binning process along with progress towards our goal of simulating the transition from continuum to fully kinetic physics. [1] D. W. Hewett, J. Comp. Phys. 189 (2003). [2] D. J. Larson, J. Comp. Phys. 188 (2003).

  17. Astrophysical search strategies for accelerator blind dark matter

    International Nuclear Information System (INIS)

    Wells, J.D.

    1998-04-01

    A weakly interacting dark matter particle may be very difficult to discover at an accelerator because it either (1) is too heavy, (2) has no standard model gauge interactions, or (3) is almost degenerate with other states. In each of these cases, searches for annihilation products in the galactic halo are useful probes of dark matter properties. Using the example of supersymmetric dark matter, the author demonstrates how astrophysical searches for dark matter may provide discovery and mass information inaccessible to collider physics programs such as the Tevatron and LHC

  18. The physics of particle acceleration and the search for new ideas

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1988-06-01

    In recent years there has been an intensive search for 'new ideas' to enable the energy range of accelerators to be increased beyond that attainable with existing techniques. Some comment is made on these ideas, but before this is done, a general discussion of accelerating mechanisms is presented. (author)

  19. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    Science.gov (United States)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  20. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC Earth system model (version 2.52

    Directory of Open Access Journals (Sweden)

    M. Alvanos

    2017-10-01

    Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 ×  and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 ×  speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  1. Searching for oscillations of atmospheric and accelerator neutrinos with GeNIUS

    International Nuclear Information System (INIS)

    Michael, Douglas G.

    1994-01-01

    A very large (17KT) fine-grained sampling calorimeter is discussed for use in studying contained events induced by atmospheric or accelerator neutrinos for the purpose of searching for neutrino oscillations. The ratio of neutral current to charged current events can be used to rule out a large region of the currently allowed parameter space with accelerator and atmospheric neutrinos providing complimentary measurements. ((orig.))

  2. Lightning talk slide for "SLACKHA: Software Library for Accelerating Chemical Kinetics on Hybrid Architectures"

    OpenAIRE

    Niemeyer, Kyle; Sung, Chih-Jen

    2018-01-01

    Lightning talk slide describing the "SLACKHA: Software Library for Accelerating Chemical Kinetics on Hybrid Architectures" project at the 2018 NSF SI2 PI meeting: https://si2-pi-community.github.io/2018-meeting/

  3. Using Equation-Free Computation to Accelerate Network-Free Stochastic Simulation of Chemical Kinetics.

    Science.gov (United States)

    Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S

    2018-06-21

    The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.

  4. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    Science.gov (United States)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  5. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    2006-01-01

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial τ-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based τ-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial τ-leap method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1

  6. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    Science.gov (United States)

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  7. Kinetic modeling of particle acceleration in a solar null point reconnection region

    DEFF Research Database (Denmark)

    Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke

    2013-01-01

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO...... particles and 3.5 billion grid cells of size 17.5\\,km --- these simulations offer a new opportunity to study particle acceleration in solar-like settings....... applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan-plane of the null-point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub...

  8. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm.

    Science.gov (United States)

    Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing

    2009-06-01

    In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.

  9. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.; Picca, P. [Dept. of Aerospace and Mechanical Engineering, Univ. of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino, Alma Mater Studiorum - Universita di Bologna (Italy)

    2012-07-01

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making use of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)

  10. On the Neutron Kinetics and Control of Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    2004-01-01

    This work addresses fundamental aspects of the time- and space-dependent behavior of an Accelerator-Driven Subcritical Core System (ADS) and presents a paradigm ADS neutron kinetics model that is solved exactly. Thus, this paradigm model can serve for benchmarking two- and/or three-dimensional computational tools. Furthermore, this work also proposes a global optimal control theory framework for the operation and control of an ADS. This framework encompasses conceptually the time- and space-dependent behavior of the ADS coupled neutron kinetics/thermal-hydraulic balance equations and aims at the optimal control of ADS operational objectives, which would include minimization of local flux disturbances, load and source following, etc. Importantly, this new conceptual framework makes no use of a 'fictitious ADS steady state' and yields the correct and complete (i.e., including sources) adjoint equations, without leaving any room for ambiguities. Thus, this new conceptual framework provides a natural basis for developing new computational methods and corresponding verification experiments specifically tailored for the control and operation of ADS

  11. Acceleration of saddle-point searches with machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Andrew A., E-mail: andrew-peterson@brown.edu [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  12. Acceleration of saddle-point searches with machine learning

    International Nuclear Information System (INIS)

    Peterson, Andrew A.

    2016-01-01

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  13. Acceleration of saddle-point searches with machine learning.

    Science.gov (United States)

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  14. Omega-mode perturbation theory and reactor kinetics for analyzing accelerator-driven subcritical systems

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2003-01-01

    An ω-mode first-order perturbation theory is developed for analyzing the time- and space-dependent neutron behavior in Accelerator-Driven Subcritical Systems (ADSS). The generalized point-kinetics equations are systematically derived using the ω-mode first-order perturbation theory and Fredholm Alternative Theorem. Seven sets of the ω-mode eigenvalues exist with using six groups of delayed neutrons and all ω eigenvalues are negative in ADSS. Seven ω-mode adjoint and forward eigenfunctions are employed to form the point-kinetic parameters. The neutron flux is expressed as a linear combination of the products of seven ω-eigenvalue-mode shape functions and their corresponding time functions up to the first order terms, and the lowest negative ω-eigenvalue mode is the dominant mode. (author)

  15. Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans.

    Science.gov (United States)

    Zoladz, Jerzy A; Grassi, Bruno; Majerczak, Joanna; Szkutnik, Zbigniew; Korostyński, Michał; Karasiński, Janusz; Kilarski, Wincenty; Korzeniewski, Bernard

    2013-04-01

    The effects of 5 weeks of moderate-intensity endurance training on pulmonary oxygen uptake kinetics (V(O(2)) on-kinetics) were studied in 15 healthy men (mean ± SD: age 22.7 ± 1.8 years, body weight 76.4 ± 8.9 kg and maximal V(O(2)) 46.0 ± 3.7 ml kg(-1) min(-1)). Training caused a significant acceleration (P = 0.003) of V(O(2)) on-kinetics during moderate-intensity cycling (time constant of the 'primary' component 30.0 ± 6.6 versus 22.8 ± 5.6 s before and after training, respectively) and a significant decrease (P = 0.04) in the amplitude of the primary component (837 ± 351 versus 801 ± 330 ml min(-1)). No changes in myosin heavy chain distribution, muscle fibre capillarization, level of peroxisome proliferator-activated receptor γ coactivator 1α and other markers of mitochondrial biogenesis (mitochondrial DNA copy number, cytochrome c and cytochrome oxidase subunit I contents) in the vastus lateralis were found after training. A significant downregulation in the content of the sarcoplasmic reticulum ATPase 2 (SERCA2; P = 0.03) and a tendency towards a decrease in SERCA1 (P = 0.055) was found after training. The decrease in SERCA1 was positively correlated (P = 0.05) with the training-induced decrease in the gain of the V(O(2)) on-kinetics (ΔV(O(2)) at steady state/Δpower output). In the early stage of training, the acceleration in V(O(2)) on-kinetics during moderate-intensity cycling can occur without enhanced mitochondrial biogenesis or changes in muscle myosin heavy chain distribution and in muscle fibre capillarization. The training-induced decrease of the O(2) cost of cycling could be caused by the downregulation of SERCA pumps.

  16. Kinetic Simulation of Fast Electron Transport with Ionization Effects and Ion Acceleration

    International Nuclear Information System (INIS)

    Robinson, A. P. L.; Bell, A. R.; Kingham, R. J.

    2005-01-01

    The generation of relativistic electrons and multi-MeV ions is central to ultra intense (> 1018Wcm-2) laser-solid interactions. The production of energetic particles by lasers has a number of potential applications ranging from Fast Ignition ICF to medicine. In terms of the relativistic (fast) electrons the areas of interest can be divided into three areas. Firstly there is the absorption of laser energy into fast electrons and MeV ions. Secondly there is the transport of fast electrons through the solid target. Finally there is a transduction stage, where the fast electron energy is imparted. This may range from being the electrostatic acceleration of ions at a plasma-vacuum interface, to the heating of a compressed core (as in Fast Ignitor ICF).We have used kinetic simulation codes to study the transport stage and electrostatic ion acceleration. (Author)

  17. Accelerating action of stresses on crystallization kinetics in silicon ion-implanted layers during pulsed heating

    International Nuclear Information System (INIS)

    Aleksandrov, L.N.

    1985-01-01

    Numerical simulation of the effect of stressed in ion-implanted layers on kinetics of amorphous phase transformations is performed. The suggested model of accounting stresses including concentration ones is based on the locality of action of interstitial addition atoms and on general structural inhomogeneity of amorphous semiconductor leading to the formation of areas of the facilitated phase transition. Accounting of effect of energy variation of silicon atoms interaction on probability of displacement events and atoms building in lattice points or atomic bonds disintegration allows one to trace the accelerating action of introduced by ion implantation stresses on the kinetics of layer crystallization during pulsed heating

  18. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  19. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    Science.gov (United States)

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  20. Effective closed form mathematical approach to determine kinetic constants of NR vulcanized with sulphur and accelerators at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Hanel, Thomas; Donetti, Raffaella [Pirelli Tyre, Via Alberto e Piero Pirelli 25, 20126 Milan (Italy); Milani, Federico [CHEMCO Consultant, Via J.F. Kennedy 2, 45030 Occhiobello (Italy)

    2015-03-10

    The basic reaction scheme due to Han and co-workers for NR vulcanized with sulphur is adopted and modified taking into account the single contributions of the different accelerators, focusing in particular on some experimental data ad hoc obtained at Pirelli’s laboratories, where NR was vulcanized at different temperatures (from 150 to 180 °C) and concentrations of sulphur, using TBBS and DPG in the mixture as co-agents. Typically, the chain reactions are initiated by the formation of macro-compounds that are responsible of the formation of the unmatured crosslinked polymer. This first reaction depends on the reciprocal concentrations of all components and their chemical nature. In presence of two accelerators, it was considered that the reactions between each single accelerator and the NR raw material occur in parallel, making the reasonable assumption that there are no mutual reactions between the two accelerators. From the kinetic scheme adopted, a closed form solution was found for the crosslink density, with the only limitation that the induction period is excluded from computations. Even kinetic constants are evaluated in closed form, avoiding a numerically demanding least-squares best fitting on rheometer experimental data. Two series of experiments available, relying into rheometer curves at different temperatures and different concentrations of sulphur and accelerator, are utilized to evaluate the fitting capabilities of the mathematical model. Very good agreement between numerical output and experimental data is experienced in all cases analysed.

  1. Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering.

    Directory of Open Access Journals (Sweden)

    Wei-Chang Yeh

    Full Text Available Data clustering is commonly employed in many disciplines. The aim of clustering is to partition a set of data into clusters, in which objects within the same cluster are similar and dissimilar to other objects that belong to different clusters. Over the past decade, the evolutionary algorithm has been commonly used to solve clustering problems. This study presents a novel algorithm based on simplified swarm optimization, an emerging population-based stochastic optimization approach with the advantages of simplicity, efficiency, and flexibility. This approach combines variable vibrating search (VVS and rapid centralized strategy (RCS in dealing with clustering problem. VVS is an exploitation search scheme that can refine the quality of solutions by searching the extreme points nearby the global best position. RCS is developed to accelerate the convergence rate of the algorithm by using the arithmetic average. To empirically evaluate the performance of the proposed algorithm, experiments are examined using 12 benchmark datasets, and corresponding results are compared with recent works. Results of statistical analysis indicate that the proposed algorithm is competitive in terms of the quality of solutions.

  2. Localized saddle-point search and application to temperature-accelerated dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yunsic; Amar, Jacques G. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Callahan, Nathan B. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)

    2013-03-07

    We present a method for speeding up temperature-accelerated dynamics (TAD) simulations by carrying out a localized saddle-point (LSAD) search. In this method, instead of using the entire system to determine the energy barriers of activated processes, the calculation is localized by only including a small chunk of atoms around the atoms directly involved in the transition. Using this method, we have obtained N-independent scaling for the computational cost of the saddle-point search as a function of system size N. The error arising from localization is analyzed using a variety of model systems, including a variety of activated processes on Ag(100) and Cu(100) surfaces, as well as multiatom moves in Cu radiation damage and metal heteroepitaxial growth. Our results show significantly improved performance of TAD with the LSAD method, for the case of Ag/Ag(100) annealing and Cu/Cu(100) growth, while maintaining a negligibly small error in energy barriers.

  3. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    Science.gov (United States)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  4. Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

    Science.gov (United States)

    Munekawa, Yuma; Ino, Fumihiko; Hagihara, Kenichi

    This paper presents a fast method capable of accelerating the Smith-Waterman algorithm for biological database search on a cluster of graphics processing units (GPUs). Our method is implemented using compute unified device architecture (CUDA), which is available on the nVIDIA GPU. As compared with previous methods, our method has four major contributions. (1) The method efficiently uses on-chip shared memory to reduce the data amount being transferred between off-chip video memory and processing elements in the GPU. (2) It also reduces the number of data fetches by applying a data reuse technique to query and database sequences. (3) A pipelined method is also implemented to overlap GPU execution with database access. (4) Finally, a master/worker paradigm is employed to accelerate hundreds of database searches on a cluster system. In experiments, the peak performance on a GeForce GTX 280 card reaches 8.32 giga cell updates per second (GCUPS). We also find that our method reduces the amount of data fetches to 1/140, achieving approximately three times higher performance than a previous CUDA-based method. Our 32-node cluster version is approximately 28 times faster than a single GPU version. Furthermore, the effective performance reaches 75.6 giga instructions per second (GIPS) using 32 GeForce 8800 GTX cards.

  5. Results from the RACE [Ring ACceleration Experiment] Compact Torus Acceleration Experiment

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ ∼F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of ≅2.5 x 10 8 cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10 8 cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios ∼10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements

  6. Accelerated search of gamma-quantum families in a X-ray emulsion chamber

    International Nuclear Information System (INIS)

    Takibaev, Zh.S.; Bajgubekov, A.S.; Sadykov, T.Kh.

    1977-01-01

    The criteria are derived allowing to considerably accelerate the process of detecting the pure gamma-quantum families. The suitable criterion is the apparent size of the distribution of black spots due to electromagnetic cascades inside a circle of specific radius. The results of assaying 27 gamma-families with energies above 3 TeV generated in a target above the chamber are presented. The method of search for the target families suggested in this paper allows to cut four-fold the roentgen-emulsion cloud chamber treatment time

  7. GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence

    International Nuclear Information System (INIS)

    Liu Yuan; Du Zhihui; Chung, Shin Kee; Hooper, Shaun; Blair, David; Wen Linqing

    2012-01-01

    We present a graphics processing unit (GPU)-accelerated time-domain low-latency algorithm to search for gravitational waves (GWs) from coalescing binaries of compact objects based on the summed parallel infinite impulse response (SPIIR) filtering technique. The aim is to facilitate fast detection of GWs with a minimum delay to allow prompt electromagnetic follow-up observations. To maximize the GPU acceleration, we apply an efficient batched parallel computing model that significantly reduces the number of synchronizations in SPIIR and optimizes the usage of the memory and hardware resource. Our code is tested on the CUDA ‘Fermi’ architecture in a GTX 480 graphics card and its performance is compared with a single core of Intel Core i7 920 (2.67 GHz). A 58-fold speedup is achieved while giving results in close agreement with the CPU implementation. Our result indicates that it is possible to conduct a full search for GWs from compact binary coalescence in real time with only one desktop computer equipped with a Fermi GPU card for the initial LIGO detectors which in the past required more than 100 CPUs. (paper)

  8. Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma

    Science.gov (United States)

    Tokar, Mikhail Z.

    2017-12-01

    The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.

  9. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.A.; Rameika, R.; Stanton, N.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but we believe a substantial consensus emerged. First, the next decade is one of great potential for discovery in neutrino physics, but it is also one of great peril. The possibility that neutrino oscillations explain the solar neutrino and atmospheric neutrino experiments, and the indirect evidence that Hot Dark Matter (HDM) in the form of light neutrinos might make up 30% of the mass of the universe, point to areas where accelerator-based experiments could play a crucial role in piecing together the puzzle. At the same time, the field faces a very uncertain future. The LSND experiment at LAMPF is the only funded neutrino oscillation experiment in the United States and it is threatened by the abrupt shutdown of LAMPF proposed for fiscal 1994. The future of neutrino physics at the Brookhaven National Laboratory AGS depends the continuation of High Energy Physics (HEP) funding after the RHIC startup. Most proposed neutrino oscillation searches at Fermilab depend on the completion of the Main Injector project and on the construction of a new neutrino beamline, which is uncertain at this point. The proposed KAON facility at TRIUMF would provide a neutrino beam similar to that at the AGS but with a much increase intensity. The future of KAON is also uncertain. Despite the difficult obstacles present, there is a real possibility that we are on the verge of understanding the masses and mixings of the neutrinos. The physics importance of such a discovery can not be overstated. The current experimental status and future possibilities are discussed below

  10. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  11. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    Science.gov (United States)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  12. An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree.

    Science.gov (United States)

    Kebede, Biniam T; Grauwet, Tara; Magpusao, Johannes; Palmers, Stijn; Michiels, Chris; Hendrickx, Marc; Loey, Ann Van

    2015-07-15

    To have a better understanding of chemical reactions during shelf-life, an integrated analytical and engineering toolbox: "fingerprinting-kinetics" was used. As a case study, a thermally sterilised carrot puree was selected. Sterilised purees were stored at four storage temperatures as a function of time. Fingerprinting enabled selection of volatiles clearly changing during shelf-life. Only these volatiles were identified and studied further. Next, kinetic modelling was performed to investigate the suitability of these volatiles as quality indices (markers) for accelerated shelf-life testing (ASLT). Fingerprinting enabled selection of terpenoids, phenylpropanoids, fatty acid derivatives, Strecker aldehydes and sulphur compounds as volatiles clearly changing during shelf-life. The amount of Strecker aldehydes increased during storage, whereas the rest of the volatiles decreased. Out of the volatiles, based on the applied kinetic modelling, myristicin, α-terpinolene, β-pinene, α-terpineol and octanal were identified as potential markers for ASLT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their High Electrocatalytic Activity.

    Science.gov (United States)

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-10-01

    To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  15. Decay kinetics of nicotine/NNK-DNA adducts in vivo studied by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Sun, H.F.; He, L.; Liu, Y.F.; Liu, K.X.; Lu, X.Y.; Wang, J.J.; Ma, H.J.; Li, K.

    2000-01-01

    The decay kinetics of nicotine-DNA adducts and NNK-DNA adducts in mice liver after single dosing was studied by accelerator mass spectrometry (AMS). The decay is characterized by a two-stage process. The half-lives of nicotine-DNA adducts are 1.3 d (4-24 h) and 7.0 d (1-21 d), while for NNK-DNA adducts are 0.7 d (4-24 h) and 18.0 d (1-21 d). The relatively faster decay of nicotine-DNA adducts suggests that the genotoxicity of nicotine is weaker than that of NNK. The in vitro study shows that the metabolization of nicotine is necessary for the final formation of nicotine-DNA adducts, and nicotine Δ1'(5') iminium ion is a probable metabolite species that binds to DNA molecule covalently

  16. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  17. Beam energy reduction in an acceleration gap

    International Nuclear Information System (INIS)

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  18. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  19. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling.

    Science.gov (United States)

    Núñez, M; Robie, T; Vlachos, D G

    2017-10-28

    Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).

  20. Searches for magnetic monopoles with IceCube

    Science.gov (United States)

    Pollmann, Anna

    2018-01-01

    Particles that carry a magnetic monopole charge are proposed by various theories which go beyond the Standard Model of particle physics. The expected mass of magnetic monopoles varies depending on the theory describing its origin, generally the monopole mass far exceeds those which can be created at accelerators. Magnetic monopoles gain kinetic energy in large scale galactic magnetic fields and, depending on their mass, can obtain relativistic velocities. IceCube is a high energy neutrino detector using the clear ice at the South Pole as a detection medium. As monopoles pass through this ice they produce optical light by a variety of mechanisms. With increasing velocity, they produce light by catalysis of baryon decay, luminescence in the ice associated with electronic excitations, indirect and direct Cherenkov light from the monopole track, and Cherenkov light from cascades induced by pair creation and photonuclear reactions. By searching for this light, current best limits for the monopole flux over a broad range of velocities was achieved using the IceCube detector. A review of these magnetic monopole searches is presented.

  1. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  2. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  3. CAS CERN Accelerator School. Third advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)

  4. Application of Chemical Kinetics to Deterioration of Foods.

    Science.gov (United States)

    Labuza, T. P.

    1984-01-01

    Possible modes of food deterioration (such as microbial decay, nonenzymatic browning, senescence, lipid oxidation) are reviewed. A basic mathematical approach to the kinetics of food deterioration, kinetic approach to accelerating shelf-life deterioration, and shelf-life predictions are discussed. (JN)

  5. Facilitated diffusion in a crowded environment: from kinetics to stochastics

    International Nuclear Information System (INIS)

    Meroz, Yasmine; Klafter, Joseph; Eliazar, Iddo

    2009-01-01

    Facilitated diffusion is a fundamental search process used to describe the problem of a searcher protein finding a specific target site over a very large DNA strand. In recent years macromolecular crowding has been recognized to affect this search process. In this paper, we bridge between two different modelling methodologies of facilitated diffusion: the physics-oriented kinetic approach, which yields the reaction rate of the search process, and the probability-oriented stochastic approach, which yields the probability distribution of the search duration. We translate the former approach to the latter, ascertaining that the two approaches yield coinciding results, both with and without macromolecular crowding. We further show that the stochastic approach markedly generalizes the kinetic approach by accommodating a vast array of search mechanisms, including mechanisms having no reaction rates, and thus being beyond the realm of the kinetic approach.

  6. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  7. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    International Nuclear Information System (INIS)

    He, Yudong

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled 'Neutrino Mass and Oscillation', 'High Energy Neutrino Astrophysics', 'Detection of Dark Matter', 'Search for Strange Quark Matter', and 'Magnetic Monopole Searches'. The report is introduced by a survey of the field and a brief description of each of the author's papers

  8. Towards external injection in laser wakefield acceleration

    NARCIS (Netherlands)

    Stragier, X.F.D.

    2011-01-01

    In laser wakefield acceleration (LWA) a plasma wave is driven by a high intensity ultra short laser pulse and the longitudinal electric fields in the plasma wave are used to accelerate electron bunches. Electrons with an appropriate kinetic energy, injected on the right phase of the plasma wave, get

  9. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    Science.gov (United States)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  10. New accelerator ideas

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow

  11. New accelerator ideas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow.

  12. Study of muon-induced neutron production using accelerator muon beam at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Draeger, E.; White, C. G. [Illinois Institute of Technology, Chicago, Illinois (United States); Luk, K. B.; Steiner, H. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Department of Physics, University of California, Berkeley, California (United States)

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  13. Accelerated Simulation of Kinetic Transport Using Variational Principles and Sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Caflisch, Russel [Univ. of California, Los Angeles, CA (United States)

    2017-06-30

    This project is centered on the development and application of techniques of sparsity and compressed sensing for variational principles, PDEs and physics problems, in particular for kinetic transport. This included derivation of sparse modes for elliptic and parabolic problems coming from variational principles. The research results of this project are on methods for sparsity in differential equations and their applications and on application of sparsity ideas to kinetic transport of plasmas.

  14. PLC-based search and secure interlock system for the personnel safety in folded tandem ion accelerator

    International Nuclear Information System (INIS)

    Padmakumar, Sapna; Subramanyum, N.B.V.; Bhatt, Jignesh P.; Ware, Shailaja V.; Kansara, M.J.; Gupta, S.K.; Singh, P.

    2006-01-01

    Safety of the personnel is one of the key issues addressed in any accelerator project. The FOTIA facility at BARC is capable of operating under standard operation conditions without any radiation hazard. Even then for a safe and reliable operation of FOTIA a PLC (Programmable logic controller) based interlock system has been implemented. This interlocking system is compact, modular, flexible, robust and easy for troubleshooting. These advantages led to the popularity of PLC rather than using a relay-based system. This paper highlights the salient features of the search and secure interlock for the personal safety of FOTIA. (author)

  15. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Epstein, B.G.; Freeman, J.R.; Sharpe, A.W.; Tucker, W.K.; Shope, S.L.

    1981-01-01

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  16. A periodic plasma waveguide accelerator

    International Nuclear Information System (INIS)

    Cole, F.T.

    1985-01-01

    The increasing cost of synchrotrons and storage rings has given new interest in the search for new methods of acceleration. The primary goal of this search is very large accelerating fields, because the cost of an accelerator to reach TeV energies is dominated by costs that scale with length. Very large electric fields are possible in plasmas and in lasers and many geometries are being studied that make use of plasmas, lasers, or combinations of them. In a plasma accelerator, the plasma can have several different functions. It may act as a medium for the propagation of accelerating electric-field waves. In addition, these waves may also act as a source of the energy needed to accelerate particles. Accelerators using various waves in plasmas have been built and studied in many laboratories. The device proposed here is an attempt to separate the two functions of providing a medium and providing an energy source. A relatively low-energy electron beam is used as a non-neutral plasma only to make a slow-wave medium for the propagation of an externally generated wave. The wave is a TM electromagnetic wave and the device may be thought of as a conventional electron linear accelerator with the evacuated volume and metallic envelope replaced by the electron beam. A separate second beam, which may be electrons or heavier particles, is accelerated. The application in mind here is a single-pass collider

  17. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  18. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    Science.gov (United States)

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in

  19. Pushing hard on the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    The quest for new techniques to drive future generations of particle accelerators has been pushed hard in recent years, efforts having been highlighted by workshops in Europe, organized by the European Committee for Future Accelerators, and in the US. The latest ECFA Workshop on New Developments in Particle Acceleration Techniques, held at Orsay from 29 June to 4 July, showed how the initial frantic search for innovation is now maturing.

  20. Conformational Diffusion and Helix Formation Kinetics

    International Nuclear Information System (INIS)

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-01-01

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society

  1. Conformational Diffusion and Helix Formation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  2. Sequence heterogeneity accelerates protein search for targets on DNA

    International Nuclear Information System (INIS)

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-01-01

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome

  3. Sequence heterogeneity accelerates protein search for targets on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Alexey A.; Kolomeisky, Anatoly B., E-mail: tolya@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  4. GPU-Accelerated Text Mining

    International Nuclear Information System (INIS)

    Cui, X.; Mueller, F.; Zhang, Y.; Potok, Thomas E.

    2009-01-01

    Accelerating hardware devices represent a novel promise for improving the performance for many problem domains but it is not clear for which domains what accelerators are suitable. While there is no room in general-purpose processor design to significantly increase the processor frequency, developers are instead resorting to multi-core chips duplicating conventional computing capabilities on a single die. Yet, accelerators offer more radical designs with a much higher level of parallelism and novel programming environments. This present work assesses the viability of text mining on CUDA. Text mining is one of the key concepts that has become prominent as an effective means to index the Internet, but its applications range beyond this scope and extend to providing document similarity metrics, the subject of this work. We have developed and optimized text search algorithms for GPUs to exploit their potential for massive data processing. We discuss the algorithmic challenges of parallelization for text search problems on GPUs and demonstrate the potential of these devices in experiments by reporting significant speedups. Our study may be one of the first to assess more complex text search problems for suitability for GPU devices, and it may also be one of the first to exploit and report on atomic instruction usage that have recently become available in NVIDIA devices

  5. Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators

    Directory of Open Access Journals (Sweden)

    A. Rucigaj

    2015-07-01

    Full Text Available The curing of bisphenol A-aniline based benzoxazine was studied applying different accelerators (4,4'-thiodiphenol, o-dianisidine, 2-mercaptobenzimidazole and 4-mercaptophenol to initiate the catalytic ring-opening of benzoxazine. Possible pathways of benzoxazine ring-opening, polymerization and cross-linking without and with the addition of different accelerators are presented. The curing kinetics was investigated by model-free kinetic analysis of experimental data obtained by differential scanning calorimetry (DSC. The addition of different accelerators significantly reduced the onset temperature of curing in dynamic experiments. The effects of accelerators on the results of isothermal conversion prediction were studied and discussed in detail. Among the used accelerators, thiodiphenol showed the best accelerating efficiency and was consequently used in further studies, where its amount was varied. By low heating rate DSC analysis the catalytic ring-opening, thermally accelerated ring-opening and the diffusion-controlled steps were identified. The amount of added accelerator affected particularly the ring-opening and diffusion-controlled steps.

  6. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  7. Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Ardid, M.; Felis, I.; Martínez-Mora, J.A. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/Paranimf 1, 46730 Gandia (Spain); Herrero, A., E-mail: mardid@fis.upv.es, E-mail: ivfeen@upv.es, E-mail: aherrero@mat.upv.es, E-mail: jmmora@fis.upv.es [Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain)

    2017-04-01

    The 79-string IceCube search for dark matter in the Sun public data is used to test Secluded Dark Matter models. No significant excess over background is observed and constraints on the parameters of the models are derived. Moreover, the search is also used to constrain the dark photon model in the region of the parameter space with dark photon masses between 0.22 and ∼ 1 GeV and a kinetic mixing parameter ε ∼ 10{sup −9}, which remains unconstrained. These are the first constraints of dark photons from neutrino telescopes. It is expected that neutrino telescopes will be efficient tools to test dark photons by means of different searches in the Sun, Earth and Galactic Center, which could complement constraints from direct detection, accelerators, astrophysics and indirect detection with other messengers, such as gamma rays or antiparticles.

  8. The selection of patients for accelerated radiotherapy on the basis of tumor growth kinetics and intrinsic radiosensitivity

    International Nuclear Information System (INIS)

    Tucker, S.L.; Kang-Sow Chan

    1990-01-01

    Mathematical modelling was used to reach qualitative conclusions concerning the relative rate of local tumor control that might be achieved by using accelerated fractionation to treat only the patients with the most rapidly growing rumors, compared with the control rated that could be expected from either conventional or accelerated radiotherapy alone. The results suggest that concomitant boost therapy is equally or more effective than conventional dose fractionation for all tumors, regardless of their growth kinetics. For tumors with very short clonogen doubling times, CHART (continuous hyperfractionated accelerated radiotherapy) may be even more effective than concomitant boost treatment, but CHART is less effective than conventional or concomitant boost therapy for tumors with longer clonogen doubling times. Thus, there is a rationale for using a predictive assay of tumor clonogen doubling times to identify the patients who should be treated with CHART. However, improvements in local tumor control resulting from concomitant boost treatment or the selective use of CHART are not likely to be apparent in the population as a whole, because the overall control rated are largely determined by refractory tumors having little chance of control with any of the treatments and by higher responsive tumors that are likely to be controlled regardless of the treatment choice. Differences in control rated with different treatment strategies are most apparent in the stochastic fraction of the population, which excludes those patients for whom there is either very little change (e.g. 99%) of achieving local control with both treatments. The stochastic fraction can be approximated by excluding those patients with the most radioresistant and the most radiosensitive tumors, since intrinsic tumor radiosensitivity appears to be the single most important factor determining treatment outcome. (author). 32 refs.; 4 figs.; 5 tabs

  9. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  10. Intermediate Inflation or Late Time Acceleration?

    International Nuclear Information System (INIS)

    Sanyal, A.K.

    2008-01-01

    The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.

  11. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  12. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  13. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  14. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  15. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  16. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  17. Critical analysis of industrial electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S. E-mail: sergey_korenev@steris.com

    2004-10-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  18. Critical analysis of industrial electron accelerators

    Science.gov (United States)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  19. Critical analysis of industrial electron accelerators

    International Nuclear Information System (INIS)

    Korenev, S.

    2004-01-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterilization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed

  20. Effects of fatigue on kinematics and kinetics during overground running: a systematic review.

    Science.gov (United States)

    Winter, Sara; Gordon, Susan; Watt, Kerrianne

    2017-06-01

    Understanding kinematic and kinetic changes with fatigue during running is important to assess changes that may influence performance and injury. The aim of this systematic review was to identify, critique and summarize literature about the effects of fatigue on kinematics and kinetics during a fatiguing overground run and present the reported influence on performance and injury. An electronic search was conducted of MEDLINE, SPORTDiscus, CINAHL and PubMed databases. Two reviewers assessed articles for inclusion, and evaluated the quality of articles included using a modified version of the Downs and Black Quality Index. A total of twelve articles were identified for review. The mean quality assessment score was seven out of a possible 12. Kinematic and kinetic changes reported to affect performance included decreased speed, step or stride frequency and length, increased trunk flexion, lower leg position at heel strike, mediolateral acceleration, changes in hip and knee ranges, and decreased stride regularity, heel lift, maximum knee rotation and backward ankle velocity. Alterations reported to increase risk of injury included decreased step frequency, increased upper body rotation and lower leg position at heel strike, and decreased knee flexion during stance. Reduced risk of injury has been linked to decreased step length and hip ranges, and increased trunk flexion. This review found limited evidence regarding changes in kinematic and kinetic during a fatiguing run in relation to performance and injury. Higher quality studies are warranted, with a larger sample of homogenous runners, and type of run carefully selected to provide quality information for runners, coaches and clinicians.

  1. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  2. Kinetic Sprint Asymmetries on a non-motorised Treadmill in Rugby Union Athletes.

    Science.gov (United States)

    Brown, Scott R; Cross, Matt R; Girard, Olivier; Brocherie, Franck; Samozino, Pierre; Morin, Jean-Benoît

    2017-11-01

    The purpose of this study was to present a potential link between sprint kinetic (vertical [F V ] and horizontal force [F H ]) asymmetries and athletic performance during acceleration and maximal velocity (v max ) sprinting. Thirty un-injured male rugby athletes performed 8-s sprints on a non-motorised treadmill. Kinetic data were divided into 'strong' and 'weak' legs based on individually averaged peak values observed during sprinting and were analysed to evaluate asymmetry. Large differences were found between the strong and weak legs in F H during acceleration (4.3 vs. 3.5 N·kg -1 ) and v max (3.7 vs. 2.8 N·kg -1 ) sprinting (both ES=1.2), but not in F V (21.8 vs. 20.8 N·kg -1 , ES=- 0.6 for acceleration; 23.9 vs. 22.8 N·kg -1 , ES=- 0.5 for v max , respectively). Group mean asymmetry was lower in F V compared to F H during acceleration (1.6 vs. 6.8%) and v max (1.6 vs. 8.2%). The range of asymmetry was much lower in F V (0.03-4.3%) compared to F H (0.2-28%). In un-injured rugby athletes, the magnitude and range of asymmetry scores in F H , occurring during acceleration and v max phases, where much greater than those found in F V . These findings highlight the potential for some un-injured athletes to possess kinetic asymmetries known as crucial components for acceleration performance in sprinting. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Proton acceleration by RF TE{sub 11} mode in a cylindrical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Masaaki; Yoshikawa, Kiyoshi; Ohnishi, Masami; Yamamoto, Yasushi; Masuda, Kai [Kyoto Univ., Uji (Japan). Inst. of Advanced Energy

    1997-03-01

    We found that protons are accelerated significantly by RF TE{sub 11} mode in a cylindrical cavity. In this method, protons get the perpendicular kinetic energy, so we thought it might be a compact accelerator, and studied the feasibility by numerical simulation. (author)

  4. Identification of cosmic accelerators: search for GeV pulsar nebulae with the Large Area Fermi telescope

    International Nuclear Information System (INIS)

    Rousseau, R.

    2013-01-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11, carrying the Large Area Telescope (LAT), sensitive to gamma-rays from 20 MeV to more than 300 GeV. Its constantly improving sensitivity and performance offer a new opportunity to understand the sources of the gamma-ray sky including Pulsar Wind Nebulae (PWNe). PWNe are powered by the constant injection of a relativistic wind of electrons and positrons from their central pulsars. These charged particles are accelerated at the shock front forming the PWN and emit photons which can be observed along the entire electromagnetic spectrum, including the high energy gamma-ray domain via inverse Compton scattering. This thesis presents the detailed analysis of two sources of gamma-ray emission potentially associated to PWNe: MSH 11-62 and HESS J1857+026. The combination of the spatial and spectral analyses provide new elements to confirm these associations. In a second step, we describe a search for counterparts to sources detected by Cerenkov telescopes. This search led to the detection of six new LAT sources potentially associated with PWNe. These studies bring new insights and constraints on the physical properties of the sources as well as on emitting processes by constraining the models and allowing population studies. (author)

  5. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    Science.gov (United States)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  6. Diagnosis of Acceleration, Reconnection, Turbulence, and Heating

    Science.gov (United States)

    Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.

    2017-10-01

    The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.

  7. Kinetic examination of the thyroid for an early detection of localized autonomy

    International Nuclear Information System (INIS)

    Das, B.K.; Kissel, H.J.; Schnabel, K.

    1980-01-01

    Early diagnosis of localised thyroid autonomy can in many cases be of high importance for the patient. By manifesting accelerated radioiodine kinetics in suspicious lobes or regions of the thyroid, autonomies of the thyroid can be detected early and definitely. Examination covered 50 euthyroidic patients showing only an asymmetric thyroidal configuration in the scintiscan. Unilateral determining of the radioiodine kinetics at the Auger-camera helped to find out if, and in how many cases, there is really an accelerated iodine metabolism in the thyroids represented asymmetrically. Fire of the examinated patients showed, compared with the opposite side, both increased iodine uptake and accelerated iodine output in the lobes which are seen more clearly in the scintiscan. This might be an indication of a very early stage of thyroidal autonomy. (orig.) [de

  8. A study of reflex tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Takao; Morinobu, Shunpei; Gono, Yasuyuki; Sagara, Kenji; Sugimitsu, Tsuyoshi; Mitarai, Shiro; Nakamura, Hiroyuki; Ikeda, Nobuo; Morikawa, Tsuneyasu [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1996-12-01

    An investigation on `developing research theme and its realizing experimental apparatus` based on the tandem accelerator facility is executed. At a standpoint of recognition on essentiality of preparation, improvement or novel technical development capable of extreme increase in capacity of the tandem accelerator facility to form COE with high uniqueness, proposal of numerous ideas and their investigations and searches were conducted. In this paper, consideration results of `beam reacceleration using tandem accelerator` were shown as follows: (1) Short life unstable nuclei formed by nuclear reaction using tandem acceleration primary beam is ionized to negative and to reaccelerate by using the same tandem accelerator. And (2) by combination of plural electrons with the tandem primary accelerated beam, numbers of charge is reduced to reaccelerate by the tandem. (G.K.)

  9. Application of point kinetic model in the study of fluidized bed reactor dynamic

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio de; Streck, Elaine E.

    1995-01-01

    In this work the dynamical behavior of the fluidized bed nuclear reactor is analysed. The main goal consist to study the effect of the acceleration term in the point kinetic equations. Numerical simulations are reported considering constant acceleration. (author). 7 refs, 4 figs

  10. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  11. Searches for new physics

    International Nuclear Information System (INIS)

    Ellis, J.; Pauss, F.

    1989-01-01

    The CERN p bar p Collider has been the first accelerator to operate in a completely new energy domain, reaching center-of-mass energies an order of magnitude larger than those previously available with the intersecting Storage Rings (ISR) at CERN, or with the Positron-Electron Tandem Ring Accelerator (PETRA) at DESY and the Positron-Electron Project (PEP) at SLAC. Naturally there has been great interest in the searches for new physics in this virgin territory. Theorists have approached these searches from either or both of two rival points of view. Either they have had an a priori prejudice as to what new physics should be searched for, and what its signatures should be, or they have tried to interpret a posteriori some experimental observations. The basic building-blocks of new physics in the 100 GeV energy domain are jets j, charged leptons l, photons γ, and missing transverse energy E T . Therefore searches have been conducted in channels which are combinations of these elements. It also shows some of the main a priori theoretical prejudices which can be explored in each of these channels. The layout of the rest of this paper is as follows. There are sections discussing each of the major prejudices: the Standard Model supersymmetry; extra gauge degrees of freedom; composite models; and other possibilities. Each of these sections contains a description of the motivations and characteristics of the new physics to be searched for, followed by a review of the searches made up to now at the CERN p bar p Collider. Finally, it summarizes the lessons to be learnt so far from searches for new physics at the CERN p bar p Collider, and previews some of the prospects for the next rounds of collider searches at CERN and FNAL

  12. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    Science.gov (United States)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  13. Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies

    Science.gov (United States)

    Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.

    2006-08-01

    The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.

  14. Final report on the LLNL compact torus acceleration project

    International Nuclear Information System (INIS)

    Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.

    1995-01-01

    In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts

  15. Intermittent search strategies

    Science.gov (United States)

    Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R.

    2011-01-01

    This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. It is first shown that intermittent search strategies are actually widely observed at various scales. At the macroscopic scale, this is, for example, the case of animals looking for food; at the microscopic scale, intermittent transport patterns are involved in a reaction pathway of DNA-binding proteins as well as in intracellular transport. Second, generic stochastic models are introduced, which show that intermittent strategies are efficient strategies that enable the minimization of search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, it is proposed that intermittent strategies could also be used in a broader context to design and accelerate search processes.

  16. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-03-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators

  17. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1986-01-01

    They discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub Theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  18. Acceleration of compact torus plasma rings in a coaxial rail-gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1985-01-01

    We discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring

  19. Particle accelerator; the Universe machine

    CERN Multimedia

    Yurkewicz, Katie

    2008-01-01

    "In summer 2008, scientists will switch on one of the largest machines in the world to search for the smallest of particle. CERN's Large Hadron Collider particle accelerator has the potential to chagne our understanding of the Universe."

  20. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  1. Search for new physics at LEP 2

    CERN Document Server

    Gross, Eilam

    1997-01-01

    The results of the search for Higgs bosons, Charginos, Neutralinos, Sleptons, Squarks and light Gravitinos with the LEP accelerator at 130-172 GeV center-of-mass energy are briefly described. Prospects for Standard Model Higgs search at higher center-of-mass energies are also given.

  2. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  3. Development of circular protons accelerator for ocular teletherapy

    International Nuclear Information System (INIS)

    Rabelo, L. A.; Campos, T.P.R.

    2011-01-01

    The proton therapy has been used for ocular tumors providing tumor control in most cases and vision preservations. The protons show high doses in depth depict lower scattering from beam than other particles, electrons and photons. The cyclotron is a type of accelerator that increases the kinetic energy of the charged particle, recirculating it on a magnetic field and crossing an accelerating electrical field. It can be used to produce radioisotopes to hospitals. The goal of this study is to investigate a unit of circular accelerator to be coupled in existing national cyclotrons to generate a proton beams suitable to ocular therapy. Herein, physical parameters are evaluable, including relativistic corrections. That result shows the viability of developing an accelerator unit to ocular proton therapy. (author)

  4. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-01-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators. (orig.) [de

  5. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    Science.gov (United States)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  6. Optimization of the Kinetic Activation-Relaxation Technique, an off-lattice and self-learning kinetic Monte-Carlo method

    International Nuclear Information System (INIS)

    Joly, Jean-François; Béland, Laurent Karim; Brommer, Peter; Mousseau, Normand; El-Mellouhi, Fedwa

    2012-01-01

    We present two major optimizations for the kinetic Activation-Relaxation Technique (k-ART), an off-lattice self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search THAT has been successfully applied to study a number of semiconducting and metallic systems. K-ART is parallelized in a non-trivial way: A master process uses several worker processes to perform independent event searches for possible events, while all bookkeeping and the actual simulation is performed by the master process. Depending on the complexity of the system studied, the parallelization scales well for tens to more than one hundred processes. For dealing with large systems, we present a near order 1 implementation. Techniques such as Verlet lists, cell decomposition and partial force calculations are implemented, and the CPU time per time step scales sublinearly with the number of particles, providing an efficient use of computational resources.

  7. AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.

    Science.gov (United States)

    Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S

    2017-09-01

    Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Recent results of studies of acceleration of compact toroids

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.

    1984-01-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10 11 gravities

  9. Nonlinear friction dynamics on polymer surface under accelerated movement

    Directory of Open Access Journals (Sweden)

    Yuuki Aita

    2017-04-01

    Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  10. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    Science.gov (United States)

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-15

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

  11. Special relativity in beam trajectory simulation in small accelerators

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Budi Santosa; Taufik; Emy Mulyani; Frida Iswinning Diah

    2012-01-01

    Calculation for trajectory simulation of particle beam in small accelerators should account special relativity effect in the beam motion, which differs between parallel and perpendicular direction to the beam velocity. For small electron beam machine of 300 keV, the effect shows up as the rest mass of electron is only 511 keV. Neglecting the effect yields wrong kinetic energy after 300 kV of dc acceleration. For a 13 MeV PET (positron emission tomography) baby cyclotron accelerating proton beam, the effect increases the proton mass by about 1.4% at the final energy. To keep the beam isochronous with the accelerating radiofrequency, a radial increase of the average magnetic field must be designed accordingly. (author)

  12. Function behavior of a gas-operated accelerator for kinetic energy projectiles

    International Nuclear Information System (INIS)

    Heine, H.

    1979-01-01

    The test facility - presented here - was designed and constructed in order to make investigations on the load case 'airplane crash'. The facility consists mainly of the accelerator on a rail track, an abutment, a control centre, and a measuring-bunker.To perform a test the two parts of the accelerator - a compression chamber and an expansion tube (diameter 613 mm) - are strongly connected after the projectile has been inserted into the tube. The chamber - closed by a steel membrane - is filled with a mixture of methane and compressed air. The mixture is ignited and expands. The membrane opens and the projectile is accelerated. The velocity range can be varied between 80 and 300 m/s.The reinforced concrete slabs that are impacted during the main test series have the dimensions of 6.00 m by 6.50 m and a maximum thickness of 90 cm. During the test the slab hangs at a cross beam so that there is no friction between the specimen and the abutment. (orig.)

  13. Magnetic monopole search experiments

    International Nuclear Information System (INIS)

    Stone, J.L.

    1986-01-01

    Experimental searches for the elusive magnetic monopole have extended over 50 years -- ever since Dirac showed that the existence of isolated magnetic charges could account for the observation of quantized electric charge. Early searches for Dirac's monopole were hampered since there was no indication of the expected monopole mass, velocity, or origin in the theory. Consequently, numerous experiments searched more or less blindly for relativistic low mass monopoles in the cosmic rays and in particle collisions at high energy accelerators. In this paper, the author reviews briefly the monopole properties which are relevant for their detection and summarize current experimental efforts using induction, ionization/excitation, and catalysis techniques

  14. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  15. Searching for Single Pulses Using Heimdall

    Science.gov (United States)

    Walsh, Gregory; Lynch, Ryan

    2018-01-01

    In radio pulsar surveys, the interstellar medium causes a frequency dependent dispersive delay of a pulsed signal across the observing band. If not corrected, this delay substantially lowers S/N and makes most pulses undetectable. The delay is proportional to an unknown dispersion measure (DM), which must be searched over with many trial values. A number of new, GPU-accelerated codes are now available to optimize this dedispersion task, and to search for transient pulsed radio emission. We report on the use of Heimdall, one such GPU-accelerated tree dedispersion utility, to search for transient radio sources in a Green Bank Telescope survey of the Cygnus Region and North Galactic Plane. The survey is carried out at central frequency of 820 MHz with a goal of finding Fast Radio Bursts, Rotating Radio Transients, young pulsars, and millisecond pulsars. We describe the the survey, data processing pipeline, and follow-up of candidate sources.

  16. Neutron inverse kinetics via Gaussian Processes

    International Nuclear Information System (INIS)

    Picca, Paolo; Furfaro, Roberto

    2012-01-01

    Highlights: ► A novel technique for the interpretation of experiments in ADS is presented. ► The technique is based on Bayesian regression, implemented via Gaussian Processes. ► GPs overcome the limits of classical methods, based on PK approximation. ► Results compares GPs and ANN performance, underlining similarities and differences. - Abstract: The paper introduces the application of Gaussian Processes (GPs) to determine the subcriticality level in accelerator-driven systems (ADSs) through the interpretation of pulsed experiment data. ADSs have peculiar kinetic properties due to their special core design. For this reason, classical – inversion techniques based on point kinetic (PK) generally fail to generate an accurate estimate of reactor subcriticality. Similarly to Artificial Neural Networks (ANNs), Gaussian Processes can be successfully trained to learn the underlying inverse neutron kinetic model and, as such, they are not limited to the model choice. Importantly, GPs are strongly rooted into the Bayes’ theorem which makes them a powerful tool for statistical inference. Here, GPs have been designed and trained on a set of kinetics models (e.g. point kinetics and multi-point kinetics) for homogeneous and heterogeneous settings. The results presented in the paper show that GPs are very efficient and accurate in predicting the reactivity for ADS-like systems. The variance computed via GPs may provide an indication on how to generate additional data as function of the desired accuracy.

  17. POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Directory of Open Access Journals (Sweden)

    Mariapompea Cutroneo

    2015-06-01

    Full Text Available Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer.

  18. Search predicts and changes patience in intertemporal choice

    Science.gov (United States)

    Johnson, Eric J.

    2017-01-01

    Intertemporal choice impacts many important outcomes, such as decisions about health, education, wealth, and the environment. However, the psychological processes underlying decisions involving outcomes at different points in time remain unclear, limiting opportunities to intervene and improve people’s patience. This research examines information-search strategies used during intertemporal choice and their impact on decisions. In experiment 1, we demonstrate that search strategies vary substantially across individuals. We subsequently identify two distinct search strategies across individuals. Comparative searchers, who compare features across options, discount future options less and are more susceptible to acceleration versus delay framing than integrative searchers, who integrate the features of an option. Experiment 2 manipulates search using an unobtrusive method to establish a causal relationship between strategy and choice, randomly assigning participants to conditions promoting either comparative or integrative search. Again, comparative search promotes greater patience than integrative search. Additionally, when participants adopt a comparative search strategy, they also exhibit greater effects of acceleration versus delay framing. Although most participants reported that the manipulation did not change their behavior, promoting comparative search decreased discounting of future rewards substantially and speeded patient choices. These findings highlight the central role that heterogeneity in psychological processes plays in shaping intertemporal choice. Importantly, these results indicate that theories that ignore variability in search strategies may be inadvertently aggregating over different subpopulations that use very different processes. The findings also inform interventions in choice architecture to increase patience and improve consumer welfare. PMID:29078303

  19. A computational study on kinetics, mechanism and thermochemistry ...

    Indian Academy of Sciences (India)

    level procedure employing the optimization at .... for a better understanding of mechanistic pathways, kinetics and thermochemistry we must rely on quantum chemical methods. The aim of this paper is to have .... The search was made along.

  20. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall

  1. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  2. FPGA Hardware Acceleration of a Phylogenetic Tree Reconstruction with Maximum Parsimony Algorithm

    OpenAIRE

    BLOCK, Henry; MARUYAMA, Tsutomu

    2017-01-01

    In this paper, we present an FPGA hardware implementation for a phylogenetic tree reconstruction with a maximum parsimony algorithm. We base our approach on a particular stochastic local search algorithm that uses the Progressive Neighborhood and the Indirect Calculation of Tree Lengths method. This method is widely used for the acceleration of the phylogenetic tree reconstruction algorithm in software. In our implementation, we define a tree structure and accelerate the search by parallel an...

  3. Kinetic k-essence ghost dark energy model

    International Nuclear Information System (INIS)

    Rozas-Fernández, Alberto

    2012-01-01

    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.

  4. Generation and transport of laser accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Peter; Boine-Frankenheim, Oliver [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kornilov, Vladimir; Spaedtke, Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  5. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  6. Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources

    Science.gov (United States)

    Komissarov, Serguei S.; Vlahakis, Nektarios; Königl, Arieh

    2010-09-01

    When a magnetically dominated superfast-magnetosonic long/soft gamma-ray burst (GRB) jet leaves the progenitor star, the external pressure support will drop and the jet may enter the regime of ballistic expansion, during which additional magnetic acceleration becomes ineffective. However, recent numerical simulations by Tchekhovskoy et al. have suggested that the transition to this regime is accompanied by a spurt of acceleration. We confirm this finding numerically and attribute the acceleration to a sideways expansion of the jet, associated with a strong magnetosonic rarefaction wave that is driven into the jet when it loses pressure support, which induces a conversion of magnetic energy into kinetic energy of bulk motion. This mechanism, which we dub rarefaction acceleration, can only operate in a relativistic outflow because in this case the total energy can still be dominated by the magnetic component even in the superfast-magnetosonic regime. We analyse this process using the equations of relativistic magnetohydrodynamics and demonstrate that it is more efficient at converting internal energy into kinetic energy when the flow is magnetized than in a purely hydrodynamic outflow, as was found numerically by Mizuno et al. We show that, just as in the case of the magnetic acceleration of a collimating jet that is confined by an external pressure distribution - the collimation-acceleration mechanism - the rarefaction-acceleration process in a magnetized jet is a consequence of the fact that the separation between neighbouring magnetic flux surfaces increases faster than their cylindrical radius. However, whereas in the case of effective collimation-acceleration the product of the jet opening angle and its Lorentz factor does not exceed ~1, the addition of the rarefaction-acceleration mechanism makes it possible for this product to become >>1, in agreement with the inference from late-time panchromatic breaks in the afterglow light curves of long/soft GRBs.

  7. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  8. Study of loading by beam of dual-resonator structure of linear electron accelerator

    International Nuclear Information System (INIS)

    Milovanov, O.S.; Smirnov, I.A.

    1988-01-01

    Loading by the beam of the accelerating structure of an Argus dual-resonator linear electron accelerator with a kinetic energy of ∼ 1 MeV and a pulsed beam current of up to 0.5 A is studied experimentally. It is shown that the conditions for stable single-frequency operation of the magnetron are disrupted and the acceleration process is cut off at certain electron-beam currents. Experimental curves of the maximum beam current and maximum electron efficiency of the Argus linear electron accelerator as functions of rf power are given

  9. Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel

    International Nuclear Information System (INIS)

    Jung, Jae-Gil; Park, June-Soo; Kim, Jiyoung; Lee, Young-Kook

    2011-01-01

    Highlights: → Carbide precipitation kinetic was fastest at 950 deg. C and accelerated by strain. → Nucleation sites for (Nb,Ti)C above 950 deg. C were mainly undissolved (Ti,Nb)(C,N). → Strain enabled (Nb,Ti)C to nucleate on all sides of (Ti,Nb)(C,N) above 950 deg. C. → Strain changed nucleation sites from (Ti,Nb)(C,N) to dislocations below 900 deg. C. → Strain also accelerated the change in particle composition to equilibrium one. - Abstract: The isothermal precipitation kinetics of carbides in both strain-free and strained austenite (γ) of a microalloyed steel were quantitatively investigated through the electrical resistivity and transmission electron microscopy. The (Nb,Ti)C carbides at the interfaces of the undissolved (Ti,Nb)(C,N) carbonitrides were observed at all temperatures in strain-free γ. However, for strain-induced precipitation, above 950 deg. C, the precipitation of (Nb,Ti)C carbides near the undissolved (Ti,Nb)(C,N) carbonitrides was predominant due to the recrystallization of strained γ. Meanwhile, the fine (Nb,Ti,V)C carbides were homogeneously precipitated in non-recrystallized γ at 850 deg. C and 900 deg. C, as well as near the undissolved (Ti,Nb)(C,N) particles. The electrical resistivity method was successfully used to quantitatively measure the isothermal precipitation kinetics of carbides in both strain-free and strained γ. The precipitation-time-temperature diagrams of the carbide in strain-free and strained γ, with nose temperatures of 950 deg. C, were generated and the precipitation kinetics were greatly accelerated by the applied strain.

  10. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    Science.gov (United States)

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2018-05-01

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  12. Search predicts and changes patience in intertemporal choice.

    Science.gov (United States)

    Reeck, Crystal; Wall, Daniel; Johnson, Eric J

    2017-11-07

    Intertemporal choice impacts many important outcomes, such as decisions about health, education, wealth, and the environment. However, the psychological processes underlying decisions involving outcomes at different points in time remain unclear, limiting opportunities to intervene and improve people's patience. This research examines information-search strategies used during intertemporal choice and their impact on decisions. In experiment 1, we demonstrate that search strategies vary substantially across individuals. We subsequently identify two distinct search strategies across individuals. Comparative searchers, who compare features across options, discount future options less and are more susceptible to acceleration versus delay framing than integrative searchers, who integrate the features of an option. Experiment 2 manipulates search using an unobtrusive method to establish a causal relationship between strategy and choice, randomly assigning participants to conditions promoting either comparative or integrative search. Again, comparative search promotes greater patience than integrative search. Additionally, when participants adopt a comparative search strategy, they also exhibit greater effects of acceleration versus delay framing. Although most participants reported that the manipulation did not change their behavior, promoting comparative search decreased discounting of future rewards substantially and speeded patient choices. These findings highlight the central role that heterogeneity in psychological processes plays in shaping intertemporal choice. Importantly, these results indicate that theories that ignore variability in search strategies may be inadvertently aggregating over different subpopulations that use very different processes. The findings also inform interventions in choice architecture to increase patience and improve consumer welfare. Copyright © 2017 the Author(s). Published by PNAS.

  13. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-01-01

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [ 14 C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [ 14 C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 (micro)g of DNA. This sensitivity may allow the method to be used for clinical applications

  14. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-12-29

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [{sup 14}C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [{sup 14}C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 {micro}g of DNA. This sensitivity may allow the method to be used for clinical applications.

  15. Results from non-accelerator experiments

    International Nuclear Information System (INIS)

    Wilkerson, J.F.

    1992-01-01

    The diversity of non-accelerator experiments is at first look both dazzling and even daunting. However, nearly all of these experiments strive to attain the same goal, to search for new physics, beyond the current Standard Model. These measurements are also unified in the fact that their results are often dominated by systematic uncertainties. This review necessarily covers only a limited subset of non-accelerator experiments, and will concentrate on the experimental areas where there has been significant recent progress. The topics reviewed include neutrino mazes, double beta decay, solar neutrino, and long-baseline neutrino oscillation measurements

  16. Kinetics of cancer: a method to test hypotheses of genetic causation

    Directory of Open Access Journals (Sweden)

    Lipkin Steven M

    2005-12-01

    Full Text Available Abstract Background Mouse studies have recently compared the age-onset patterns of cancer between different genotypes. Genes associated with earlier onset are tentatively assigned a causal role in carcinogenesis. These standard analyses ignore the great amount of information about kinetics contained in age-onset curves. We present a method for analyzing kinetics that measures quantitatively the causal role of candidate genes in cancer progression. We use our method to demonstrate a clear association between somatic mutation rates of different DNA mismatch repair (MMR genotypes and the kinetics of cancer progression. Methods Most experimental studies report age-onset curves as the fraction diagnosed with tumors at each age for each group. We use such data to estimate smoothed survival curves, then measure incidence rates at each age by the slope of the fitted curve divided by the fraction of mice that remain undiagnosed for tumors at that age. With the estimated incidence curves, we compare between different genotypes the median age of cancer onset and the acceleration of cancer, which is the rate of increase in incidence with age. Results The direction of change in somatic mutation rate between MMR genotypes predicts the direction of change in the acceleration of cancer onset in all 7 cases (p ˜ 0.008, with the same result for the association between mutation rate and the median age of onset. Conclusion Many animal experiments compare qualitatively the onset curves for different genotypes. If such experiments were designed to analyze kinetics, the research could move to the next stage in which the mechanistic consequences of particular genetic pathways are related to the dynamics of carcinogenesis. The data we analyzed here were not collected to test mechanistic and quantitative hypotheses about kinetics. Even so, a simple reanalysis revealed significant insights about how DNA repair genotypes affect separately the age of onset and the

  17. Kinetics of the deformation induced memory effect in polyamide-6

    NARCIS (Netherlands)

    Drongelen, van M.; Stroeks, A.A.M.; Peters, G.W.M.

    2015-01-01

    Nascent polyamide-6 shows a peculiar and irreversible effect; the quiescent crystallization kinetics on cooling are accelerated upon deformation in the melt, even after full relaxation of the melt. This phenomenon, known as the orientation (or better, deformation) induced memory effect of polyamide

  18. ENTROPY AT THE OUTSKIRTS OF GALAXY CLUSTERS AS IMPLICATIONS FOR COSMOLOGICAL COSMIC-RAY ACCELERATION

    International Nuclear Information System (INIS)

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2013-01-01

    Recently, gas entropy at the outskirts of galaxy clusters has attracted much attention. We propose that the entropy profiles could be used to study cosmic-ray (CR) acceleration around the clusters. If the CRs are effectively accelerated at the formation of clusters, the kinetic energy of infalling gas is consumed by the acceleration and the gas entropy should decrease. As a result, the entropy profiles become flat at the outskirts. If the acceleration is not efficient, the entropy should continue to increase outward. By comparing model predictions with X-ray observations with Suzaku, which show flat entropy profiles, we find that the CRs have carried ∼< 7% of the kinetic energy of the gas away from the clusters. Moreover, the CR pressure at the outskirts can be ∼< 40% of the total pressure. On the other hand, if the entropy profiles are not flat at the outskirts, as indicated by combined Plank and ROSAT observations, the carried energy and the CR pressure should be much smaller than the above estimations.

  19. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    Ohnesorge, W.F.; Butler, H.M.

    1974-01-01

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  20. JUMP KINETIC DETERMINANTS OF SPRINT ACCELERATION PERFORMANCE FROM STARTING BLOCKS IN MALE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Peter S. Maulder

    2006-06-01

    Full Text Available The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42} track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ, countermovement jump (CMJ, continuous straight legged jump (SLJ, single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg as a predictor of 10 m sprint performance from a block start (r = 0.79, r2 = 0.63, p<0.01, SEE = 0.04 (s, %SEE = 2.0. Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035 and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028 generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively to both result in a decrease of 0.01 s (0.5% in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively was predicted to result in a 0.01 s (0.5% reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start

  1. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  2. The Search for Stable, Massive, Elementary Particles

    International Nuclear Information System (INIS)

    Kim, Peter C.

    2001-01-01

    In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches--what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cosmic ray studies, searches for exotic particles in bulk matter and searches using astrophysical observations is included in this review

  3. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  4. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  5. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  6. Study of sorption behavior, shelf life and colour kinetics of vacuum puffed honey powder at accelerated storage conditions.

    Science.gov (United States)

    Devi, K Deepika; Paul, Sanjib Kr; Sahu, Jatindra K

    2016-05-01

    In the study, the storage life of vacuum puffed honey powder at accelerated storage environment (90 % relative humidity and 36 °C) was computed by determining the sticky-point moisture content as the critical parameter of the honey powder. The value of monolayer moisture content in the GAB model was calculated to be 0.081 kg water/kg dry solids by fitting water activity and moisture sorption data. Shelf life of the honey powder was predicted to be 222 days when the powder was packaged in aluminum foil-laminated polyethylene pouches with permeability value of 5.427X10(-8) kg/m(2)//day/Pa. Actual shelf life of honey powder was experimentally determined as 189 days and analysis of mean relative percent derivation modulus (Rd) and root mean square (RMS) established the accuracy and acceptability of the technique for the prediction of shelf life of honey powder. Overall colour deviation pattern followed first order reaction kinetics with rate constant (k1) as 0.037 day(-1). This study revealed overall colour difference of 18.1 till the end of shelf life with drastic change during initial storage period.

  7. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  8. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2017-08-10

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.

  9. Transiently disordered tails accelerate folding of globular proteins.

    Science.gov (United States)

    Mallik, Saurav; Ray, Tanaya; Kundu, Sudip

    2017-07-01

    Numerous biological proteins exhibit intrinsic disorder at their termini, which are associated with multifarious functional roles. Here, we show the surprising result that an increased percentage of terminal short transiently disordered regions with enhanced flexibility (TstDREF) is associated with accelerated folding rates of globular proteins. Evolutionary conservation of predicted disorder at TstDREFs and drastic alteration of folding rates upon point-mutations suggest critical regulatory role(s) of TstDREFs in shaping the folding kinetics. TstDREFs are associated with long-range intramolecular interactions and the percentage of native secondary structural elements physically contacted by TstDREFs exhibit another surprising positive correlation with folding kinetics. These results allow us to infer probable molecular mechanisms behind the TstDREF-mediated regulation of folding kinetics that challenge protein biochemists to assess by direct experimental testing. © 2017 Federation of European Biochemical Societies.

  10. Kinetics model of bainitic transformation with stress

    Science.gov (United States)

    Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu

    2018-01-01

    Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

  11. The Particle-in-Cell and Kinetic Simulation Software Center

    Science.gov (United States)

    Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; An, W.; Dalichaouch, T. N.; Davidson, A.; Hildebrand, L.; Joglekar, A.; May, J.; Miller, K.; Touati, M.; Xu, X. L.

    2017-10-01

    The UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) aims to support an international community of PIC and plasma kinetic software developers, users, and educators; to increase the use of this software for accelerating the rate of scientific discovery; and to be a repository of knowledge and history for PIC. We discuss progress towards making available and documenting illustrative open-source software programs and distinct production programs; developing and comparing different PIC algorithms; coordinating the development of resources for the educational use of kinetic software; and the outcomes of our first sponsored OSIRIS users workshop. We also welcome input and discussion from anyone interested in using or developing kinetic software, in obtaining access to our codes, in collaborating, in sharing their own software, or in commenting on how PICKSC can better serve the DPP community. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  12. Influence of spraying on the early hydration of accelerated cement pastes

    International Nuclear Information System (INIS)

    Salvador, Renan P.; Cavalaro, Sergio H.P.; Cano, Miguel; Figueiredo, Antonio D.

    2016-01-01

    In practice, most of the studies about the interaction between cement and accelerators is performed with hand-mixed pastes. However, in many applications mixing occurs through spraying, which may affect accelerators reactivity and the microstructure of the hardened paste. The objective of this study is to analyze how the mixing process influences the early hydration of accelerated cement pastes. Isothermal calorimetry, X-ray diffraction, thermogravimetry and SEM imaging were performed on cement pastes produced by hand-mixing and by spraying, using equivalent doses of an alkali-free and an alkaline accelerator and two types of cement. Results showed a great influence of the spraying process on the reactivity of accelerators and on the morphology of the precipitated hydrates. Variations in hydration kinetics caused by the mixing method are explained and the results obtained might have a significant repercussion on how future research on the behavior of accelerated mixes will be performed.

  13. RAPID COSMIC-RAY ACCELERATION AT PERPENDICULAR SHOCKS IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto; Kirk, John G., E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: john.kirk@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2015-08-10

    Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio u{sub s} of the shock speed to the particle speed roughly equals the ratio 1/η of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for ηu{sub s} ≈ 1, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of the diffusive shock acceleration theory. These results provide a theoretical basis for the 30 year old conjecture that a supernova exploding into the wind of a Wolf–Rayet star may accelerate protons to an energy exceeding 10{sup 15} eV.

  14. Special issue - Applying the accelerator

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    T'he CERN Courier is the international journal of high energy physics, covering current developments in and around this branch of basic science. A recurrent theme is applying the technology developed for particle accelerators, the machines which produce beams of high energy particles for physics experiments. Twentieth-century science is full of similar examples of applications derived from pure research. This special issue of the CERN Courier is given over to one theme - the applications of accelerators. Accelerator systems and facilities are normally associated with highenergy particle physics research, the search for fundamental particles and the quest to understand the physics of the Big Bang. To the layman, accelerator technology has become synonymous with large and expensive machines, exploiting the most modern technology for basic research. In reality, the range of accelerators and their applications is much broader. A vast number of accelerators, usually much smaller and operating for specific applications, create wealth and directly benefit the population, particularly in the important areas of healthcare, energy and the environment. There are well established applications in diagnostic and therapeutic medicine for research and routine clinical treatments. Accelerators and associated technologies are widely employed by industry for manufacturing and process control. In fundamental and applied research, accelerator systems are frequently used as tools. The biennial conference on the Applications of Accelerators in Industry and Research at Denton, Texas, attracts a thousand participants. This special issue of the CERN Courier includes articles on major applications, reflecting the diversity and value of accelerator technology. Under Guest Editor Dewi Lewis of Amersham International, contributions from leading international specialists with experience of the application end of the accelerator chain describe their fields of direct interest. The

  15. Special issue - Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-07-15

    T'he CERN Courier is the international journal of high energy physics, covering current developments in and around this branch of basic science. A recurrent theme is applying the technology developed for particle accelerators, the machines which produce beams of high energy particles for physics experiments. Twentieth-century science is full of similar examples of applications derived from pure research. This special issue of the CERN Courier is given over to one theme - the applications of accelerators. Accelerator systems and facilities are normally associated with highenergy particle physics research, the search for fundamental particles and the quest to understand the physics of the Big Bang. To the layman, accelerator technology has become synonymous with large and expensive machines, exploiting the most modern technology for basic research. In reality, the range of accelerators and their applications is much broader. A vast number of accelerators, usually much smaller and operating for specific applications, create wealth and directly benefit the population, particularly in the important areas of healthcare, energy and the environment. There are well established applications in diagnostic and therapeutic medicine for research and routine clinical treatments. Accelerators and associated technologies are widely employed by industry for manufacturing and process control. In fundamental and applied research, accelerator systems are frequently used as tools. The biennial conference on the Applications of Accelerators in Industry and Research at Denton, Texas, attracts a thousand participants. This special issue of the CERN Courier includes articles on major applications, reflecting the diversity and value of accelerator technology. Under Guest Editor Dewi Lewis of Amersham International, contributions from leading international specialists with experience of the application end of the accelerator chain describe their fields of direct interest. The contributions

  16. Bayesian experts in exploring reaction kinetics of transcription circuits.

    Science.gov (United States)

    Yoshida, Ryo; Saito, Masaya M; Nagao, Hiromichi; Higuchi, Tomoyuki

    2010-09-15

    Biochemical reactions in cells are made of several types of biological circuits. In current systems biology, making differential equation (DE) models simulatable in silico has been an appealing, general approach to uncover a complex world of biochemical reaction dynamics. Despite of a need for simulation-aided studies, our research field has yet provided no clear answers: how to specify kinetic values in models that are difficult to measure from experimental/theoretical analyses on biochemical kinetics. We present a novel non-parametric Bayesian approach to this problem. The key idea lies in the development of a Dirichlet process (DP) prior distribution, called Bayesian experts, which reflects substantive knowledge on reaction mechanisms inherent in given models and experimentally observable kinetic evidences to the subsequent parameter search. The DP prior identifies significant local regions of unknown parameter space before proceeding to the posterior analyses. This article reports that a Bayesian expert-inducing stochastic search can effectively explore unknown parameters of in silico transcription circuits such that solutions of DEs reproduce transcriptomic time course profiles. A sample source code is available at the URL http://daweb.ism.ac.jp/~yoshidar/lisdas/.

  17. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  18. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    Meirav, O.; Vetterli, D.; Johnson, R.R.; Sutton, R.A.L.; Walker, V.R.; Halabe, A.; Fink, D.; Middleton, R.; Klein, J.

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26 Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  19. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  20. Effect of Particle Acceleration Process on the Flare Characteristics of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    J. Astrophys. Astr. (2002) 23, 95–99. Effect of Particle Acceleration Process on the Flare Characteristics of. Blazars. S. Bhattacharyya, S. Sahayanathan & C. L. Kaul Nuclear Research Laboratory,. Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Following the kinetic equation approach, we study the flare.

  1. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    International Nuclear Information System (INIS)

    Ashour-Abdalla, Maha

    2011-01-01

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R E to 23 R E in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R E and x = -15 R E . In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x ∼-10 R E ) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  2. Overview of nonlinear theory of kinetically driven instabilities

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1998-09-01

    An overview is presented of the theory for the nonlinear behavior of instabilities driven by the resonant wave particle interaction. The approach should be applicable to a wide variety of kinetic systems in magnetic fusion devices and accelerators. Here the authors emphasize application to Alfven were driven instability, and the principles of the theory are used to interpret experimental data

  3. Non-SUSY Searches at the Tevatron

    International Nuclear Information System (INIS)

    Strologas, John

    2011-01-01

    We present recent results from searches for new physics beyond supersymmetry performed at the Tevatron accelerator at Fermilab. The CDF and D0 analyses presented here utilized data of integrated luminosity up to 6 fb -1 . We cover leptonic and bosonic resonances interpreted in the Randall-Sundrum graviton and new-boson models, rare final states, and the search for vector-like quarks. The search for new phenomena beyond the weak-scale supersymmetry is a vital part of the Fermilab program. Both CDF and D0 experiments at the Tevatron collider actively look for signals not expected by the standard model (SM) or minimal supersymmetric models. The searches can be sorted in three categories: (a) searches for generic resonances that can be interpreted in several new-physics models; (b) searches for exotic combinations of final-state objects or abnormal kinematics (not necessarily predicted by current theories); and (c) model-dependent searches that test a particular theory. We present here latest results from all these categories: searches for new dilepton and diboson resonances (interpreted as gravitons and new gauge bosons), searches for anomalous γ + E T + X production, and searches for vector-like quarks.

  4. Searching for heavy photons in the HPS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Sho [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-11-01

    The Heavy Photon Search (HPS) is a new experiment at Jefferson Lab that searches for a massive U(1) vector boson (known as a heavy photon or A′) in the MeV-GeV mass range and coupling weakly to ordinary matter through a kinetic mixing interaction. The HPS experiment seeks to produce heavy photons by electron bremsstrahlung on a fixed target, is sensitive to heavy photon decays to e+e-, and targets the range in heavy photon mass m_A' ~ 20 - 600 MeV, and kinetic mixing strength epsilon^2 ~ 10^-5 - 10^−10. HPS searches for heavy photons using two signatures: a narrow mass resonance and displaced vertices. This dissertation presents the theoretical and experimental motivations for a heavy photon, the design and operation of the HPS experiment, and the displaced vertex search. The data used in this dissertation is the unblinded fraction of the 2015 HPS run, for the period of operation where the HPS silicon vertex tracker (SVT) was operated at its nominal position. This data was recorded from May 13 to May 18, 2015, at a beam energy of 1.056 GeV and a nominal beam current of 50 nA. The integrated luminosity is 119 nb^-1, which is equivalent to 0.172 days of ideal running at the nominal beam current. This dissertation presents results (signal significance and upper limits) from the displaced vertex search in the mass range m_A' ~ 20 - 60 MeV, and kinetic mixing strength epsilon^2 ~ 2 × 10^-8 - 10^-10. This search does not have sufficient sensitivity to exclude a canonical heavy photon at any combination of m_A' and epsilon^2. The strictest limit achieved in this analysis on the production of a particle that decays like a heavy photon is 115 times the expected production cross-section for a heavy photon. Factors limiting the sensitivity of this analysis are discussed. Projections of HPSperformance with the full 2015 data set, and with planned improvements to theanalysis, are presented. Comparisons are also made to earlier reach estimates.

  5. Fast Structural Search in Phylogenetic Databases

    Directory of Open Access Journals (Sweden)

    William H. Piel

    2005-01-01

    Full Text Available As the size of phylogenetic databases grows, the need for efficiently searching these databases arises. Thanks to previous and ongoing research, searching by attribute value and by text has become commonplace in these databases. However, searching by topological or physical structure, especially for large databases and especially for approximate matches, is still an art. We propose structural search techniques that, given a query or pattern tree P and a database of phylogenies D, find trees in D that are sufficiently close to P . The “closeness” is a measure of the topological relationships in P that are found to be the same or similar in a tree D in D. We develop a filtering technique that accelerates searches and present algorithms for rooted and unrooted trees where the trees can be weighted or unweighted. Experimental results on comparing the similarity measure with existing tree metrics and on evaluating the efficiency of the search techniques demonstrate that the proposed approach is promising

  6. Search for dark photons using data from CRESST-II Phase 2

    Science.gov (United States)

    Gütlein, A.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gorla, P.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Mancuso, M.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Trinh Thi, H. H.; Türkoǧlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2017-09-01

    Understanding the nature and origin of dark matter is one of the most important challenges for modern particle physics. During the previous decade the sensitivities of direct dark matter searches have improved by several orders of magnitude. These experiments focus their work mainly on the search for dark-matter particles interacting with nuclei (e.g. Weakly Interacting Massive Particles, WIMPs). However, there exists a large variety of different candidates for dark-matter particles. One of these candidates, the so-called dark photon, is a long-lived vector boson with a kinetic mixing to the standard-model photon. In this work we present the preliminary results of our search for dark photons. Using data from the direct dark matter search CRESST-II Phase 2 we can improve the existing constraints for the kinetic mixing for dark-photon masses between 0.3 and 0.5 keV/c2. In addition, we also present projected sensitivities for the next phases of the CRESST-III experiment showing great potential to improve the sensitivity for dark-photon masses below 1 keV.

  7. In-Storage Embedded Accelerator for Sparse Pattern Processing

    OpenAIRE

    Jun, Sang-Woo; Nguyen, Huy T.; Gadepally, Vijay N.; Arvind

    2016-01-01

    We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fracti...

  8. ELYSE, a new picosecond electron accelerator at Orsay

    International Nuclear Information System (INIS)

    Belloni, J.D.; Gaillard, M.; Monard, H.; Larbre, J.-P.; Gobert, F.; Mostafavi, M.; Lampre, I.; Marignier, J.-L.

    2003-01-01

    ELYSE is a new instrument allowing to study fast kinetics processes at picosecond range by the complementary techniques of pulse radiolysis and laser photochemistry which was installed by the Laboratoire de Chimie Physique, University Paris-Sud, at Orsay. It was designed and constructed by the Linear Accelerator Laboratory, Orsay. The accelerator is a RF photocathode electron gun type which will deliver electron pulses of less than 5 ps FWHM. The Cs 2 Te cathode was chosen because of its high efficiency and long life time. Photoelectrons are generated by a picosecond synchronized laser system with a normal incidence. The charge per pulse is 1 nC with a dark current less than 1 % and a repetition frequency 1 to 50 Hz. Other detailed specifications of the accelerator, of the laser and of the optical spectroscopy detection set-up are described

  9. A New Paradigm for Flare Particle Acceleration

    Science.gov (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  10. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  11. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  12. Current Fragmentation and Particle Acceleration in Solar Flares

    Science.gov (United States)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  13. Application of accelerator mass spectrometry in aluminum metabolism studies

    Energy Technology Data Exchange (ETDEWEB)

    Meirav, O; Vetterli, D; Johnson, R R [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Sutton, R A.L.; Walker, V R; Halabe, A [British Columbia U.iv., Vancouver, BC (Canada). Dept. of Medicine; Fink, D; Middleton, R; Klein, J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer`s disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope {sup 26}Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.).

  14. Kinetic Simulations of Type II Radio Burst Emission Processes

    Science.gov (United States)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  15. Application of Extreme Learning Machines to inverse neutron kinetics

    International Nuclear Information System (INIS)

    Picca, Paolo; Furfaro, Roberto

    2017-01-01

    Highlights: • The paper applies the Extreme Learning Machines (ELMs) to inverse reactor problems. • Multi-group transport model is used for the inversion as opposed to point kinetics. • ELMs are compared against Artificial Neural Networks (ANNs). • Various options are tested to improve the reliability of the estimation. • Results highlight the potential of the ELM approach. - Abstract: The paper presents the application of Extreme Leaning Machines (ELMs) for inverse reactor kinetic applications. ELMs were proposed by Huang and co-workers (2004, 2006a,b, 2015), which showed their enhances capabilities in terms of training speed and generalization with respect to classical Artificial Neural Networks (ANNs). ELMs are here implemented for reactivity determination as an alternative to ANNs (e.g. Picca et al. (2008)) and Gaussian Processes (Picca and Furfaro, 2012). After a review of the main features of ELMs, their application to inverse kinetic problems is proposed. The ELMs performance is tested on a typical accelerator drive system configuration (Yalina reactor) and the inversion is carried out on an accurate kinetic model (multi-group transport).

  16. Addition effect of erbium(III) trifluoromethanesulfonate in the homopolymerization kinetics of a DGEBA resin

    International Nuclear Information System (INIS)

    Garcia, S.J.; Ramis, X.; Serra, A.; Suay, J.

    2006-01-01

    Solid bisphenol-A epoxy resin of medium molecular weight was cured using a Lewis acid initiator (erbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the deg.ree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional E value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The 'nucleation and growth' Avrami kinetic model A 3/2 has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction having higher influence when low temperatures were applied

  17. Optimal intermittent search strategies

    International Nuclear Information System (INIS)

    Rojo, F; Budde, C E; Wio, H S

    2009-01-01

    We study the search kinetics of a single fixed target by a set of searchers performing an intermittent random walk, jumping between different internal states. Exploiting concepts of multi-state and continuous-time random walks we have calculated the survival probability of a target up to time t, and have 'optimized' (minimized) it with regard to the transition probability among internal states. Our model shows that intermittent strategies always improve target detection, even for simple diffusion states of motion

  18. Very high pulse-energy accelerators

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1989-01-01

    The dominant trend in the development of pulsed power accelerator technology over the last decade has been towards higher power and shorter pulse widths. Limitations in high voltage, high current switch performance, and in power flow through vacuum insulator housings led to the development of highly modular designs. This modular approach requires precise synchronization of the various modules and efficient methods of combining the power from these modules to drive a common load. The need to drive very low impedance loads led to effective ways to combine these modules in parallel. The Particle Beam Fusion Accelerator I (PBFA I) and Saturn are representative of these designs. Hermes III represent a new approach towards the efficient generation of higher voltages. It is designed to drive a 22-MV, 730-kA, 40-ns electron beam diode and combines conventional, modular pulsed power technology with linear induction accelerator concepts. High-power induction accelerator cavities are combined with voltage addition along a MITL to generate the desired output. This design differs from a conventional linac in that the voltages are added by the MITL flow rather than by a drifting beam that gains kinetic energy at each stage. This design is a major extrapolation of previous state-of-the-art technology represented by the injector module of the Advanced Test Accelerator and has proven to be efficient and reliable. The design and performance of Hermes III are presented together with a discussion of the application of this technology to the light ion beam inertial confinement fusion program. 18 refs., 9 figs

  19. In vivo cell kinetic measurements in a randomized trial of continuous hyperfractionated accelerated radiotherapy with or without mitomycin C in head-and-neck cancer

    International Nuclear Information System (INIS)

    Dobrowsky, Werner; Dobrowsky, Eva; Wilson, George D.

    2003-01-01

    Purpose: Tumor cell repopulation is still considered to be a major cause of failure in radiotherapy. In this study, we investigated the influence of cell kinetic parameters on the outcome of patients treated in a randomized trial of accelerated fractionation, with or without mitomycin C, vs. conventional fractionation. Methods and Materials: Sixty-two patients were studied using administration of bromodeoxyuridine (BrdUrd), and cell kinetic parameters were measured using flow cytometry. The patients were treated with either 70 Gy for 7 weeks or 55.3 Gy for 17 continuous days (V-CHART) with or without 20 mg/m 2 mitomycin C on day 5. Results: The potential doubling time (Tpot) and labeling index (LI) failed to provide any prognostic information with regard to local control or survival. However, the duration of the S phase (Ts) revealed patients whose tumors had a long Ts had significantly worse local control (p = 0.028) and survival (p = 0.034) irrespective of treatment. A similar trend was evident within the different treatment arms particularly associated with overall survival. Conclusions: The Ts values of head-and-neck squamous cell cancers provided prognostic information that predicted clinical outcome irrespective of treatment schedule in this study. This neglected parameter of the Tpot method might provide information related to redistribution of cells during fractionated radiotherapy

  20. Transformation kinetics of selected steel grades after plastic deformation

    Directory of Open Access Journals (Sweden)

    R. Kawulok

    2016-07-01

    Full Text Available The aim of this article was to assess the impact of previous plastic deformation on the kinetics of transformations of four selected steels. The research was conducted with use of the universal plastometer GLEEBLE 3800, when Continuous Cooling Transformation (CCT and Deformation Continuous Cooling Transformation (DCCT diagrams of selected steels were constructed on the basis of dilatometric tests. The research confirmed that the strain accelerates the particularly the transformations controlled by diffusion. Bainitic transformation was accelerated in three of the four steels. In the case of martensitic transformation the effect of the previous deformation was relatively small, but with clearly discernible trend.

  1. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  2. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  3. Dynamic analysis of an accelerator-based subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1997-01-01

    There has been a recent revival of interest in accelerator-driven subcritical fluid-fueled systems for radioactive waste management. This motivates the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetic study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional blocks: A discrete ordinates model is used to calculate the flux distribution for the source-driven system (DORT); A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity (ABCcore); A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model (ABCvip); A transient driver simulates system transients and records simulation data (ABCtrans). Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. 11 refs., 6 figs., 1 tab

  4. The Kinetic Chain Revisited: New Concepts on Throwing Mechanics and Injury.

    Science.gov (United States)

    Chu, Samuel K; Jayabalan, Prakash; Kibler, W Ben; Press, Joel

    2016-03-01

    The overhead throwing motion is a complex activity that is achieved through activation of the kinetic chain. The kinetic chain refers to the linkage of multiple segments of the body that allows for transfer of forces and motion. The lower extremities and core provide a base of support, generating energy that is transferred eventually through the throwing arm and hand, resulting in release of the ball. The kinetic chain requires optimal anatomy, physiology, and mechanics and is involved in all 6 phases of overhead throwing: windup, stride, arm cocking, acceleration, deceleration, and follow-through. Breaks or deficits in the kinetic chain can lead to injury or decreased performance. Through an understanding of the mechanics and pathomechanics seen in each phase of throwing, the clinician can better evaluate and screen for potential kinetic chain deficits in the overhead throwing athlete. The purpose of this article is to review the biomechanics of the overhead throwing motion, the role of the kinetic chain in throwing, and the clinical evaluation and management of abnormal throwing mechanics and related injuries. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  6. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Science.gov (United States)

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  7. NONTHERMALLY DOMINATED ELECTRON ACCELERATION DURING MAGNETIC RECONNECTION IN A LOW-β PLASMA

    International Nuclear Information System (INIS)

    Li, Xiaocan; Li, Gang; Guo, Fan; Li, Hui

    2015-01-01

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. The nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the  highly efficient electron acceleration in solar flares and other astrophysical systems

  8. Protein search for multiple targets on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Martin [Johannes Gutenberg University, Mainz 55122 (Germany); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Kochugaeva, Maria [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Kolomeisky, Anatoly B., E-mail: tolya@rice.edu [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-09-14

    Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations.

  9. AND PI (π) FROM THE KINETIC MOLECULAR THEORY OF MATTER

    African Journals Online (AJOL)

    DJFLEX

    This paper considers the possible physical origins of the important natural constants epsilon (e = 2.7182 ) and pi (π = 3.1415 ). They are suggested to originate from the kinetic molecular nature of matter. Epsilon (e) is suggested to be the ratio of the driving force on a randomly moving particle accelerated with a quantum of ...

  10. Experimental investigation of magnetoplasma acceleration of dielectric projectiles in a rail gun

    International Nuclear Information System (INIS)

    Kondratenko, M.M.; Lebedev, E.F.; Ostashev, V.E.; Safonov, V.I.; Fortov, V.E.; Ul'yanov, A.V.

    1988-01-01

    The authors present results of experimental investigations of the process of a nondestructive electrodynamic acceleration of dielectric projectiles in a magnetoplasma accelerator of rail gun type upon discharge of the electrical energy of the capacitor bank. They describe the phenomenon of decay of the plasma driving piston. They describe the causes of this phenomenon and the practical steps to avoid it. In a specific facility regimes have been achieved with electrodynamic acceleration of projectiles without plasma piston decay at working currents of up to 0.7 MA. In acceleration of projectiles of mass ∼ 1 g a speed of 6 km/sec has been attained and reproduced. The facility constructed can be used efficiently in experiments to investigate the thermophysical properties of substances using dynamic methods as a means of creating intense kinetic energy pulses

  11. Optimal intermittent search strategies

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, F; Budde, C E [FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Wio, H S [Instituto de Fisica de Cantabria, Universidad de Cantabria and CSIC E-39005 Santander (Spain)

    2009-03-27

    We study the search kinetics of a single fixed target by a set of searchers performing an intermittent random walk, jumping between different internal states. Exploiting concepts of multi-state and continuous-time random walks we have calculated the survival probability of a target up to time t, and have 'optimized' (minimized) it with regard to the transition probability among internal states. Our model shows that intermittent strategies always improve target detection, even for simple diffusion states of motion.

  12. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  13. Addition effect of erbium(III) trifluoromethanesulfonate in the homopolymerization kinetics of a DGEBA resin

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.J. [Area de Ciencia de los Materiales, Departament d' Enginyeria de Sistemes Industrials i Disseny, Universitat Jaume I, Avda. Vicent Sos Baynat s/n, 12071 Castellon (Spain)]. E-mail: espallar@sg.uji.es; Ramis, X. [Laboratori de Termodinamica, Escola Tecnica Superior Enginyeria Industrial Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Serra, A. [Departament de Q. Analitica i Q. Organica, Facultat de Quimica, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona (Spain); Suay, J. [Centro de Biomateriales, Universitat Politecnica de Valencia, Camino de Vera s/n, E-46071 Valencia (Spain)

    2006-02-01

    Solid bisphenol-A epoxy resin of medium molecular weight was cured using a Lewis acid initiator (erbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the deg.ree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional E value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The 'nucleation and growth' Avrami kinetic model A {sub 3/2} has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction having higher influence when low temperatures were applied.

  14. Strange quark matter in the Universe and accelerator nuclear beams

    International Nuclear Information System (INIS)

    Okonov, Eh.

    1995-01-01

    An almost symmetric mixture of u, d and s-quarks - Strange Quark Matter (SQM) is strongly argued to be the ground and absolutely stable of the matter. Astrophysical objects, supposed to be the SQM states, could be formed as the result of the Big Bang (in the early Universe) and the conversion of neutron stars into strange ones. Such objects are considered to be favourable candidates as black holes. The unique possibility to produce the SQM under terrestrial conditions (at accelerator laboratories) are violent relativistic nucleus-nucleus collisions so called 'little big bang'. The expected singulares of SQM are reviewed which could be revealed from astrophysical observations of peculiarities of large SQM objects as well as from accelerator experiments with searching smaller SQM states including the simplest one - metastable six-quark H dihyperon. The first results of the Dubna search experiments, with considerable heating of matter and formation a dense strangeness abundant fireball (mixed phase?) in central nuclear collisions, is presented. Under these favourable conditions a candidate for H dihyperon is observed and an upper limit of production cross sections of this SQM state is estimated. Some prospects and advantages of further searches for light SQM states, using the JINR new superconducting accelerator - Nuclotron with energy 5-6 GeV per nucleon, are briefly outlined. 19 refs., 7 figs

  15. Reducing longitudinal emittance growth in RFQ accelerators

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-08-01

    Bunching and capture of a monochromatic beam into an rf bucket inevitably lead to substantial emittance growth through the mechanisms of filamentation and non-adiabatic variation of parameters. We describe a three step strategy for minimizing this growth, based on a clear understanding of the non-linear beam dynamics, and apply to acceleration of heavy ions with Z/A = 1/60 (and initial kinetic energy 60 keV/u) in a radio frequency quadrupole (RFQ) operating at 25 MHz. We also describe a scheme, to further reduce the emittance, based upon the use of an external RFQ-type prebuncher before the main accelerator. The external unit permits the bunching voltage to be reduced, to inject into a moving bucket, and to reduce the structure length. (author). 7 refs., 6 figs

  16. Space charge effect in an accelerated beam

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2008-01-01

    Full Text Available It is usually assumed that the space charge effects in relativistic beams scale with the energy of the beam as γ^{-2}, where γ is the relativistic factor. We show that for a beam accelerated in the longitudinal direction there is an additional space charge effect in free space that scales as E/γ, where E is the accelerating field. This field has the same origin as the “electromagnetic mass of the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic energy of the beam and the energy of the electromagnetic field of the beam. We then consider the effect of this field on a beam generated in an rf gun and calculate the energy spread produced by this field in the beam.

  17. Laser acceleration in vacuum with an open iris-loaded waveguide

    International Nuclear Information System (INIS)

    Xie, Ming

    1997-05-01

    An open iris-loaded waveguide structure is considered for laser acceleration of highly relativistic particle in vacuum. Complete characterization of all eigenmodes are given in analytical form for the structure. In particular the dominant radially polarized TM mode is evaluated in detail for laser acceleration. The entire parameter space is searched and it is found that below the laser damage threshold of the structure an acceleration gradient around 1 GV/m can be obtained over a phase slippage length of 10s of cm with TWs laser in the wavelength range from 1 to 10 μm

  18. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Michael James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the very few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.

  19. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    Science.gov (United States)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  20. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    International Nuclear Information System (INIS)

    Ekdahl, Carl A.; Abeyta, Epifanio O.; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A.; Garnett, Robert; Harrison, James F.; Johnson, Jeffrey B.; Jacquez, Edward B.; Mccuistian, Brian T.; Montoya, Nicholas A.; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M.; Seitz, Gerald; Schulze, Martin; Bender, Howard A.; Broste, William B.; Carlson, Carl A.; Frayer, Daniel K.; Johnson, Douglas E.; Tom, C.Y.; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu-Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C.; Watson, Jim; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  1. Serendipity in dark photon searches

    Science.gov (United States)

    Ilten, Philip; Soreq, Yotam; Williams, Mike; Xue, Wei

    2018-06-01

    Searches for dark photons provide serendipitous discovery potential for other types of vector particles. We develop a framework for recasting dark photon searches to obtain constraints on more general theories, which includes a data-driven method for determining hadronic decay rates. We demonstrate our approach by deriving constraints on a vector that couples to the B-L current, a leptophobic B boson that couples directly to baryon number and to leptons via B- γ kinetic mixing, and on a vector that mediates a protophobic force. Our approach can easily be generalized to any massive gauge boson with vector couplings to the Standard Model fermions, and software to perform any such recasting is provided at https://gitlab.com/philten/darkcast https://gitlab.com/philten/darkcast" TargetType="URL"/> .

  2. Dark-photon search using data from CRESST-II Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Bauer, P.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Mancuso, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Universidade de Coimbra, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Gorla, P.; Pagliarone, C. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Canonica, L. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Defay, X.; Feilitzsch, F. v.; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Schoenert, S.; Thi, H.H.T.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Erb, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Guetlein, A.; Kluck, H.; Puig, R.; Schieck, J.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Vienna (Austria); Atominstitut, Vienna University of Technology, Vienna (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Reindl, F. [Max-Planck-Institut fuer Physik, Munich (Germany); INFN-Sezione di Roma, Rome (Italy); Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); GSSI-Gran Sasso Science Institute, L' Aquila (Italy)

    2017-05-15

    Identifying the nature and origin of dark matter is one of the major challenges for modern astro and particle physics. Direct dark-matter searches aim at an observation of dark-matter particles interacting within detectors. The focus of several such searches is on interactions with nuclei as provided e.g. by weakly interacting massive particles. However, there is a variety of dark-matter candidates favoring interactions with electrons rather than with nuclei. One example are dark photons, i.e., long-lived vector particles with a kinetic mixing to standard-model photons. In this work we present constraints on this kinetic mixing based on data from CRESST-II Phase 2 corresponding to an exposure before cuts of 52 kg-days. These constraints improve the existing ones for dark-photon masses between 0.3 and 0.7 keV/c{sup 2}. (orig.)

  3. Effect of austenitization conditions on kinetics of isothermal transformation of austenite of structural steels

    International Nuclear Information System (INIS)

    Konopleva, E.V.; Bayazitov, V.M.; Abramov, O.V.; Kozlova, A.G.

    1987-01-01

    Effect of austenization of kinetics of pearlite and bainite transformations for steels with different carbon content differing by alloying character and degree has been investigated. Austenization temperature increase is shown to leads to retardation of ferrite-pearlite transformation in low- and medium-carbon alloyed steels. Step-like holding in the region of austenite stable state (850, 950 deg) after high-temperature heating (1100 deg C) increases the rate of transformation partially recovering its kinetics and decomposition velocity after low-temperature heating in steels alloyed advantageously with carbide-forming elements (08Kh2G2F, 30Kh3) and does not affect kinetics in the 35Kh, 30KhGSN2A, 45N5 steels. Increase of heating temperature and growth of an austenite grain cause considerable acceleration of bainite transformation, increase of the temperaure of bainite transformation beginning and increase of the transformation amplitude in the 08Kh2G2F, 30Kh3 steels and affect weakly kinetics in steels with mixed alloying (30KhGSN2A) or low-alloy one (35Kh). The bainite transformation rate in the 45N5 steelite does not depend on austenization. The effect of additional acceleration of bainite transformation as a result holding after high-temperature heating in those steels, where activation of transformation occurs with increase of heating temperature

  4. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch

    2016-05-11

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  5. Crystallization kinetics of a-Se, part 4: thin films

    Science.gov (United States)

    Svoboda, Roman; Gutwirth, Jan; Málek, Jiří

    2014-09-01

    Differential scanning calorimetry was used to study the crystallization behaviour of selenium thin films in dependence on film thickness and deposition rate. In the current work, which is the fourth in a sequence of articles dealing with crystallization kinetics of a-Se, the non-isothermal crystallization kinetics was described in terms of the Johnson-Mehl-Avrami nucleation-growth model. Two-dimensional crystallite growth, consistent with the idea of sterically restricted crystallization in a thin layer, was confirmed for all data. It was found that neither the film thickness (tested within the 100-2350 nm range) nor the deposition rate appears to have any significant influence on the crystallization kinetics. However, the higher amount of intrinsic defects possibly produced by a higher deposition rate seems to accelerate the crystallization, shifting it towards lower temperatures. Very good correlation between the results obtained for thin films and those for fine powders was found. Based on the obtained results, interpretations of relevant literature data were made.

  6. Kinetic study on UV-absorber photodegradation under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bubev, Emil, E-mail: ebubev@my.uctm.edu [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria); Georgiev, Anton [University of Chemical Technology and Metallurgy, Department of Organic Chemistry (Bulgaria); Machkova, Maria [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria)

    2016-09-12

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV–vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  7. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  8. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  9. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  10. Electron acceleration by wave turbulence in a magnetized plasma

    Science.gov (United States)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  11. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  12. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  13. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Directory of Open Access Journals (Sweden)

    Ahmad Tamimi

    Full Text Available Profile Hidden Markov Model (Profile-HMM is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  14. Implications of accelerator experiments for models of the Kolar Gold Mine particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, K V.L. [Tata Inst. of Fundamental Research, Bombay (India); Wolfenstein, L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-03-01

    The significance of accelerator searches for the new particles discovered in the Kolar Gold Mine experiments depends on the characteristics of the models of these particles. Models that could give cosmic ray neutrinos a great advantage over accelerator neutrinos are presented. The new particles should be produced in e/sup +/e/sup -/ colliding beams, but the cross-section is model dependent.

  15. CAS CERN Accelerator School. Measurement and alignment of accelerator and detector magnets. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1998-01-01

    These proceedings present the lectures given at the eleventh specialised course organised by the CERN Accelerator School (CAS), the topic this time being 'Measurement and Alignment of Accelerator and Detector Magnets'. A similar course was already presented at Montreux, Switzerland in 1992 and its proceedings published as CERN 92-05. However recent progress in the field, especially in the use of superconducting magnets, has been so rapid that a revised course had become imperative. The lectures start with basic magnet theory and the motivation for magnet measurements followed by a review of superconducting magnets and their field dynamics. After a review of measurement methods, the details of search and harmonic coils, magnetic resonance techniques and Hall generators are given followed by methods to minimise errors in mechanical equipment, series production and detector magnet measurements. Turning to magnet metrology and alignment, first data quality control is explained followed by the setting of reference targets, and the alignment methods for accelerators and experiments including alignment by feedback. Finally seminars are presented on the biological effects of magnetic fields and on superconducting magnet fabrication and quality control. (orig.)

  16. Macroparticle acceleration from a modified mather-type plasma gun

    International Nuclear Information System (INIS)

    Hou, W.S.; Yeh, T.R.; Wen, M.; Yeh, C.K.; Shang, D.J.

    1987-01-01

    The use of electromagnetic force to accelerate projectiles of a few grams in a plasma-driven railgun device was described recently. Since then, subsequent research along this development has been exploited at many laboratories. As part of the plasma focus research project, an effort of modified Mather-type plasma gun has also been constructed at the Institute of Nuclear Energy Research (INER) for impact studies. The idea takes the advantage of accelerating plasmas with JxB force toward the muzzle of the gun and then strikes the projecticle to transfer their kinetic energy. Preliminary results indicate that the projecticle velocity of 1.1 km/sec can be achieved routinely with a 1.2-gram stainless steel projectile

  17. Laminar flame properties and flame acceleration prediction of hydrogen-methane mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Coudoro, K. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Chaumeix, N. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France); Bentaib, A. [Inst. de Radioprotection et de Surete Nucleaire, DSR/SAGR, Fontenay-aux-Roses (France); Paillard, C-E. [Inst. de Combustion, Aerothermique, Reactivite et Environnement CNRS Orleans (France)

    2011-07-01

    The combustion of a binary mixture of methane and hydrogen has been studied using 2 different experimental setups: the spherical bomb to investigate the fundamental flame properties of this mixture with air, initially at 100 kPa, at different initial temperatures (300 - 363 K) and for a wide range of equivalence ratios (0.8 - 1.4); ENACCEF to investigate the flame acceleration phenomena in smooth tube for mixtures initially at ambient conditions and for equivalence ratios ranging between 0.57 and 0.84. A detailed kinetic mechanism has been used to derive the activation energies needed for the flame acceleration analysis. (author)

  18. COBRA: a Bayesian approach to pulsar searching

    Science.gov (United States)

    Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.

    2018-02-01

    We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.

  19. Searching for Heavy Photons with Detached Verices in the Heavy Photon Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Szumila-Vance, Holly [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-08-01

    The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its first data during the spring 2015 engineering run using a 1 GeV electron beam incident on a tungsten target and its second data in the spring of 2016 at a beam energy of 2.3 GeV. The 2015 run obtained two days of production data that was used for the first physics results. The analysis of the data was conducted as a blinded analysis by tuning cuts on 10% of the data. This dissertation discusses the displaced vertex search for heavy photons in the 2015 engineering run. It describes the theoretical motivation for looking for heavy photons and provides an overview of the HPS experimental design and performance. The performance details of the experiment are primarily derived from the 2015 engineering run with some discussion from the higher energy running in 2016. This dissertation further discusses the cuts used to optimize the displaced vertex search and the results of the search. The displaced vertex search did not set a limit on the heavy photon but did validate the methodology for conducting the search. Finally, we used the full data set to make projections and guide future analyses.

  20. NA64 Search for Dark Photons

    CERN Document Server

    Shiakas, Christos

    2017-01-01

    The NA64 experiment, known as P348 before official approval, was proposed to the CERN SPSC on January 2014 with main goal the search for the following decay modes A′ → invisible A′ → e−e+ (1) In March 2016 P348 was granted approval by the CERN Research Board and received the title NA64. Since having been promoted, the experiment has been conducting the searches the searches for the processes mentioned above at the CERN SPS. NA64 is a fixed target experiment which utilizes the active beam dump. The detection of rare processes is based on the missing energy techniques. Such techniques are used for particles whose interaction with the detector is very small, so that they escape the detection and carry away some energy. A significant missing energy in the experiment means that such particles are produced. The method of the search for the A′ → invisible decay is as follows. If the A′ exists it could be produced via the kinetic mixing with bremsstrahlung photons in the reaction of high-energy elec...

  1. Choose Wisely: Static or Kinetic Friction--The Power of Dimensionless Plots

    Science.gov (United States)

    Ludwigsen, Daniel; Svinarich, Kathryn

    2009-01-01

    Consider a problem of sliding blocks, one stacked atop the other, resting on a frictionless table. If the bottom block is pulled horizontally, nature makes a choice: if the applied force is small, static friction between the blocks accelerates the blocks together, but with a large force the blocks slide apart. In that case, kinetic friction still…

  2. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1985-September 30, 1985

    International Nuclear Information System (INIS)

    1985-10-01

    The heavy ion accelerator is profiled. Energy losses, currents, kinetic energy, beam optics, pulse models and mechanical tolerances are included in the discussion. In addition, computational efforts and an energy analyzer are described. 37 refs., 27 figs

  3. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Science.gov (United States)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas; Anastasiadis, Anastasios

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1-2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker-Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  4. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1–2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker–Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  5. Accelerated Peer-Review Journal Usage Technique for Undergraduates

    Science.gov (United States)

    Wallace, J. D.

    2008-01-01

    The internet has given undergraduate students ever-increasing access to academic journals via search engines and online databases. However, students typically do not have the ability to use these journals effectively. This often poses a dilemma for instructors. The accelerated peer-review journal usage (APJU) technique provides a way for…

  6. VEDs for charged particle accelerators: Indian scenario

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2012-01-01

    In the initial times after their invention, the charged particle accelerators have, primarily, been used for fundamental studies on nuclei and atoms. From the first modern accelerator, the cathode ray tube, used by J.J. Thomson for the discovery of electron, very recently the gigantic 27 km circumference Large Hadron Collider (LHC) is operational in the search of Higg's boson and related physics issues. Particle accelerators have emerged as powerful microscopes for investigating the finest details of cells, genes, molecules, atoms, protons, neutrons, muons, electrons, quarks and, possibly, still undiscovered even more fundamental constituents of the universe, such as dark matter and dark energy. Several noble prize winning discoveries have been made using accelerators. Accelerators are now being used in a wide area of industrial and medical applications. They are used for the production of radioisotopes for medical imaging, cancer therapy, food sterilization, treatment of waste water, sterilization of medical equipment, material modification, mass spectroscopy, cargo scanning, fabrication of semiconductors etc. Ongoing effort towards the development of accelerators with megawatt beam power is showing hope for a cleaner source of nuclear energy and treatment of nuclear waste. Several tens of thousands of accelerators are presently operational in the world for basic research and applications. Development of new accelerators has several times been driven by new technologies and materials and sometimes they have driven the technological developments towards cutting edge. Some examples are ultra-high vacuum in large volumes, superfluid helium in cryogenics, cryocoolers, superconducting magnets and RF cavities, high power vacuum electronic devices, global control systems, superfast computing and communication networks, giant data storage/processing systems etc. India has been pursuing a fairly robust programme of accelerator development at various institutions. It

  7. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  8. SABIO-RK: an updated resource for manually curated biochemical reaction kinetics

    Science.gov (United States)

    Rey, Maja; Weidemann, Andreas; Kania, Renate; Müller, Wolfgang

    2018-01-01

    Abstract SABIO-RK (http://sabiork.h-its.org/) is a manually curated database containing data about biochemical reactions and their reaction kinetics. The data are primarily extracted from scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions and is not restricted to any organism class. The data are made available to the public by a web-based search interface and by web services for programmatic access. In this update we describe major improvements and extensions of SABIO-RK since our last publication in the database issue of Nucleic Acid Research (2012). (i) The website has been completely revised and (ii) allows now also free text search for kinetics data. (iii) Additional interlinkages with other databases in our field have been established; this enables users to gain directly comprehensive knowledge about the properties of enzymes and kinetics beyond SABIO-RK. (iv) Vice versa, direct access to SABIO-RK data has been implemented in several systems biology tools and workflows. (v) On request of our experimental users, the data can be exported now additionally in spreadsheet formats. (vi) The newly established SABIO-RK Curation Service allows to respond to specific data requirements. PMID:29092055

  9. Stochastic acceleration of electrons from multiple uncorrelated plasma waves

    Science.gov (United States)

    Gee, David; Michel, Pierre; Wurtele, Jonathan

    2017-10-01

    One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  10. Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Shah, R. C.; Palaniyappan, S.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.

    2011-01-01

    In recent experiments at the Trident laser facility, quasi-monoenergetic ion beams have been obtained from the interaction of an ultraintense, circularly polarized laser with a diamond-like carbon target of nm-scale thickness under conditions of ultrahigh laser pulse contrast. Kinetic simulations of this experiment under realistic laser and plasma conditions show that relativistic transparency occurs before significant radiation pressure acceleration and that the main ion acceleration occurs after the onset of relativistic transparency. Associated with this transition are a period of intense ion acceleration and the generation of a new class of ion solitons that naturally give rise to quasi-monoenergetic ion beams. An analytic theory has been derived for the properties of these solitons that reproduces the behavior observed in kinetic simulations and the experiments.

  11. Searching for heavy leptons

    International Nuclear Information System (INIS)

    Perl, M.L.

    1979-11-01

    This frankly speculative paper discusses ways in which leptons heavier than the tau (if they exist) might be found. The status of the tau is briefly reviewed, and methods for searching for sequential charged leptons beyond the tau and other charged leptons at PEP, PETRA, and CESR are sketched. Charged leptons with mass greater than 20 GeV/c 2 might be found at proton accelerators in hadron-hadron, photon-hadron, or ν-hadron collisions. Unstable, neutral heavy leptons might have unique, conserved lepton number or nonunique lepton number. The most difficult leptons to detect are stable neutral heavy leptons; nevertheless, a possible detection method is suggested. The obvious solution to seeking the postulated leptons is an e + e - colliding beam storage ring with c.m. energy = several hundred GeV. Until such a machine is built, one can employ Z 0 → L + + L - ; the use of R/sub Z 0 / and GAMMA/sub Z 0 / in this connection is discussed. If heavier Z 0 's exist, the heavy lepton search can be extended to higher energies. Another solution for producing these leptons involves the use of clashing e + e - linear accelerators. Characteristics of storage rings are compared with those of clashing linacs; a general description is given of the proposed SLAC Linac-Collider, along with the physics that could be done at such a machine. 6 figures

  12. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hoffman, N.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Betti, R.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bellei, C.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-05-15

    Shock-driven implosions of thin-shell capsules, or “exploding pushers,” generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D{sup 3}He gas fills ranging from pure deuterium to pure {sup 3}He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations.

  13. Annotated bibliography on high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases

  14. Isentropic Compression of Iron with the Z Accelerator

    International Nuclear Information System (INIS)

    Asay, J.R.; Bernard, M.A.; Hall, C.A.; Hayes, D.B.; Holland, K.G.; McDaniel, D.H.; Rosenthal, S.E.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    Development of isentropic loading techniques is a long standing goal of the shock physics community. The authors have used the Sandia Z Accelerator to produce smoothly increasing pressure loading on planar iron specimens over time durations of 100 ns and for pressures to 300 Mbar. Free surface velocity measurements on the rear surface of the continuously loaded specimens were made on specimens 0.5-mm and 0.8-mm thick and clearly show the effects of wave evolution into the well known two-wave structure resulting from the α-var e psilon phase transition beginning at 125 kbar. The resulting wave profiles are analyzed with a rate-dependent, phase transition model to extract information on phase transformation kinetics for isentropic compression of iron. Comparison of the experiments and calculations demonstrate the value of isentropic loading for studying phase transition kinetics

  15. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.

    Science.gov (United States)

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-11-23

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.

  16. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  17. Efficient search by optimized intermittent random walks

    International Nuclear Information System (INIS)

    Oshanin, Gleb; Lindenberg, Katja; Wio, Horacio S; Burlatsky, Sergei

    2009-01-01

    We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor site with probability α or go off lattice with probability 1 - α to move in a random direction until it lands back on the lattice at a fixed distance L away from the departure point. Considering α and L as optimization parameters, we seek to enhance the chances of successful detection by minimizing the probability P N that the target remains undetected up to the maximal search time N. We show that even in this simple model, a number of very efficient search strategies can lead to a decrease of P N by orders of magnitude upon appropriate choices of α and L. We demonstrate that, in general, such optimal intermittent strategies are much more efficient than Brownian searches and are as efficient as search algorithms based on random walks with heavy-tailed Cauchy jump-length distributions. In addition, such intermittent strategies appear to be more advantageous than Levy-based ones in that they lead to more thorough exploration of visited regions in space and thus lend themselves to parallelization of the search processes.

  18. Background to Dark Matter Searches from Galactic Cosmic Rays

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Just as searches for BSM physics at the LHC necessitate a careful audit of SM backgrounds, the search for signals of dark matter in cosmic rays must contend with production of secondaries like e+ and pbar through cosmic ray propagation in the Galaxy. The theoretical framework for calculating this has however not been directly calibrated at the high energies being explored by AMS-02 and there may be surprises in store. In particular a nearby source where cosmic rays are being accelerated stochastically can naturally generate a e+ fraction rising with energy as is observed. The test of this is the expected correlated rise in other secondary/primary ratios e.g. B/C and pbar/p. Such a nearby cosmic accelerator should also be detectable through the concomitant flux of neutrinos and its discovery would be (nearly!) as exciting as that of dark matter.

  19. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  20. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  1. Timescales for detecting a significant acceleration in sea level rise.

    Science.gov (United States)

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-04-14

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  2. Neutrino mass and mixing, and non-accelerator experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  3. Interdisciplinary glossary — particle accelerators and medicine

    International Nuclear Information System (INIS)

    Dmitrieva, V V; Dyubkov, V S; Nikitaev, V G; Ulin, S E

    2016-01-01

    A general concept of a new interdisciplinary glossary, which includes particle accelerator terminology used in medicine, as well as relevant medical concepts, is presented. Its structure and usage rules are described. An example, illustrating the quickly searching technique of relevant information in this Glossary, is considered. A website address, where one can get an access to the Glossary, is specified. Glossary can be refined and supplemented. (paper)

  4. Peculiarities of the effect of high temperature deformation on the kinetics of bainite transformation in steels of various compositions

    International Nuclear Information System (INIS)

    Khlestov, V.M.; Gotsulyak, A.A.; Ehntin, R.I.; Konopleva, E.V.; Kogan, L.I.

    1979-01-01

    By the methods of magnetometry and metallography studied is the effect of 25% deformation by rolling at 800 deg C on kinetics and parameters of bainite transformation in steels with different hydrogen contents and types of alloying. The hot deformation decelerates the bainite transformation at temperatures >=400 deg C; while the isoterm temperature increases the decelerating effect of deformation at first decreases and then changes into the accelerating one. The slowing down of the transformation is determined mainly by the decrease in the rate of the bainite crystal growth, whereas the acceleration - by the activation of grain initiation processes in the hot-deformed austenite. A hydrogen content increase and steel alloying with carbide-forming elements increase the stabilization effect of the deformation on kinetics of bainite transformation

  5. Heavy Ion Acceleration at J-PARC

    Science.gov (United States)

    SATO, Susumu

    2018-02-01

    J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.

  6. Accelerated Optimization in the PDE Framework: Formulations for the Active Contour Case

    KAUST Repository

    Yezzi, Anthony; Sundaramoorthi, Ganesh

    2017-01-01

    Following the seminal work of Nesterov, accelerated optimization methods have been used to powerfully boost the performance of first-order, gradient-based parameter estimation in scenarios where second-order optimization strategies are either inapplicable or impractical. Not only does accelerated gradient descent converge considerably faster than traditional gradient descent, but it also performs a more robust local search of the parameter space by initially overshooting and then oscillating back as it settles into a final configuration, thereby selecting only local minimizers with a basis of attraction large enough to contain the initial overshoot. This behavior has made accelerated and stochastic gradient search methods particularly popular within the machine learning community. In their recent PNAS 2016 paper, Wibisono, Wilson, and Jordan demonstrate how a broad class of accelerated schemes can be cast in a variational framework formulated around the Bregman divergence, leading to continuum limit ODE's. We show how their formulation may be further extended to infinite dimension manifolds (starting here with the geometric space of curves and surfaces) by substituting the Bregman divergence with inner products on the tangent space and explicitly introducing a distributed mass model which evolves in conjunction with the object of interest during the optimization process. The co-evolving mass model, which is introduced purely for the sake of endowing the optimization with helpful dynamics, also links the resulting class of accelerated PDE based optimization schemes to fluid dynamical formulations of optimal mass transport.

  7. Accelerated Optimization in the PDE Framework: Formulations for the Active Contour Case

    KAUST Repository

    Yezzi, Anthony

    2017-11-27

    Following the seminal work of Nesterov, accelerated optimization methods have been used to powerfully boost the performance of first-order, gradient-based parameter estimation in scenarios where second-order optimization strategies are either inapplicable or impractical. Not only does accelerated gradient descent converge considerably faster than traditional gradient descent, but it also performs a more robust local search of the parameter space by initially overshooting and then oscillating back as it settles into a final configuration, thereby selecting only local minimizers with a basis of attraction large enough to contain the initial overshoot. This behavior has made accelerated and stochastic gradient search methods particularly popular within the machine learning community. In their recent PNAS 2016 paper, Wibisono, Wilson, and Jordan demonstrate how a broad class of accelerated schemes can be cast in a variational framework formulated around the Bregman divergence, leading to continuum limit ODE\\'s. We show how their formulation may be further extended to infinite dimension manifolds (starting here with the geometric space of curves and surfaces) by substituting the Bregman divergence with inner products on the tangent space and explicitly introducing a distributed mass model which evolves in conjunction with the object of interest during the optimization process. The co-evolving mass model, which is introduced purely for the sake of endowing the optimization with helpful dynamics, also links the resulting class of accelerated PDE based optimization schemes to fluid dynamical formulations of optimal mass transport.

  8. Kyushu University Tandem Accelerator Laboratory report, 1988-1990

    International Nuclear Information System (INIS)

    Sagara, Kenshi; Morinobu, Shunpei

    1991-03-01

    Ten years have elapsed since the first beam was obtained from the Kyushu University tandem accelerator. Although the laboratory has achieved successful scientific results, the performance of the accelerator has been on a decline mainly due to the aging. In the last two and a half years, the tandem accelerator has suffered from the fall of terminal voltage to around 8 MV. However, the experimental studies in the laboratory have been active. The utilization of the polarized beams of protons and deuterons to study the scattering of the p+d system, the use of heavy ion beam for the systematic search for the molecular resonance in relatively heavy systems and for the study on reaction mechanism, the use of both light and heavy ion beams for the studies on nuclear engineering, material science and geological science and so on were carried out. The gamma ray spectroscopic study on the state near yrast line was largely hampered by the accelerator troubles, instead, the collaboration with the Niels Bohr Institute provided a wonderful research ground for the studies. (K.I.)

  9. Whether and How to Select Inertia and Acceleration of Discrete Particle Swarm Optimization Algorithm: A Study on Channel Assignment

    Directory of Open Access Journals (Sweden)

    Min Jin

    2014-01-01

    Full Text Available There is recently a great deal of interest and excitement in understanding the role of inertia and acceleration in the motion equation of discrete particle swarm optimization (DPSO algorithms. It still remains unknown whether the inertia section should be abandoned and how to select the appropriate acceleration in order for DPSO to show the best convergence performance. Adopting channel assignment as a case study, this paper systematically conducts experimental filtering research on this issue. Compared with other channel assignment schemes, the proposed scheme and the selection of inertia and acceleration are verified to have the advantage to channel assignment in three respects of convergence rate, convergence speed, and the independency of the quality of initial solution. Furthermore, the experimental result implies that DSPO might have the best convergence performance when its motion equation includes an inertia section in a less medium weight, a bigger acceleration coefficient for global-search optimum, and a smaller acceleration coefficient for individual-search optimum.

  10. Kinetics of 2-chlorobiphenyl Reductive Dechlorination by Pd-fe0 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Kinetics of 2-chlorobiphenyl (2-Cl BP catalytic reductive dechlorination by Pd-Fe0 nanoparticles were investigated. Experimental results showed that ultrafine bimetallic Pd-Fe0e nanoparticles were synthesized in the presence of 40 kHz ultrasound in order to enhance disparity and avoid agglomeration. The application of ultrasonic irradiation during the synthesis of Pd-Fe0 nanoparticles further accelerated the dechlorinated removal ratio of 2-Cl BP. Up to 95.0% of 2-Cl BP was removed after 300 min reaction with the following experimental conditions: initial 2-Cl BP concentration 10 mg L-1, Pd content 0.8 wt. %, bimetallic Pd-Fe0 nanoparticles prepared in the presence of ultrasound available dosage 7g L-1, initial pH value in aqueous solution 3.0, and reaction temperature 25°C. The catalytic reductive dechlorination of 2-Cl BP followed pseudo-first-order kinetics and the apparent pseudo-first-order kinetics constant was 0.0143 min-1.

  11. Attrition and success rates of accelerated students in nursing courses: a systematic review.

    Science.gov (United States)

    Doggrell, Sheila Anne; Schaffer, Sally

    2016-01-01

    There is a comprehensive literature on the academic outcomes (attrition and success) of students in traditional/baccalaureate nursing programs, but much less is known about the academic outcomes of students in accelerated nursing programs. The aim of this systematic review is to report on the attrition and success rates (either internal examination or NCLEX-RN) of accelerated students, compared to traditional students. For the systematic review, the databases (Pubmed, Cinahl and PsychINFO) and Google Scholar were searched using the search terms 'accelerated' or 'accreditation for prior learning', 'fast-track' or 'top up' and 'nursing' with 'attrition' or 'retention' or 'withdrawal' or 'success' from 1994 to January 2016. All relevant articles were included, regardless of quality. The findings of 19 studies of attrition rates and/or success rates for accelerated students are reported. For international accelerated students, there were only three studies, which are heterogeneous, and have major limitations. One of three studies has lower attrition rates, and one has shown higher success rates, than traditional students. In contrast, another study has shown high attrition and low success for international accelerated students. For graduate accelerated students, most of the studies are high quality, and showed that they have rates similar or better than traditional students. Thus, five of six studies have shown similar or lower attrition rates. Four of these studies with graduate accelerated students and an additional seven studies of success rates only, have shown similar or better success rates, than traditional students. There are only three studies of non-university graduate accelerated students, and these had weaknesses, but were consistent in reporting higher attrition rates than traditional students. The paucity and weakness of information available makes it unclear as to the attrition and/or success of international accelerated students in nursing programs. The

  12. Bystander cells enhance NK cytotoxic efficiency by reducing search time.

    Science.gov (United States)

    Zhou, Xiao; Zhao, Renping; Schwarz, Karsten; Mangeat, Matthieu; Schwarz, Eva C; Hamed, Mohamed; Bogeski, Ivan; Helms, Volkhard; Rieger, Heiko; Qu, Bin

    2017-03-13

    Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H 2 O 2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H 2 O 2 -producing bystander cells reduces target cell search time and enhances NK killing efficiency.

  13. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  14. Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Andreas, E-mail: ries750@yahoo.com.br [Electrical Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil); Canedo, Eduardo L. [Materials Engineering Department, Federal University of Campina Grande, Campina Grande, PB 58429-900 (Brazil); Souto, Cícero R. [Electrical Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil); Wellen, Renate M.R. [Materials Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil)

    2016-08-10

    Highlights: • Non-isothermal cold crystallization kinetics of PHB filled with ZnO is presented. • Pseudo-Avrami model is best for describing an individual crystallization condition. • Mo model is allows to judge the kinetics of a condition untested in this work. • ZnO affects the kinetics irregularly. - Abstract: The non-isothermal cold crystallization kinetics of poly(3-hydroxybutyrate) (PHB) and PHB-ZnO composites, with ZnO content of 1%, 5% and 10% per weight, was investigated at different heating rates (5, 7.5, 10, 15, 20 and 30 °C/min) using differential scanning calorimetry. Both, Kissinger and Friedman activation energies predict correctly the slowest and fastest crystallizing composition. It was further found, that ZnO can neither be classified as a crystallization accelerator, nor as a crystallization inhibitor; its action is strongly concentration dependent. The empirical Pseudo-Avrami model has the best overall capability for fitting the experimental kinetic data. However, since the Pseudo-Avrami exponent was found to vary irregularly with heating rate and filler content, this model should not be applied for kinetic predictions of an arbitrary composition or an untested heating rate. In such cases, Mo's model should be used.

  15. Accelerators - instruments and symbols for power

    International Nuclear Information System (INIS)

    Vogt, E.

    1985-01-01

    I examine the cult of accelerator physics, describe the laws which govern its development, compare and contrast it with other similar cults in the past, and search for its driving force. It is a story of sheer power. Not only of grand projects whose scale dwarfs everything we have imagined, whose funds deplete federal treasuries and whose real estate transcends national boundaries, but also of the very symbols of human power, directly connected to the destiny of our race

  16. [Statocyst regulation of the heart and statokinetic reflexes in the crab, Hemigrapsus sanguineus, during linear acceleration].

    Science.gov (United States)

    Kuntsova, M Ia; Sveshnikov, V G; Timofeeva, E V

    1978-01-01

    In experiments on the shore crab H. sanguineus studies have been made of the effect of variable longitudinal acceleration during swinging (for 15--30 min) upon cardiac activity and gravitational reflexes. High sensitivity of gravitational receptors of the canal statocyst to the effect of acceleration was demonstrated. Removal of the statocysts increases the frequency and amplitude of cardiac contractions as revealed by ECG recording. Changes in stato-kinetic coordinations cause both the disorder of overturning reactions and the disorder of reciprocal inhibition in antagonistic muscles of the dactylopodite. Statocyst regulation of skeletal muscles and heart is presumably realised via contralateral inhibitory canal which is sensitive to linear accelerations.

  17. Upgrading the Lyon cluster ion accelerator by a radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Moser, H.O.; Schempp, A.

    1987-02-01

    The design is presented of an RFQ with variable final energy suitable to post-accelerate cluster ions from the Lyon electrostatic cluster-ion accelerator in the mass ranges from 1 to 25 μ and 1 to 50 μ to kinetic energies of 1.32-2.5 MeV and 2.64-5.0 MeV for cw and pulsed operation, respectively. Furthermore, a beam line is described which matches the electrostatically preaccelerated beam to the RFQ by use of electrostatic quadrupole triplets. When used without RFQ this beam line serves to improve beam parameters on the target, such as the particle flux density or beam divergence. The estimated costs of this project are about DM 345 000.- or FF 1 200 000.- without VAT. (orig.) [de

  18. Exotic particle searches using the Purdue AMS facility

    International Nuclear Information System (INIS)

    Javorsek, D. II; Elmore, D.; Fischbach, E.; Miller, T.

    2001-01-01

    Two exotic particle searches are being performed using the Accelerator Mass Spectrometer (AMS) at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab). Recent theoretical developments allow for the possibility of small violations of the symmetrization postulate, which may lead in turn to detectable violations of the Pauli exclusion principle. We report the results of a new experimental search for paronic (Pauli-violating) Be, denoted by Be', in samples where Be' retention would be highest. Our limits represent an improvement by a factor of approximately 300 over a previous search for Be'. There are also several recent cosmological motivations for strongly interacting massive particles (SIMPs). We present results from our current search for anomalous heavy isotopes of Au in samples of Australian and laboratory gold with a limit on SIMP abundance ratios as low as 10 -12 . This experiment provides significant constraints on the existence of such particles in high Z nuclei

  19. A New Search for $ \

    CERN Multimedia

    Dore, U; Kodama, K; Ushida, N; Loverre, P F

    2002-01-01

    % WA95\\\\ \\\\ The question whether neutrino flavours mix at some level - and the related question whether neutrinos have non-zero mass - is one of the remaining great challenges of experimental physics. Neutrinos from supernovae, from the sun, from the earth's atmosphere, from nuclear reactors and from radioactive decays are currently under study; in this frame, experiments using accelerators play a privileged role because the well known neutrino source properties allow high precision measurements and background control.\\\\ \\\\The main goal of the CHORUS experiment is to search for neutrino oscillations in the $\

  20. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  1. Extending the search for high-energy muon neutrinos from GRBs with ANTARES

    CERN Multimedia

    2017-01-01

    Gamma-ray bursts (GRBs) are transient sources, potential sites of cosmic-rays acceleration: they are expected to produce high-energy neutrinos in pγ interactions through the decay of charged mesons, thus they constitute promising targets for neutrino telescopes. A search for muon neutrinos from GRBs using 9 years of ANTARES data is here presented, assuming particle acceleration at internal shocks, as expected in the fireball model.

  2. Ultra fast imaging of a laser wake field accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saevert, Alexander; Schnell, Michael; Nicolai, Maria; Reuter, Maria; Schwab, Matthew B.; Moeller, Max [Friedrich-Schiller-Universitaet, Jena (Germany); Mangles, Stuart P.D.; Cole, Jason M.; Poder, Kristjan; Najmudin, Zulfikar [The John Adams Institute Imperial College, London (United Kingdom); Jaeckel, Oliver; Paulus, Gerhard G.; Spielmann, Christian; Kaluza, Malte C. [Friedrich-Schiller-Universitaet, Jena (Germany); Helmholtz Institut Jena, Jena (Germany)

    2014-07-01

    Ultra intense laser pulses are known to excite plasma waves with a relativistic phase velocity. By harnessing these waves it is possible to generate quasi-monoenergetic, ultra-short electron pulses with kinetic energies from 0.1 to 2 GeV by guiding the laser pulse over several Rayleigh lengths. To further improve the stability of these particle pulses and ultimately to be able to tailor the energy spectrum toward their suitability for various applications, the physics underlying the different acceleration scenarios need to be understood as completely as possible. To be able to resolve the acceleration process diagnostics well-suited for this plasma environment need to be designed and realized. By using sub-10 fs probe pulses we were able to freeze the transient accelerating structure in the plasma. We will present the first results of an experiment which was carried out with the 30 TW JETi Laser and a few cycle probe pulse at the Institute of Optics and Quantum Electronics Jena. The resulting snapshots show unprecedented details from the laser plasma interaction and allow a direct comparison to computer simulations.

  3. A hole accelerator for InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-10-01

    The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.

  4. Kinetic parameters of nitridation of molybdenum and niobium alloys with various structure states

    International Nuclear Information System (INIS)

    Solodkin, G.A.; Bulgach, A.A.; Likhacheva, T.E.

    1985-01-01

    Effect of preliminary plastic strain under rolling on kinetic parameters of nitridation of VN-2AEh, VN-3 niobium alloys and molybdenum alloy with hafnium is investigated. Extreme character of dependence of kinetic parameters of nitridation on the degree of reduction under rolling is determined. Preliminary plastic strain at negligible reduction is shown to accelerate growth of the zone of internal nitridation and decelerates growth of the nitride zone. Nitrogen atom removal from the surface to the centre is retarded at the increase of the degree of reduction up to 50% and higher. The degree of deformations is the higher the lower nitridation temperature is

  5. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  6. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  7. An accurate technique for the solution of the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Picca, Paolo; Ganapol, Barry D.; Furfaro, Roberto

    2011-01-01

    A novel methodology for the solution of non-linear point kinetic (PK) equations is proposed. The technique is based on a piecewise constant approximation of PK system of ODEs and explicitly accounts for reactivity feedback effects, through an iterative cycle. High accuracy is reached by introducing a sub-mesh for the numerical evaluation of integrals involved and by correcting the source term to include the non-linear effect on a finer time scale. The use of extrapolation techniques for convergence acceleration is also explored. Results for adiabatic feedback model are reported and compared with other benchmarks in literature. The convergence trend makes the algorithm particularly attractive for applications, including in multi-point kinetics and quasi-static frameworks. (author)

  8. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  9. Flocculation kinetics of kaolinite : role of aqueous phase species

    Energy Technology Data Exchange (ETDEWEB)

    House, P.; Wang, C.; Dhadli, N. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    Flocculation kinetics were used to study the rate-based processes that lead to aggregate growth and breakage of kaolinite in oil sands tailings. The role of aqueous phase species on aggregate growth, breakage and flocculant de-activation was studied. Collision efficiency and deactivation parameters were presented. The study showed that collisions can be efficient when the adsorption of the polymer is thermodynamically favorable. Up to 94 percent of adsorption takes place at the kaolinite edge. Studies have shown that hydrogen bonding sites on the kaolinite disappear with increases in pH values. The impact of molecular level interactions on flocculation kinetics were assessed in order to determine collision efficiencies and aggregate breakage rates. A focused beam reflectance model was used to monitor flocculation kinetics in situ. The period over which reflectance was observed was coupled with the laser velocity to determine the chord length of the particle. The kinetics of flocculation were observed for a 10 minute period. The effects of pH, calcium additions, and EDTA chelating agent additions were investigated. The study showed that calcium additions accelerate the rate of flocculant growth dramatically, and provide a much higher collision efficiency. Flocculants formed in the presence of calcium were weaker. The presence of salts promoted polymer adsorption by non-specific Van der Waals forces. tabs., figs.

  10. Electron Heating and Acceleration in a Reconnecting Magnetotail

    Science.gov (United States)

    El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.

    2017-12-01

    Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.

  11. SigrafW: An Easy-to-Use Program for Fitting Enzyme Kinetic Data

    Science.gov (United States)

    Leone, Francisco Assis; Baranauskas, Jose Augusto; Furriel, Rosa Prazeres Melo; Borin, Ivana Aparecida

    2005-01-01

    SigrafW is Windows-compatible software developed using the Microsoft[R] Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent…

  12. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  13. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  14. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  15. Impact Accelerations of Barefoot and Shod Running.

    Science.gov (United States)

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact. © Georg Thieme Verlag KG Stuttgart · New York.

  16. MMS Observations of Protons and Heavy Ions Acceleration at Plasma Jet Fronts

    Science.gov (United States)

    Catapano, F.; Retino, A.; Zimbardo, G.; Cozzani, G.; Breuillard, H.; Le Contel, O.; Alexandrova, A.; Mirioni, L.; Cohen, I. J.; Turner, D. L.; Perri, S.; Greco, A.; Mauk, B.; Torbert, R. B.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Giles, B. L.; Fuselier, S. A.; Moore, T. E.; Burch, J.

    2017-12-01

    Plasma jet fronts in the Earth's magnetotail are kinetic-scale boundaries separating hot fast plasma jets, generally attributed to reconnection outflows, from colder ambient plasma. Jet fronts are typically associated with a sharp increase of the vertical component of the magnetic field Bz, an increase of the plasma temperature and a drop of plasma density. Spacecraft observations and numerical simulations indicate that jet fronts are sites of major ion acceleration. The exact acceleration mechanisms as well as the dependence of such mechanisms on ion composition are not fully understood, yet. Recent high-resolution measurements of ion distribution functions in the magnetotail allow for the first time to study the acceleration mechanisms in detail. Here, we show several examples of jet fronts and discuss ion acceleration therein. We show fronts that propagate in the mid-tail magnetotail both as isolated laminar boundaries and as multiple boundaries embedded in strong magnetic fluctuations and turbulence. We also show fronts in the near-Earth jet braking region, where they interact with the dipolar magnetic field and are significantly decelerated/diverted. Finally, we study the acceleration of different ion species (H+, He++, O+) at different types of fronts and we discuss possible different acceleration mechanisms and how they depend on the ion species.

  17. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  18. Fast kinetics of calcium dissociation from calsequestrin

    Directory of Open Access Journals (Sweden)

    MARIANELA BELTRÁN

    2006-01-01

    Full Text Available We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25ºC calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1 than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1 than the slower component (k = 6.9 s-1, which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.

  19. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K+ channels

    Science.gov (United States)

    Dean, Terry; Xu, Rong; Joiner, William; Sehgal, Amita; Hoshi, Toshinori

    2011-01-01

    The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K+ currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss of function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude. PMID:21813698

  20. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K(+) channels.

    Science.gov (United States)

    Dean, Terry; Xu, Rong; Joiner, William; Sehgal, Amita; Hoshi, Toshinori

    2011-08-03

    The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K(+) currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss-of-function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss-null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude.

  1. The visible Smith-Purcell radiation search

    International Nuclear Information System (INIS)

    Fernow, R.C.; Kirk, H.G.; Ulc, S. Wang, X.

    1994-03-01

    We report here the results of an experiment at the Accelerator Test Facility at Brookhaven National Laboratory to search for the production of visible radiation from the Smith-Purcell effect using a 3 MeV electron beam. After running the experiment under a variety of conditions we were unable to isolate a definite signal from Smith-Parcell effect. Any Smith-Purcell signal present in the measured radiation was less than 10% of the background signal

  2. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  3. Accelerated radiation therapy for locally advanced squamous cell carcinomas of the oral cavity and oropharynx selected according to tumor cell kinetics--a phase II multicenter study

    International Nuclear Information System (INIS)

    Antognoni, Paolo; Bignardi, Mario; Cazzaniga, L. Franco; Poli, A. Marisa; Richetti, Antonella; Bossi, Alberto; Rampello, Giuseppina; Barbera, Fernando; Soatti, Carlo; Bardelli, Donata; Giordano, Monica; Danova, Marco

    1996-01-01

    .4%, while actuarial 2-year overall survival for the same patients was 43.5%. Conclusions: The results suggested that this accelerated regimen is worth testing in a controlled randomized trial to compare different accelerated schedules. Our findings also confirmed the 5-bromo-2-deoxyuridine/DNA flow cytometry technique as a suitable method of evaluating tumor cell kinetics in multicenter clinical studies, on condition that all measurements are carried out by one most experienced laboratory

  4. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Betz, Michael; Caspers, Fritz [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Institute for Particle Physics Phenomenology, Durham (United Kingdom); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Semertzidis, Yannis [Brookhaven National Lab., Upton, NY (United States); Sikivie, Pierre [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Zioutas, Konstantin [Patras Univ. (Greece)

    2011-10-15

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  5. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    International Nuclear Information System (INIS)

    Baker, Oliver K.; Jaeckel, Joerg; Lindner, Axel; Ringwald, Andreas; Semertzidis, Yannis; Sikivie, Pierre

    2011-10-01

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  6. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  7. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    Science.gov (United States)

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  8. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  9. Kinetic of the Oxygen Control System (OCS) for stagnant lead-bismuth systems

    International Nuclear Information System (INIS)

    Lefhalm, C.H.; Knebel, J.U.; Mack, K.J.

    2001-09-01

    Within the framework of the HGF strategy fund project 99/16 ''Thermalhydraulic and Material Specific Investigations into the Realization of an accelerator driven system (ADS) to Transmute Minor Actinides'' at the institute for nuclear and energy technology (IKET) investigations on the cooling of thermally high-loaded surfaces with liquid lead bismuth (Pb-Bi) are carried out. To operate a Pb-Bi loop safety, for example in order to cool a spallation target or a blanket of an accelerator driven system (ADS), the control of the oxygen concentration within the liquid metal is an inalienable prerequisite to prevent or minimize corrosion at the structure material. In this report the kinetic behaviour of the oxygen control system (OCS), which was developed at Forschungszentrum Karlsruhe, is examined. The OCS controls the chemical potential of oxygen in the liquid metal by regulating the oxygen content in the gas phase which flows over the free surface of the liquid metal. In this work the experimental facility KOCOS (kinetics of oxygen control system) in the karlsruhe lead laboratory (KALLA) was built. A physical diffusion model was utilised and extended to describe the exchange of oxygen between the gas and the liquid metal. The theoretical calculations are in very good agreement to the experimental findings. The OCS allows to control reversibly the oxygen concentration in the liquid metal. According to the observed kinetics of the process one can extrapolate that the control of large volumes, as they are necessary to operate an ADS demonstrator, is possible. Therefore, further experiments in liquid metal loop systems are suggested. (orig.)

  10. Darwin's bee-trap: The kinetics of Catasetum, a new world orchid.

    Science.gov (United States)

    Nicholson, Charles C; Bales, James W; Palmer-Fortune, Joyce E; Nicholson, Robert G

    2008-01-01

    The orchid genera Catasetum employs a hair-trigger activated, pollen release mechanism, which forcibly attaches pollen sacs onto foraging insects in the New World tropics. This remarkable adaptation was studied extensively by Charles Darwin and he termed this rapid response "sensitiveness." Using high speed video cameras with a frame speed of 1000 fps, this rapid release was filmed and from the subsequent footage, velocity, speed, acceleration, force and kinetic energy were computed.

  11. Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data

    Directory of Open Access Journals (Sweden)

    Wanrong Huang

    2017-01-01

    Full Text Available The Internet applications, such as network searching, electronic commerce, and modern medical applications, produce and process massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm, breadth-first search (BFS, is fundamental in many graph processing applications and metrics when a graph grows in scale. A variety of scientific programming methods have been proposed for accelerating and parallelizing BFS because of the poor temporal and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing. And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to unify all processor addresses. Within the limits permitted by the Graph500 test bench after 1D parallel hybrid BFS algorithm testing, our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with graph searching applications.

  12. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  13. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  14. Kinetic Alfvén wave turbulence and formation of localized structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)

    2013-08-15

    This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate β-plasma (m{sub e}/m{sub i}≪β≪1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup −3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

  15. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Science.gov (United States)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  16. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  17. Defining Nitrogen Kinetics for Air Break in Prebreath

    Science.gov (United States)

    Conkin, Johnny

    2010-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe(PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. METHODS: Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without airbreaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and airbreaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the airbreak was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = (Delta)P defined decompression dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. RESULTS: The log likelihood (LL) without decompression dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. CONCLUSION: The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included airbreaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an airbreak in PB within the narrow range of tested conditions.

  18. Defining Nitrogen Kinetics for Air Break in Prebreathe

    Science.gov (United States)

    Conkin, Johnny

    2009-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe (PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without air breaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and air breaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the air break was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = delta P defined DCS dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. The log likelihood (LL) without DCS dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included air breaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an air break in PB within the narrow range of tested conditions.

  19. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Science.gov (United States)

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  20. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Directory of Open Access Journals (Sweden)

    Baishan Fang

    Full Text Available Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  1. Effect of ketamine, pentobarbital, and morphine on Tc-99m-DISIDA hepatobiliary kinetics

    International Nuclear Information System (INIS)

    Durakovic, A.; Dubois, A.

    1985-01-01

    The purpose of this study was to evaluate hapatobiliary kinetics of Tc-99m-DISIDA in dogs after administration of anesthetic sedative or narcotic agents. Four groups of six male Beagle dogs were studied as a non-treated control group and after parenteral administration of ketamine (30 mg/kg IM), pentobarbital (25 mg/kg IV) or morphine (1 mg/kg IV). Each animal was injected with 4 mCi Tc-99m-DISIDA and hepatobiliary scintigraphic studies were obtained using a gamma camera with parallel hole multipurpose collimator and an A/sup 3/ MDS computer. The authors determined; peak activity of Tc-99m-DISIDA in the liver, visualization and peak activity of gallbladder, and intestinal visualization of Tc-99m-DISIDA. Total bilirubin, LDH, SGOT and SGPT were not modified significantly after any drug compared to control. The results showed that two commonly used anesthetics and sedatives (ketamine and pentobarbital) have dramatic and opposite effects on extrahepatic biliary kinetics. Furthermore, ketamine, but not pentobarbital, significantly accelerates intrahepatic biliary kinetics. Finally, as expected, morphine delayed extrahepatic biliary kinetics. Thus, studies of biliary kinetics should be interpreted with caution when measurements are made after administration of anesthetic, sedative or narcotic agents

  2. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    Science.gov (United States)

    Smith, L. M.; Hochstedler, R. D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  3. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    Smith, L.M.; Hochstedler, R.D.

    1997-01-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)

  4. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  5. Accelerator mass spectrometry - From DNA to astrophysics

    International Nuclear Information System (INIS)

    Kutschera, W.

    2013-01-01

    A brief review of accelerator mass spectrometry (AMS) is presented. The present work touches on a few technical aspects and recent developments of AMS, and describes two specific applications of AMS, the dating of human DNA with the 14 C bomb peak and the search for superheavy elements in nature. Since two extended general reviews on technical developments in AMS [1] and applications of AMS [2] will appear in 2013, frequent reference to these reviews is made. (authors)

  6. SHiP: a new facility to search for heavy neutrinos and study $\

    CERN Document Server

    De Serio, Marilisa

    2016-01-01

    SHiP (Search for Hidden Particles) is a newly designed fixed target facility, proposed at the CERN SPS accelerator, with the aim of complementing searches for New Physics at LHC by searching for light long-lived exotic particles with masses below a few GeV/c2. The sensitivity to Heavy Neutrinos will allow for the first time probing a region of the parameter space where Baryogenesis and active neutrino masses and oscillation could also be explained. A dedicated detector, based on OPERA-like bricks, will provide the first observation of the tau anti-neutrino. Moreover, $\

  7. KID - an algorithm for fast and efficient text mining used to automatically generate a database containing kinetic information of enzymes

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar

    2010-07-01

    Full Text Available Abstract Background The amount of available biological information is rapidly increasing and the focus of biological research has moved from single components to networks and even larger projects aiming at the analysis, modelling and simulation of biological networks as well as large scale comparison of cellular properties. It is therefore essential that biological knowledge is easily accessible. However, most information is contained in the written literature in an unstructured way, so that methods for the systematic extraction of knowledge directly from the primary literature have to be deployed. Description Here we present a text mining algorithm for the extraction of kinetic information such as KM, Ki, kcat etc. as well as associated information such as enzyme names, EC numbers, ligands, organisms, localisations, pH and temperatures. Using this rule- and dictionary-based approach, it was possible to extract 514,394 kinetic parameters of 13 categories (KM, Ki, kcat, kcat/KM, Vmax, IC50, S0.5, Kd, Ka, t1/2, pI, nH, specific activity, Vmax/KM from about 17 million PubMed abstracts and combine them with other data in the abstract. A manual verification of approx. 1,000 randomly chosen results yielded a recall between 51% and 84% and a precision ranging from 55% to 96%, depending of the category searched. The results were stored in a database and are available as "KID the KInetic Database" via the internet. Conclusions The presented algorithm delivers a considerable amount of information and therefore may aid to accelerate the research and the automated analysis required for today's systems biology approaches. The database obtained by analysing PubMed abstracts may be a valuable help in the field of chemical and biological kinetics. It is completely based upon text mining and therefore complements manually curated databases. The database is available at http://kid.tu-bs.de. The source code of the algorithm is provided under the GNU General Public

  8. Mathematical modelling of the kinetics of aerosol oxidation of sulfur dioxide upon electron-beam purification of power-plant flue gases from nitrogen and sulfur oxides

    International Nuclear Information System (INIS)

    Gerasimov, G.Ya.; Gerasimova, T.S.; Fadeev, S.A.

    1996-01-01

    A kinetic model of SO 2 oxidation in flue gases, irradiated with accelerated electron flux is proposed. The model comprises an optimized mechanism of gas phase radiation chemical oxidation of NO and SO 2 , kinetics circuit of SO 2 and NH 3 thermal interaction, kinetic models of volumetric condensation of water and sulfuric acid vapors and liquid-phase oxidation of SO 2 in aerosol drops, produced in the course of volumetric condensation. Calculation results are in a satisfactory agreement with experimental data. (author)

  9. Acceleration mechanisms for energetic particles in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Schiferl, S.; Fan, C.Y.; Hsieh, K.C.; Erickson, K.N.; Gloeckler, G.; Hovestadt, D.

    1982-01-01

    By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, we searched for signatures of different acceleration mechanisms for these particles. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 Rsub(E) while ATS-6 was located at local midnight at a distance of 6.6 Rsub(E). Although the flux variations as observed on the two spacecraft both showed 1.5 min. periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the ''x-point'' located at approximately 10 Rsub(E)

  10. Electron transfer kinetics on natural crystals of MoS2 and graphite.

    Science.gov (United States)

    Velický, Matěj; Bissett, Mark A; Toth, Peter S; Patten, Hollie V; Worrall, Stephen D; Rodgers, Andrew N J; Hill, Ernie W; Kinloch, Ian A; Novoselov, Konstantin S; Georgiou, Thanasis; Britnell, Liam; Dryfe, Robert A W

    2015-07-21

    Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.

  11. Search for Muon Neutrino Disappearance in a Short-Baseline Accelerator Neutrino Beam

    OpenAIRE

    Nakajima, Yasuhiro; Collaboration, for the SciBooNE

    2010-01-01

    We report a search for muon neutrino disappearance in the $\\Delta m^{2}$ region of 0.5-40 $eV^2$ using data from both SciBooNE and MiniBooNE experiments. SciBooNE data provides a constraint on the neutrino flux, so that the sensitivity to $\

  12. Numeric databases on the kinetics of transient species in solution

    International Nuclear Information System (INIS)

    Helman, W.P.; Hug, G.L.; Carmichael, Ian; Ross, A.B.

    1988-01-01

    A description is given of data compilations on the kinetics of transient species in solution. In particular information is available for the reactions of radicals in aqueous solution and for excited states such as singlet molecular oxygen and those of metal complexes in solution. Methods for compilation and use of the information in computer-readable form are also described. Emphasis is placed on making the database available for online searching. (author)

  13. Power Transfer to plasma Coxial accelerator

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; Soliman, H.M.; Masoud, M.M.

    2000-01-01

    The total power transfer from the condenser bank, to plasma coaxial accelerator device is theoretically studied by using the voltage equation of the entire circuit and applying impulse - linear momentum theorem. This total power represents a combination of (a) the power flowing to the external inductance, (b) the power flowing to the inductance of that part of electrode system between the breech and the momentary position of the plasma current sheath, (c) the power flowing in the annular space between the two coaxial electrodes, to form the magnetic field induction, (d) the power flowing to accelerate the initial mass, (e) the power flowing to accelerate the mass, which has been swept up into the plasma current sheath, (f) the power, which produces directed kinetic energy for the plasma current sheath, (g) the power, which produces internal energy in the plasma sheath, (h) the joule heating. The peak value of the total power = 6x10 8 watt at t=4 MUs, for maximum calculated discharge current = 110KA with a with a period of 34 us. Experimentally its equal to 3.5x10 8 watt at 7MUs and I 0 = 85KA. The energy flow to the coaxial discharge system has been evaluated theoretically and experimentally, E-MAX (CALCULATED)=5.92X10 2 J AT T = 5.5 MUs and E m ax (measured) = 3.54x10 2 joule at 7.5 MUs

  14. Mechanistic and kinetic aspects of microbial inactivation in food irradiation processes

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: A proper reaction mechanism was searched by analyzing the inactivation processes of microorganisms during food irradiation by ionizing radiation. By employing transition-state theory, it was assumed that the overall inactivation process involves a reversible sub-lethal stress and repair reactions to form reversibly injured cell or sensitized cell, which then undergoes irreversible injury leading to dead cell. A shoulder in low dose range in survival kinetics was associated with the repair process. Depending on the postulated mechanism, kinetic model equations were derived. The kinetics of cell inactivation by irradiation was expressed as depending on irradiation dose. By using experimental data in the developed model the inactivation parameters including threshold dose, radiation yield, decimal reduction dose and minimum sterilization dose were evaluated and microbial inactivation by irradiation was simulated by using the numerical values of the parameters. Developed model and model parameters may be used for the process control and the assessment of product quality in radiation preservation of food

  15. Gaussian variable neighborhood search for the file transfer scheduling problem

    Directory of Open Access Journals (Sweden)

    Dražić Zorica

    2016-01-01

    Full Text Available This paper presents new modifications of Variable Neighborhood Search approach for solving the file transfer scheduling problem. To obtain better solutions in a small neighborhood of a current solution, we implement two new local search procedures. As Gaussian Variable Neighborhood Search showed promising results when solving continuous optimization problems, its implementation in solving the discrete file transfer scheduling problem is also presented. In order to apply this continuous optimization method to solve the discrete problem, mapping of uncountable set of feasible solutions into a finite set is performed. Both local search modifications gave better results for the large size instances, as well as better average performance for medium and large size instances. One local search modification achieved significant acceleration of the algorithm. The numerical experiments showed that the results obtained by Gaussian modifications are comparable with the results obtained by standard VNS based algorithms, developed for combinatorial optimization. In some cases Gaussian modifications gave even better results. [Projekat Ministarstava nauke Republike Srbije, br. 174010

  16. Hardwired interlock system with fault latchability and annunciation panel for electron accelerators

    International Nuclear Information System (INIS)

    Mukesh Kumar; Roychoudhury, P.; Nimje, V.T.

    2011-01-01

    A hard-wired interlock system is designed, developed, installed and tested to ensure healthy status for interlock signals, coming from the various sub-systems of electron accelerators as digital inputs. Each electron accelerator has approximately ninety-six interlock signals. Hardwired Interlock system consists of twelve-channel 19 inches rack mountable hard-wired interlock module of 4U height. Digital inputs are fed to the hard-wired interlock module in the form of 24V dc for logic 'TRUE' and 0V for logic 'FALSE'. These signals are flow signals to ensure cooling of the various sub-systems, signals from the klystron modulator system in RF Linac to ensure its healthy state to start, signals from high voltage system of DC accelerator, vacuum signals from vacuum system to ensure proper vacuum in the electron accelerator, door interlock signals, air flow signals, and area search and secure signals. This hard-wired interlock system ensures the safe start-up, fault annunciation and alarm, fault latchablity, and fail-safe operation of the electron accelerators. Safe start-up feature ensures that beam generation system can be made ON only when cooling of all the electron accelerator sub-systems are confirmed, all the fault signals of high voltage generation system are attended, proper vacuum is achieved inside the beam transport system, all the doors are closed and various areas have been searched and secured manually. Fault annunciation and alarm feature ensures that during the start up and operation of the electron accelerators, if any fault is there, that fault signal window keeps on flashing with red colour and alarm is sounded till the operator acknowledges the fault. Once acknowledged, flashing and alarm stops but display of the window in red colour remains till the operator clears the fault. Fault latchability feature ensures that if any fault has happened, accelerator cannot be started again till the operator resets that interlock signal. Fail-safe feature ensures

  17. Semantic search during divergent thinking.

    Science.gov (United States)

    Hass, Richard W

    2017-09-01

    Divergent thinking, as a method of examining creative cognition, has not been adequately analyzed in the context of modern cognitive theories. This article casts divergent thinking responding in the context of theories of memory search. First, it was argued that divergent thinking tasks are similar to semantic fluency tasks, but are more constrained, and less well structured. Next, response time distributions from 54 participants were analyzed for temporal and semantic clustering. Participants responded to two prompts from the alternative uses test: uses for a brick and uses for a bottle, for two minutes each. Participants' cumulative response curves were negatively accelerating, in line with theories of search of associative memory. However, results of analyses of semantic and temporal clustering suggested that clustering is less evident in alternative uses responding compared to semantic fluency tasks. This suggests either that divergent thinking responding does not involve an exhaustive search through a clustered memory trace, but rather that the process is more exploratory, yielding fewer overall responses that tend to drift away from close associates of the divergent thinking prompt. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.

    Science.gov (United States)

    Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa

    2012-11-28

    A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.

  19. Kinetic and thermodynamic modelling of TBP synthesis processes

    International Nuclear Information System (INIS)

    Azzouz, A.; Attou, M.

    1989-02-01

    The present paper deals with kinetic and thermodynamic modellisation of tributylphosphate (TBP) synthesis processes. Its aim consists in a purely comparative study of two different synthesis ways i.e. direct and indirect estirification of butanol. The methodology involves two steps. The first step consists in approximating curves which describe the process evolution and their dependence on the main parameters. The results gave a kinetic model of the process rate yielding in TBP. Further, on the basis of thermodynamic data concerning the various involved compounds a theoretical model was achieved. The calculations were carried out in Basic language and an interpolation mathematical method was applied to approximate the kinetic curves. The thermodynamic calculations were achieved on the basis of GIBBS' free energy using a VAX type computer and a VT240 terminal. The calculations accuracy was reasonable and within the norms. For each process, the confrontation of both models leads to an appreciable accord. In the two processes, the thermodynamic models were similar although the kinetic equations present different reaction orders. Hence the reaction orders were determined by a mathematical method which conists in searching the minimal difference between an empiric relation and a kinetic model with fixed order. This corresponds in fact in testing the model proposed at various reaction order around the suspected value. The main idea which results from such a work is that this kind of processes is well fitting with the model without taking into account the side chain reactions. The process behaviour is like that of a single reaction having a quasi linear dependence of the rate yielding and the reaction time for both processes

  20. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  1. Memory-induced acceleration and slowdown of barrier crossing

    Science.gov (United States)

    Kappler, Julian; Daldrop, Jan O.; Brünig, Florian N.; Boehle, Moritz D.; Netz, Roland R.

    2018-01-01

    We study the mean first-passage time τMFP for the barrier crossing of a single massive particle with non-Markovian memory by Langevin simulations in one dimension. In the Markovian limit of short memory time τΓ, the expected Kramers turnover between the overdamped (high-friction) and the inertial (low-friction) limits is recovered. Compared to the Markovian case, we find barrier crossing to be accelerated for intermediate memory time, while for long memory time, barrier crossing is slowed down and τMFP increases with τΓ as a power law τM F P˜τΓ2. Both effects are derived from an asymptotic propagator analysis: while barrier crossing acceleration at intermediate memory can be understood as an effective particle mass reduction, slowing down for long memory is caused by the slow kinetics of energy diffusion. A simple and globally accurate heuristic formula for τMFP in terms of all relevant time scales of the system is presented and used to establish a scaling diagram featuring the Markovian overdamped and the Markovian inertial regimes, as well as the non-Markovian intermediate memory time regime where barrier crossing is accelerated and the non-Markovian long memory time regime where barrier crossing is slowed down.

  2. Search for high-energy neutrinos from bright GRBs with ANTARES

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Vizzocca, A.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in pγ interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C,

  3. Kinetic Physics of the Solar Corona and Solar Wind

    Directory of Open Access Journals (Sweden)

    Marsch Eckart

    2006-07-01

    Full Text Available Kinetic plasma physics of the solar corona and solar wind are reviewed with emphasis on the theoretical understanding of the in situ measurements of solar wind particles and waves, as well as on the remote-sensing observations of the solar corona made by means of ultraviolet spectroscopy and imaging. In order to explain coronal and interplanetary heating, the microphysics of the dissipation of various forms of mechanical, electric and magnetic energy at small scales (e.g., contained in plasma waves, turbulences or non-uniform flows must be addressed. We therefore scrutinise the basic assumptions underlying the classical transport theory and the related collisional heating rates, and also describe alternatives associated with wave-particle interactions. We elucidate the kinetic aspects of heating the solar corona and interplanetary plasma through Landau- and cyclotron-resonant damping of plasma waves, and analyse in detail wave absorption and micro instabilities. Important aspects (virtues and limitations of fluid models, either single- and multi-species or magnetohydrodynamic and multi-moment models, for coronal heating and solar wind acceleration are critically discussed. Also, kinetic model results which were recently obtained by numerically solving the Vlasov–Boltzmann equation in a coronal funnel and hole are presented. Promising areas and perspectives for future research are outlined finally.

  4. Investigations on the influence of ion kinetic energy on mass discrimination in isotope ratio measurements using MC-ICPMS

    International Nuclear Information System (INIS)

    Fontaine, G.H.; Hattendorf, B.; Oberli, F.; Bourdon, B.; Guenther, D.

    2009-01-01

    Full text: Systematic dependence of mass discrimination on ICP operating parameters was investigated for two MCICPMS instruments, a Nu Plasma HR and a Nu Plasma 1700, which differ both in acceleration voltage and spectrometer geometry. Gas temperature variations were determined by absolute pressure measurements at the vacuum interface. Their influence on ion kinetic energy as monitored by means of a retardation filter fitted in front of an ion counting detector will be discussed and compared to effects resulting from variations in acceleration voltage. (author)

  5. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  6. The HMMER Web Server for Protein Sequence Similarity Search.

    Science.gov (United States)

    Prakash, Ananth; Jeffryes, Matt; Bateman, Alex; Finn, Robert D

    2017-12-08

    Protein sequence similarity search is one of the most commonly used bioinformatics methods for identifying evolutionarily related proteins. In general, sequences that are evolutionarily related share some degree of similarity, and sequence-search algorithms use this principle to identify homologs. The requirement for a fast and sensitive sequence search method led to the development of the HMMER software, which in the latest version (v3.1) uses a combination of sophisticated acceleration heuristics and mathematical and computational optimizations to enable the use of profile hidden Markov models (HMMs) for sequence analysis. The HMMER Web server provides a common platform by linking the HMMER algorithms to databases, thereby enabling the search for homologs, as well as providing sequence and functional annotation by linking external databases. This unit describes three basic protocols and two alternate protocols that explain how to use the HMMER Web server using various input formats and user defined parameters. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. McMaster Accelerator Laboratory annual report, 1984

    International Nuclear Information System (INIS)

    1984-11-01

    Summaries of projects in progress constitute the major portion of this report. The tandem accelerator operated well during most of the year, with a number of heavy ion runs carried out at 10.44 MV. Tritium beams and polarized deuteron beams have been used extensively. Experiments using the multiplicity filter to study high spin states continue. An experiment was carried out relating to the search for a neutrino mass. Activity also continued in other areas of physics, engineering and medicine

  8. C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Sun, M.; Beatty, T. G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Filiz Ak, N. [Faculty of Sciences, Department of Astronomy and Space Sciences, Erciyes University, 38039 Kayseri (Turkey); Anderson, S. F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Vivek, M.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Roman-Lopes, Alexandre, E-mail: grier@psu.edu [Departamento de Fisica, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile)

    2016-06-20

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  9. Search for superdeformation in {sup 144,145}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Rzaca-Urban, T [Warsaw Univ. (Poland); Lieder, R M; Strahle, K; Utzelmann, S; Gast, W; Kutchin, D; Schnare, H [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Georgiev, A [Sofia Univ. (Bulgaria); Marti, G [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Fisica; Spohr, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; [Hahn-Meitner-Institut Berlin GmbH (Germany); Brentano, P; Eberth, J; Eschenauer, M; Freund, S; Ott, E; Theuerkauf, J; Wolters, H; Zell, K O [Koeln Univ. (Germany). Inst. fuer Kernphysik; Maier, K H; Grave, H; Bach, C; Heese, J; Kluge, H; Schramm, M; Schubarth, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1992-08-01

    Two experiments were performed and analyzed to search for superdeformation band in {sup 144,145}Gd by bombarding {sup 108,110}Pd targets with {sup 40A}r ions with energies of 182 and 189 MeV respectively, at the VICKSI accelerator of the Hahn-Meitner Institut, Berlin. The gamma radiation was measured with the OSIRIS spectrometer. An extended level system was proposed. 8 refs., 2 figs.

  10. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  11. Adaptive and accelerated tracking-learning-detection

    Science.gov (United States)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  12. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2014-05-04

    Graphics Processing Units (GPUs) are gradually becoming mainstream in supercomputing as their capabilities to significantly accelerate a large spectrum of scientific applications have been clearly identified and proven. Moreover, with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually requires an in-depth knowledge of the hardware and software specifications. We suggest a prediction-based performance tuning mechanism [3] to quickly tune OpenACC parameters for a given application to dynamically adapt to the execution environment on a given system. This approach is applied to a finite difference kernel to tune the OpenACC gang and vector clauses for mapping the compute kernels into the underlying accelerator architecture. Our experiments show a significant performance improvement against the default compiler parameters and a faster tuning by an order of magnitude compared to the brute force search tuning.

  13. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  14. Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results

    International Nuclear Information System (INIS)

    Ghosh, G.; Olson, G.B.

    2007-01-01

    An optimal integration of modern computational tools and efficient experimentation is presented for the accelerated design of Nb-based superalloys. Integrated within a systems engineering framework, we have used ab initio methods along with alloy theory tools to predict phase stability of solid solutions and intermetallics to accelerate assessment of thermodynamic and kinetic databases enabling comprehensive predictive design of multicomponent multiphase microstructures as dynamic systems. Such an approach is also applicable for the accelerated design and development of other high performance materials. Based on established principles underlying Ni-based superalloys, the central microstructural concept is a precipitation strengthened system in which coherent cubic aluminide phase(s) provide both creep strengthening and a source of Al for Al 2 O 3 passivation enabled by a Nb-based alloy matrix with required ductile-to-brittle transition temperature, atomic transport kinetics and oxygen solubility behaviors. Ultrasoft and PAW pseudopotentials, as implemented in VASP, are used to calculate total energy, density of states and bonding charge densities of aluminides with B2 and L2 1 structures relevant to this research. Characterization of prototype alloys by transmission and analytical electron microscopy demonstrates the precipitation of B2 or L2 1 aluminide in a (Nb) matrix. Employing Thermo-Calc and DICTRA software systems, thermodynamic and kinetic databases are developed for substitutional alloying elements and interstitial oxygen to enhance the diffusivity ratio of Al to O for promotion of Al 2 O 3 passivation. However, the oxidation study of a Nb-Hf-Al alloy, with enhanced solubility of Al in (Nb) than in binary Nb-Al alloys, at 1300 deg. C shows the presence of a mixed oxide layer of NbAlO 4 and HfO 2 exhibiting parabolic growth

  15. Search for Hidden Particles: a new experiment proposal

    Science.gov (United States)

    De Lellis, G.

    2015-08-01

    Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. We propose a new experiment meant to search for very weakly coupled particles in the few GeV mass domain. The existence of such particles, foreseen in different models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and it could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been observed so far. We therefore propose an experiment to search for hidden particles and study tau neutrino physics at the same time.

  16. Design considerations for long-pulse, high-repetition-rate modulators for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Reginato, L.L.; Yu, S.S.

    1991-06-01

    Heavy-ion accelerators are considered to be one of the promising driver alternatives for inertial fusion. In an inertial fusion driver, multiple beams of heavy-ions are accelerated to kinetic energies consistent with the fusion target requirements. During acceleration, the beams of heavy ions are compressed in time from an initial pulse duration that range from 10's to 100's of microseconds to a final pulse duration of approximately 10 nanoseconds. The compressed beam of heavy ions is then focused on the target in a reactor chamber where the energy released from the fusion reaction is converted to thermal energy and eventually to electricity. A recirculator is an induction accelerator which accelerates the particles and bends them in a closed path with pulsed dipole magnets. A single beam traverses the same accelerating cavities many times (50--100) to acquire its final energy. The primary motivation to evaluate recirculators is the potential for low cost that results from re-using many of the most expensive accelerator components, such as the induction cells, pulsers, and focusing magnets, during an acceleration sequence. One of the areas of technology that is critical to the feasibility of a recirculator is the modulator system required to accelerate the ion beams. This system greatly impacts the overall design of the recirculating accelerator. System studies have been conducted to evaluate the cost and efficiency of several recirculator configurations as function of various parameters. These system studies have helped identify desirable induction cell driver characteristics. These characteristics and the trade-offs that were evaluated will be presented and discussed

  17. Using X-Ray portable fluorescence for alloy contents measurement of steel pipe and optimization of Flow Accelerated Corrosion kinetic calculation with BRT-CICEROTM

    International Nuclear Information System (INIS)

    Trevin, Stephane; Moutrille, Marie-Pierre; Qiu, Gonghao; Miller, Cecile; Mellin, Nicolas

    2012-09-01

    EDF has developed during these 15 last years a software called BRT-CICERO TM for the surveillance of the secondary piping system of its Pressurized Water Reactors (PWRs). This software enables the operator to calculate the FAC wear rates taking into account all the influencing parameters such as: pipe isometrics, chromium content of the steel, chemical conditioning and operating parameters of the secondary circuit (temperature, pressure, etc.). This is a major tool for the operators to organize the maintenance and to plan the inspections. In the framework of the French pressure vessel law issued on March 15, 2000, the software BRT-CICERO TM has been recognized by the French authority for the FAC surveillance on the secondary pressure piping lines of the EDF 58 NPPs. It takes advantage of the experience feedback of EDF's fleet, of the R and D improvements (especially from the laboratory tests conducted on EDF's CIROCO loop) and is frequently updated. Kinetics calculations made with BRT-CICERO TM are highly dependent of chromium, copper and molybdenum contents of steel. These values are measured on site by X-ray portable fluorescence. EDF elaborated a measurement procedure with a validation process and verification of the measurement devices using certified blocks standard. This procedure enables EDF and service provider companies to measure more than 6 thousand components per year. These values are input in BRT-CICERO TM and the flow accelerated corrosion kinetic is calculated with a higher accuracy than before alloy contents measurement. The next version of BRT-CICERO will take into account chromium, copper and molybdenum contents. The actual version is using only chromium contents. This paper describes the X-Ray fluorescence and the procedure used at EDF. The advantage and drawbacks of this technique are discussed. According to research and development studies, the future algorithm for FAC calculation with these 3 alloys contents is described. Because of

  18. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  19. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  20. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Science.gov (United States)

    Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao

    2018-02-01

    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.

  1. Challenges and opportunities for atomic physics at FAIR: The new GSI accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, S. [Institut f. Kernphysik, University of Frankfurt (Germany) and GSI, Max Planckstr.1, Darmstadt (Germany)]. E-mail: s.hagmann@gsi.de; Beyer, H.F. [GSI, Max Planckstr.1, Darmstadt (Germany); Bosch, F. [GSI, Max Planckstr.1, Darmstadt (Germany); Braeuning-Demian, A. [GSI, Max Planckstr.1, Darmstadt (Germany); Kluge, H.-J. [GSI, Max Planckstr.1, Darmstadt (Germany); Kozhuharov, Ch. [GSI, Max Planckstr.1, Darmstadt (Germany); Kuehl, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Liesen, D. [GSI, Max Planckstr.1, Darmstadt (Germany); Stoehlker, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Ullrich, J. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Moshammer, R. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Mann, R. [GSI, Max Planckstr.1, Darmstadt (Germany); Mokler, P. [GSI, Max Planckstr.1, Darmstadt (Germany); Quint, W. [GSI, Max Planckstr.1, Darmstadt (Germany); Schuch, R. [Department of Physics, University of Stockholm (Sweden); Warczak, A. [Department of Physics, University of Cracow (Poland)

    2005-12-15

    We present a short overview of the current status of the new accelerator project FAIR at GSI with the new double synchrotron rings and the multi-storage rings. The key features of the new facility, which provides intense relativistic beams of stable and unstable nuclei, are introduced and their relation to the anticipated experimental programs in nuclear structure physics and antiproton physics is shown. The main emphasis in this overview is given to the atomic physics program with unique opportunities which will be provided e.g. by bare U{sup 92+} ions with kinetic energies continuously variable between relativistic energies corresponding to {gamma} up to {approx_equal}35 down to kinetic energies of such ions in traps corresponding to fractions of a Kelvin.

  2. Search for the 36Cl isotope in natural samples by cyclotron or tandem accelerators

    International Nuclear Information System (INIS)

    Brissaud, I.; Kalifa, J.; Laurnet, H.

    1981-01-01

    Because of the Half-life of 36 Cl (305.000 years), the measurement of the concentration of 36 Cl/Cl in natural samples is essential to the dating of very old ground waters. Thus, this measurement can provide an unique tool in fundamental research (such as knowledge of slow ground water movements) or in applied research (such as the evaluation of fossil water natural resources... etc...). We are more especially involved in age determination of groundwaters from confined aquifers in regions with presently arid or semi-arid climates where deep aquifers were recharged during post pluvial episodes. Accelerators as mass spectrometers have been used for approximately three years for the detection of different isotopes and especially 36 Cl. As a first step our group has tried to evaluate the possibilities of different accelerators by measuring the concentration 36 Cl/Cl of different samples prepared artificially. Then, we have begun to measure the 36 Cl presence in Sahara ground water samples

  3. The impact of alcohol om 241Am gastrointestinal absorption, distribution and metabolism kinetics in rats

    International Nuclear Information System (INIS)

    Zalikin, G.A.; Moskalev, Yu.I.; Nisimov, P.G.

    1986-01-01

    It is shown that alcohol may intensify gastrointestinal absorption of transuranium nuclides. Some intensification of 241 Am metabolism kinetics in rats and accelerated radionuclide excretion from skeleton are noticed that is due to toxic ethanol effect. Investigations in the above direction are thought to be interesting for development under conditions of chronic effect of different alcohol doses and transuranium nuclide incorporation

  4. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  5. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    targets at Trident with an energy spread of as low as {+-} 15% at a central energy of 35 MeV. High resolution kinetic simulations show that the acceleration is based on the generation of ion solitons due to the circularly polarized laser. The conversion efficiency into monoenergetic ions is increased by an order of magnitude compared with previous results in the TNSA regime. The advances in ion energies and the control over the spectra mark an important basis for future research of laser-driven ion acceleration and might enable laser-based implementation of these applications in the future.

  6. Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (Apis mellifera L.).

    Science.gov (United States)

    Ushitani, Tomokazu; Perry, Clint J; Cheng, Ken; Barron, Andrew B

    2016-02-01

    Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate. © 2016. Published by The Company of Biologists Ltd.

  7. Meson spectroscopy at the Serpukhov accelerator

    International Nuclear Information System (INIS)

    Prokoshkin, Yu.D.

    1987-01-01

    At present meson spectroscopy is a dominating direction of experimental studies at the IHEP accelerator. The main attention is paid to the search and study of exotic meson states. This report presents some new results obtained recently at the IHEP accelerator. First, observation is made of a narrow 1750 MeV meson decays into ηη. Above |t| ∼ 0.2 (GeV-c) 2 (t: a square of 4-momentum transferred to a neutron), a clear narrow peak appears in Mηη mass spectrum at a mass of 1750 MeV. Second, 2.22 GeV narrow meson decaying into η'η is described. At present only premature conclusions have been obtained in this area and the situation with ζ is not clear. Third, a study is made on new exotic tensor meson χ(1810) decaying into 4π deg and ηη channels. The decay M deg → 4π deg is a very promissing instrument in search for exotic mesons. Next, G(1590)-meson as a scalar glueball is discussed. BR(G → 4π deg) has a large value, an independent evidence of the exotic nature of G(1590)-meson. Experimental data obtained on all essential decay channels of G(1590)-meson allows to give a selfconsistent description of its production and decay as the scalar glueball, a particle with the dominating gluon component. The final two parts deal with exotic vector meson C(1480) decaying into ψπ deg and observation of D(1285) → ψγ decay. (Nogami, K.)

  8. Experiments assigned to determine the acceleration of 8000kN shear laboratory model elements

    Science.gov (United States)

    Budiul Berghian, A.; Vasiu, T.; Abrudean, C.

    2017-01-01

    In this paper presents an experimental kinetics study by measuring accelerations using a bi-axial accelerometer constructed in the basis of a miniature integrated circuit, included in the class of micro-electrical and mechanical systems - MMA6261Q on the experimental installation reduced to the 1:5 dividing rule by comparison with the shear existent in exploitation, conceived and projected at the Faculty of Engineering in Hunedoara.

  9. Kinetic Interaction of Uranium Vacancies and Dislocations in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States); Subramanian, Gopinath [Univ. of South Mississippi, Hattiesburg, MS (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-25

    Understanding how point defects and defect clusters interact with dislocations in urania is important for a number of phenomena. For example, dislocations are one (of many) trap sites in the fuel where fission gases may accumulate and ultimately nucleate fission gas bubbles. Further, some creep mechanisms are governed by the flow of point defects to dislocations. Thus, for a variety of reasons, it is important to examine how dislocations attract and accelerate the kinetics of point defects.

  10. A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition

    International Nuclear Information System (INIS)

    Zheng Zheming; Stephens, Ryan M.; Braatz, Richard D.; Alkire, Richard C.; Petzold, Linda R.

    2008-01-01

    A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposition is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which considers site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for discrete stochastic simulation which adaptively selects exact discrete stochastic simulation for the appropriate reaction whenever that is necessary. The HMKMC method is seen to be accurate and highly efficient

  11. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanzhi; Guan Weijun; Wang Qinguo; Wang Xiaolin; Lai Xinchun; Shuai Maobing, E-mail: yanzhizh@163.com [China Academy of Engineering Physics, PO Box 919-71, Mianyang, Sichuan, 621900 (China)

    2010-03-15

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50{approx}300deg. C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO{sub 2} was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO{sub 2} can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  12. Searching for light dark matter with the SLAC millicharge experiment.

    Science.gov (United States)

    Diamond, M; Schuster, P

    2013-11-27

    New sub-GeV gauge forces ("dark photons") that kinetically mix with the photon provide a promising scenario for MeV-GeV dark matter and are the subject of a program of searches at fixed-target and collider facilities around the world. In such models, dark photons produced in collisions may decay invisibly into dark-matter states, thereby evading current searches. We reexamine results of the SLAC mQ electron beam dump experiment designed to search for millicharged particles and find that it was strongly sensitive to any secondary beam of dark matter produced by electron-nucleus collisions in the target. The constraints are competitive for dark photon masses in the ~1-30 MeV range, covering part of the parameter space that can reconcile the apparent (g-2)(μ) anomaly. Simple adjustments to the original SLAC search for millicharges may extend sensitivity to cover a sizable portion of the remaining (g-2)(μ) anomaly-motivated region. The mQ sensitivity is therefore complementary to ongoing searches for visible decays of dark photons. Compared to existing direct-detection searches, mQ sensitivity to electron-dark-matter scattering cross sections is more than an order of magnitude better for a significant range of masses and couplings in simple models.

  13. Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks

    Science.gov (United States)

    Takeuchi, Satoshi

    2018-02-01

    A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.

  14. A search for sterile neutrinos in MINOS

    International Nuclear Information System (INIS)

    Osiecki, Thomas Henry

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm 23 2 and θ 23 through the disappearance of ν μ , MINOS is able to measure ν μ → ν sterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS

  15. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  16. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  17. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  18. Synchrotron Study on Crystallization Kinetics of Milk Fat under Shear Flow

    International Nuclear Information System (INIS)

    Mazzanti, G.; Marangoni, A.; Idziak, S.

    2009-01-01

    A detailed synchrotron X-ray diffraction study on the kinetics of crystallization of anhydrous milk fat (AMF) and milk fat triacylglycerols (MFT) was done in a Couette cell at 17 C, 17.5 C and 20 C under shear rates between 0 and 2880 s-1. We observed shear-induced acceleration of the transition from phase ? to ?? and the presence of crystalline orientation, but no effect of shear on the onset time of phase ? was observed. A two stage regime was observed for the growth of phase ??. The first stage follows a series-parallel system of differential equations describing the conversion between liquid and crystalline phases. The second stage follows a diffusion-controlled regime. These mechanisms are consistent with the crystalline orientation, the growth of the crystalline domains and the observed displacement of the diffraction peak positions. The absence of the polar lipids explains the faster kinetics of MFT.

  19. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  20. Kinetics of actinide reduction by hydroxylamine

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Zhuravleva, G.I.; Shapovalov, M.P.

    1981-01-01

    The kinetics of Pu(6) reduction to Pu(5) with hydroxylamine in perchloric acid solution at the ionic force of μ=3 in the temperature range of 40-68 deg C is studied. The reaction rate is described with the equation d[Pu(6)]/dt=k 1 [Pu(6)]x[NH 3 OH + ]/[H + ], where k 1 =4.22+-0.12 min -1 at 60 deg C. The energy and entropy of activation constitute 78+-2 kJ/mol-10 entropy units respectively. At [H + ]> approximately 0.5 mol/l the reaction is accelerated autocatalytically at the expense of PuO 2 2+ and Pu 3+ -ion interaction with subsequent rapid transition of Pu(4) to Pu(3) as a result of reaction with hydroxylamine. The reaction mechanism is discussed [ru

  1. Three-Dimensional Dynamics of Breakout Afterburner Ion Acceleration Using High-Contrast Short-Pulse Laser and Nanoscale Targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.

    2011-01-01

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  2. Dirac's Dream - the Search for the Magnetic Monopole

    International Nuclear Information System (INIS)

    Pinfold, James L.

    2010-01-01

    I first quickly summarize the history of the Magnetic Monopole leading to the quantum theory of magnetic charge that started with a 1931 paper by Paul Dirac who showed that the existence of magnetic monopoles was consistent with Maxwell's equations only if electric charges are quantized. Next I will briefly review the status of monopole searches. Last, but not least I discuss in more detail the MoEDAL experiment--the latest accelerator experiment designed to search for direct production of magnetic monopoles or dyons (particles with electric and magnetic charge) and other highly ionizing particles - such as heavy (pseudo-) stable particles with conventional electric charge - at the LHC. The MoEDAL experiment employs nuclear track-etch detectors deployed in the VELO vertex region of the LHCb experiment.

  3. Kinetic energy of ions produced with first-, second-, and multi-shot femtosecond laser ablation on a solid surface

    International Nuclear Information System (INIS)

    Kobayashi, Tohru; Kato, Toshiyuki; Kurata-Nishimura, Mizuki; Matsuo, Yukari; Kawai, Jun; Motobayashi, Tohru; Hayashizaki, Yoshihide

    2007-01-01

    We report that the kinetic energy of samarium (Sm) atom and Sm + ion produced by femtosecond laser ablation of solid samarium is strongly dependent on the number of ablation laser shots in the range from 1 to 10. By ablating the fresh surface (i.e. 1st shot), we find the kinetic energy of both Sm and Sm + ion to be the largest (24 and 250 eV, respectively). Almost 10 times larger kinetic energy of Sm + ion than that of Sm clearly indicates the contribution of Coulomb explosion in the acceleration process. From the second shot, kinetic energies of Sm and Sm + ion are lower than those of the first shot and almost constant (ca. 12 and 80 eV, respectively). This behaviour suggests the change in the nature of the solid surface after femtosecond laser ablation, which can be explained by the amorphization of ablated sample surface reported in recent studies

  4. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    Science.gov (United States)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  5. Ametryn degradation by aqueous chlorine: Kinetics and reaction influences

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Cheng Hefa; Hu Chenyan; Xia Shengji; Sun Xiaofeng; Wang Xuejiao; Yang Shaogui

    2009-01-01

    The chemical oxidation of the herbicide ametryn was investigated by aqueous chlorination between pH 4 and 10 at a temperature of 25 deg. C. Ametryn was found to react very rapidly with aqueous chlorine. The reaction kinetics can be well described by a second-order kinetic model. The apparent second-order rate constants are greater than 5 x 10 2 M -1 s -1 under acidic and neutral conditions. The reaction proceeds much more slowly under alkaline conditions. The predominant reactions were found to be the reactions of HOCl with neutral ametryn and the charged ametryn, with rate constants equal to 7.22 x 10 2 and 1.58 x 10 3 M -1 s -1 , respectively. The ametryn degradation rate increases with addition of bromide and decreases with addition of ammonia during the chlorination process. Based on elementary chemical reactions, a kinetic model of ametryn degradation by chlorination in the presence of bromide or ammonia ion was also developed. By employing this model, we estimate that the rate constants for the reactions of HOBr with neutral ametryn and charged ametryn were 9.07 x 10 3 and 3.54 x 10 6 M -1 s -1 , respectively. These values are 10- to 10 3 -fold higher than those of HOCl, suggesting that the presence of bromine species during chlorination could significantly accelerate ametryn degradation.

  6. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  7. Evolutionary optimization methods for accelerator design

    Science.gov (United States)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained

  8. On the origin of very-high-energy photons in astrophysics: a short introduction to acceleration and radiation physics

    International Nuclear Information System (INIS)

    Lemoine, M.; Pelletier, G.

    2015-01-01

    Powerful astrophysical sources produce non-thermal spectra of very-high-energy photons, with generic power-law distributions, through various radiative processes of charged particles, e.g., synchrotron radiation, inverse Compton processes, and hadronic interactions. Those charged particles have themselves been accelerated to ultra-relativistic energies in intense electromagnetic fields in the source. In many cases, the exact acceleration scheme is not known, but standard scenarios, such as Fermi mechanisms and reconnection processes are generally considered as prime suspects for the conversion of bulk kinetic or electromagnetic energy into a power law of supra-thermal particles. This paper proposes a short introduction to the various acceleration and radiative processes which shape the distributions of very-high-energy photons (E > 100 MeV) in astrophysics. (authors)

  9. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide

    Science.gov (United States)

    Rocha, Magda; Mansur, Alexandra; Mansur, Herman

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, its mechanism is not accurately understood yet. Thus, in the present study an accelerated ageing of UHMWPE in hydrogen peroxide solution was performed and relative oxidation was extensively characterized by Fourier Transformed Infrared Spectroscopy (FTIR) spectroscopy and the morphological changes were analyzed by Scanning Electron Microscopy (SEM). Different chemical groups of UHMWPE associated with the degradation reaction were monitored for over 120 days in order to evaluate the possible oxidation mechanism(s) which may have occurred. The results have provided strong evidence that the oxidation mechanism is rather complex, and two stages with their own particular first-order kinetics reaction patterns have been clearly identified. Furthermore, hydrogen peroxide has proven to be an efficient oxidative medium to accelerate ageing of UHMWPE.

  10. Investigation of effect of air flow rate on Zircaloy-4 oxidation kinetics and breakaway phenomenon in air at 850 .deg. C

    International Nuclear Information System (INIS)

    Maeng, Yunhwan; Lee, Jaeyoung; Park, Sanggil

    2016-01-01

    This paper analyzed an effect of flow rate on oxidation kinetics of Zircaloy-4 in air at 850 .deg. C. In case of the oxidation of Zircaloy-4 in air at 850 .deg. C, acceleration of oxidation kinetics from parabolic to linear (breakaway phenomenon) occurs. Oxidation and breakaway kinetics of the Zircaloy-4 in air was experimentally studied by changing a flow rate of argon/air mixture. Tests were conducted at 850 .deg. C under constant ratio of argon and air. The effects of flow rate on the oxidation and breakaway kinetics was observed. This paper is based on a revised and considerably extended presentation given at the 21 st International Quench Workshop. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were explained with residence time and percent flow efficiency. In addition, several issues were observed from this study, interdiffusion at breakaway and deformation of oxide structure by breakaway phenomenon

  11. Database automation of accelerator operation

    International Nuclear Information System (INIS)

    Casstevens, B.J.; Ludemann, C.A.

    1983-01-01

    Database management techniques are applied to automating the setup of operating parameters of a heavy-ion accelerator used in nuclear physics experiments. Data files consist of ion-beam attributes, the interconnection assignments of the numerous power supplies and magnetic elements that steer the ions' path through the system, the data values that represent the electrical currents supplied by the power supplies, as well as the positions of motors and status of mechanical actuators. The database is relational and permits searching on ranges of any subset of the ion-beam attributes. A file selected from the database is used by the control software to replicate the ion beam conditions by adjusting the physical elements in a continuous manner

  12. Real-Time Observation of Target Search by the CRISPR Surveillance Complex Cascade

    Directory of Open Access Journals (Sweden)

    Chaoyou Xue

    2017-12-01

    Full Text Available CRISPR-Cas systems defend bacteria and archaea against infection by bacteriophage and other threats. The central component of these systems are surveillance complexes that use guide RNAs to bind specific regions of foreign nucleic acids, marking them for destruction. Surveillance complexes must locate targets rapidly to ensure timely immune response, but the mechanism of this search process remains unclear. Here, we used single-molecule FRET to visualize how the type I-E surveillance complex Cascade searches DNA in real time. Cascade rapidly and randomly samples DNA through nonspecific electrostatic contacts, pausing at short PAM recognition sites that may be adjacent to the target. We identify Cascade motifs that are essential for either nonspecific sampling or positioning and readout of the PAM. Our findings provide a comprehensive structural and kinetic model for the Cascade target-search mechanism, revealing how CRISPR surveillance complexes can rapidly search large amounts of genetic material en route to target recognition.

  13. Influence of Al2O3 reinforcement on precipitation kinetic of Cu–Cr nanocomposite

    International Nuclear Information System (INIS)

    Sheibani, S.; Ataie, A.; Heshmati-Manesh, S.; Caballero, A.; Criado, J.M.

    2011-01-01

    Highlights: ► Cr precipitation in Cu-1 wt.% Cr solid solution is based on nucleation and growth models. ► The overall ageing process is accelerated by the presence of Al 2 O 3 reinforcement. ► Al 2 O 3 –Cu interfaces act as primary nucleation sites. ► Structural defects act as secondary nucleation sites. - Abstract: In this paper, the kinetic of precipitation process in mechanically alloyed Cu-1 wt.% Cr and Cu-1 wt.% Cr/3 wt.% Al 2 O 3 solid solution was compared using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The ageing kinetics in Cu–Cr and Cu–Cr/Al 2 O 3 can be described using Johnson–Mehl–Avrami (JMA) and Sestak–Berggren (SB) models, respectively. These different behaviors have been discussed in details. It was found that in presence of Al 2 O 3 reinforcement, the ageing activation energy is decreased and the overall ageing process is accelerated. This behavior is probably due to higher dislocation density previously obtained during ball milling and Al 2 O 3 –Cu interface. TEM observations confirm that Al 2 O 3 –Cu interface and structural defects act as a primary and secondary nucleation sites, respectively.

  14. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  15. Stanford Linear Accelerator Center selects Verity Ultraseek for public and internal Web Sites

    CERN Multimedia

    2004-01-01

    Verity Inc., a provider of enterprise software has announced the latest version of its powerful, downloadable Verity(R) Ultraseek(R) enterprise search engine is being used by the Stanford Linear Accelerator Center, a research facility funded by the U.S. Department of Energy and operated by Stanford University (1/2 page).

  16. Disruption of gut homeostasis by opioids accelerates HIV disease progression

    Directory of Open Access Journals (Sweden)

    Jingjing eMeng

    2015-06-01

    Full Text Available Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.

  17. Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2003-01-01

    We investigate the problem of generalizing acceleration techniques as found in recent satisfiability engines for conjunctive normal forms (CNFs) to linear constraint systems over the Booleans. The rationale behind this research is that rewriting the propositional formulae occurring in e.g. bounde...

  18. Search for fractional charge

    International Nuclear Information System (INIS)

    Turner, R.E.

    1984-01-01

    A search was made for fractional charges of the form Z plus two-thirds e, where Z is an integer. It was assumed that the charges exist in natural form bound with other fractional charges in neutral molecules. It was further assumed that these neutral molecules are present in air. Two concentration schemes were employed. One sample was derived from the waste gases from a xenon distillation plant. This assumes that high mass, low vapor pressure components of air are concentrated along with the xenon. The second sample involved ionizing air, allowing a brief recombination period, and then collecting residual ions on the surface of titanium discs. Both samples were analyzed at the University of Rochester in a system using a tandem Van de Graff to accelerate particles through an essentially electrostatic beam handling system. The detector system employed both a Time of Flight and an energy-sensitive gas ionization detector. In the most sensitive mode of analysis, a gas absorber was inserted in the beam path to block the intense background. The presence of an absorber limited the search to highly penetrating particles. Effectively, this limited the search to particles with low Z and masses greater than roughly fifty GeV. The final sensitivities attained were on the order of 1 x 10 -20 for the ionized air sample and 1 x 10 -21 for the gas sample. A discussion of the caveats that could reduce the actual level of sensitivity is included

  19. A highly accurate benchmark for reactor point kinetics with feedback

    International Nuclear Information System (INIS)

    Ganapol, B. D.; Picca, P.

    2010-10-01

    This work apply the concept of convergence acceleration, also known as extrapolation, to find the solution to the reactor kinetics equations describing nuclear reactor transients. The method features simplicity in that an approximate finite difference formulation is constructed and converged to high accuracy from knowledge of how the error term behaves. Through Rom berg extrapolation, we demonstrate its high accuracy for a variety of imposed reactivity insertions found in the literature as well as nonlinear temperature and fission product feedback. A unique feature of the proposed method, called RKE/R(om berg) algorithm, is interval bisection to ensure high accuracy. (Author)

  20. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Study of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate/SiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. R. Memarzadeh

    2013-09-01

    Full Text Available Poly(ethylene adipte and poly(ethylene adipate/silica nanocomposite (PEAd/SiO2 containing 3 wt. % SiO2  were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC. The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinetics and to determine the crystallization parameters of the prepared PEAd/SiO2 nanocomposites. It is found that the inclusion of the silica nanoparticles can accelerate the nucleation rate due to heterogeneous nucleation effect of silica on the polymer matrix. According to the obtained results, the combined Avrami and Ozawa equation shown that the better model for examination of this system.

  2. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Jung, Daniel

    2012-01-01

    energy spread of as low as ± 15% at a central energy of 35 MeV. High resolution kinetic simulations show that the acceleration is based on the generation of ion solitons due to the circularly polarized laser. The conversion efficiency into monoenergetic ions is increased by an order of magnitude compared with previous results in the TNSA regime. The advances in ion energies and the control over the spectra mark an important basis for future research of laser-driven ion acceleration and might enable laser-based implementation of these applications in the future.

  3. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  4. The CHASE laboratory search for chameleon dark energy

    International Nuclear Information System (INIS)

    Steffen, Jason H.

    2010-01-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.

  5. The CHASE laboratory search for chameleon dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason [Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)

    2010-07-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. I present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement over other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys. (author)

  6. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  7. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-05-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for creatine and PCr for phosphocreatine) and in glycolytic ATP supply lengthen the half-transition time, whereas increase in mitochondrial content, in parallel activation of ATP supply and ATP usage, in oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH and in initial alkalization decrease this parameter. Theoretical studies show that a decrease in the activity of creatine kinase (CK) [displacement of this enzyme from equilibrium during on-transient (rest-to-work transition)] accelerates the first stage of the VO2 on-transient, but slows down the second stage of this transient. It is also demonstrated that a prior exercise terminated a few minutes before the principal exercise shortens the transition time. Finally, it is shown that at a given ATP demand, and under conditions where CK works near the thermodynamic equilibrium, the half-transition time of VO2 kinetics is determined by the amount of PCr that has to be transformed into Cr during rest-to-work transition; therefore any factor that diminishes the difference in [PCr] between rest and work at a given energy demand will accelerate the VO2 on-kinetics. Our conclusions agree with the general idea formulated originally by Easterby [(1981) Biochem. J. 199, 155-161] that changes in metabolite concentrations determine the transition times between different steady states in metabolic systems.

  8. Efficient protein structure search using indexing methods.

    Science.gov (United States)

    Kim, Sungchul; Sael, Lee; Yu, Hwanjo

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively.

  9. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    Science.gov (United States)

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  10. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  11. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    International Nuclear Information System (INIS)

    Ochiai, Y.; Murata, T.; Ito, H.; Masugata, K.

    2012-01-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device multiple shot operations is realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm, length 25 mm. Capacitor bank of capacitance 3 μF, charging voltage 30 kV was used and the wire was successfully exploded by a discharge current of 15 kA, rise time 5.3 μs. Plasma flux of ion current density around 70 A/cm 2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7x10 4 m/sec, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of ion current density distribution ion flow is found to be concentrated to the direction where ion acceleration gap is placed. From the experiment the device is found to be acceptable for applying PHIB accelerator. (author)

  12. A new quantitative analysis on nitriding kinetics in the oxidized Zry-4 at 900-1200 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggi [ACT Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    Two major roles of nitrogen on the zirconium based cladding degradation were identified: mechanical degradation of the cladding, and the additional chemical heat release. It has long been known that accelerated oxidation can occur in air due to the nitrogen. In addition, significant uptake of nitrogen can also occur. The nitriding of pre-oxidized zirconium based alloys leads to micro porous and less coherent oxide scales. This paper aims to quantitatively investigate the nitriding mechanism and kinetics by proposing a new methodology that is coupled with the mass balance analysis and the optical microscope image processing analysis. A new quantitative analysis methodology is described in chapter 2 and the investigation of the nitriding kinetics is performed in chapter 3. The experimental details are previously reported in. Previously only qualitative analysis was performed in, and hence the quantitative analysis will be performed in this paper. In this paper, the nitriding kinetics and mechanism were quantitatively analyzed by the new proposed analysis methods: the mass balance analysis and the optical microscope image processing analysis. Using these combined methods, the mass gain curves and the optical microscopes are analyzed in very detail, and the mechanisms of nitriding accelerated, stabilized and saturated behaviors were well understood. This paper has two very distinctive achievements as follows: 1) Development of very effective quantitative analysis methods only using two main results of oxidation tests: No detailed analytical sample measurements (e.g. TEM, EPMA and so on.) were required. These methods can effectively reduce the cost and effort of the post-test investigation. 2) The first identification of the nitriding behaviors and its very accurate analysis in a quantitative way. Based on this quantitative analysis results on the nitriding kinetics, these new findings will contribute significantly the understanding the air oxidation behaviors and model

  13. An algorithm for online optimization of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2013-10-01

    We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.

  14. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.; Novoa, Fernando; Voroshazi, Eszter; Dauskardt, Reinhold H.

    2013-01-01

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.

    2013-10-17

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Primakoff Prize Talk: The Search for Dark Sectors

    Science.gov (United States)

    Essig, Rouven

    2015-04-01

    Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly interesting possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. Examples of dark sector particles include dark photons, axions, axion-like particles, and dark matter. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. This talk summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. Particular emphasis will be given to the search for dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model hypercharge, with masses in the MeV-to-GeV range. Experimental searches include low-energy e+e- colliders, new and old high-intensity fixed-target experiments, and high-energy colliders. The talk will highlight the APEX and HPS experiments at Jefferson Lab, which are pioneering, low-cost experiments to search for dark photons in fixed target electroproduction. Over the next few years, they have the potential for a transformative discovery.

  18. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  19. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  20. Search for Hidden Particles (SHiP): a new experiment proposal

    Science.gov (United States)

    De Lellis, G.

    2015-06-01

    Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. We propose a new experimental facility meant to search for very weakly coupled particles in the few GeV mass domain. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been observed so far. We therefore propose an experiment to search for hidden particles and study tau neutrino physics at the same time.

  1. Search for Lepton Flavor Violation with Muons

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka

    2009-01-01

    Physics motivation and phenomenology of muon to electron conversion (μ - +N(A,Z)→e - +N(A,Z)) in a muonic atom, which is one the most important muon processes to search for lepton flavor violation of charged leptons, are presented. Prospects for future experiments at J-PARC (Japan Proton Accelerator Complex) in Japan, such as the COMET experiment for a sensitivity of less than 10 -16 as the first stage, and then the PRISM/PRIME experiment for a sensitivity of less than 10 -18 as the ultimate stage, are discussed.

  2. A search for sterile neutrinos in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Osiecki, Thomas Henry [Univ. of Texas, Austin, TX (United States)

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm$2\\atop{23}$ and θ23 through the disappearance of vμ, MINOS is able to measure vμ → vsterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

  3. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  4. Redistribution of Kinetic Energy in Turbulent Flows

    Directory of Open Access Journals (Sweden)

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  5. WIMP dark matter and supersymmetry searches with neutrino telescopes

    International Nuclear Information System (INIS)

    Fornengo, N.

    2011-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, a problem of cosmological and astrophysical nature, is going to be placed under strong scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas about new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on signals which can be produced by the galactic or extra-galactic dark matter. The current and new-generation experimental efforts are therefore going to place under deep scrutiny the theoretical explanations of the relevant signals. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds. Neutrino telescopes are one of the prominent tools for looking at dark matter and search for a signal, the neutrino flux from Earth and Sun. In this neutrino dark matter searches share properties with both direct dark matter searches and cosmic-ray indirect dark matter searches, and therefore complement these different detection techniques.

  6. Accelerated subcutaneous immunotherapy in pediatric population – Systematic review

    Directory of Open Access Journals (Sweden)

    R.A. Gomes dos Reis Pimentel

    2018-05-01

    Full Text Available Background: Accelerated subcutaneous immunotherapy (SCIT schedules represent an alternative to conventional SCIT, providing immunotherapy benefits in a shorter period of time. The objectives of this systematic review were to assess clinical and immunological efficacy as well as safety of accelerated SCIT build-up schedules for the treatment of respiratory allergy in pediatric patients. Methods: Studies were located by searching PubMed, using “immunotherapy” and “desensitization” as keywords. The selection of studies, published from January 1st, 2006, to December 31th, 2015, was performed in two stages: screening of titles and abstracts, and assessment of the full papers identified as relevant, considering the inclusion criteria. Data were extracted in a standardized way and synthesized qualitatively to assess efficacy and safety of accelerated schedules in respiratory allergy. Results: Eleven trials were included: two evaluated rush SCIT and nine assessed cluster SCIT. This review demonstrated that rush and cluster schedules are clinically and immunological efficacious, with faster effect than conventional schedules. No relevant difference with respect to clinical outcomes was noticed between subgroups (pediatric, adult and mixed populations. Regarding safety, most local adverse reactions were mild and there were neither life-threatening systemic reactions nor fatal events. No relevant differences in the incidence and severity of either local or systemic reactions between the accelerated schedule group and control group were registered. Conclusions: Accelerated SCIT build-up schedules are effective in the treatment of respiratory allergy in pediatric patients, representing a safe alternative to the conventional schedules with the advantage of achieving clinical effectiveness sooner. Keywords: Allergy, Immunotherapy, Pediatrics

  7. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  8. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2003-01-01

    model resonators for a new type of 2 x 9 cell accelerating superstructures was successfully designed, built and sent to DESY for further tests. In DESY, the long term tests of the first type 4 x 7-cell superconducting superstructure (part of which was made in our Department in 1999) ended with very good results. The works on RF vacuum windows protection against the multipactor effects in high power couplers are still continued in DESY. The new technologies of thin TiN coating of ceramic windows were tested and a new coating setup was designed. The results were presented on the Workshop on High-Power Couplers for Superconducting Accelerators held Oct. 2002. The experience of Department's performance in last year evokes important conclusions: - we are always able to undertake new important tasks in accelerator physics and technology, and collaborate with eminent accelerator laboratories, - there exists a real necessity to keep and develop accelerator physics in our Institute. Searching for new ways in difficult financial conditions, the Department should be stepwise reconstructed and developed. (author)

  9. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  10. Dissociation kinetics of iodine in oxygen-containing electrical discharge plasmas

    International Nuclear Information System (INIS)

    Zakharov, A.I.; Klopovskii, K.S.; Rakhimova, T.V.; Samorodov, V.A.

    1993-01-01

    Studies of the kinetics of gaseous media containing oxygen and iodine molecules have been stimulated to a substantial degree by the search for ways of improving iodine-oxygen lasers and by the need for information on loss processes for atmospheric ozone. Results are presented from an experimental study and numerical simulations of the kinetics of the dissociation of iodine in self-sustained volume discharges in high-pressure O 2 :Ar:I 2 mixtures. It is shown that the well-studied mechanism for dissociation based on excitation of iodine molecules in successive collisions with singlet oxygen and excited iodine atoms is supplanted by a substantially different mechanism involving the creation and loss of 10 radicals when the densities of atomic oxygen and ozone are high enough. It is also shown that iodine fractions as low as ∼10 -3 in the mixture lead to rapid loss of ozone molecules while less than 18% of the discharge energy is expended in the production of singlet oxygen

  11. Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification

    Science.gov (United States)

    Swinburne, Thomas D.; Perez, Danny

    2018-05-01

    A massively parallel method to build large transition rate matrices from temperature-accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.

  12. Gesture Recognition from Data Streams of Human Motion Sensor Using Accelerated PSO Swarm Search Feature Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2015-01-01

    Full Text Available Human motion sensing technology gains tremendous popularity nowadays with practical applications such as video surveillance for security, hand signing, and smart-home and gaming. These applications capture human motions in real-time from video sensors, the data patterns are nonstationary and ever changing. While the hardware technology of such motion sensing devices as well as their data collection process become relatively mature, the computational challenge lies in the real-time analysis of these live feeds. In this paper we argue that traditional data mining methods run short of accurately analyzing the human activity patterns from the sensor data stream. The shortcoming is due to the algorithmic design which is not adaptive to the dynamic changes in the dynamic gesture motions. The successor of these algorithms which is known as data stream mining is evaluated versus traditional data mining, through a case of gesture recognition over motion data by using Microsoft Kinect sensors. Three different subjects were asked to read three comic strips and to tell the stories in front of the sensor. The data stream contains coordinates of articulation points and various positions of the parts of the human body corresponding to the actions that the user performs. In particular, a novel technique of feature selection using swarm search and accelerated PSO is proposed for enabling fast preprocessing for inducing an improved classification model in real-time. Superior result is shown in the experiment that runs on this empirical data stream. The contribution of this paper is on a comparative study between using traditional and data stream mining algorithms and incorporation of the novel improved feature selection technique with a scenario where different gesture patterns are to be recognized from streaming sensor data.

  13. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    Science.gov (United States)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  14. Database automation of accelerator operation

    International Nuclear Information System (INIS)

    Casstevens, B.J.; Ludemann, C.A.

    1982-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) is a variable energy, multiparticle accelerator that produces beams of energetic heavy ions which are used as probes to study the structure of the atomic nucleus. To accelerate and transmit a particular ion at a specified energy to an experimenter's apparatus, the electrical currents in up to 82 magnetic field producing coils must be established to accuracies of from 0.1 to 0.001 percent. Mechanical elements must also be positioned by means of motors or pneumatic drives. A mathematical model of this complex system provides a good approximation of operating parameters required to produce an ion beam. However, manual tuning of the system must be performed to optimize the beam quality. The database system was implemented as an on-line query and retrieval system running at a priority lower than the cyclotron real-time software. It was designed for matching beams recorded in the database with beams specified for experiments. The database is relational and permits searching on ranges of any subset of the eleven beam categorizing attributes. A beam file selected from the database is transmitted to the cyclotron general control software which handles the automatic slewing of power supply currents and motor positions to the file values, thereby replicating the desired parameters

  15. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    Science.gov (United States)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  16. Combined experimental and numerical kinetic characterization of NR vulcanized with sulphur, N terbutyl, 2 benzothiazylsulphenamide and N,N diphenyl guanidine

    Energy Technology Data Exchange (ETDEWEB)

    Milani, G., E-mail: gabriele.milani@polimi.it [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Hanel, T.; Donetti, R. [Pirelli Tyre, Via Alberto e Piero Pirelli 25, 20126 Milan (Italy); Milani, F. [Chem. Co, Via J.F.Kennedy 2, 45030 Occhiobello (Italy)

    2016-06-08

    The paper presents the final results of a comprehensive experimental and numerical analysis aimed at deeply investigating the behavior of Natural Rubber (NR) vulcanized with sulphur in presence of different accelerators during standard rheometer tests. NR in presence of sulphur and two different accelerators (DPG and TBBS) in various concentrations is investigated, changing the curing temperature in the range 150-180°C and obtaining rheometer curves with a step of 10°C. Sulphur-TBBS concentrations considered are 1-1, 1-3, 3-3 and 3-1, with DPG at 1-4 phr respectively. A total of 48 experimental rheometer curves is so obtained. To fit experimental data, the general reaction scheme proposed by Han and co-workers for vulcanized sulphur NR is re-adapted and suitably modified taking into account the single contributions of the different accelerators. Chain reactions initiated by the formation of macro-compounds responsible for the formation of the unmatured crosslinked polymer are accounted for. In presence of two accelerators, reactions are assumed to proceed in parallel, making the practically effective hypothesis that there is no interaction between the two accelerators. From the simplified kinetic scheme adopted, a closed form solution is found for the crosslink density, with the only limitation that the induction period is excluded from computations. For each experimented case on the same blend, reaction kinetic constants provided by the model are utilized to deduce their trend in the Arrhenius space, also outside the temperature range inspected. Rather close linearity is found in the majority of the cases. A comparative analysis is carefully conducted among the constants at the different concentrations of S, TBBS and DPG investigated, allowing a prediction of curing behavior at any vulcanization temperature and with concentrations not experimentally tested, without the need of addition costly experimentation.

  17. Combined experimental and numerical kinetic characterization of NR vulcanized with sulphur, N terbutyl, 2 benzothiazylsulphenamide and N,N diphenyl guanidine

    International Nuclear Information System (INIS)

    Milani, G.; Hanel, T.; Donetti, R.; Milani, F.

    2016-01-01

    The paper presents the final results of a comprehensive experimental and numerical analysis aimed at deeply investigating the behavior of Natural Rubber (NR) vulcanized with sulphur in presence of different accelerators during standard rheometer tests. NR in presence of sulphur and two different accelerators (DPG and TBBS) in various concentrations is investigated, changing the curing temperature in the range 150-180°C and obtaining rheometer curves with a step of 10°C. Sulphur-TBBS concentrations considered are 1-1, 1-3, 3-3 and 3-1, with DPG at 1-4 phr respectively. A total of 48 experimental rheometer curves is so obtained. To fit experimental data, the general reaction scheme proposed by Han and co-workers for vulcanized sulphur NR is re-adapted and suitably modified taking into account the single contributions of the different accelerators. Chain reactions initiated by the formation of macro-compounds responsible for the formation of the unmatured crosslinked polymer are accounted for. In presence of two accelerators, reactions are assumed to proceed in parallel, making the practically effective hypothesis that there is no interaction between the two accelerators. From the simplified kinetic scheme adopted, a closed form solution is found for the crosslink density, with the only limitation that the induction period is excluded from computations. For each experimented case on the same blend, reaction kinetic constants provided by the model are utilized to deduce their trend in the Arrhenius space, also outside the temperature range inspected. Rather close linearity is found in the majority of the cases. A comparative analysis is carefully conducted among the constants at the different concentrations of S, TBBS and DPG investigated, allowing a prediction of curing behavior at any vulcanization temperature and with concentrations not experimentally tested, without the need of addition costly experimentation.

  18. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  19. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  20. Using the EDTA Hole Scavenger to Accelerate Decolorization in the Immobilized Photocatalytic Process

    Directory of Open Access Journals (Sweden)

    raziye Asgari

    2015-07-01

    Full Text Available This study investigated the effect of EDTA as a hole scavenger on accelerating the photocatalytic decolorization of direct blue 71 as a non-degradable model pollutant with nano TiO2 powder immobilized on a cementitious bed. For this purpose, 75 mg/L of the dye was decolorized in 75 minutes with 0.03 M of EDTA at a pH level of 6 and under irradiation produced by a 60-W UV-C lamp. This is while decolorization under identical conditions but in the absence of EDTA had been accomplished in 225 minutes. The experiment, therefore, confirmed the accelerating effect of the scavenger on decolorization. The kinetics of the photocatalytic process with EDTA followed a first order reaction with a constant rate of 0.05 min-1, which is 2.5 times faster than the process without EDTA.

  1. Volatile fatty acid degradation kinetics in anaerobic process; Cinetica de la degradacion de acidos grasos volatiles en procesos anaerobios

    Energy Technology Data Exchange (ETDEWEB)

    Riscado, S.; Osuna, B.; Iza, J.; Ruiz, E. [Universidad del Pais Vasco. Bilbao (Spain)

    1998-10-01

    While searching for the optimal substrate load for anaerobic toxicity assays, the inhibition caused by the propionic acid has been addressed. Lab scale experiments have been carried out to assess the effects of different loads and acid ratios. Results bad been subjected to kinetic analysis and show the degradation follows a first order kinetic, and acetic is easier to degrade than propionic acid. The optimal load for a 100 ml vial assay is composed of 158 mg COD of the 3:1:1 HAc:HPr:HBu mixture. (Author) 9 refs.

  2. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  3. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    Science.gov (United States)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  4. Search for Dark Photons Produced in 13 TeV pp Collisions.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2018-02-09

    Searches are performed for both promptlike and long-lived dark photons, A^{'}, produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A^{'}→μ^{+}μ^{-} decays and a data sample corresponding to an integrated luminosity of 1.6  fb^{-1} collected with the LHCb detector. The promptlike A^{'} search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A^{'} search is restricted to the low-mass region 214kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10.6search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature.

  5. Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.

    Science.gov (United States)

    Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R

    2017-12-01

    The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.

  6. Measurement of kinetic parameters in the fast subcritical core MASURCA

    International Nuclear Information System (INIS)

    Baeten, Peter; Abderrahim, Hamid Aiet

    2004-01-01

    In the MUSE shared cost action of the European Fifth Framework Program measurements have been performed to investigate the neutronic behavior of the fast subcritical core MASURCA coupled with the GENEPI accelerator. The aim is to examine the applicability of different measurement techniques for the determination of the main kinetic parameters. The measurement of Rossi-alpha distributions, recorded with the accelerator turned off, showed that the analysis of the obtained distributions is feasible for deep subcritical levels, but with strongly deteriorated statistics. From Rossi-alpha distributions, recorded with the pulsed neutron source in operation, the alpha decay constant was easily derived due to good statistics on the correlated signal resulting from the strong intensity of the neutron pulse. When applying the pulsed neutron source analysis, the reactivity (in dollars) together with the ratio of the mean neutron lifetime l and the effective delayed neutron fraction β eff is immediately derived. Although these first results are very promising, further measurements are needed to qualify the method at larger subcritical levels which are representative for future ADS

  7. Activity report of working party on reactor physics of accelerator-driven system. July 1999 to March 2001

    International Nuclear Information System (INIS)

    2002-02-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) was set in July 1999 to review and investigate special subjects related to reactor physics research for the Accelerator-Driven Subcritical System (ADS). The ADS-WP, at the first meeting, discussed a guideline of its activity for two years and decided to concentrate upon three subjects: (1) neutron transport calculations in high energy range, (2) static and kinetic (safety-related) characteristics of subcritical system, and (3) system design including ADS concepts and elemental technology developments required. The activity of ADS-WP continued from July 1999 to March 2001. In this duration, the members of ADS-WP met together four times and discussed the above subjects. In addition, the ADS-WP conducted a questionnaire on requests and proposals for the plan of Transmutation Physics Experimental Facility in the High-Intensity Proton Accelerator Project, which is a joint project between JAERI and KEK (High Energy Accelerator Research Organization). This report summarizes the results obtained by the above ADS-WP activity. (author)

  8. Role of accelerator-driven systems in waste incineration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M.; Slessarev, I.; Tchistiakov, A. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires; Spiro, M.; Terrien, Y.; Mouney, H.; Vergnes, J.

    1997-12-31

    At CEA accelerator-driven systems (ADS) are studied in the frame of the R and D required to answer the request of a law voted in 1991 by the French Parliament, `to search for solutions allowing to partition and transmute long lived radioactive wastes, in order to reduce their volume and toxicity`. These systems (called `INCAs`) are still at a conceptual level. However, the role of ADS has been clarified as a first step, and this will be the subject of the present paper. (author)

  9. A fast-starting mechanical fish that accelerates at 40 m s-2

    International Nuclear Information System (INIS)

    Conte, J; Modarres-Sadeghi, Y; Watts, M N; Hover, F S; Triantafyllou, M S

    2010-01-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consists of a thin metal beam covered by a urethane rubber, the fish body and an appropriately shaped tail. The body form of the mechanical fish was modeled after a pike species and selected because it is a widely-studied fast-start specialist. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by a pneumatic cutting mechanism. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish. We measured the resulting acceleration, and calculated the efficiency of propulsion for the mechanical fish model, defined as the ratio of the final kinetic energy of the fish and the initially stored potential energy in the body beam. We also ran a series of flow visualization tests to observe the resulting flow patterns. The maximum start-up acceleration was measured to be around 40 m s -2 , with the maximum final velocity around 1.2 m s -1 . The form of the measured acceleration signal as function of time is quite similar to that of type I fast-start motions studied by Harper and Blake (1991 J. Exp. Biol. 155 175-92). The hydrodynamic efficiency of the fish was found to be around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration peaks are associated with the shedding of two vortex rings in near-lateral directions.

  10. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  11. Response and recovery kinetics of a solid tumour after irradiation

    International Nuclear Information System (INIS)

    Rowley, R.; Hopkins, H.A.; Ritenour, E.R.; Looney, W.B.

    1980-01-01

    The effects of local tumour radiation over the dose range 7.5-30 Gy on the growth and cell kinetics of rat hepatoma H-4-II-E have been investigated. A plot of growth delays against log surviving fraction was linear below a fraction of 0.03, but failed to extrapolate to the origin. Following a single dose of 15 Gy to the tumour, DNA-precursor incorporation, labelling and mitotic indices were depressed for 7 days. Tumour cellularity, measured as DNA/g tumour was reduced and the rate of increase of total clonogenic cells slower than after complete tumour recovery. From Day 7 to Day 9 all indices of proliferation recovered to about control levels, clonogenic cell numbers increased more rapidly and tumour cellularity was restored. Repopulation of the tumour therefore appeared to take place mainly after Day 7. Incorporation of [ 3 H]-TdR into tumour DNA reached twice the control values on Day 9. The rate of tumour growth accelerated after the initial decrease, and maximum tumour growth rate was also twice the control values on Day 13. Accelerated growth rates in irradiated tumours, above those of control tumours, occurred 10-16 days after treatment. The effectiveness of sequential therapy may therefore be improved if given during this period of accelerated tumour growth. (author)

  12. Kinetic isotope effects and how to describe them

    Directory of Open Access Journals (Sweden)

    Konstantin Karandashev

    2017-11-01

    Full Text Available We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved.

  13. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    Science.gov (United States)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  14. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  15. THE EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE ON THE ACCELERATION OF ELECTRONS BY PERPENDICULAR COLLISIONLESS SHOCKS

    International Nuclear Information System (INIS)

    Guo Fan; Giacalone, Joe

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.

  16. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  17. Body mass index kinetics around adiposity rebound in Anorexia nervosa: A case-control study.

    Science.gov (United States)

    Neveu, Rémi; Neveu, Dorine; Carrier, Edouard; Ourrad, Nadia; Perroud, Alain; Nicolas, Alain

    2016-10-01

    Anorexia nervosa (AN) is associated with parameters involved in body mass index (BMI) regulation. Contrary to obesity, BMI kinetics around the adiposity rebound is not documented in AN. This study aimed at investigating which characteristics of BMI kinetics around the adiposity rebound are associated with AN. Multicentre case-control study with 101 inpatient women with AN onset after 10 years of age, and 101 healthy women, all free of overweight history and matched for age, level of education and fathers' socio-professional status. Age at adiposity rebound, pre- and post-adiposity rebound BMI velocities and accelerations (change in velocity over time) were estimated with linear mixed models using data recorded between 2 and 10 years of age. Patients had an earlier adiposity rebound (mean (standard deviation (SD)): 5.3 (1.3) vs 5.7 (1.1) years), a larger BMI at adiposity rebound (mean (SD): 15.3 [1] vs 14.9 (0.9) kg/m 2 ) and 29% lower BMI acceleration after adiposity rebound than controls. After adjustment, only BMI at adiposity rebound and BMI acceleration after adiposity rebound were associated with a higher risk of AN (Odds ratio [95% confidence interval]: 2.15 [1.41-3.46] for an increase of 1 kg/m 2 and 2.44 [1.56-4.02] for an increase of 0.1 kg/(m 2 *years 2 ) respectively). These two factors were not correlated in patients (r = 0.007, p = 0.96). A flattened evolution of BMI after adiposity rebound and higher BMI at adiposity rebound were associated with AN. Further prospective study is needed to confirm these findings. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  18. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  19. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  20. Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

    Directory of Open Access Journals (Sweden)

    E. Keil

    2007-05-01

    Full Text Available Nonscaling fixed field alternating gradient (FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400   MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c=0.1294. H^{+}/C^{6+} ions are accelerated in the two smaller/larger rings to 31 and 250  MeV/68.8 and 400   MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies.

  1. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  2. Accelerator mass spectrometry in biomedical research

    International Nuclear Information System (INIS)

    Vogel, J.S.; Turteltaub, K.W.

    1993-01-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9 ) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13--15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. 14 C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. 3 H, 41 Ca and 26 Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications

  3. Annotated bibliography of Accelerator Technology Division research and development, 1978-1985

    International Nuclear Information System (INIS)

    Jameson, R.A.; Nicol, C.S.; Cochran, M.A.

    1985-09-01

    A bibliography is presented of unclassified published and in-house technical material written by members of the Accelerator Technology Division, Los Alamos National Laboratory, since its inception in January, 1978. The author and subject concordances in this report provide cross-reference to detailed citations kept in a computer database and a microfilm file of the documents. The citations include an abstract and other notes, and can be searched for key words and phrases

  4. New approaches for searching for the Dirac magnetic monopole

    International Nuclear Information System (INIS)

    Kukhtin, V.V.; Krivokhizhin, V.G.; Stetsenko, S.G.; Cheplakov, A.P.

    2012-01-01

    Three new approaches, not applied earlier, are proposed to search for the Dirac monopole - an object whose existence was proposed by P.Dirac more than 80 years ago to explain the electrical charge quantization. The first approach assumes that the monopole must be accelerated by a magnetic field, and such acceleration is constant in the magnetic field which is homogeneous and constant. The conclusion about the object movement nature can be drawn by measuring the time marks for equidistant registering planes. The second approach is supposed to reconstruct the movement trajectory in the homogeneous and permanent electrical field, which is the circle or its part for the magnetic monopole. The third approach is based on the constancy of energy losses by Dirac monopole due to medium ionization in the multilayer passive dielectric tracking detectors placed in the homogeneous and permanent electrical field

  5. The effects of weighted skates on ice-skating kinematics, kinetics and muscular activity.

    Science.gov (United States)

    Mavor, Matthew P; Hay, Dean C; Graham, Ryan B

    2018-07-01

    Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.

  6. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  7. Mechanisms responsible for the acceleration of pulmonary V̇O2 on-kinetics in humans after prolonged endurance training.

    Science.gov (United States)

    Zoladz, Jerzy A; Grassi, Bruno; Majerczak, Joanna; Szkutnik, Zbigniew; Korostyński, Michal; Grandys, Marcin; Jarmuszkiewicz, Wieslawa; Korzeniewski, Bernard

    2014-11-01

    The effect of prolonged endurance training on the pulmonary V̇O2 on- and off-kinetics in humans, in relation to muscle mitochondria biogenesis, is investigated. Eleven untrained physically active men (means±SD: age 22.4±1.5 years, V̇O2peak 3,187±479 ml/min) performed endurance cycling training (4 sessions per week) lasting 20 wk. Training shortened τp of the pulmonary V̇O2 on-kinetics during moderate-intensity cycling by ∼19% from 28.3±5.2 to 23.0±4.0 s (P=0.005). τp of the pulmonary V̇O2 off-kinetics decreased by ∼11% from 33.7±7.2 to 30.0±6.6 (P=0.02). Training increased (in vastus lateralis muscle) mitochondrial DNA copy number in relation to nuclear DNA (mtDNA/nDNA) (+53%) (P=0.014), maximal citrate synthase (CS) activity (+38%), and CS protein content (+38%) (P=0.004), whereas maximal cytochrome c oxidase (COX) activity after training tended to be only slightly (+5%) elevated (P=0.08). By applying to the experimental data, our computer model of oxidative phosphorylation (OXPHOS) and using metabolic control analysis, we argue that COX activity is a much better measure of OXPHOS intensity than CS activity. According to the model, in the present study a training-induced increase in OXPHOS activity accounted for about 0-10% of the decrease in τp of muscle and pulmonary V̇O2 for the on-transient, whereas the remaining 90-100% is caused by an increase in each-step parallel activation of OXPHOS. Copyright © 2014 the American Physiological Society.

  8. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  9. Experimental study of the efficiency of transformation of the dense plasma hypersonic flow kinetic energy into a radiation

    International Nuclear Information System (INIS)

    Kamrukov, A.S.; Kozlov, N.P.; Myshelov, E.P.; Protasov, Yu.S.

    1981-01-01

    Analysis of physical specific features of radiator where plasma heating is performed with tbermalization of directed kinetic energy of dense plasma flows accelerated electrodynamically up to hypersonic velocities during its shock deceleration, is given. It is shown that the plasma heating method considered has a number of principle advantages as compared with methods most disseminated now for generation of dense intensively radiating plasma (current heating exploding method) and suggests new possibilities for construction of selective high brightness radiat.ion sources of ultraviolet and far vacuum ultraviolet ranges of spectrum. Radiation gas dynamic processes of hypersonic plasma flow deceleration formed with magnetoplasma compressors have been experimentally investigated on their interaction with condenced matters in vacuum and basic thermodynamic parameters of shock compressed plasma have been determined. It is shown that the conversion process of kinetic energy of high-velocity plasma flows to radiation is accomplished at very high efficiency-integral luminescence of shock compressed plasma can reach approximately 90% of initial kinetic energy of flow [ru

  10. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    Science.gov (United States)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron

  11. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  12. Search for exotic baryons with the Sphinx facility

    International Nuclear Information System (INIS)

    Landsberg, L.G.

    1993-01-01

    In the experiments at the Sphinx facility in the proton beam of the IHEP accelerator (E p = 70 GeV) a number of diffractive production reactions were studied. Among them are p + N → (K + K - p) + N, p + N → (φp) + N, p + N → [Λ(1520)K + ] + N, p + N → [Σ(1385) 0 K + ] + N, as well as some other processes. The results of the search for narrow heavy baryon states, candidates for the cryptoexotic hadrons with hidden strangeness, are presented. 15 refs., 5 figs., 1 tab

  13. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    Science.gov (United States)

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  14. The Heavy Photon Search beamline and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; Field, C.; Freyberger, A.; Girod, F.-X.; Holtrop, M.; Jaros, J.; Kalicy, G.; Maruyama, T.; McKinnon, B.; Moffeit, K.; Nelson, T.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Stepanyan, S.; Tiefenback, M.; Uemura, S.; Ungaro, M.; Vance, H.

    2017-04-04

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.

  15. Accelerating tube for the ''EG-1'' electrostatic accelerator

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Krupnov, E.P.; Debin, V.K.; Dudkin, N.I.; Volodin, V.I.

    1980-01-01

    A design of an accelerating tube (AT) for an electrostatic accelerator of the EG-1 type is described. Primary consideration in the development of the AT has been given to increasing the electric strength of accelerating gaps, the vacuum conductivity and better insulator screening from charged particles. After AT vacuum and high-voltage ageing in the accelerator, a hydrogen ions beam of up to 80 μA has been produced. The beam was adequately shaped in the energy range from 1.8 to 5.0 MeV [ru

  16. Drying kinetics and characteristics of dried gambir leaves using solar heating and silica gel dessicant

    Science.gov (United States)

    Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.

    2018-02-01

    A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.

  17. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Yang, Y.; Busby, J.T.

    2014-01-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors

  18. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  19. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  20. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  1. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  2. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, David W. [Columbia Univ., New York, NY (United States)

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  3. Ultraintense laser interaction with nanoscale targets: a simple model for layer expansion and ion acceleration

    International Nuclear Information System (INIS)

    Albright, B J; Yin, L; Hegelich, B M; Bowers, K J; Huang, C; Fernandez, J C; Flippo, K A; Gaillard, S A; Kwan, T J T; Henig, A; Tajima, T; Habs, D; Yan, X Q

    2010-01-01

    A simple model has been derived for expansion of a thin (up to 100s of nm thickness) target initially of solid density irradiated by an ultraintense laser. In this regime, ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) [1], emerge with the potential for dramatically improved energy, efficiency, and energy spread. Ion beams have been proposed [2] as drivers for fast ignition inertial confinement fusion [3]. Analysis of kinetic simulations of the BOA shows the period of enhanced acceleration occurs between times t 1 , when the target becomes relativistically transparent to the laser, and t 2 , when the target becomes classically underdense and the enhanced acceleration terminates. A simple model for target expansion has been derived that contains early, one-dimensional (1D) expansion of the target and three-dimensional (3D) expansion at late times. The model assumes expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.

  4. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  5. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  6. Delayed neutron kinetic functions for /sup 232/Th and /sup 238/U mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ganich, P P; Goshovskij, M V; Lendel, A I; Lomonosov, V I; Sikora, D I; Sychev, S I

    1984-11-01

    In order to investigate the applicability of the method based on using kinetic functions, describing the emission of delayed neutrons by samples for determination of the content of fissionable nuclides in binary mixtures, the /sup 232/Th+/sup 238/U mixtures have been analyzed with the M-30 microtron. Fresh samples containing ThO/sub 2/, U/sub 3/O/sub 8/ and their mixtures are irradiated by bremstrahlung at the 15.5 MeV energy of accelerated electrons and 9 ..mu..A average current. The mass of samples is about 6 g. To determine the kinetic functions, temporal distributions of delayed neutron pulses are used, their maximum number for different samples being (1.7-3.0) x 10/sup 4/. In processing the data obtained two methods of normalization of the delayed neutron number in the kinetic functions are used: to the total yield of delayed neutrons and to the yield of /sup 133/I ..gamma..-quanta. The conclusion is drawn that the method investigated permits to determine relative /sup 238/U concentrations in the mixtures considered with 0.06-0.2 errors. Error reduction is achieved during the normalization of the number of delayed neutrons to the yield of /sup 130/I ..gamma..-quanta.

  7. Search for νμ → νe oscillations

    International Nuclear Information System (INIS)

    Godley, A.R.

    1998-01-01

    Full text: Neutrino oscillations, the changing of neutrino flavour state from one of τ, μ or e, to another, are proof of massive neutrinos, in turn pointing to Physics beyond the Standard Model, and so are of great current interest. Solar and atmospheric neutrino results suggested evidence for neutrino oscillations. Further, a tau neutrino mass of ∼ 10 eV could supply the missing mass needed to close the Universe. To satisfy the increasing interest, CERN's Neutrino Physics Program commissioned two concurrent experiments to investigate the possibility of neutrino oscillations, one of which is NOMAD, Neutrino Oscillation Magnetic Detector. NOMAD was designed to verify or deny the earlier positive neutrino oscillations results by searching for muon to tauon neutrino oscillations in accelerator neutrinos. The LSND experiment later provided evidence for muon to electron neutrino oscillations, but due to the multi-purpose design of NOMAD, it was also possible to investigate this channel. Moreover, the area of phase space being uncovered, (related to neutrino energy and oscillation length), overlaps considerably with that of LSND. An electron neutrino oscillation search involves looking for electron neutrinos in what is primarily a muon neutrino beam, with just a small contamination of electron neutrinos. It is surmised that the excess of electron neutrinos come from oscillated muon neutrinos. This type of search is called an appearance search. The principles of such a search will be detailed herein. These include a breakdown of the CERN Neutrino Beam and a method for detecting and collating different neutrino flavours at NOMAD

  8. Computing Principal Eigenvectors of Large Web Graphs: Algorithms and Accelerations Related to PageRank and HITS

    Science.gov (United States)

    Nagasinghe, Iranga

    2010-01-01

    This thesis investigates and develops a few acceleration techniques for the search engine algorithms used in PageRank and HITS computations. PageRank and HITS methods are two highly successful applications of modern Linear Algebra in computer science and engineering. They constitute the essential technologies accounted for the immense growth and…

  9. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Kevin J [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Yin, Lin [Los Alamos National Laboratory; Daughton, William S [Los Alamos National Laboratory; Roytershteyn, Vadim [Los Alamos National Laboratory; Kwan, Thomas J T [Los Alamos National Laboratory

    2009-01-01

    VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration and modeling reconnection in magnetic confinement fusion experiments.

  10. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Samarai, I. Al [Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Collaboration: IceCube Collaboration; and others

    2017-07-10

    We present an all-sky search for muon neutrinos produced during the prompt γ -ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ -ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.

  11. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    Science.gov (United States)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  12. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  13. Search for Light Dark Matter Produced in a Proton Beam Dump

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Remington Tyler [Indiana Univ., Bloomington, IN (United States)

    2017-01-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.

  14. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  15. Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin

    2011-01-01

    Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)

  16. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  17. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    superconducting cavity RF power couplers. 18 MeV Electron Accelerator Stand with the linear accelerator - Saturn was prepared for experimental work, and can be used in neutron detectors investigation and for accelerating structures research. To increase the reliability of operation, upgrading of the computer control system is foreseen next year. The aim of the preliminary study of accelerating structures in C-band is the search for electron accelerator miniaturization. At higher frequencies, much higher accelerating fields can be applied and as the wavelength becomes shorter, the overall size of the structure and various components becomes smaller. In 2006 the main physical parameters of 5720 MHz SW side coupled structures were optimized. For that frequency there exist on the market suitable high power klystrons and a variety of necessary microwave equipment. Monte Carlo simulations using the BEAMnrc/EGSnrc were carried out to study the influence of possible errors in assigning of CT (coefficients of X ray attenuation in tissue) on calculated ion range in hadron therapy. This work was done in Heidelberg by A.Wysocka-Rabin in the frame of our collaboration with DKFZ. In ENEA-Frascati a linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy) is under realization. Basically it is a proton linac of modified Alvarez type working on 3000 MHz frequency and delivering a beam in the energy range from 65 MeV to 200 MeV. In 2005 the contract was signed between ENEA and IPJ-Swierk on the basis of which the Accelerator Physics Dpt. of IPJ will design, produce and deliver to Frascati the input section of the 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 17 MeV. The design is almost finished; many elements are manufactured and ready for assembling. This will take place in of 2007. (author)

  18. Development of kinetic inductance detectors for CUORE and LUCIFER

    International Nuclear Information System (INIS)

    Pagnanini, L.

    2015-01-01

    The purpose of the CALDER project (Cryogenic wide-Area Light Detector with Excellent Resolution) is to develop new cryogenic light detectors to be used in CUORE and LUCIFER to improve the sensitivity in the search of neutrinoless double beta decay (0νββ) and dark matter. The sensitivity of CUORE can be increased by a factor of 3, thanks to the reduction of the α background, obtained by detecting the Cherenkov light (∼ 100 eV) emitted by βs events and not by the α-background. In LUCIFER the ability to discriminate β/γ events (∼ 100 eV of scintillation light) from nuclear recoils (no light) in the low-energy region opens the way to search for dark matter interactions. This detectors must have an active area of 25 cm 2 , a baseline energy resolution of ∼ 20 eV RMS and a working temperature of 10 mK. The technology chosen is based on the phonon-mediated kinetic inductance detectors (KIDs). This paper presents the results of the first prototypes tested.

  19. NASA's GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  20. NASAs GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain; Tran, Peter

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.