WorldWideScience

Sample records for accelerated radiation therapy

  1. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  2. Accelerators for heavy-charged-particle radiation therapy.

    Science.gov (United States)

    Coutrakon, George B

    2007-08-01

    This paper focuses on current and future designs of medical hadron accelerators for treating cancers and other diseases. Presently, five vendors and several national laboratories have produced heavy-particle medical accelerators for accelerating nuclei from hydrogen (protons) up through carbon and oxygen. Particle energies are varied to control the beam penetration depth in the patient. As of the end of 2006, four hospitals and one clinic in the United States offer proton treatments; there are five more such facilities in Japan. In most cases, these facilities use accelerators designed explicitly for cancer treatments. The accelerator types are a combination of synchrotrons, cyclotrons, and linear accelerators; some carry advanced features such as respiration gating, intensity modulation, and rapid energy changes, which contribute to better dose conformity on the tumor when using heavy charged particles. Recent interest in carbon nuclei for cancer treatment has led some vendors to offer carbon-ion and proton capability in their accelerator systems, so that either ion can be used. These features are now being incorporated for medical accelerators in new facilities.

  3. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  4. Radiation Therapy

    Science.gov (United States)

    ... the area is stitched shut. Another treatment, called proton-beam radiation therapy , focuses the radiation on the ... after radiation treatment ends. Sore mouth and tooth decay. If you received radiation therapy to the head ...

  5. Treatment of nasopharyngeal carcinoma using simultaneous modulated accelerated radiation therapy via helical tomotherapy: a phase II study

    Directory of Open Access Journals (Sweden)

    Du Lei

    2016-06-01

    Full Text Available The aim of the study was to evaluate short-term safety and efficacy of simultaneous modulated accelerated radiation therapy (SMART delivered via helical tomotherapy in patients with nasopharyngeal carcinoma (NPC.

  6. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer.

    Science.gov (United States)

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6-15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5-7 years) and acute and late toxicity (cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway.

  7. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  8. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Avkshtol V

    2016-08-01

    Full Text Available Vladimir Avkshtol, Yanqun Dong, Shelly B Hayes, Mark A Hallman, Robert A Price, Mark L Sobczak, Eric M Horwitz,* Nicholas G Zaorsky* Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA *These authors contributed equally to this work Abstract: Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5–7 years and acute and late toxicity (<6% grade 3–4 late toxicities. Other outcomes (eg, overall and cancer-specific mortality cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm, and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV. Finally

  9. Measurement of the radiation in the accelerator-therapy room; Messung der Strahlung im Beschleuniger-Therapieraum

    Energy Technology Data Exchange (ETDEWEB)

    Zutz, Hayo [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Photonendosimetrie'

    2013-06-15

    The measurement of the scattering radiation in the accelerator-therapy room of the PTB is described. The accelerators are commercial linear accelerators of the firm Elektra of the type ''Precise''. The measurements were performed by means of secondary-normal ionization chambers and a special measurement technique developed in the PTB both with and without the used beam. (HSI)

  10. Radiation Therapy

    Science.gov (United States)

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  11. Stability of a mobile electron linear accelerator system for intraoperative radiation therapy.

    Science.gov (United States)

    Beddar, A Sam

    2005-10-01

    The flexibility of mobile electron accelerators, which are designed to be transported to an operating room and plugged into a normal 3-phase outlet, make them ideal for use in intraoperative radiation therapy. However, their transportability may cause trepidation among potential users, who may question the stability of such an accelerator over a period of use. In order to address this issue, we have studied the short-term stability of the Mobetron system over 20 daily quality assurance trials. Variations in output generally varied within +/-2% for the four energies produced by the unit (4, 6, 9, and 12 MeV) and changes in energy produced an equivalent shift of less than 1 mm on the depth-dose curve. Hours of inactivity, with the Mobetron powered on for use either throughout the day or overnight, led to variations in output of about 1%. Finally, we have tested the long-term stability of the absolute dose output of the Mobetron, which showed a change of about 1% per year.

  12. Postmastectomy Hypofractionated and Accelerated Radiation Therapy With (and Without) Subcutaneous Amifostine Cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Koukourakis, Michael I., E-mail: targ@her.forthnet.gr [Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis (Greece); Panteliadou, Marianthi; Abatzoglou, Ioannis M.; Sismanidou, Kyriaki [Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis (Greece); Sivridis, Efthimios; Giatromanolaki, Alexandra [Department of Pathology, Democritus University of Thrace, Alexandroupolis (Greece)

    2013-01-01

    Purpose: Postmastectomy radiation therapy (PMRT) provides major local control and survival benefits. More aggressive radiation therapy schemes may, however, be necessary in specific subgroups, provided they are safely administered. We report the tolerance and efficacy of a highly accelerated and hypofractionated regimen (HypoARC). Methods and Materials: One hundred twelve high-risk patients who had undergone mastectomy received 10 consecutive fractions of 3.5 Gy in 12 days (thoracic wall and axillary/supraclavicular areas). Two consecutive additional fractions of 4 Gy were given to the surgical scar area (electrons 8-10 MeV) and 1 3.5-Gy fraction to the axilla (in cases with extensive nodal involvement). A minimum follow-up of 24 months (median, 44 months) was allowed before analysis. Of 112 patients, 21 (18.7%) refused to receive amifostine, the remaining receiving tolerance-based individualized doses (500-1000 mg/day subcutaneously). Results: By use of a dose individualization algorithm, 68.1%, 11%, and 18.7% of patients received 1000 mg, 750 mg, and 500 mg/day of amifostine. Patchy moist skin desquamation outside and inside the booster fields was noted in 14 of 112 (12.5%) and 26 of 112 (23.2%) patients, respectively. No case of acute pneumonitis was recorded. High amifostine dose offered a significant skin protection. Within a median follow-up time of 44 months, moderate subcutaneous edema outside and within the booster thoracic area was noted in 5 of 112 (4.4%) and 8 of 112 (7.1%) cases, respectively. Intense asymptomatic radiographic findings of in field lung fibrosis were noted in 4 of 112 (3.6%) patients. Amifostine showed a significant protection against lung and soft tissue fibrosis. A 97% projected 5-year local relapse free survival and 84% 5-year disease-specific survival were recorded. Lack of steroid receptor expression, simple human epidermal growth factor 2 positivity, or triple negative phenotype defined higher metastasis rates but had no effect on

  13. Accelerated partial breast irradiation (APBI): are breath-hold and volumetric radiation therapy techniques useful?

    NARCIS (Netherlands)

    Essers, M.; Osman, S.O.; Hol, S.; Donkers, T.; Poortmans, P.M.P.

    2014-01-01

    BACKGROUND: In a selective group of patients accelerated partial breast irradiation (APBI) might be applied after conservative breast surgery to reduce the amount of irradiated healthy tissue. The role of volumetric modulated arc therapy (VMAT) and voluntary moderately deep inspiration breath-hold (

  14. Radiation Therapy (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A ... have many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from ...

  15. Laser acceleration of protons from near critical density targets for application to radiation therapy

    CERN Document Server

    Bulanov, S S; Pirozhkov, A S; Thomas, A G R; Willingale, L; Krushelnick, K; Maksimchuk, A

    2010-01-01

    Laser accelerated protons can be a complimentary source for treatment of oncological diseases to the existing hadron therapy facilities. We demonstrate how the protons, accelerated from near-critical density plasmas by laser pulses having relatively small power, reach energies which may be of interest for medical applications. When an intense laser pulse interacts with near-critical density plasma it makes a channel both in the electron and then in the ion density. The propagation of a laser pulse through such a self-generated channel is connected with the acceleration of electrons in the wake of a laser pulse and generation of strong moving electric and magnetic fields in the propagation channel. Upon exiting the plasma the magnetic field generates a quasi-static electric field that accelerates and collimates ions from a thin filament formed in the propagation channel. Two-dimensional Particle-in-Cell simulations show that a 100 TW laser pulse tightly focused on a near-critical density target is able to acce...

  16. Radiation Therapy: Professions in Radiation Therapy

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Professions in Radiation Therapy Radiation Oncologist Therapeutic Medical Physicist Radiation Therapist Dosimetrist Radiation Oncology Nurse Social Worker Dietitian Radiation Oncologist Radiation oncologists are physicians who oversee the ...

  17. Additional dose assessment from the activation of high-energy linear accelerators used in radiation therapy

    Directory of Open Access Journals (Sweden)

    Ateia Embarka

    2008-01-01

    Full Text Available It is well known that medical linear accelerators generate activation products when operated above certain electron (photon energies. The aim of the present work is to assess the activation behavior of a medium-energy radiotherapy linear accelerator by applying in situ gamma-ray spectrometry and dose measurements, and to estimate the additional dose to radiotherapy staff on the basis of these results. Spectral analysis was performed parallel to dose rate measurements in the isocenter of the linear accelerator, immediately after the termination of irradiation. The following radioisotopes were detected by spectral analysis: 28Al, 62Cu, 56Mn, 64Cu, 187W, and 57Ni. The short-lived isotopes such as 28Al and 62Cu are the most important factors of the clinical routine, while the contribution to the radiation dose of medium-lived isotopes such as 56Mn, 57Ni, 64Cu, and 187W increases during the working day. Measured dose rates at the isocenter ranged from 2.2 µSv/h to 10 µSv/h in various measuring points of interest for the members of the radiotherapy staff. Within the period of 10 minutes, the dose rate decreased to values of 0.8 µSv/h. According to actual workloads in radiotherapy departments, a realistic exposure scenario was set, resulting in a maximal additional annual whole body dose to the radiotherapy staff of about 3.5 mSv.

  18. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bongers, Mathilda L., E-mail: ml.bongers@vumc.nl [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Coupé, Veerle M.H. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); De Ruysscher, Dirk [Radiation Oncology University Hospitals Leuven/KU Leuven, Leuven (Belgium); Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Oberije, Cary; Lambin, Philippe [Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Uyl-de Groot, Cornelia A. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2015-03-15

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT.

  19. The Quality Control of Intensity Modulated Radiation Therapy (IMRT for ONCOR Siemens Linear Accelerators Using Film Dosimetry

    Directory of Open Access Journals (Sweden)

    Keyvan Jabbari

    2012-03-01

    Full Text Available Introduction Intensity Modulated Radiation Therapy (IMRT has made a significant progress in radiation therapy centers in recent years. In this method, each radiation beam is divided into many subfields that create a field with a modulated intensity. Considering the complexity of this method, the quality control for IMRT is a topic of interest for researchers. This article is about the various steps of planning and quality control of Siemens linear accelerators for IMRT, using film dosimetry. This article in addition to review of the techniques, discusses the details of experiments and possible sources of errors which are not mentioned in the protocols and other references. Materials and Methods This project was carried out in Isfahan Milad hospital which has two Siemens ONCOR linear accelerators. Both accelerators are equipped with Multi-Leaf Collimators (MLC which enables us to perform IMRT delivery in the step-and-shoot method. The quality control consists of various experiments related to the sections of radiation therapy. In these experiments, the accuracy of some components such as treatment planning system, imaging device (CT, MLC, control system of accelerator, and stability of the output are evaluated. The dose verification is performed using film dosimetry method. The films were KODAK-EDR2, which were calibrated before the experiments. One of the important steps is the comparison of the calculated dose with planning system and the measured dose in experiments. Results The results of the experiments in various steps have been acceptable according to the standard protocols. The calibration of MLC and evaluation of the leakage through the leaves of MLC was performed by using the film dosimetry and visual check. In comparison with calculated and measured dose, more that 80% of the points have to be in agreement within 3% of the value. In our experiments, between 85 and 90% of the points had such an agreement with IMRT delivery. Conclusion

  20. Radiation therapy physics

    CERN Document Server

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  1. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Polytechnic of Milano, Department of Energy, Via Ponzio 34/3, 20133 Milano (Italy); Mereghetti, A. [CERN, 1211 Geneva 23 (Switzerland); University of Manchester, Physics and Astronomy Department, Brunswick Street, Manchester M13 9PL (United Kingdom); Sagia, E. [CERN, 1211 Geneva 23 (Switzerland); Physics Department, National Technical University of Athens, 9 Heroon Polytechniou, GR 157 80 Athens (Greece); Silari, M., E-mail: marco.silari@cern.ch [CERN, 1211 Geneva 23 (Switzerland)

    2014-01-15

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities.

  2. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    Science.gov (United States)

    Agosteo, S.; Mereghetti, A.; Sagia, E.; Silari, M.

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities.

  3. Efficacy and toxicity of an accelerated hypofractionated radiation therapy protocol in cats with oral squamous cell carcinoma.

    Science.gov (United States)

    Poirier, Valérie J; Kaser-Hotz, Barbara; Vail, David M; Straw, Rodney C

    2013-01-01

    Squamous cell carcinoma (SCC) is the most common feline oral tumor. Standard radiation protocols have been reported to achieve tumor control durations of 1.5-5.5 months (45-165 days). The purpose of this study was to describe the efficacy and toxicity of an accelerated hypofractionated radiation therapy protocol in cats with oral SCC. Twenty-one cats with histologically confirmed oral SCC and T1-3N0M0 were treated with 10 once-daily fractions (Monday-Friday) of 4.8 Gy. Seventeen cats had macroscopic disease and four were microscopic after incomplete excision. Acute toxicity consisted of grade 2 mucositis in all cats and this was effectively managed using esophageal or gastric tube feeding, pain medication, and antibiotics. Late toxicity effects for cats with available follow-up data included alopecia (4 cats), leukotricia (6), tongue ulceration (1), and oronasal fistula (1). Response could be assessed in 17 cats (seven complete response and five partial response). Four cats (19%) developed metastatic disease without evidence of local progression. The median progression-free survival (PFS) was 105 days (1 year PFS of 23%), median local progression-free survival (LPFS) was 219 days (1 year LPFS of 41%), and median overall survival (OS) was 174 days (1 year OS of 29%). Only tumor stage was prognostic, with T1 having a median PFS of 590 days. Findings indicated that this accelerated hypofractionated radiation therapy protocol was well tolerated in cats with oral SCC, with manageable adverse events. Tumor response was observed in most cats and long tumor control durations were achieved in some cats.

  4. Laser ion acceleration for hadron therapy

    Science.gov (United States)

    Bulanov, S. V.; Wilkens, J. J.; Esirkepov, T. Zh; Korn, G.; Kraft, G.; Kraft, S. D.; Molls, M.; Khoroshkov, V. S.

    2014-12-01

    The paper examines the prospects of using laser plasma as a source of high-energy ions for the purpose of hadron beam therapy — an approach which is based on both theory and experimental results (ions are routinely observed to be accelerated in the interaction of high-power laser radiation with matter). Compared to therapy accelerators like synchrotrons and cyclotrons, laser technology is advantageous in that it is more compact and is simpler in delivering ions from the accelerator to the treatment room. Special target designs allow radiation therapy requirements for ion beam quality to be satisfied.

  5. A Phase I Study of Short-Course Accelerated Whole Brain Radiation Therapy for Multiple Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Caravatta, Luciana; Deodato, Francesco; Ferro, Marica [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Massaccesi, Mariangela [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Cilla, Savino [Medical Physics Unit, Fondazione di Ricerca e Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Padula, Gilbert D.A. [Department of Radiation Oncology, The Lacks Cancer Center Saint Mary' s Health Care, Grand Rapids, Michigan (United States); Mignogna, Samantha; Tambaro, Rosa [Department of Palliative Therapies, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Carrozza, Francesco [Department of Oncology, A. Cardarelli Hospital, Campobasso (Italy); Flocco, Mariano [Madre Teresa di Calcutta Hospice, Larino (Italy); Cantore, Giampaolo [Department of Neurological Sciences, Istituto Neurologico Mediterraneo Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli (Italy); Scapati, Andrea [Department of Radiation Oncology, ' San Francesco' Hospital, Nuoro (Italy); Buwenge, Milly [Department of Radiotherapy, Mulago Hospital, Kampala (Uganda); and others

    2012-11-15

    Purpose: To define the maximum tolerated dose (MTD) of a SHort-course Accelerated whole brain RadiatiON therapy (SHARON) in the treatment of patients with multiple brain metastases. Methods and Materials: A phase 1 trial in 4 dose-escalation steps was designed: 12 Gy (3 Gy per fraction), 14 Gy (3.5 Gy per fraction), 16 Gy (4 Gy per fraction), and 18 Gy (4.5 Gy per fraction). Eligibility criteria included patients with unfavorable recursive partitioning analysis (RPA) class > or =2 with at least 3 brain metastases or metastatic disease in more than 3 organ systems, and Eastern Cooperative Oncology Group (ECOG) performance status {<=}3. Treatment was delivered in 2 days with twice-daily fractionation. Patients were treated in cohorts of 6-12 to define the MTD. The dose-limiting toxicity (DLT) was defined as any acute toxicity {>=}grade 3, according to the Radiation Therapy Oncology Group scale. Information on the status of the main neurologic symptoms and quality of life were recorded. Results: Characteristics of the 49 enrolled patients were as follows: male/female, 30/19; median age, 66 years (range, 23-83 years). ECOG performance status was <3 in 46 patients (94%). Fourteen patients (29%) were considered to be in recursive partitioning analysis (RPA) class 3. Grade 1-2 acute neurologic (26.4%) and skin (18.3%) toxicities were recorded. Only 1 patient experienced DLT (neurologic grade 3 acute toxicity). With a median follow-up time of 5 months (range, 1-23 months), no late toxicities have been observed. Three weeks after treatment, 16 of 21 symptomatic patients showed an improvement or resolution of presenting symptoms (overall symptom response rate, 76.2%; confidence interval 0.95: 60.3-95.9%). Conclusions: Short-course accelerated radiation therapy in twice-daily fractions for 2 consecutive days is tolerated up to a total dose of 18 Gy. A phase 2 study has been planned to evaluate the efficacy on overall survival, symptom control, and quality of life indices.

  6. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  7. Trends in accelerator technology for hadron therapy

    Science.gov (United States)

    Kostromin, S. A.; Syresin, E. M.

    2013-12-01

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma radiation and electron beams. Fifty thousand patients a year need such treatment in Russia. A review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. The main stages of formation, time structure, and the main parameters of the beams used in proton therapy, as well as the requirements for medicine accelerators, are considered. The main results of testing with the beam of the C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. The use of superconducting accelerators and gantry systems for hadron therapy is considered.

  8. Validation of an accelerated 'demons' algorithm for deformable image registration in radiation therapy

    Science.gov (United States)

    Wang, He; Dong, Lei; O'Daniel, Jennifer; Mohan, Radhe; Garden, Adam S.; Kian Ang, K.; Kuban, Deborah A.; Bonnen, Mark; Chang, Joe Y.; Cheung, Rex

    2005-06-01

    A greyscale-based fully automatic deformable image registration algorithm, originally known as the 'demons' algorithm, was implemented for CT image-guided radiotherapy. We accelerated the algorithm by introducing an 'active force' along with an adaptive force strength adjustment during the iterative process. These improvements led to a 40% speed improvement over the original algorithm and a high tolerance of large organ deformations. We used three methods to evaluate the accuracy of the algorithm. First, we created a set of mathematical transformations for a series of patient's CT images. This provides a 'ground truth' solution for quantitatively validating the deformable image registration algorithm. Second, we used a physically deformable pelvic phantom, which can measure deformed objects under different conditions. The results of these two tests allowed us to quantify the accuracy of the deformable registration. Validation results showed that more than 96% of the voxels were within 2 mm of their intended shifts for a prostate and a head-and-neck patient case. The mean errors and standard deviations were 0.5 mm ± 1.5 mm and 0.2 mm ± 0.6 mm, respectively. Using the deformable pelvis phantom, the result showed a tracking accuracy of better than 1.5 mm for 23 seeds implanted in a phantom prostate that was deformed by inflation of a rectal balloon. Third, physician-drawn contours outlining the tumour volumes and certain anatomical structures in the original CT images were deformed along with the CT images acquired during subsequent treatments or during a different respiratory phase for a lung cancer case. Visual inspection of the positions and shapes of these deformed contours agreed well with human judgment. Together, these results suggest that the accelerated demons algorithm has significant potential for delineating and tracking doses in targets and critical structures during CT-guided radiotherapy.

  9. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation.

    Science.gov (United States)

    Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman

    2015-09-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering

  10. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  11. Validating Fiducial Markers for Image-Guided Radiation Therapy for Accelerated Partial Breast Irradiation in Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Catherine K. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Pritz, Jakub [Department of Physics, University of South Florida, Tampa, FL (United States); Zhang, Geoffrey G.; Forster, Kenneth M. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Harris, Eleanor E.R., E-mail: Eleanor.Harris@Moffitt.org [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2012-03-01

    Purpose: Image-guided radiation therapy (IGRT) may be beneficial for accelerated partial breast irradiation (APBI). The goal was to validate the use of intraparenchymal textured gold fiducials in patients receiving APBI. Methods and Materials: Twenty-six patients were enrolled on this prospective study that had three or four textured gold intraparenchymal fiducials placed at the periphery of the lumpectomy cavity and were treated with three-dimensional (3D) conformal APBI. Free-breathing four-dimensional computed tomography image sets were obtained pre- and posttreatment, as were daily online megavoltage (MV) orthogonal images. Intrafraction motion, variations in respiratory motion, and fiducial marker migration were calculated using the 3D coordinates of individual fiducials and a calculated center of mass (COM) of the fiducials. We also compared the relative position of the fiducial COM with the geometric center of the seroma. Results: There was less than 1 mm of intrafraction respiratory motion, variation in respiratory motion, or fiducial marker migration. The change in seroma position relative to the fiducial COM was 1 mm {+-} 1 mm. The average position of the geometric seroma relative to the fiducial COM pretreatment compared with posttreatment was 1 mm {+-} 1 mm. The largest daily variation in displacement when using bony landmark was in the anteroposterior direction and two standard deviations (SD) of this variation was 10 mm. The average variation in daily separation between the fiducial pairs from daily MV images was 3 mm {+-} 3 mm therefore 2 SD is 6 mm. Conclusion: Fiducial markers are stable throughout the course of APBI. Planning target volume margins when using bony landmarks should be 10 mm and can be reduced to 6 mm if using fiducials.

  12. Hendee's radiation therapy physics

    CERN Document Server

    Pawlicki, Todd; Starkschall, George

    2016-01-01

    The publication of this fourth edition, more than ten years on from the publication of Radiation Therapy Physics third edition, provides a comprehensive and valuable update to the educational offerings in this field. Led by a new team of highly esteemed authors, building on Dr Hendee’s tradition, Hendee’s Radiation Therapy Physics offers a succinctly written, fully modernised update. Radiation physics has undergone many changes in the past ten years: intensity-modulated radiation therapy (IMRT) has become a routine method of radiation treatment delivery, digital imaging has replaced film-screen imaging for localization and verification, image-guided radiation therapy (IGRT) is frequently used, in many centers proton therapy has become a viable mode of radiation therapy, new approaches have been introduced to radiation therapy quality assurance and safety that focus more on process analysis rather than specific performance testing, and the explosion in patient-and machine-related data has necessitated an ...

  13. Montecarlo simulation code in optimisation of the IntraOperative Radiation Therapy treatment with mobile dedicated accelerator

    Science.gov (United States)

    Catalano, M.; Agosteo, S.; Moretti, R.; Andreoli, S.

    2007-06-01

    The principle of optimisation of the EURATOM 97/43 directive foresees that for all medical exposure of individuals for radiotherapeutic purposes, exposures of target volumes shall be individually planned, taking into account that doses of non-target volumes and tissues shall be as low as reasonably achievable and consistent with the intended radiotherapeutic purpose of the exposure. Treatment optimisation has to be carried out especially in non conventional radiotherapic procedures, as Intra Operative Radiation Therapy (IORT) with mobile dedicated LINear ACcelerator (LINAC), which does not make use of a Treatment Planning System. IORT is carried out with electron beams and refers to the application of radiation during a surgical intervention, after the removal of a neoplastic mass and it can also be used as a one-time/stand alone treatment in initial cancer of small volume. IORT foresees a single session and a single beam only; therefore it is necessary to use protection systems (disks) temporary positioned between the target volume and the underlying tissues, along the beam axis. A single high Z shielding disk is used to stop the electrons of the beam at a certain depth and protect the tissues located below. Electron back scatter produces an enhancement in the dose above the disk, and this can be reduced if a second low Z disk is placed above the first. Therefore two protection disks are used in clinical application. On the other hand the dose enhancement at the interface of the high Z disk and the target, due to back scattering radiation, can be usefully used to improve the uniformity in treatment of thicker target volumes. Furthermore the dose above the disks of different Z material has to be evaluated in order to study the optimal combination of shielding disks that allow both to protect the underlying tissues and to obtain the most uniform dose distribution in target volumes of different thicknesses. The dose enhancement can be evaluated using the electron

  14. Radiation therapy -- skin care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000735.htm Radiation therapy - skin care To use the sharing features ... this page, please enable JavaScript. When you have radiation treatment for cancer, you may have some changes ...

  15. History of hadron therapy accelerators.

    Science.gov (United States)

    Degiovanni, Alberto; Amaldi, Ugo

    2015-06-01

    In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.

  16. Radiation therapy physics

    CERN Document Server

    Hendee, William R; Hendee, Eric G

    2013-01-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an upd

  17. Quantification and reduction of peripheral dose from leakage radiation on Siemens Primus accelerators in electron therapy mode.

    Science.gov (United States)

    Yeboah, Collins; Karotki, Alex; Hunt, Dylan; Holly, Rick

    2010-06-15

    In this work, leakage radiation from EA200 series electron applicators on Siemens Primus accelerators is quantified, and its penetration ability in water and/or the shielding material Xenolite-NL established. Initially, measurement of leakage from 10 x 10 - 25 x 25 cm2 applicators was performed as a function of height along applicator and of lateral distance from applicator body. Relative to central-axis ionization maximum in solid water, the maximum leakage in air observed with a cylindrical ion chamber with 1 cm solid water buildup cap at a lateral distance of 2 cm from the front and right sidewalls of applicators were 17% and 14%, respectively; these maxima were recorded for 18 MeV electron beams and applicator sizes of >or=20 x 20 cm2. In the patient plane, the applicator leakage gave rise to a broad peripheral dose off-axis distance peak that shifted closer to the field edge as the electron energy increases. The maximum peripheral dose from normally incident primary electron beams at a depth of 1 cm in a water phantom was observed to be equal to 5% of the central-axis dose maximum and as high as 9% for obliquely incident beams with angles of obliquity radiation through the shielding material Xenolite-NL showed a 4 mm thick sheet of this material is required to attenuate the leakage from 9 MeV beams by two-thirds, and that for every additional 3 MeV increase in the primary electron beam energy, an additional Xenolite-NL thickness of roughly 2 mm is needed to achieve the aforementioned attenuation level. Finally, attachment of a 1 mm thick sheet of lead to the outer surface of applicator sidewalls resulted in a reduction of the peripheral dose by up to 80% and 74% for 9 and 18MeV beams

  18. Three-Year Outcomes of a Canadian Multicenter Study of Accelerated Partial Breast Irradiation Using Conformal Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berrang, Tanya S., E-mail: tberrang@bccancer.bc.ca [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Olivotto, Ivo [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Kim, Do-Hoon [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Nichol, Alan [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Cho, B.C. John [Princess Margaret Hospital, Ontario (Canada); University of Toronto, Ontario (Canada); Mohamed, Islam G. [British Columbia Cancer Agency-Southern Interior, BC (Canada); University of British Columbia, BC (Canada); Parhar, Tarnjit [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Wright, J.R. [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Truong, Pauline [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Tyldesley, Scott [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Sussman, Jonathan [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Wai, Elaine [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Whelan, Tim [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada)

    2011-12-01

    Purpose: To report 3-year toxicity, cosmesis, and efficacy of a multicenter study of external beam, accelerated partial breast irradiation (APBI) for early-stage breast cancer. Methods and Materials: Between March 2005 and August 2006, 127 women aged {>=}40 years with ductal carcinoma in situ or node-negative invasive breast cancer {<=}3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study involving five Canadian cancer centers. Women meeting predefined dose constraints were treated with APBI using 3 to 5 photon beams, delivering 35 to 38.5 Gy in 10 fractions, twice a day, over 1 week. Patients were assessed for treatment-related toxicities, cosmesis, and efficacy before APBI and at specified time points for as long as 3 years after APBI. Results: 104 women had planning computed tomography scans showing visible seromas, met dosimetric constraints, and were treated with APBI to doses of 35 Gy (n = 9), 36 Gy (n = 33), or 38.5 Gy (n = 62). Eighty-seven patients were evaluated with minimum 3-year follow-up after APBI. Radiation dermatitis, breast edema, breast induration, and fatigue decreased from baseline levels or stabilized by the 3-year follow-up. Hypopigmentation, hyperpigmentation, breast pain, and telangiectasia slightly increased from baseline levels. Most toxicities at 3 years were Grade 1. Only 1 patient had a Grade 3 toxicity with telangiectasia in a skin fold inside the 95% isodose. Cosmesis was good to excellent in 86% (89/104) of women at baseline and 82% (70/85) at 3 years. The 3-year disease-free survival was 97%, with only one local recurrence that occurred in a different quadrant away from the treated site and two distant recurrences. Conclusions: At 3 years, toxicity and cosmesis were acceptable, and local control and disease-free survival were excellent, supporting continued accrual to randomized APBI trials.

  19. Accelerated split-course (Type B) thoracic radiation therapy plus vinorelbine/carboplatin combination chemotherapy in Stage III inoperable non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iaffaioli, R.V.; Tortoriello, A.; Facchini, G.; Maccauro, M.; Dimitri, P. [Cagliari Univ. (Italy). Ist. Medicina Interna; Caponigro, F. [Istituto Medico Legale, Milan (Italy); Ravo, V.; Muto, P. [Naples Univ. (Italy). Ist. Scienze Radiologiche; Crovella, F. [Ospedale Oliveto, Citra (Italy). Div. Chirurgia Generale

    1996-10-01

    43 patients with stage III NSCLC (non-small cell lung cancer) entered a phase II study aimed at evaluating the toxicity and the activity of a combined modality programme including an accelerated split-course schedule (type B) of thoracic radiation therapy and a combination chemotherapy with vinorelbine and carboplatin. An objective response was achieved in 18/42 evaluable patients (5 complete and 13 partial responses), for an overall response rate of 43% (95% confidence interval, 28-58%). Four complete responses had a duration which exceeded 16 months. Treatment was well tolerated; grade III myelotoxicity occurred in only 14% of patients and treatment was delayed in only 2 cases because of grade 3 oesophagitis. Both tolerability and efficacy data suggest that this regimen holds promise for the treatment of patients with stage III NSCLC. (author).

  20. Respiratory Motion Prediction in Radiation Therapy

    Science.gov (United States)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  1. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... of the lung cancer and your overall health. Radiation Therapy Radiation is a high-energy X-ray that can ... surgery, chemotherapy or both depending upon the circumstances. Radiation therapy works within cancer cells by damaging their ...

  2. Radiative damping in plasma-based accelerators

    Science.gov (United States)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  3. Involved Node Radiation Therapy

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy...... to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. RESULTS: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field......, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7...

  4. Measurements of photon and neutron leakage from medical linear accelerators and Monte Carlo simulation of tenth value layers of concrete used for intensity modulated radiation therapy treatment

    Science.gov (United States)

    Jaradat, Adnan Khalaf

    The x ray leakage from the housing of a therapy x ray source is regulated to be bubble detector of type BD-PND and using Track-Etch detectors. The highest neutron dose equivalent per unit electron dose was at 0° for all electron energies. The neutron leakage from photon beams was the highest between all the machines. Intensity modulated radiation therapy (IMRT) delivery consists of a summation of small beamlets having different weights that make up each field. A linear accelerator room designed exclusively for IMRT use would require different, probably lower, tenth value layers (TVL) for determining the required wall thicknesses for the primary barriers. The first, second, and third TVL of 60Co gamma rays and photons from 4, 6, 10, 15, and 18 MV x ray beams by concrete have been determined and modeled using a Monte Carlo technique (MCNP version 4C2) for cone beams of half-opening angles of 0°, 3°, 6°, 9°, 12°, and 14°.

  5. Intraoperative Radiation Therapy in Early Breast Cancer Using a Linear Accelerator Outside of the Operative Suite: An “Image-Guided” Approach

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Samir Abdallah, E-mail: samir.hanna@hsl.org.br [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Simões Dornellas de Barros, Alfredo Carlos; Martins de Andrade, Felipe Eduardo; Barbosa Bevilacqua, Jose Luiz [Department of Mastology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Morales Piato, José Roberto [Department of Mastology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Department of Gynecology, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo (Brazil); Lopes Pelosi, Edilson [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Martella, Eduardo [Department of Radiation Oncology, Hospital Perola Byington, Sao Paulo (Brazil); Fernandes da Silva, João Luis [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Andrade Carvalho, Heloisa de [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2014-08-01

    Purpose: To present local control, complications, and cosmetic outcomes of intraoperative radiation therapy (IORT) for early breast cancer, as well as technical aspects related to the use of a nondedicated linear accelerator. Methods and Materials: This prospective trial began in May of 2004. Eligibility criteria were biopsy-proven breast-infiltrating ductal carcinoma, age >40 years, tumor <3 cm, and cN0. Exclusion criteria were in situ or lobular types, multicentricity, skin invasion, any contraindication for surgery and/or radiation therapy, sentinel lymph node involvement, metastasis, or another malignancy. Patients underwent classic quadrantectomy with intraoperative sentinel lymph node and margins evaluation. If both free, the patient was transferred from operative suite to linear accelerator room, and IORT was delivered (21 Gy). Primary endpoint: local recurrence (LR); secondary endpoints: toxicities and aesthetics. Quality assurance involved using a customized shield for chest wall protection, applying procedures to minimize infection caused by patient transportation, and using portal films to check collimator-shield alignment. Results: A total of 152 patients were included, with at least 1 year follow-up. Median age (range) was 58.3 (40-85.4) years, and median follow-up time was 50.7 (12-110.5) months. The likelihood of 5-year local recurrence was 3.7%. There were 3 deaths, 2 of which were cancer related. The Kaplan-Meier 5-year actuarial estimates of overall, disease-free, and local recurrence-free survivals were 97.8%, 92.5%, and 96.3%, respectively. The overall incidences of acute and late toxicities were 12.5% and 29.6%, respectively. Excellent, good, fair, and bad cosmetic results were observed in 76.9%, 15.8%, 4.3%, and 2.8% of patients, respectively. Most treatments were performed with a 5-cm collimator, and in 39.8% of the patients the electron-beam energy used was ≥12 MeV. All patients underwent portal film evaluation, and the shielding was

  6. Radiation Therapy: Additional Treatment Options

    Science.gov (United States)

    ... Cancer Upper GI Cancers Search x FIND A RADIATION ONCOLOGIST CLOSE TREATMENT TYPES Home / Treatment Types / Additional ... novel targeted therapies can act as radiosensitizers. Systemic Radiation Therapy Certain cancers may be treated with radioactive ...

  7. Radiation Therapy for Testicular Cancer

    Science.gov (United States)

    ... Testicular Cancer Treating Testicular Cancer Radiation Therapy for Testicular Cancer Radiation therapy uses a beam of high-energy ... Testicular Cancer, by Type and Stage More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  8. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Núria, E-mail: nrodriguez@parcdesalutmar.cat [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Sanz, Xavier [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Dengra, Josefa [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Foro, Palmira [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Membrive, Ismael; Reig, Anna [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Quera, Jaume [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Fernández-Velilla, Enric; Pera, Óscar; Lio, Jackson; Lozano, Joan [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Algara, Manuel [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain)

    2013-12-01

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with

  9. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  10. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Bhangle Janhavi

    2007-01-01

    Full Text Available For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT, beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV.

  11. Microbeam radiation therapy

    Science.gov (United States)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  12. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing [Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai (China); Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou (China); Hong, Ling-Zhi [Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Cai, Xu-Wei; Zhu, Zheng-Fei; Liu, Qi; Zhao, Kuai-Le; Fan, Min; Mao, Jing-Fang; Yang, Huan-Jun; Wu, Kai-Liang [Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai (China); Fu, Xiao-Long, E-mail: xlfu1964@hotmail.com [Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai (China)

    2015-03-01

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 to 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.

  13. Radiation Therapy for Soft Tissue Sarcomas

    Science.gov (United States)

    ... Stage Soft Tissue Sarcoma Treating Soft Tissue Sarcomas Radiation Therapy for Soft Tissue Sarcomas Radiation therapy uses ... spread. This is called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, ...

  14. Study on external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  15. Accelerated Partial Breast Irradiation Is Safe and Effective Using Intensity-Modulated Radiation Therapy in Selected Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, Alan A., E-mail: alanl@baptisthealth.net [Department of Radiation Oncology, Baptist Hospital of Miami, Miami, FL (United States); Derhagopian, Robert [Department of Surgery, Baptist Hospital of Miami, Miami, FL (United States); Saigal, Kunal; Panoff, Joseph E. [Department of Radiation Oncology, University of Miami, Miami, FL (United States); Abitbol, Andre; Wieczorek, D. Jay; Mishra, Vivek [Department of Radiation Oncology, Baptist Hospital of Miami, Miami, FL (United States); Reis, Isildinha; Ferrell, Annapoorna [Division of Biostatistics, University of Miami, Miami, FL (United States); Moreno, Lourdes [Department of Radiation Oncology, Baptist Hospital of Miami, Miami, FL (United States); Takita, Cristiane [Department of Radiation Oncology, University of Miami, Miami, FL (United States)

    2012-04-01

    Purpose: To report the feasibility, toxicity, cosmesis, and efficacy of using intensity-modulated radiation therapy (IMRT) with respiratory gating to deliver accelerated partial breast irradiation (APBI) in selected Stage I/II breast cancer after breast-conserving surgery. Methods and Materials: Eligible patients with node-negative Stage I/II breast cancer were prospectively enrolled in an institutional review board approved protocol to receive APBI using IMRT after breast-conserving surgery. The target volume was treated at 3.8 Gy/fraction twice daily for 5 days, to a total dose of 38 Gy. Results: Thirty-six patients were enrolled for a median follow-up time of 44.8 months. The median tumor size was 0.98 cm (range, 0.08-3 cm). The median clinical target volume (CTV) treated was 71.4 cc (range, 19-231 cc), with the mean dose to the CTV being 38.96 Gy. Acute toxicities included Grade 1 erythema in 44% of patients and Grade 2 in 6%, Grade 1 hyperpigmentation in 31% of patients and Grade 2 in 3%, and Grade 1 breast/chest wall tenderness in 14% of patients. No Grade 3/4 acute toxicities were observed. Grade 1 and 2 late toxicities as edema, fibrosis, and residual hyperpigmentation occurred in 14% and 11% of patients, respectively; Grade 3 telangiectasis was observed in 3% of patients. The overall cosmetic outcome was considered 'excellent' or 'good' by 94% of patients and 97% when rated by the physician, respectively. The local control rate was 97%; 1 patient died of a non-cancer-related cause. Conclusions: APBI can be safely and effectively administered using IMRT. In retrospective analysis, IMRT enabled the achievement of normal tissue dose constraints as outlined by Radiation Therapy Oncology Group 04-13/NSABP B-13 while providing excellent conformality for the CTV. Local control and cosmesis have remained excellent at current follow-up, with acceptable rates of acute/late toxicities. Our data suggest that cosmesis is dependent on target volume

  16. A Survey of Hadron Therapy Accelerator Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  17. [Heavy particle radiation therapy].

    Science.gov (United States)

    Lozares, S; Mañeru, F; Pellejero, S

    2009-01-01

    The characteristics of radiation formed by heavy particles make it a highly useful tool for therapeutic use. Protons, helium nuclei or carbon ions are being successfully employed in radiotherapy installations throughout the world. This article sets out the physical and technological foundations that make these radiation particles suitable for attacking white volume, as well as the different ways of administering treatment. Next, the main clinical applications are described, which show the therapeutic advantages in some of the pathologies most widely employed in proton and hadron therapy centres at present. Under continuous study, the clinical use of heavy particles appears to be an enormously promising path of advance in comparison with classical technologies, both in tumour coverage and in reducing dosages in surrounding tissue.

  18. Radiation Therapy for Skin Cancer

    Science.gov (United States)

    ... make sure they are safe to use during radiation therapy. • Eat a balanced diet. If food tastes ... your fluid intake. • Treat the skin exposed to radiation with special care. Stay out of the sun, ...

  19. Stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Simon S. [Univ. Hospitals Seidman Cancer Center, Cleveland, OH (United States). Dept. of Radiation Oncology; Case Western Reserve Univ., Cleveland, OH (United States). Case Comprehensive Cancer Center; Teh, Bin S. [The Methodist Hospital Cancer Center and Research Institute, Houston, TX (United States). Weill Cornell Medical College; Lu, Jiade J. [National Univ. of Singapore (Singapore). Dept. of Radiation Oncology; Schefter, Tracey E. (eds.) [Colorado Univ., Aurora, CO (United States). Dept. of Radiation Oncology

    2012-11-01

    Comprehensive an up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. Examines in detail retrospective studies and prospective clinical trials for various organ sites from around the world. Written by world-renowned experts in SBRT from North America, Asia and Europe. Stereotactic body radiation therapy (SBRT) has emerged as an innovative treatment for various primary and metastatic cancers, and the past five years have witnessed a quantum leap in its use. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

  20. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    Science.gov (United States)

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques.

  1. The physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2009-01-01

    Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout.

  2. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  3. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ben-David, Merav A. [Department of Radiation Oncology, The Sheba Medical Center, Ramat Gan (Israel); Jagsi, Reshma; Hayman, James A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M.; Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-05-01

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique.

  4. Illusory flow in radiation from accelerating charge

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S.; Szendi, Zsuzsanna [RMI, WIGNER Research Centre for Physics, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Department of Theoretical Physics, Debrecen (Hungary); MTA-DE Particle Physics Research Group, Debrecen (Hungary)

    2014-03-15

    In this paper we analyze the classical electromagnetic radiation of an accelerating point charge moving on a straight line trajectory. Depending on the duration of accelerations, rapidity distributions of photons emerge, resembling the ones obtained in the framework of hydrodynamical models by Landau or Bjorken. Detectable differences between our approach and spectra obtained from hydrodynamical models occur at high transverse momenta due to classical wave interference phenomena included in our model. (orig.)

  5. Illusory Flow in Radiation from Accelerating Charge

    CERN Document Server

    Biro, Tamas S; Schram, Zsolt

    2014-01-01

    In this paper we analyze the classical electromagnetic radiation of an accelerating point charge moving on a straight line trajectory. Depending on the duration of accelerations, rapidity distributions of photons emerge, resembling the ones obtained in the framework of hydrodynamical models by Landau or Bjorken. Detectable differences between our approach and spectra obtained from hydrodynamical models occur at high transverse momenta and are due to interference.

  6. Radiative processes of uniformly accelerated entangled atoms

    CERN Document Server

    Menezes, G

    2015-01-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that the maximally entangled antisymmetric Bell state is a decoherence-free state.

  7. Antiangiogenic and Radiation Therapy

    Science.gov (United States)

    Ren, Ying; Fleischmann, Dominik; Foygel, Kira; Molvin, Lior; Lutz, Amelie M.; Koong, Albert C.; Jeffrey, R. Brooke; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Objectives To assess early treatment effects on computed tomography (CT) perfusion parameters after antiangiogenic and radiation therapy in subcutaneously implanted, human colon cancer xenografts in mice and to correlate in vivo CT perfusion parameters with ex vivo assays of tumor vascularity and hypoxia. Materials and Methods Dynamic contrast-enhanced CT (perfusion CT, 129 mAs, 80 kV, 12 slices × 2.4 mm; 150 μL iodinated contrast agent injected at a rate of 1 mL/min intravenously) was performed in 100 subcutaneous human colon cancer xenografts on baseline day 0. Mice in group 1 (n = 32) received a single dose of the antiangiogenic agent bevacizumab (10 mg/kg body weight), mice in group 2 (n = 32) underwent a single radiation treatment (12 Gy), and mice in group 3 (n = 32) remained untreated. On days 1, 3, 5, and 7 after treatment, 8 mice from each group underwent a second CT perfusion scan, respectively, after which tumors were excised for ex vivo analysis. Four mice were killed after baseline scanning on day 0 for ex vivo analysis. Blood flow (BF), blood volume (BV), and flow extraction product were calculated using the left ventricle as an arterial input function. Correlation of in vivo CT perfusion parameters with ex vivo microvessel density and extent of tumor hypoxia were assessed by immunofluorescence. Reproducibility of CT perfusion parameter measurements was calculated in an additional 8 tumor-bearing mice scanned twice within 5 hours with the same CT perfusion imaging protocol. Results The intraclass correlation coefficients for BF, BV, and flow extraction product from repeated CT perfusion scans were 0.93 (95% confidence interval: 0.78, 0.97), 0.88 (0.66, 0.95), and 0.88 (0.56, 0.95), respectively. Changes in perfusion parameters and tumor volumes over time were different between treatments. After bevacizumab treatment, all 3 perfusion parameters significantly decreased from day 1 (P ≤ 0.006) and remained significantly decreased until day 7 (P ≤ 0

  8. Winter therapy for the accelerators

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    Hundreds of people are hard at work during the year-end technical stop as all the accelerators are undergoing maintenance, renovation and upgrade operations in parallel.   The new beam absorber on its way to Point 2 before being lowered into the LHC tunnel for installation. The accelerator teams didn’t waste any time before starting their annual winter rejuvenation programme over the winter. At the end of November, as the LHC ion run was beginning, work got under way on the PS Booster, where operation had already stopped. On 14 December, once the whole complex had been shut down, the technical teams turned their attention to the other injectors and the LHC. The year-end technical stop (YETS) provides an opportunity to carry out maintenance work on equipment and repair any damage as well as to upgrade the machines for the upcoming runs. Numerous work projects are carried out simultaneously, so good coordination is crucial. Marzia Bernardini's team in the Enginee...

  9. HRIBF Tandem Accelerator Radiation Safety System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, J.L.; Juras, R.C.

    1998-11-04

    The HRIBF Tandem Accelerator Radiation Safety System was designed to permit experimenters and operations staff controlled access to beam transport and experiment areas with accelerated beam present. Neutron-Gamma detectors are mounted in eaeh area at points of maximum dose rate and the resulting signals are integrated by redundan~ circuitry; beam is stopped if dose rate or integrated dose exceeds established limits. This paper will describe the system, in use for several vears at the HRIBF, and discuss changes recently made to modernize the system and to make the system compliant with DOE Order 5480.25 and related ORNL updated safety rules.

  10. Radiation Therapy for Cancer

    Science.gov (United States)

    ... basic unit of light and other forms of electromagnetic radiation . It can be thought of as a bundle ... 3D-CRT uses very sophisticated computer software and advanced treatment machines to deliver radiation to very precisely shaped target areas. Many other ...

  11. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  12. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  13. Radiation Therapy of Pituitary Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Baik; Hong, Seong Eong [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Radiation treatment results were analyzed in a retrospective analysis of 47 patients with pituitary adenoma treated with radiation alone or combined with surgery from 1974 through 1987 at the Department of Therapeutic Radiology of Kyung Hee University. The 5-year overall survival rates for all patients was 80.4%. Radiation therapy was effective for improving visual symptoms and headache, but could not normalize amenorrhea and galactorrhoea. There was no difference of survival rate between radiation alone and combination with surgery. Prognostic factors such as age, sex, disease type, visual field, headache and surgical treatment were statistically no significant in survival rates of these patients.

  14. Feasibility of using laser ion accelerators in proton therapy

    CERN Document Server

    Bulanov, S V

    2002-01-01

    The feasibility of using the laser plasma as a source of the high-energy ions for the proton radiation therapy is discussed. The proposal is based on the recent inventions of the effective ions acceleration in the experiments and through numerical modeling of the powerful laser radiation interaction with the gaseous and solid state targets. The principal peculiarity of the dependence of the protons energy losses in the tissues (the Bragg peak of losses) facilities the solution of one of the most important problems of the radiation therapy, which consists in realizing the tumor irradiation by sufficiently high and homogeneous dose with simultaneous minimization of the irradiation level, relative to the healthy and neighbouring tissues and organs

  15. Late Toxicity and Patient Self-Assessment of Breast Appearance/Satisfaction on RTOG 0319: A Phase 2 Trial of 3-Dimensional Conformal Radiation Therapy-Accelerated Partial Breast Irradiation Following Lumpectomy for Stages I and II Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chafe, Susan, E-mail: susan.chafe@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute-University of Alberta, Edmonton, Alberta (Canada); Moughan, Jennifer [Department of Radiation Oncology, RTOG Statistical Center, Philadelphia, Pennsylvania (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Pass, Helen [Womens' Breast Center, Stamford Hospital, Stamford, Connecticut (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Petersen, Ivy [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); White, Julia [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-08-01

    Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.

  16. Radiation therapy in pseudotumour haemarthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lal, P.; Biswal, B.M.; Thulkar, S.; Patel, A.K.; Venkatesh, R.; Julka, P.K. [Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi (India). Departments of Radiation Oncology, Radiodiagnosis and Haematology

    1998-11-01

    Total or partial deficiency of factor VIII and IX in the coagulation cascade leads to haemophilia. Haemophilia affecting weight-bearing joints gives a `pseudotumour` or haemarthrosis-like condition. Surgery and cryoprecipitate infusions have been the treatment for this condition. Radiocolloids and radiation therapy have been used with some benefit. One case of ankle pseudotumour which was treated by low-dose external beam radiation is presented here. Copyright (1998) Blackwell Science Pty Ltd 14 refs., 2 figs.

  17. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  18. Quantum Radiation of Uniformly Accelerated Spherical Mirrors

    CERN Document Server

    Frolov, V

    2001-01-01

    We study quantum radiation generated by a uniformly accelerated motion of small spherical mirrors. To obtain Green's function for a scalar massless field we use Wick's rotation. In the Euclidean domain the problem is reduced to finding an electric potential in 4D flat space in the presence of a metallic toroidal boundary. The latter problem is solved by a separation of variables. After performing an inverse Wick's rotation we obtain the Hadamard function in the wave-zone regime and use it to calculate the vacuum fluctuations and the vacuum expectation for the energy density flux in the wave zone.

  19. Khan's the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2014-01-01

    Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team-radiation oncologists, medical physicists, dosimetrists, and radiation therapists-develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (

  20. Radiation therapy of acromegaly.

    Science.gov (United States)

    Eastman, R C; Gorden, P; Glatstein, E; Roth, J

    1992-09-01

    Conventional megavoltage irradiation of GH-secreting tumors has predictable effects on tumor mass, GH, and pituitary function. 1. Further growth of the tumor is prevented in more than 99% of patients, with only a fraction of a percent of patients requiring subsequent surgery for tumor mass effects. 2. GH falls predictably with time. By 2 years GH falls by about 50% from the baseline level, and by 5 years by about 75% from the baseline level. The initial GH elevation and the size and erosive features of the sella turcica do not affect the percent decrease in GH from the baseline elevation. 3. With prolonged follow-up, further decrease in GH is seen at 10 and 15 years, with the fraction of surviving patients achieving GH levels less than 5 ng/mL approaching 90% after 15 years in our experience. Gender, previous surgery, and hyperprolactinemia do not seem to affect the response to treatment. Patients with initial GH greater than 100 ng/mL are significantly less likely to achieve GH values less than 5 ng/mL during long-term follow-up. 4. Hypopituitarism is a predictable outcome of treatment, is delayed, and may be more likely in patients who have had surgery prior to irradiation. There is no evidence that this complication is more common in patients with acromegaly than in patients with other pituitary adenomas receiving similar treatment. 5. Vision loss due to megavoltage irradiation--using modern techniques and limiting the total dose to 4680 rad given in 25 fractions over 35 days, with individual fractions not exceeding 180 rad--is extremely rare. The reported cases have occurred almost entirely in patients who have received larger doses or higher fractional doses. The theory that patients with acromegaly are prone to radiation-induced injury to the CNS and optic nerves and chiasm because of small vessel disease is not supported by a review of the reported cases. 6. Brain necrosis and secondary neoplasms induced by irradiation are extremely rare. 7. Although

  1. Radiation Shielding at High-Energy Electron and Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.; /SLAC; Cossairt, J.Donald; /Fermilab; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  2. Late complications of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Norie [Osaka Prefectural Center for Adult Diseases (Japan)

    1998-03-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  3. Development of local radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed.

  4. Accelerated hypofractionated adjuvant whole breast radiation with simultaneous integrated boost using volumetric modulated arc therapy for early breast cancer: A phase I/II dosimetric and clinical feasibility study from a tertiary cancer care centre of India

    Directory of Open Access Journals (Sweden)

    Dodul Mondal

    2017-03-01

    Mini abstract: Simultaneous integrated boost with accelerated hypofractionated whole breast radiotherapy using Volumetric Modulated Arc Therapy is a novel approach. Patient selection and technical considerations are of paramount importance. The present study describes successful implementation of this approach.

  5. Self-shielded electron linear accelerators designed for radiation technologies

    Science.gov (United States)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  6. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  7. Insufficiency fracture after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Ryul; Huh, Seung Jae [Dept.of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

  8. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2015-09-01

    and whether this difference changed the outcome for palliative patients, 6) use of the Calypso system, and other advanced radiation therapy equipment...use of advanced technology radiation therapy techniques, such as IMRT and VMAT, in treating palliative patients. The main obstacle to overcome in...treating low-to-intermediate risk prostate cancer with intensity modulated radiation therapy (IMRT) using an electromagnetic localization system. IMRT

  9. Modern Radiation Therapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Specht, Lena; Yahalom, Joachim; Illidge, Tim

    2014-01-01

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced...... on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy...... guidelines....

  10. Accelerated neuroregulation for therapy of opiate dependency

    Directory of Open Access Journals (Sweden)

    S. Sunatrio

    2004-03-01

    Full Text Available Acute weaning from chronic opioid abuse during general anesthesia is usually followed by adrenergic outflow effects. This article is to report our experience with accelerated neuroregulation that reverses the physical and psychological dependency. After a comprehensive psychological and medical examination, 361 heroin dependent patients were admitted to ICU to be hospitalized for a full 24 or 36 hours, including a 6 hour pre-procedure medication process (solbutamol, clonidine, diazepam, ranitidine, omeprazole, vitamin C, octreotide, and ondansetron. Anesthesia was induced with midazolam and propofol iv and maintained with propofol infusion. Naltrexon, clonidine, octreotide, and diazepam were then administered. Anesthesia was maintained for 3 ½ - 5 hours depending on severity of withdrawal symptoms precipitated by naltrexone. Analgetics and sedatives were given as needed afterwards. Upon discharge on the following day, patient was prescribed a regimen of oral naltrexone for 10-12 months. All 361 patients were successfully detoxified without any adverse anesthetic events. The side effects encountered were fatigue, insomnia, drowsy, shivering, abdominal pain, nausea, diarrhoea, myalgia, goose bumps and uncomfortable feeling. In most of the patients these symptoms disappeared without any treatment. Symptomatic treatments were needed in 32.7% of patients. In all 166 patients who completed their naltrexone maintenance treatment, craving disappeared in the 10th month. The main problem was the low patient compliance to oral naltrexone, so that only 45.9% of the patients completed their therapy. Conclusion: Accelerated neuroregulation which includes naltrexone maintenance treatment (10-12 months was highly effective to detoxify and to abolish craving in the heroin dependent patients. (Med J Indones 2004; 13: 53-8Keywords: detoxification, craving management

  11. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    Science.gov (United States)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  12. AREAL test facility for advanced accelerator and radiation source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Amatuni, G.A.; Amirkhanyan, Z.G.; Aslyan, L.V.; Avagyan, V.Sh.; Danielyan, V.A.; Davtyan, H.D.; Dekhtiarov, V.S.; Gevorgyan, K.L.; Ghazaryan, N.G.; Grigoryan, B.A.; Grigoryan, A.H.; Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutiunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Ivanyan, M.I.; Khachatryan, V.G.; Laziev, E.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Manukyan, P.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Margaryan, I.N.; Markosyan, T.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); and others

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  13. Risk of potential radiation accidental situations at TESLA accelerator installation

    Energy Technology Data Exchange (ETDEWEB)

    Spasic Jokic, Vesna [TESLA Accelerator Installation, Lab. of Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro (Serbia); Orlic, Milan [VINCA Institute of Nuclear Sciences, Lab. of radioisotopes, Belgrade, Serbia and Montenegro (Serbia); Djurovic, Branka [Military Medical Academy, Radiation Protection Dept., Belgrade, Serbia and Montenegro (Serbia)

    2006-07-01

    The main aim of this paper is to recognize some of the numerous risks of potential exposure and to quantify requirements and probability of failure of radiation protection system due to design event tree. Nature of design and construction of Tesla Accelerator Installation (T.A.I.) make possibility of potential exposure as a result of proven design and modification, trade off, human error as well as defense in depth. In the case of potential exposure human risk is the result of two random events: first, the occurrence of the event that causes the exposure, and the second, the appearance of a harmful effect. The highest doses during potential exposure at T.A.I. can be received at the entrance to primary beam space (V.I.N.C.Y. cyclotron vault) as well as in space with target for fluorine production, high energy experimental channels, proton therapy channel and channel for neutron researches. Expected values of prompt radiation equivalent dose rate in the cyclotron vault is considerably high, in order of 10 Sv/h. Serious problem deals with such large research installation is a number of workers, as visiting research workers of different educational levels and people in Institute who are not professionally connected with ionizing radiation. They could cause willing or unwilling opening of the cyclotron vault doors. Considering some possible scenarios we assumed that during 7000 working hours per year it is reasonably to expect 300 unsafe entries per year. It can be concluded that safety system should be designed so that probability of failure of radiation protection system has to be less than 1.9 10{sup -6}. (authors)

  14. Shielding design for a laser-accelerated proton therapy system.

    Science.gov (United States)

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  15. Shielding design for a laser-accelerated proton therapy system

    Science.gov (United States)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  16. Radiation Therapy for Early Stage Lung Cancer

    OpenAIRE

    Parashar, Bhupesh; Arora, Shruthi; Wernicke, A. Gabriella

    2013-01-01

    Radiation therapy for early stage lung cancer is a promising modality. It has been traditionally used in patients not considered candidates for standard surgical resection. However, its role has been changing rapidly since the introduction of new and advanced technology, especially in tumor tracking, image guidance, and radiation delivery. Stereotactic radiation therapy is one such advancement that has shown excellent local control rates and promising survival in early stage lung cancer. In a...

  17. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Institute of Scientific and Technical Information of China (English)

    吴双清; 闫沐霖

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated using a method of the generalized tortoise coordinate transformation.Both the location and temperature of the event horizon depend on the time and on the angles.They are in agreement with the previous results,but thethermal radiation spectrum of massless spinor particles displays a type of spin-acceleration coupling effect.

  18. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator

    Institute of Scientific and Technical Information of China (English)

    LIN Xu-Ling; ZHANG Jian-Bing; LU YU; LUO Feng; LU Shan-Liang; YU Tie-Min; DAI Zhi-Min

    2009-01-01

    The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported.We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.

  19. Radiation Sensitization in Cancer Therapy.

    Science.gov (United States)

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  20. Accelerated larvae development of Ascaris lumbricoides eggs with ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aladawi, M.A. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: Scientific@aec.org.sy; Albarodi, H. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Hammoudeh, A. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Shamma, M. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Sharabi, N. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2006-01-15

    In order to investigate the effect of UV radiation on the development of Ascaris lumbricoides larvae, eggs were exposed to increasing UV doses. Filtered wastewater from the secondary effluent taken from the Damascus wastewater treatment plant (DWTP) was used as irradiation and incubation medium. The progressive and accelerated embryonation stages were microscopically observed and the percentages of completely developed larvae were determined weekly. Results indicated that the UV radiation accelerated the development of larvae with increasing UV dose. Preliminary information about the relationship between the UV radiation dose and rate of embryonation is also presented.

  1. Accelerated larvae development of Ascaris lumbricoides eggs with ultraviolet radiation

    Science.gov (United States)

    Aladawi, M. A.; Albarodi, H.; Hammoudeh, A.; Shamma, M.; Sharabi, N.

    2006-01-01

    In order to investigate the effect of UV radiation on the development of Ascaris lumbricoides larvae, eggs were exposed to increasing UV doses. Filtered wastewater from the secondary effluent taken from the Damascus wastewater treatment plant (DWTP) was used as irradiation and incubation medium. The progressive and accelerated embryonation stages were microscopically observed and the percentages of completely developed larvae were determined weekly. Results indicated that the UV radiation accelerated the development of larvae with increasing UV dose. Preliminary information about the relationship between the UV radiation dose and rate of embryonation is also presented.

  2. RADIATION HAZARD AND PROTECTION OF LOW ENERGY ACCELERATORS

    Institute of Scientific and Technical Information of China (English)

    雷清章

    1994-01-01

    In this paper,the origin and type of radiation hazards as well as the main aspects of radiation protection for low-energy accelerators are discussed in general,and the problems of radiation protection and the experimental results of the operational monitoring of the five accelecrators in the Institute of Nuclear Science and Technology,Sichuan University,namely,one 1.2M cyclofron,two Cockroft-waltons and two Van de Graafts,as well as a powerful electron accelerator for industrial irradiation are described.The discussion and evaluation are made according to the requirments of the national standards GB5172-85.

  3. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  4. Application of Novel Accelerator Research for Particle Therapy

    OpenAIRE

    Bjerke, Henrik Hemmestad

    2014-01-01

    This thesis seeks to review the latest trends in hadron therapy devices, and evaluate the potential of novel, researched accelerator concepts for future application. Although the clinical benefits of hadron therapy over photon therapy is unproven or disputed for many cancer types, there are several cases where hadron therapy presents a superior option. Many governments and medical institutions are planning or already executing development of new hadron treatment facilities. However, the highe...

  5. Comparing Postoperative Radiation Therapies for Brain Metastases

    Science.gov (United States)

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  6. Modern radiation therapy for primary cutaneous lymphomas

    DEFF Research Database (Denmark)

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim

    2015-01-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment......, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational...... meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era....

  7. DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily. High local control in early stage (I/II) non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zehentmayr, Franz; Wurstbauer, Karl; Deutschmann, Heinz; Sedlmayer, Felix [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Radiotherapie und Radio-Onkologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria); Paracelsus Medizinische Privatuniversitaet, Institute for Research and Development of Advanced Radiation Technologies (radART), Salzburg (Austria); Fussl, Christoph; Kopp, Peter; Dagn, Karin; Fastner, Gerd [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Radiotherapie und Radio-Onkologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria); Porsch, Peter; Studnicka, Michael [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Pneumologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria)

    2014-09-23

    While surgery is considered standard of care for early stage (I/II), non-small-cell lung cancer (NSCLC), radiotherapy is a widely accepted alternative for medically unfit patients or those who refuse surgery. International guidelines recommend several treatment options, comprising stereotactic body radiation therapy (SBRT) for small tumors, conventional radiotherapy ≥ 60 Gy for larger sized especially centrally located lesions or continuous hyperfractionated accelerated RT (CHART). This study presents clinical outcome and toxicity for patients treated with a dose-differentiated accelerated schedule using 1.8 Gy bid (DART-bid). Between April 2002 and December 2010, 54 patients (median age 71 years, median Karnofsky performance score 70 %) were treated for early stage NSCLC. Total doses were applied according to tumor diameter: 73.8 Gy for < 2.5 cm, 79.2 Gy for 2.5-4.5 cm, 84.6 Gy for 4.5-6 cm, 90 Gy for > 6 cm. The median follow-up was 28.5 months (range 2-108 months); actuarial local control (LC) at 2 and 3 years was 88 %, while regional control was 100 %. There were 10 patients (19 %) who died of the tumor, and 18 patients (33 %) died due to cardiovascular or pulmonary causes. A total of 11 patients (20 %) died intercurrently without evidence of progression or treatment-related toxicity at the last follow-up, while 15 patients (28 %) are alive. Acute esophagitis ≤ grade 2 occurred in 7 cases, 2 patients developed grade 2 chronic pulmonary fibrosis. DART-bid yields high LC without significant toxicity. For centrally located and/or large (> 5 cm) early stage tumors, where SBRT is not feasible, this method might serve as radiotherapeutic alternative to present treatment recommendations, with the need of confirmation in larger cohorts. (orig.) [German] Die Standardbehandlung fuer nichtkleinzellige Bronchialkarzinome (NSCLC) im Stadium I/II ist die Operation, wobei Radiotherapie fuer Patienten, die nicht operabel sind oder die Operation ablehnen, als Alternative

  8. Nursing care update: Internal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references.

  9. Operational radiation protection in high-energy physics accelerators.

    Science.gov (United States)

    Rokni, S H; Fassò, A; Liu, J C

    2009-11-01

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  10. Ion acceleration through radiation pressure in quanto-electrodynamical regimes

    Science.gov (United States)

    Del Sorbo, Dario; Ridgers, Chris; Laser Plasmas; Fusion Team

    2016-10-01

    The strong radiation pressure carried by high-intensity lasers interacting with plasmas can accelerate ions over very short distances. The resulting compact particle accelerator could find applications in medical physics (radiotherapy) as well as in fundamental physics (hadron interactions). With next-generation multi-petawatt lasers, reaching focused intensity 1023Wcm-2 , ions could potentially reach GeV energies. However, the physics of laser-matter interactions at these extreme intensities is not well understood. In particular, on acceleration by the electromagnetic fields of the laser, the electrons in the plasma start to radiate hard photons prolifically. These hard photons can decay to electron-positron pairs, a cascade of pair production can ensue leading to the formation of an over-dense pair plasma which can absorb the laser-pulse. We have developed a self-consistent theory for both hole boring and light sail radiation pressure ion-acceleration, accounting for radiation-reaction and pair-creation. We show that the key role is played by a pair plasma that arises between the laser and the accelerated ions, strongly modifying the laser absorption.

  11. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    Energy Technology Data Exchange (ETDEWEB)

    Mares, G. [EUROTEST S.A., Bucharest (Romania). Research, Equipment Testing, Industrial Engineering and Scientific Services; Notingher, P. [Univ. Politehnica, Bucharest (Romania). Faculty of Electrical Engineering

    1996-12-31

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation.

  12. Nonthermal Radiation and Acceleration of Electrons in Clusters of Galaxies

    CERN Document Server

    Petrosyan, V

    2002-01-01

    Recent observations of excess radiation at extreme ultraviolet and hard X-ray energies straddling the well known thermal soft X-ray emission have provided new tools and puzzles for investigation of the acceleration of nonthermal particles in the intercluster medium of clusters of galaxies. It is shown that these radiations can be produced by the inverse Compton upscattering of the cosmic microwave background photons by the same population of relativistic electrons that produce the well known diffuse radio radiation via the synchrotron mechanism. It is shown that the commonly discussed discrepancy between the value of the magnetic field required for the production of these radiation with that obtained from Faraday rotation measures could be resolved by more realistic models and by considerations of observational selection effects. In a brief discussion of the acceleration process it is argued that the most likely scenario is reacceleration of injected relativistic electrons involving shocks and turbulence. The...

  13. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  14. Ocular neuromyotonia after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lessell, S.; Lessell, I.M.; Rizzo, J.F. III

    1986-12-15

    Ocular neuromyotonia is a paroxysmal monocular deviation that results from spasm of eye muscles secondary to spontaneous discharges from third, fourth, or sixth nerve axons. We observed this rare disorder in four patients who had been treated with radiation for tumors in the region of the sella turcica and cavernous sinus. Based on these cases and four others identified in the literature it would appear that radiation predisposes to a cranial neuropathy in which ocular neuromyotonia may be the major manifestation. Radiation appears to be the most common cause of ocular neuromyotonia.

  15. Radiation Therapy and You: Support for People with Cancer

    Science.gov (United States)

    ... Terms Blogs and Newsletters Health Communications Publications Reports Radiation Therapy and You: Support for People With Cancer ... Copy This booklet covers: Questions and Answers About Radiation Therapy. Answers common questions, such as what radiation ...

  16. Wave acceleration of electrons in the Van Allen radiation belts.

    Science.gov (United States)

    Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E

    2005-09-08

    The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

  17. [Laser radiations in medical therapy].

    Science.gov (United States)

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  18. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  19. Herpes Zoster infection and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.; Okazaki, A.; Mitsuhashi, N.; Ito, I.; Niibe, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1981-02-01

    Between 1970 and 1979, among 3,320 patients with malignant neoplasms, herpes zoster (HZ) occurred in 54 (1.6%) after radiation therapy. The incidence of HZ infection was increased in patients with epipharyngeal cancer (10.0%), malignant lymphoma (5.7%), ovarial tumor (3.7%) and testicular tumor (3.6%). Most of these patients received extensive radiation therapy along the spinal cord and/or nerve roots. The location of HZ infection was divided as follows; HZ infectious lesion located in the area of (I-A) innervated segment of the irradiated nerve root (75.9%), (I-B) irradiated dermatome (5.6%) and (II) not associated with radiation field (18.5%). In 44 patients of I-A and B, HZ infection developed within a year, particularly in three months (22 cases) after the completion of irradiation. This latent period between completing irradiation and the development of HZ infection was likely to be compatible with the period between radiation therapy and earlier radiation injury. Among 10 patients in Group II, 7 patients developed HZ infection more than a year after radiation therapy. The cumulative survival of these patients except for the patients with malignant lymphoma was 66.7% and so HZ infection was considered to have no prognostic significance.

  20. Radiation Hardening of LED Luminaires for Accelerator Tunnels

    CERN Document Server

    Devine, James D

    2016-01-01

    This paper summarises progress made towards the radiation hardening of LED emergency luminaires for evacuation and emergency response within the underground areas of the CERN accelerator complex. The objective has been to radiation harden existing Commercial Off-The-Shelf (COTS) emergency luminaires to maximise lighting performance, without compromising IEC 60598-2-22 compliance. A systems level approach has been adopted, leading to the development of a diode bridge based AC/DC power converter. Modified COTS luminaires including this converter design have been irradiated (to 100 kGy TID using a Cobalt-60 source), with results of a subsequent photometric analysis presented. Following encouraging tests results, a reference design for the power converter has been released under the CERN Open Hardware License to encourage manufacturer adoption. The paper concludes with areas of interest for future research in further improving the radiation hardness of LED emergency lighting for accelerators with detailed studies...

  1. Breakdown of Acceleration Waves in Radiative Magneto-fluids

    Directory of Open Access Journals (Sweden)

    Arisudan Rai

    2003-10-01

    Full Text Available The problem of propagation of acceleration waves in an optically thick medium of electrically conducting fluid has been dealt with. During propagation of the waves, the effects of radiation pressure, radiation energy density, and heat transfer through thermal radiation and thermal conduction have been taken into account. The growth equation for the variation of amplitude of the wave has been derived and solved. It has been concluded that all the compressive waves with initial amplitudes greater than a critical value will grow and terminate into a shock wave due to nonlinear steepening, while all expansion waves will decay out. Acritical stage, when the compressive wave will either grow or decay, has also been discussed. The effects of radiation pressure and radiative heat transfer on the shock formation have been discussed and analysed.

  2. Neutron radiation therapy: application of advanced technology to the treatment of cancer

    CERN Document Server

    Maughan, R L; Kota, C; Burmeister, J; Porter, A T; Forman, J D; Blosser, H G; Blosser, E; Blosser, G

    1999-01-01

    The design and construction of a unique superconducting cyclotron for use in fast neutron radiation therapy is described. The clinical results obtained in the treatment of adenocarcinoma of the prostate with this accelerator are presented. Future use of the boron neutron capture reaction as a means of enhancing fast neutron therapy in the treatment of patients with brain tumors (glioblastoma multiforme) is also discussed.

  3. Radiation therapy in cholangiocellular carcinomas.

    Science.gov (United States)

    Brunner, Thomas B; Seufferlein, Thomas

    2016-08-01

    Cholangiocarcinoma can arise in all parts of the biliary tract and this has implications for therapy. Surgery is the mainstay of therapy however local relapse is a major problem. Therefore, adjuvant treatment with chemoradiotherapy was tested in trials. The SWOG-S0809 trial regimen of chemoradiotherapy which was tested in extrahepatic cholangiocarcinoma and in gallbladder cancer can currently be regarded as highest level of evidence for this indication. In contrast to adjuvant therapy where only conventionally fractionated radiotherapy plays a role, stereotactic body radiotherapy (SBRT) today has become a powerful alternative to chemoradiotherapy for definitive treatment due to the ability to administer higher doses of radiotherapy to improve local control. Sequential combinations with chemotherapy are also frequently employed. Nevertheless, in general cholangiocarcinoma is an orphan disease and future clinical trials will have to improve the available level of evidence.

  4. Cancer and electromagnetic radiation therapy: Quo Vadis?

    CERN Document Server

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, advances in ionizing radiation therapy are competitive to non-ionizing ones, as for example the laser light based therapy, resulting in a synergism that has revolutionized medicine. The use of non-invasive or minimally invasive (e.g. through flexible endoscopes) therapeutic procedures in the management of patients represents a very interesting treatment option. Moreover, as the major breakthrough in cancer management is the individualized patient treatment, new biophotonic techniques, e.g. photo-activated drug carriers, help...

  5. Constrictive pericarditis following mediastinal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Coffee, M.A.; Hamman, J.L.

    1977-02-01

    In recent years, an increasing number of patients with neoplastic disease have received aggressive radiation therapy to the mediastinum. Following this therapy as many as 30% of patients develop pericarditis with effusion, which may later severely compromise cardiovascular function because of constriction and/or tamponade. In a retrospective study, Martin et al found either transient or persistent pericardial effusion in 24 of 81 patients with Hodgkin's disease, Stages I-III B, who underwent upper mantle radiation. Five of the 24 patients eventually required pericardiectomy for signs and symptoms of cardiac tamponade. Most of the retrospective studies of heart disease following radiation therapy demonstrate an increased incidence of cardiac involvement following high doses (over 4000 rads) to the mediastinum; however, acute pericarditis, restrictive disease, and even myocardial infarctions have occurred with a total dose of less than 4000 rads.

  6. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  7. On radiative acceleration in spine-sheath structured blazar jets

    CERN Document Server

    Chhotray, Atul; Ghisellini, Gabriele; Salafia, Om Sharan; Tavecchio, Fabrizio; Lazzati, Davide

    2016-01-01

    It has been proposed that blazar jets are structured, with a fast spine surrounded by a slower sheath or layer. This structured jet model explains some properties of their emission and morphology. Because of their relative motion, the radiation produced by one component is seen amplified by the other, thus enhancing the inverse Compton emission of both. Radiation is emitted anisotropically in the comoving frames, and causes the emitting plasma to recoil. As seen in the observer frame, this corresponds to a deceleration of the fastest component (the spine) and an acceleration of the slower one (the layer). While the deceleration of the spine has already been investigated, here we study for the first time the acceleration of the sheath and find self-consistent velocity profile solutions for both the spine and the sheath while accounting for radiative cooling. We find that the sheath can be accelerated to the velocities required by the observations if its leptons remain energetic in the acceleration region, assu...

  8. Building immunity to cancer with radiation therapy.

    Science.gov (United States)

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  9. Radiation therapy for resistant sternal hydatid disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulger, S.; Barut, H.; Tunc, M.; Aydinkarahaliloglu, E. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Radiation Oncology; Aydin, E.; Karaoglanoglu, N. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Thorasic Surgery; Gokcek, A. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Radiology

    2013-06-15

    Hydatid disease is a zoonotic infectious disease for which there are known treatment procedures and effective antibiotics; however, there are resistant cases that do not respond to medication or surgery. We report a case diagnosed as hydatid disease of the chest wall and treated with radiation therapy (RT) after medical and surgical therapy had failed. In conclusion, RT represents an alternative treatment modality in resistant cases. (orig.)

  10. Ion Acceleration by the Radiation Pressure of Slow Electromagnetic Wave

    CERN Document Server

    Bulanov, S V; Kando, M; Pegoraro, F; Bulanov, S S; Geddes, C G R; Schroeder, C; Esarey, E; Leemans, W

    2012-01-01

    When the ions are accelerated by the radiation pressure of the laser pulse, their velocity can not exceed the laser group velocity, in the case when it is less than the speed of light in vacuum. This is demonstrated in two cases corresponding to the thin foil target irradiated by a high intensity laser light and to the hole boring by the laser pulse in the extended plasma accompanied by the collisionless shock wave formation. It is found that the beams of accelerated at the collisionless shock wave front ions are unstable against the Buneman-lke and the Weibel-like instabilities which result in the ion energy spectrum broadening.

  11. Some computer graphical user interfaces in radiation therapy

    Institute of Scientific and Technical Information of China (English)

    James C L Chow

    2016-01-01

    In this review, five graphical user interfaces(GUIs) used in radiation therapy practices and researches are introduced. They are:(1) the treatment time calculator, superficialx-ray treatment time calculator(SUPCALC) used in the superficial X-ray radiation therapy;(2) the monitor unit calculator, electron monitor unit calculator(EMUC) used in the electron radiation therapy;(3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy(SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy;(4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and(5) the monitor unit calculator, photon beam monitor unit calculator(PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the

  12. Activation and radiation damage in the environment of hadron accelerators

    CERN Document Server

    Kiselev, Daniela

    2013-01-01

    A component which suffers radiation damage usually also becomes radioactive, since the source of activation and radiation damage is the interaction of the material with particles from an accelerator or with reaction products. However, the underlying mechanisms of the two phenomena are different. These mechanisms are described here. Activation and radiation damage can have far-reaching consequences. Components such as targets, collimators, and beam dumps are the first candidates for failure as a result of radiation damage. This means that they have to be replaced or repaired. This takes time, during which personnel accumulate dose. If the dose to personnel at work would exceed permitted limits, remote handling becomes necessary. The remaining material has to be disposed of as radioactive waste, for which an elaborate procedure acceptable to the authorities is required. One of the requirements of the authorities is a complete nuclide inventory. The methods used for calculation of such inventories are presented,...

  13. Operational radiation protection in high-energy physics accelerators: implementation of ALARA in design and operation of accelerators.

    Science.gov (United States)

    Fassò, A; Rokni, S

    2009-11-01

    This paper considers the historical evolution of the concept of optimisation of radiation exposures, as commonly expressed by the acronym ALARA, and discusses its application to various aspects of radiation protection at high-energy accelerators.

  14. Beam Phase Detection for Proton Therapy Accelerators

    CERN Document Server

    Aminov, Bachtior; Getta, Markus; Kolesov, Sergej; Pupeter, Nico; Stephani, Thomas; Timmer, J

    2005-01-01

    The industrial application of proton cyclotrons for medical applications has become one of the important contributions of accelerator physics during the last years. This paper describes an advanced vector demodulating technique used for non-destructive measurements of beam intensity and beam phase over 360°. A computer controlled I/Q-based phase detector with a very large dynamic range of 70 dB permits the monitoring of beam intensity, phase and eventually energy for wide range of beam currents down to -130 dBm. In order to avoid interference from the fundamental cyclotron frequency the phase detection is performed at the second harmonic frequency. A digital low pass filter with adjustable bandwidth and steepness is implemented to improve accuracy. With a sensitivity of the capacitive pickup in the beam line of 30 nV per nA of proton beam current at 250 MeV, accurate phase and intensity measurements can be performed with beam currents down to 3.3 nA.

  15. Nonthermal radiation from relativistic electrons accelerated at spherically expanding shocks

    CERN Document Server

    Kang, Hyesung

    2014-01-01

    We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with the parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with the instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks by simple DSA models in the test-particle regime.

  16. Modern radiation therapy for extranodal lymphomas

    DEFF Research Database (Denmark)

    Yahalom, Joachim; Illidge, Tim; Specht, Lena

    2015-01-01

    and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have...

  17. Laser-driven ion accelerators for tumor therapy revisited

    Science.gov (United States)

    Linz, Ute; Alonso, Jose

    2016-12-01

    Ten years ago, the authors of this report published a first paper on the technical challenges that laser accelerators need to overcome before they could be applied to tumor therapy. Among the major issues were the maximum energy of the accelerated ions and their intensity, control and reproducibility of the laser-pulse output, quality assurance and patient safety. These issues remain today. While theoretical progress has been made for designing transport systems, for tailoring the plumes of laser-generated protons, and for suitable dose delivery, today's best lasers are far from reaching performance levels, in both proton energy and intensity to seriously consider clinical ion beam therapy (IBT) application. This report details these points and substantiates that laser-based IBT is neither superior to IBT with conventional particle accelerators nor ready to replace it.

  18. Hawking radiation of a uniformly accelerating black hole

    Institute of Scientific and Technical Information of China (English)

    Ren Jun; Cao Jiang-Ling; Zhao Zheng

    2006-01-01

    In this paper, we study the Hawking radiation via tunnelling from a uniformly accelerating black hole. Although the Bekenstein-Hawking entropy is proportional also to the area of the event horizon, the radius of it, rH, is a function of θ, which leads to the difficulties in the calculation of the emission rate. In order to overcome the mathematical difficulties, we propose a new technique to calculate the emission rate and the result obtained is reasonable.

  19. Synchrotron radiation from a curved plasma channel laser wakefield accelerator

    CERN Document Server

    Palastro, J P; Hafizi, B; Chen, Y -H; Johnson, L A; Penano, J R; Helle, M H; Mamonau, A A

    2016-01-01

    A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ~2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.

  20. Particle Accelerators and Detectors for medical Diagnostics and Therapy

    CERN Document Server

    Braccini, Saverio

    2016-01-01

    This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three ...

  1. Particle acceleration, magnetization and radiation in relativistic shocks

    CERN Document Server

    Derishev, Evgeny V

    2015-01-01

    What are the mechanisms of particle acceleration and radiation, as well as magnetic field build up and decay in relativistic shocks are open questions with important implications to various phenomena in high energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build up and diffusive shock acceleration is a model for acceleration, both have problems and current PIC simulation show that particles are accelerated only under special conditions and the magnetic field decays on a short length scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplificaiton of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the s...

  2. Radiation Therapy -- What It Is, How It Helps

    Science.gov (United States)

    ... Types Radiation Therapy EASY READING Radiation Therapy -- What It Is, How It Helps This easy-to-read guide offers a ... Imagine a world free from cancer. Help make it a reality. DONATE Cancer Information Cancer Prevention & Detection ...

  3. External and internal radiation therapy: Past and future directions

    Directory of Open Access Journals (Sweden)

    Sadeghi Mahdi

    2010-01-01

    Full Text Available Cancer is a leading cause of morbidity and mortality in the modern world. Treatment modalities comprise radiation therapy, surgery, chemotherapy and hormonal therapy. Radiation therapy can be performed by using external or internal radiation therapy. However, each method has its unique properties which undertakes special role in cancer treatment, this question is brought up that: For cancer treatment, whether external radiation therapy is more efficient or internal radiation therapy one? To answer this question, we need to consider principles and structure of individual methods. In this review, principles and application of each method are considered and finally these two methods are compared with each other.

  4. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    Energy Technology Data Exchange (ETDEWEB)

    Osa, Etin-Osa O.; DeWyngaert, Keith [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Roses, Daniel [Department of Surgery, New York University School of Medicine, New York, New York (United States); Speyer, James [Department of Medical Oncology, New York University School of Medicine, New York, New York (United States); Guth, Amber; Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York, New York (United States); Fenton Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Department of Population Health, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: Silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  5. Big data and comparative effectiveness research in radiation oncology: synergy and accelerated discovery

    Directory of Open Access Journals (Sweden)

    Daniel eTrifiletti

    2015-12-01

    Full Text Available Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of big data, it is hoped that this union will accelerate discovery, improve evidence for decision-making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high quality, cutting-edge radiation therapy.

  6. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.

    Science.gov (United States)

    Allen, D A; Beynon, T D; Green, S

    1999-01-01

    This paper is concerned with the proposed Birmingham accelerator-based epithermal neutron beam for boron neutron capture therapy (BNCT). In particular, the option of producing a therapy beam at an orthogonal direction to the incoming protons is considered. Monte Carlo radiation transport simulations, both with and without a head phantom, have shown that an orthogonal beam geometry is not only acceptable but is indeed beneficial, in terms of a lower mean neutron energy and an enhanced therapeutic ratio for the same useful neutron fluence in the therapy beam. Typical treatment times for various beam options have been calculated, and range from 20 to 48 min with a 5 mA beam of 2.8 MeV protons, if the maximum photon-equivalent dose delivered to healthy tissue is to be 12.6 Gy Eq. The effects of proton beam diameter upon the therapy beam parameters have also been considered.

  7. Arc binary intensity modulated radiation therapy (AB IMRT)

    Science.gov (United States)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  8. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... operator to administer gamma radiation therapy, with the radiation source located at a distance from the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation...

  9. Particle acceleration, magnetization and radiation in relativistic shocks

    Science.gov (United States)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  10. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Leemans, W P; Bulanov, S V; Margarone, D; Korn, G; Haberer, T

    2015-01-01

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the ...

  11. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  12. Radiation protection at Hadron therapy facilities.

    Science.gov (United States)

    Pelliccioni, Maorizio

    2011-07-01

    The Italian National Centre for Oncological Hadrontherapy is currently under construction in Pavia. It is designed for the treatment of deep-seated tumours (up to a depth of 27 cm of water equivalent) with proton and C-ion beams as well as for both clinical and radiobiological research. The particles will be accelerated by a 7-MeV u(-1) LINAC injector and a 400-MeV u(-1) synchrotron. In the first phase of the project, three treatment rooms will be in operation, equipped with four fixed beams, three horizontal and one vertical. The accelerators are currently undergoing commissioning. The main radiation protection problems encountered (shielding, activation, etc.) are hereby illustrated and discussed in relation to the constraints set by the Italian national authorities.

  13. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    Science.gov (United States)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  14. Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Bulanov, S V; Esirkepov, T Zh; Kando, M; Pegoraro, F; Leemans, W P

    2016-01-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it trans...

  15. Chronic neuroendocrinological sequelae of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sklar, C.A. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Constine, L.S. [Univ. of Rochester Medical Center, Rochester, NY (United States)

    1995-03-30

    A variety of neuroendocrine disturbances are observed following treatment with external radiation therapy when the hypothalamic-pituitary axis (HPA) is included in the treatment field. Radiation-induced abnormalities are generally dose dependent and may develop many years after irradiation. Growth hormone deficiency and premature sexual development can occur following doses as low as 18 Gy fractionated radiation and are the most common neuroendocrine problems noted in children. Deficiency of gonadotropins, thyroid stimulating hormone, and adrenocorticotropin are seen primarily in individuals treated with > 40 Gy HPA irradiation. Hyperprolactinemia can be seen following high-dose radiotherapy (>40 Gy), especially among young women. Most neuroendocrine disturbances that develop as a result of HPA irradiation are treatable; patients at risk require long-term endocrine follow-up. 23 refs., 6 figs., 2 tabs.

  16. Radiation therapy for unresected gastric lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masaaki; Kawamura, Masashi; Kimura, Yoshiko; Itoh, Hisao; Tsuda, Takaharu; Komatsu, Akira; Hamamoto, Ken (Ehime Univ., Ehime (Japan). School of Medicine)

    1990-05-01

    Six consecutive patients with unresected gastric lymphoma which were treated by radiation therapy between November 1976 and March 1989 were reviewed. Radiation therapy was performed using involved fields, total radiation dosages of which ranged from 25.2 to 36 Gy (mean, 29.3 Gy). Five out of the 6 patients were treated with chemotherapy combined with radiation. Regimen of the chemotherapy was CHOP (cyclophophamide, adriamycin, vincristine and prednisone) in most cases. Three out of the 6 underwent probe laparotomy, but the tumors were diagnosed as unresectable due to locally invading the adjacent structures. They were treated by chemo-radiotherapy and 2 of them are surviving as of the present study (40 and 116 months). The other 3 patients were diagnosed as with clinical stage IV disease and 2 of them were successfully treated with chemo-radiotherapy (21 and 66 months, surviving). These data suggest that unresected gastric lymphomas, which are locally advanced or stage IV disease, are treated by chemo-radiotherapy with high curability without any serious complications. (author).

  17. Design concept of radiation control system for the high intensity proton accelerator facility

    CERN Document Server

    Miyamoto, Y; Harada, Y; Ikeno, K

    2002-01-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics.

  18. Radiation therapy of psoriasis and parapsoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Wiskemann, A.

    1982-09-15

    Selective UV-Phototherapy with lambda 300-320 nm (SUP) as well as oral photochemotherapy with 8-methoxy-psoralen plus UVA-radiation (PUVA intern) are very effective in clearing the lesions of the generalized psoriasis and those of the chronic forms of parapsoriasis. Being treated with 4 suberythemal doses per week psoriasis patients are free or nearly free of symptoms after averagely 6.3 weeks of SUP-therapy or after 5.3 weeks of PUVA orally. The PUVA-therapy is mainly indicated in pustular, inverse and erythrodermic psoriasis as well as in parapsoriasis en plaques and variegata. In all other forms of psoriasis and in pityriasis lichenoides-chronica, we prefer the SUP-therapy because of less acute or chronic side effects, and because of its better practicability. X-rays are indicated in psoriais of nails, grenz-rays in superficial psoriatic lesions of the face, the armpits, the genitals and the anal region.

  19. Assessment of secondary radiation and radiation protection in laser-driven proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faby, Sebastian; Wilkens, Jan J. [Technische Univ. Muenchen Klinikum rechts der Isar (Germany). Dept. of Radiation Oncology; Technische Univ. Muenchen (Germany). Physik-Dept.

    2015-09-01

    This work is a feasibility study of a radiation treatment unit with laser-driven protons based on a state-of-the-art energy selection system employing four dipole magnets in a compact shielded beamline. The secondary radiation emitted from the beamline and its energy selection system and the resulting effective dose to the patient are assessed. Further, it is evaluated whether or not such a compact system could be operated in a conventional treatment vault for clinical linear accelerators under the constraint of not exceeding the effective dose limit of 1 mSv per year to the general public outside the treatment room. The Monte Carlo code Geant4 is employed to simulate the secondary radiation generated while irradiating a hypothetical tumor. The secondary radiation inevitably generated inside the patient is taken into account as well, serving as a lower limit. The results show that the secondary radiation emanating from the shielded compact therapy system would pose a serious secondary dose contamination to the patient. This is due to the broad energy spectrum and in particular the angular distribution of the laser-driven protons, which make the investigated beamline together with the employed energy selection system quite inefficient. The secondary radiation also cannot be sufficiently absorbed in a conventional linear accelerator treatment vault to enable a clinical operation. A promising result, however, is the fact that the secondary radiation generated in the patient alone could be very well shielded by a regular treatment vault, allowing the application of more than 100 fractions of 2 Gy per day with protons. It is thus theoretically possible to treat patients with protons in such treatment vaults. Nevertheless, the results show that there is a clear need for alternative more efficient energy selection solutions for laser-driven protons.

  20. Terahertz radiation source using an industrial electron linear accelerator

    CERN Document Server

    Kalkal, Yashvir

    2015-01-01

    High power ($\\sim 100$ kW) industrial electron linear accelerators (linacs) are used for irradiation applications e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high power electron beam from such an industrial linac can be first passed through an undulator to generate powerful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for industrial applications. This will enhance the utilisation of a high power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of $\\mu$W can be produced, which may be useful for many scientific applications.

  1. Electron acceleration in the heart of the Van Allen radiation belts.

    Science.gov (United States)

    Reeves, G D; Spence, H E; Henderson, M G; Morley, S K; Friedel, R H W; Funsten, H O; Baker, D N; Kanekal, S G; Blake, J B; Fennell, J F; Claudepierre, S G; Thorne, R M; Turner, D L; Kletzing, C A; Kurth, W S; Larsen, B A; Niehof, J T

    2013-08-30

    The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

  2. Clinical experience of radiation therapy for Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takeo; Mitsuhashi, Norio; Nagashima, Hisako; Sakurai, Hideyuki; Murata, Osamu; Ishizeki, Kei; Shimaya, Sanae; Hayakawa, Kazushige; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine

    1996-11-01

    The effect of radiation therapy for Graves` ophthalmopathy was evaluated. Ten patients with Graves` ophthalmopathy were treated with radiation therapy between 1992 and 1993 in Gunma University Hospital. All patients had a past history of hyperthyroidism and received 2,000 cGy to the retrobulbar tissues in 20 fractions. Nine of ten patients were treated with radiation therapy after the failure of corticosteroids. Six patients (60%) showed good or excellent responses. The exophthalmos type was more responsive to radiation therapy than the double vision type in this series. Two of five patients with the exophthalmos type demonstrated excellent responses, and their symptoms disappeared almost completely. The improvement of symptoms appeared within 3-6 months, and obvious clinical effects were demonstrated after 6 months of radiotherapy. Radiation therapy was well tolerated, and we have not observed any side effects of radiation therapy. In conclusion, radiation therapy is effective treatment for Graves` ophthalmopathy. (author)

  3. The value of radiation therapy for pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Tsutomu [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine

    1995-09-01

    Following points are discussed in this review. (1) Historical review of our previous therapeutic management. (2) Classification of pituitary adenomas. (3) Clinical analysis of my recent 58 cases. (4) Verification of usefulness of postoperative irradiation which achieved to increase in local control rate. (5) Authoritativeness of radiotherapy. In general, 3 to 4 portal technique or arc therapy were employed. The lateral opposing field technique was avoid to use. The recommended doses using linear accelerator x-ray technique is approximately 5000 cGy in 5 weeks. To prevent radiation hazard; (1) examiner should not use technique of two opposed fields, (2) total doses should not exceed 5000 cGy in 5 to 6 weeks and the use of daily fractions should not exceed 200 cGy. (6) Correlation of hormone secreting tumors and radiation therapy. (7) Problem of radiosurgery and heavy particle. (8) Countermeasure for recurrence cases. (9) Problem of side effects of radiotherapy and its precaution. Complication of radiation for pituitary adenoma found that the significant side effects are negligibly small in recent years. (10) Pituitary tumor are originally slow growing and benign tumor, therefore the response to irradiation takes long time to elapse for final evaluation. For instance, over 80 to 90% of acromegaly patients respond HGH successfully, but this may require from one to several years. (11) Conclusion. (author).

  4. Combined preoperative therapy for oral cancer with nedaplatin and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masatoshi; Shibata, Akihiko; Hayashi, Munehiro [Nippon Dental Univ., Tokyo (Japan). Hospital] (and others)

    2002-03-01

    We performed preoperative combined therapy using nedaplatin (CDGP) and radiation in 12 patients with squamous cell carcinoma originating from the oral cavity and maxillary sinus, and examined for any adverse events that may have occurred during this therapeutic regimen. Regarding the irradiation, external irradiation utilizing a 6 MV linac (linear accelerator) at a dose of 2.0 Gy/day was performed 5 times a week, with the target total radiation dose set at 40 Gy. In addition, CDGP was intravenously administered 30 minutes before irradiation at a dose of 5 mg/m{sup 2}/day. Mucositis was observed in all 12 subjects, however, the severity was observed to be grade 1-2 with no major differences in comparison to the patients given standard radiation monotherapy. Two subjects developed grade 3 leucopenia and were thus given granulocyte colony stimulating factor (G-CSF). In addition, grade 2 and grade 3 thrombocytopenia were both observed in one subject each. The subject with grade 3 thrombocytopenia required a platelet transfusion during surgery. No marked changes in serum creatinine levels were noted. These findings are therefore considered to provide evidence supporting the safety of this combination therapy. (author)

  5. The role of a prone setup in breast radiation therapy

    Directory of Open Access Journals (Sweden)

    Nelly eHuppert

    2011-10-01

    Full Text Available Most patients undergoing breast conservation therapy (BCT receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy (IMRT and image-guided radiation therapy (IGRT have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  6. The role of a prone setup in breast radiation therapy.

    Science.gov (United States)

    Huppert, Nelly; Jozsef, Gabor; Dewyngaert, Keith; Formenti, Silvia Chiara

    2011-01-01

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  7. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    Science.gov (United States)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su; Lee, Byeong-No; Lee, Byung-Chul; Park, Hyung-dal; Song, Ki-back; Song, Ho-seung; Mun, Sangchul; Ha, Donghyup; Chai, Jong-Seo

    2017-04-01

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  8. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance

    Directory of Open Access Journals (Sweden)

    Schreiner L

    2009-01-01

    Full Text Available The advances in modern radiation therapy with techniques such as intensity-modulated radiation therapy and image-guid-ed radiation therapy (IMRT and IGRT have been limited almost exclusively to linear accel-erators. Investigations of modern Cobalt-60 (Co-60 radiation delivery in the context of IMRT and IGRT have been very sparse, and have been limited mainly to computer-modeling and treatment-planning exercises. In this paper, we report on the results of experiments using a tomotherapy benchtop apparatus attached to a conventional Co-60 unit. We show that conformal dose delivery is possible and also that Co-60 can be used as the radiation source in megavoltage computed tomography imaging. These results complement our modeling studies of Co-60 tomotherapy and provide a strong motivation for continuing development of modern Cobalt-60 treatment devices.

  9. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Lesley A., E-mail: Lesley.a.jarvis@hitchcock.org [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Gladstone, David J. [Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Norris Cotton Cancer Center at the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Jiang, Shudong [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Hitchcock, Whitney [Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (United States); Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States); Pogue, Brian W. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire (United States)

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  10. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June, E-mail: hjlee@kcch.re.kr; Lee, Yoon-Jin, E-mail: yjlee8@kcch.re.kr

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  11. Particle acceleration and radiation in Pulsar Wind Nebulae

    CERN Document Server

    Amato, Elena

    2015-01-01

    Pulsar Wind Nebulae are the astrophysical sources that host the most relativistic shocks in Nature and the only Galactic sources in which we have direct evidence of PeV particles. These facts make them very interesting from the point of view of particle acceleration physics, and their proximity and brightness make them a place where fundamental processes common to different classes of relativistic sources have a better chance to be understood. I will discuss how well we understand the physics of Pulsar Wind Nebulae, describing recent progress and highlighting the main open questions. I will be mostly concerned with the subject of particle acceleration, but, as we will see, in order to clarify the physics of this process, it is important to determine the conditions of the plasma in the nebula. These in turn can only be constrained through detailed modelling of the PWN dynamics and radiation. The shock in the Crab Nebula is probably the most efficient accelerator known, both in terms of conversion of the flow e...

  12. Personalized Radiation Therapy (PRT) for Lung Cancer.

    Science.gov (United States)

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  13. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    Science.gov (United States)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  14. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany)

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  15. [Radiation therapy for prostate cancer in modern era].

    Science.gov (United States)

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  16. Radiation from an accelerating neutral body: The case of rotation

    Science.gov (United States)

    Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.

    2013-11-01

    When an object is bound at rest to an attractional field, its rest mass (owing to the law of energy conservation, including the mass and energy equivalence of the Special Theory of Relativity) must decrease. The mass deficiency coming into play indicates a corresponding rest energy discharge. Thus, bringing an object to a rotational motion means that the energy transferred for this purpose serves to extract just as much rest mass (or similarly "rest energy", were the speed of light in empty space taken to be unity) out of it. Here, it is shown that during angular acceleration, photons of fundamental energy are emitted, while the object is kept on being delivered to a more and more intense rotational accelerational field, being the instantaneous angular velocity of the rotating object. This fundamental energy, as seen, does not depend on anything else (such as the mass or charge of the object), and it is in harmony with Bohr's Principle of Correspondence. This means at the same time, that emission will be achieved, as long as the angular velocity keeps on increasing, and will cease right after the object reaches a stationary rotational motion (a constant centrifugal acceleration), but if the object were brought to rotation in vacuum with no friction. By the same token, one can affirm that even the rotation at a macroscopic level is quantized, and can only take on "given angular velocities" (which can only be increased, bit by bit). The rate of emission of photons of concern is, on the other hand, proportional to the angular acceleration of the object, similarly to the derivative of the tangential acceleration with respect to time. It is thus constant for a "constant angular acceleration", although the energy of the emitted photons will increase with increasing , until the rotation reaches a stationary level, after which we expect no emission --let us stress-- if the object is in rotation in vacuum, along with no whatsoever friction (such as the case of a rotating

  17. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  18. Particle acceleration by stimulated emission of radiation in cylindrical waveguide

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiu-Fang; WU Cong-Feng; JIA Qi-Ka

    2015-01-01

    In particle acceleration by stimulated emission of radiation (PASER),efficient interaction occurs when a train of micro-bunches has periodicity identical to the resonance frequency of the medium.Previous theoretical calculations based on the simplified model have only considered the energy exchange in the boundless condition.Under experimental conditions,however,the gas active medium must be guided by the metal waveguide.In this paper,we have developed a model of the energy exchange between a train of micro-bunches and a gas mixture active medium in a waveguide boundary for the first time,based on the theory of electromagnetic fields,and made detailed analysis and calculations with MathCAD.The results show that energy density can be optimized to a certain value to get the maximum energy exchange.

  19. Potential for heavy particle radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over /sup 60/Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons.

  20. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  1. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    Science.gov (United States)

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  2. Radiation pneumonitis after stereotactic radiation therapy for lung cancer

    Institute of Scientific and Technical Information of China (English)

    Hideomi; Yamashita; Wataru; Takahashi; Akihiro; Haga; Keiichi; Nakagawa

    2014-01-01

    Stereotactic body radiation therapy(SBRT)has a locacontrol rate of 95%at 2 years for non-small cell lungcancer(NSCLC)and should improve the prognosis oinoperable patients,elderly patients,and patients withsignificant comorbidities who have early-stage NSCLCThe safety of SBRT is being confirmed in internationalmulti-institutional PhaseⅡtrials for peripheral lungcancer in both inoperable and operable patients,bureports so far have found that SBRT is a safe and effective treatment for early-stage NSCLC and early metastatic lung cancer.Radiation pneumonitis(RP)is oneof the most common toxicities of SBRT.Although mospost-treatment RP is Grade 1 or 2 and either asymptomatic or manageable,a few cases are severe,symptomatic,and there is a risk for mortality.The reportedrates of symptomatic RP after SBRT range from 9%to28%.Being able to predict the risk of RP after SBRT isextremely useful in treatment planning.A dose-effecrelationship has been demonstrated,but suggesteddose-volume factors like mean lung dose,lung V20and/or lung V2.5 differed among the reports.We foundthat patients who present with an interstitial pneumo-nitis shadow on computed tomography scan and high levels of serum Krebs von den Lungen-6 and surfactant protein D have a high rate of severe radiation pneumo-nitis after SBRT.At our institution,lung cancer patients with these risk factors have not received SBRT since 2006,and our rate of severe RP after SBRT has de-creased significantly since then.

  3. Clinical results of radiation therapy for thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Hiraoka, Masahiro; Sasai, Keisuke; Kitakabu, Yoshizumi; Abe, Mitsuyuki (Kyoto Univ. (Japan). Faculty of Medicine); Takahashi, Masaji; Tsutsui, Kazushige; Fushiki, Masato

    1992-05-01

    From August 1968 to December 1989, 58 patients with thymoma were treated by radiotherapy using cobalt-60 gamma ray. Eleven cases were treated by radiothrapy alone, 1 by preoperative radiotheapy, 43 by postoperative radiotherapy, and 3 in combination with intraoperative radiotherapy. The following points were clarified: (a) Postoperative and intraoperative radiotherapy were effective; (b) For postoperative radiotherapy, operability was the major factor influencing survival and local control, and Stage I and II tumors resected totally or subtotally as well as Stage III tumors resected totally were good indications for such therapy; (c) The patients with complicating myasthenia gravis had a longer survival time and better local control rate than those without it. Radiation pneumonitis was observed in 17 patients, and none of them died of this complication. In all cases in combination with intraoperative radiotherapy, dry desquamation was observed within the irradiated field. (author).

  4. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  5. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  6. Severe prostatic calcification after radiation therapy for cancer.

    Science.gov (United States)

    Jones, W A; Miller, E V; Sullivan, L D; Chapman, W H

    1979-06-01

    Severe symptomatic prostatic calcification was seen in 3 patients who had carcinoma of the prostate treated initially with transurethral resection, followed in 2 to 4 weeks by definitive radiation therapy. This complication is probably preventable if an interval of 6 weeks is allowed between transurethral resection of the prostate and radiation therapy.

  7. [Importance of sonotomography in radiation therapy (author's transl)].

    Science.gov (United States)

    Heckemann, R; Quast, U; Glaeser, L; Schmitt, G

    1976-08-01

    Ultrasound tomography provides true scale representation of body contours and organ structures. The image supplies substantial, individual geometrical data, essential for computerized radiation treatment planning. The mehtod is described. Typical planning examples for therapy are demonstrated. The value of follow up sonograms for radiation therapy is described. The limitations of the method are pointed out.

  8. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory; Offermann, D T [Los Alamos National Laboratory; Cobble, J A [Los Alamos National Laboratory; Schmitt, M J [Los Alamos National Laboratory; Gautier, D C [Los Alamos National Laboratory; Kwan, T J T [Los Alamos National Laboratory; Montgomery, D S [Los Alamos National Laboratory; Kluge, Thomas [FZD-GERMANY; Bussmann, Micheal [FZD-GERMANY; Bartal, T [UCSD; Beg, F N [UCSD; Gall, B [UNIV OF MISSOURI; Geissel, M [SNL; Korgan, G [NANOLABZ; Kovaleski, S [UNIV OF MISSOURI; Lockard, T [UNIV OF NEVADA; Malekos, S [NANOLABZ; Schollmeier, M [SNL; Sentoku, Y [UNIV OF NEVADA; Cowan, T E [FZD-GERMANY

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  9. Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology

    Science.gov (United States)

    Flippo, K. A.; Gaillard, S. A.; Kluge, T.; Bussmann, M.; Offermann, D. T.; Cobble, J. A.; Schmitt, M. J.; Bartal, T.; Beg, F. N.; Cowan, T. E.; Gall, B.; Gautier, D. C.; Geissel, M.; Kwan, T. J.; Korgan, G.; Kovaleski, S.; Lockard, T.; Malekos, S.; Montgomery, D. S.; Schollmeier, M.; Sentoku, Y.

    2010-11-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, Special Nuclear Material (SNM) detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high-current and high-energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology. Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent efficiencies of >5% from flat foils, on Trident using only a 5th of the intensity [1] and energy of the Nova Petawatt laser [2]. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world [3]. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  10. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  11. Cancer and Radiation Therapy: Current Advances and Future Directions

    Directory of Open Access Journals (Sweden)

    Rajamanickam Baskar, Kuo Ann Lee, Richard Yeo, Kheng-Wei Yeoh

    2012-01-01

    Full Text Available In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.

  12. Scatter factors assessment in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Martinez-Rovira, I.; Sanchez, M. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie IMNC-UMR 8165, Centre National de la Recherche Scientifique (CNRS), Campus Universitaire, Bat. 440, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, E-08028 Barcelona (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex (France); Servicio de Radiofisica, Complejo Hospitalario de Santiago de Compostela, Rua Choupana S/N, 15706 Santiago de Compostela (Spain)

    2012-03-15

    Purpose: The success of the preclinical studies in Microbeam Radiation Therapy (MRT) paved the way to the clinical trials under preparation at the Biomedical Beamline of the European Synchrotron Radiation Facility. Within this framework, an accurate determination of the deposited dose is crucial. With that aim, the scatter factors, which translate the absolute dose measured in reference conditions (2 x 2 cm{sup 2} field size at 2 cm-depth in water) to peak doses, were assessed. Methods: Monte Carlo (MC) simulations were performed with two different widely used codes, PENELOPE and GEANT4, for the sake of safety. The scatter factors were obtained as the ratio of the doses that are deposited by a microbeam and by a field of reference size, at the reference depth. The calculated values were compared with the experimental data obtained by radiochromic (ISP HD-810) films and a PTW 34070 large area chamber. Results: The scatter factors for different microbeam field sizes assessed by the two MC codes were in agreement and reproduced the experimental data within uncertainty bars. Those correction factors were shown to be non-negligible for the future MRT clinical settings: an average 30% lower dose was deposited by a 50 {mu}m microbeam with respect to the reference conditions. Conclusions: For the first time, the scatter factors in MRT were systematically studied. They constitute an essential key to deposit accurate doses in the forthcoming clinical trials in MRT. The good agreement between the different calculations and the experimental data confirms the reliability of this challenging micrometric dose estimation.

  13. Radiation Therapy for Chloroma (Granulocytic Sarcoma)

    Energy Technology Data Exchange (ETDEWEB)

    Bakst, Richard; Wolden, Suzanne [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-04-01

    Objectives: Chloroma (granulocytic sarcoma) is a rare, extramedullary tumor of immature myeloid cells related to acute nonlymphocytic leukemia or myelodysplastic syndrome. Radiation therapy (RT) is often used in the treatment of chloromas; however, modern studies of RT are lacking. We reviewed our experience to analyze treatment response, disease control, and toxicity associated with RT to develop treatment algorithm recommendations for patients with chloroma. Patients and Methods: Thirty-eight patients who underwent treatment for chloromas at our institution between February 1990 and June 2010 were identified and their medical records were reviewed and analyzed. Results: The majority of patients that presented with chloroma at the time of initial leukemia diagnosis (78%) have not received RT because it regressed after initial chemotherapy. Yet most patients that relapsed or remained with chloroma after chemotherapy are in the RT cohort (90%). Thirty-three courses of RT were administered to 22 patients. Radiation subsite breakdown was: 39% head and neck, 24% extremity, 9% spine, 9% brain, 6% genitourinary, 6% breast, 3% pelvis, and 3% genitourinary. Median dose was 20 (6-36) Gy. Kaplan-Meier estimates of progression-free survival and overall survival in the RT cohort were 39% and 43%, respectively, at 5 years. At a median follow-up of 11 months since RT, only 1 patient developed progressive disease at the irradiated site and 4 patients developed chloromas at other sites. RT was well tolerated without significant acute or late effects and provided symptom relief in 95% of cases. Conclusions: The majority of patients with chloromas were referred for RT when there was extramedullary progression, marrow relapse, or rapid symptom relief required. RT resulted in excellent local disease control and palliation of symptoms without significant toxicity. We recommend irradiating chloromas to at least 20 Gy, and propose 24 Gy in 12 fractions as an appropriate regimen.

  14. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo (Gifu Univ. (Japan). Faculty of Medicine)

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  15. Tuning of betatron radiation in laser-plasma accelerators via multimodal laser propagation through capillary waveguides

    Science.gov (United States)

    Curcio, A.; Giulietti, D.; Petrarca, M.

    2017-02-01

    The betatron radiation from laser-plasma accelerated electrons in dielectric capillary waveguides is investigated. The multimode laser propagation is responsible for a modulated plasma wakefield structure, which affects the electron transverse dynamics, therefore influencing the betatron radiation spectra. Such a phenomenon can be exploited to tune the energy spectrum of the betatron radiation by controlling the excitation of the capillary modes.

  16. Licensing process and implementation of a mobile linear accelerator for treatment of intraoperative radiation therapy; Proceso de licenciamiento e implantacion de un acelerador lineal movil para tratamientos de radioterapia intraoperatoria

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Diaz, F.; Gonzalez Ruiz, C.; Garcia Marcos, R.; Gallego Franco, P.; Rodriguez Checa, M.; Gomez Calvar, R.; Lopez Bote, M. A.

    2013-07-01

    The objective is to show how the working procedures, have been defined unambiguously to ensure together with the structure of the installation, and optimally located elements of radiation protection, compliance with the classification of areas, occupation factors and rates expected according to them. (Author)

  17. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  18. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  19. Insufficiency fractures following radiation therapy for gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Hitoshi; Takegawa, Yoshihiro; Matsuki, Hirokazu; Yasuda, Hiroaki; Kawanaka, Takashi; Shiba, Atsushi; Kishida, Yoshiomi; Iwamoto, Seiji; Nishitani, Hiromu [Tokushima Univ. (Japan). School of Medicine

    2002-12-01

    The purpose of this study was to investigate the incidence, clinical and radiological findings of insufficiency fractures (IF) of the female pelvis following radiation therapy. We retrospectively reviewed the radiation oncology records of 108 patients with gynecologic malignancies who underwent external beam radiation therapy of the whole pelvis. All patients underwent conventional radiography and computed tomography (CT) scan every 6 months in follow-up after radiation therapy and magnetic resonance imaging (MRI) and radionuclide bone scan were added when the patients complained of pelvic pain. Thirteen of 108 patients (12%) developed IF in the irradiated field with a median interval of 6 months (range 3-51) from the completion of external beam radiation therapy. All patients who developed IF were postmenopausal women. Age of the patients who developed IF was significantly higher than that of the other patients. The parts of IF were sacroiliac joints, pubis, sacral body and 5th lumbar vertebra and six of 14 patients had multiple lesions. Treatment with rest and nonsteroidal anti-inflammatory drugs lead to symptomatic relief in all patients, although symptoms lasted from 3 to 20 months. Radiation-induced pelvic IF following radiation therapy for gynecologic malignancies were frequently observed in the post-menopausal patients within 1 year after external beam radiation therapy. Symmetrical fractures of the bilateral sacroiliac joint and pubis were the characteristic pattern of pelvic IF. All patients healed with conservative treatment, and nobody became non-ambulant. (author)

  20. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    Science.gov (United States)

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  1. Radiation therapy for long-bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Wadasaki, Kouichi; Tomiyoshi, Hideki; Ooshima, Yoshie; Urashima, Masaki; Mori, Masaki (Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital (Japan))

    1992-09-01

    Efficacy of palliative and prophylactic radiotherapies for metastatic bone pain and pathological fracture was investigated in 14 patients with long bone metastases. Irradiation sites were the femur in 10 patients, the humerus in 2, the radius in one, and the tibia in one. Radiographs showed osteolytic lesion in 13 patients and osteoblastic lesion in one. A total dose of 48.6 Gy to 87.3 Gy was delivered in daily fractional doses of 2 Gy (one patient), 2.5 Gy (3), 3 Gy (6), 4 Gy (2) and 5 Gy (2), 5 days a week. For 13 patients, except for one death within one month after the completion of irradiation, pain relief was attained. Of these patients, 7 (54%) had complete pain relief. In one patient, pathological fracture occurred as early as 10 days after the beginning of irradiation when irradiation efficacy was not attained. In none of the 13 others, was pathological fracture encountered. No side effects were seen at all during or after irradiation. Radiation therapy was an extremely effective means for managing patients with long bone metastases in terms of its palliative and prophylactic role. (N.K.).

  2. Radiation therapy for the solitary plasmacytoma

    Directory of Open Access Journals (Sweden)

    Esengül Koçak

    2010-06-01

    Full Text Available Plasma-cell neoplasms are classically categorized into four groups as: multiple myeloma (MM, plasma-cell leukemias, solitary plasmacytomas (SP of the bone (SPB, and extramedullary plasmacytomas (EMP. These tumors may be described as localized or diffuse in presentation. Localized plasma-cell neoplasms are rare, and include SP of the skeletal system, accounting for 2-5% of all plasma-cell neoplasms, and EMP of soft tissue, accounting for approximately 3% of all such neoplasms. SP is defined as a solitary mass of neoplastic plasma cells either in the bone marrow or in various soft tissue sites. There appears to be a continuum in which SP often progresses to MM. The main treatment modality for SP is radiation therapy (RT. However, there are no conclusive data in the literature on the optimal RT dose for SP. This review describes the interrelationship of plasma-cell neoplasms, and attempts to determine the minimal RT dose required to obtain local control.

  3. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  4. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  5. Optimization of Radiation Therapy Fractionation Schedules in the Presence of Tumor Repopulation

    CERN Document Server

    Bortfeld, Thomas; Tsitsiklis, John N; Unkelbach, Jan

    2013-01-01

    We analyze the effect of tumor repopulation on optimal dose delivery in radiation therapy. We are primarily motivated by accelerated tumor repopulation towards the end of radiation treatment, which is believed to play a role in treatment failure for some tumor sites. A dynamic programming framework is developed to determine an optimal fractionation scheme based on a model of cell kill due to radiation and tumor growth in between treatment days. We find that faster tumor growth suggests shorter overall treatment duration. In addition, the presence of accelerated repopulation suggests larger dose fractions later in the treatment to compensate for the increased tumor proliferation. We prove that the optimal dose fractions are increasing over time. Numerical simulations indicate potential for improvement in treatment effectiveness.

  6. Particle beam radiation therapy:re-introducing the future

    Institute of Scientific and Technical Information of China (English)

    Omar Abdel-Rahman

    2014-01-01

    Particle radiation therapy is an exciting area of radiotherapy basic and clinical researches. The majority of particle radiotherapy work is being done with proton beams having essential y the same radiobiologic properties as conventional photon/electron radiation but al owing a much more precise control of the radiation dose distribution. However, other charged particles are also playing an increasing role, like neutrons. In this review article we wil summarize the data related to basic and clinical experiences related to particle beam radiation therapy.

  7. The Impact of the Myeloid Response to Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Michael J. Gough

    2013-01-01

    Full Text Available Radiation therapy is showing potential as a partner for immunotherapies in preclinical cancer models and early clinical studies. As has been discussed elsewhere, radiation provides debulking, antigen and adjuvant release, and inflammatory targeting of effector cells to the treatment site, thereby assisting multiple critical checkpoints in antitumor adaptive immunity. Adaptive immunity is terminated by inflammatory resolution, an active process which ensures that inflammatory damage is repaired and tissue function is restored. We discuss how radiation therapy similarly triggers inflammation followed by repair, the consequences to adaptive immune responses in the treatment site, and how the myeloid response to radiation may impact immunotherapies designed to improve control of residual cancer cells.

  8. Hyperfractionated Accelerated Radiation Therapy (HART) of 70.6 Gy With Concurrent 5-FU/Mitomycin C Is Superior to HART of 77.6 Gy Alone in Locally Advanced Head and Neck Cancer: Long-term Results of the ARO 95-06 Randomized Phase III Trial

    Energy Technology Data Exchange (ETDEWEB)

    Budach, Volker, E-mail: volker.budach@charite.de [Department of Radiation Oncology, Charité Universitätsmedizin Berlin (Germany); Stromberger, Carmen [Department of Radiation Oncology, Charité Universitätsmedizin Berlin (Germany); Poettgen, Christoph [Department of Radiation Oncology, University Hospital of Essen (Germany); Baumann, Michael [Department of Radiation Oncology, University Hospital of Dresden (Germany); Budach, Wilfried [Department of Radiation Oncology, Heinrich Heine Universität Düsseldorf (Germany); Grabenbauer, Gerhard [Department of Radiation Oncology, University Hospitals of Erlangen (Germany); Marnitz, Simone [Department of Radiation Oncology, Charité Universitätsmedizin Berlin (Germany); Olze, Heidi [Department of Head and Neck Surgery, Charité Universitätsmedizin Berlin (Germany); Wernecke, Klaus-Dieter [Sostana GmbH, Berlin (Germany); Ghadjar, Pirus [Department of Radiation Oncology, Charité Universitätsmedizin Berlin (Germany)

    2015-04-01

    Purpose: To report the long-term results of the ARO 95-06 randomized trial comparing hyperfractionated accelerated chemoradiation with mitomycin C/5-fluorouracil (C-HART) with hyperfractionated accelerated radiation therapy (HART) alone in locally advanced head and neck cancer. Patients and Methods: The primary endpoint was locoregional control (LRC). Three hundred eighty-four patients with stage III (6%) and IV (94%) oropharyngeal (59.4%), hypopharyngeal (32.3%), and oral cavity (8.3%) cancer were randomly assigned to 30 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total of 70.6 Gy concurrently with mitomycin C/5-FU (C-HART) or 16 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total dose of 77.6 Gy alone (HART). Statistical analyses were done with the log-rank test and univariate and multivariate Cox regression analyses. Results: The median follow-up time was 8.7 years (95% confidence interval [CI]: 7.8-9.7 years). At 10 years, the LRC rates were 38.0% (C-HART) versus 26.0% (HART, P=.002). The cancer-specific survival and overall survival rates were 39% and 10% (C-HART) versus 30.0% and 9% (HART, P=.042 and P=.049), respectively. According to multivariate Cox regression analysis, the combined treatment was associated with improved LRC (hazard ratio [HR]: 0.6 [95% CI: 0.5-0.8; P=.002]). The association between combined treatment arm and increased LRC appeared to be limited to oropharyngeal cancer (P=.003) as compared with hypopharyngeal or oral cavity cancer (P=.264). Conclusions: C-HART remains superior to HART in terms of LRC. However, this effect may be limited to oropharyngeal cancer patients.

  9. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  10. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  11. Debate: Pro intraoperative radiation therapy in breast cancer; Debat: pour la radiotherapie peroperatoire dans le cancer du sein

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.B.; Lemanski, C.; Azria, D. [Departement de radiotherapie, CRLC Val-d' Aurelle-Paul-Lamarque, 208, rue des Apothicaires, 34298 Montpellier cedex 5 (France); Gutowski, M.; Rouanet, P.; Saint-Aubert, B. [Departement de chirurgie, CRLC Val-d' Aurelle-Paul-Lamarque, 208, rue des Apothicaires, 34298 Montpellier cedex 5 (France)

    2011-10-15

    The use of intraoperative radiation therapy in breast cancer patients started about 20 years ago. Several retrospective and prospective studies have been published. Intraoperative radiation therapy was initially given as a boost to the tumour bed, followed by whole-breast irradiation. These studies have demonstrated the feasibility of the technique, with local control rates and cosmetic results similar to those obtained with standard treatments. Accelerated partial breast irradiation yields local recurrence rates as low as those observed after whole-breast irradiation. Intraoperative radiation therapy as a single irradiation modality with a unique dose has been investigated in recent prospective studies showing satisfactory local results. Intraoperative radiation therapy can be proposed either as a boost or as a unique treatment in selected cases (tumour size, nodal and hormonal status, patient's age). Intraoperative radiation therapy can be delivered by orthovoltage (50 kV) X-rays from mobile generators, or by electrons from linear accelerators, mobile or fixed, dedicated or not to intraoperative radiation therapy. (authors)

  12. Radiation dermatitis following electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Price, N.M.

    1978-01-01

    Ten patients, who had been treated for mycosis fungoides with electron beam radiation ten or more years previously, were examined for signs of radiation dermatitis. Although most patients had had acute radiation dermatitis, only a few manifested signs of mild chronic changes after having received between 1,000 and 2,800 rads.

  13. Patient QA systems for rotational radiation therapy

    DEFF Research Database (Denmark)

    Fredh, Anna; Scherman, J.B.; Munck af Rosenschöld, Per Martin

    2013-01-01

    The purpose of the present study was to investigate the ability of commercial patient quality assurance (QA) systems to detect linear accelerator-related errors.......The purpose of the present study was to investigate the ability of commercial patient quality assurance (QA) systems to detect linear accelerator-related errors....

  14. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and reduc

  15. Advances in Radiation Therapy in Pediatric Neuro-oncology.

    Science.gov (United States)

    Bindra, Ranjit S; Wolden, Suzanne L

    2016-03-01

    Radiation therapy remains a highly effective therapy for many pediatric central nervous system tumors. With more children achieving long-term survival after treatment for brain tumors, late-effects of radiation have become an important concern. In response to this problem, treatment protocols for a variety of pediatric central nervous system tumors have evolved to reduce radiation fields and doses when possible. Recent advances in radiation technology such as image guidance and proton therapy have led to a new era of precision treatment with significantly less exposure to healthy tissues. These developments along with the promise of molecular classification of tumors and targeted therapies point to an optimistic future for pediatric neuro-oncology.

  16. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  17. Present status of radiation processing and its future development by using electron accelerator in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac An; Tran Tich Canh; Doan Binh [Research and Development Center for Radiation Technology (VINAGAMMA), Ho Chi Minh (Viet Nam); Nguyen Quoc Hien [Nuclear Research Institute (NRI), Dalat (Viet Nam)

    2003-02-01

    In Vietnam, studies on Radiation Processing have been carried out since 1983. Some results are applicable in the field of agriculture, health and foodstuff, some researches were developed to commercial scale and others have high potential for development by using electron accelerator. The paper offers the present status of radiation processing and also give out the growing tendency of using electron accelerator in the future. (author)

  18. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers.

    Science.gov (United States)

    McGregor, Sean; Minni, John; Herold, David

    2015-12-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas.

  19. Hawking radiation of scalar particles from accelerating and rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  20. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O' Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  1. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sharon [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); Back, Michael [Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun [National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore); Lu, Jaide Jay, E-mail: mdcljj@nus.edu.sg [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore)

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  2. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  3. Accelerated prompt gamma estimation for clinical proton therapy simulations

    Science.gov (United States)

    Huisman, Brent F. B.; Létang, J. M.; Testa, É.; Sarrut, D.

    2016-11-01

    There is interest in the particle therapy community in using prompt gammas (PGs), a natural byproduct of particle treatment, for range verification and eventually dose control. However, PG production is a rare process and therefore estimation of PGs exiting a patient during a proton treatment plan executed by a Monte Carlo (MC) simulation converges slowly. Recently, different approaches to accelerating the estimation of PG yield have been presented. Sterpin et al (2015 Phys. Med. Biol. 60 4915-46) described a fast analytic method, which is still sensitive to heterogeneities. El Kanawati et al (2015 Phys. Med. Biol. 60 8067-86) described a variance reduction method (pgTLE) that accelerates the PG estimation by precomputing PG production probabilities as a function of energy and target materials, but has as a drawback that the proposed method is limited to analytical phantoms. We present a two-stage variance reduction method, named voxelized pgTLE (vpgTLE), that extends pgTLE to voxelized volumes. As a preliminary step, PG production probabilities are precomputed once and stored in a database. In stage 1, we simulate the interactions between the treatment plan and the patient CT with low statistic MC to obtain the spatial and spectral distribution of the PGs. As primary particles are propagated throughout the patient CT, the PG yields are computed in each voxel from the initial database, as a function of the current energy of the primary, the material in the voxel and the step length. The result is a voxelized image of PG yield, normalized to a single primary. The second stage uses this intermediate PG image as a source to generate and propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device, corresponding to the number of primaries desired. We achieved a gain of around 103 for both a geometrical heterogeneous phantom and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2% relative

  4. Hypofractionated radiation therapy for the treatment of feline facial squamous cell carcinoma; Hypofractionated radiation therapy for the treatment of feline facial squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, S.C.S.; Corgozinho, K.B.; Holguin, P.G.; Ferreira, A.M.R., E-mail: simonecsc@gmail.co [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Carvalho, L.A.V. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Canary, P.C.; Reisner, M. [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil); Pereira, A.N.; Souza, H.J.M. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil)

    2010-07-01

    The efficacy of hypofractionated radiation protocol for feline facial squamous cell carcinoma was evaluated. Hypofractionated radiation therapy was applied to five cats showing single or multiple facial squamous cell carcinomas, in a total of ten histologically confirmed neoplastic lesions. Of the lesions, two were staged as T{sub 1}, four as T{sub 2}, two as T{sub 3}, and two as T{sub 4}. The animals were submitted to four radiation fractions from 7.6 to 10 grays each, with one week intervals. The equipment was a linear accelerator with electrons beam. The cats were evaluated weekly during the treatment and 30 and 60 days after the end of the radiation therapy. In this study, 40% of the lesions had complete remission, 40% partial remission, and 20% did not respond to the treatment. Response rates were lower as compared to other protocols previously used. However, hypofractionated radiation protocol was considered safe for feline facial squamous cell carcinoma. (author)

  5. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  6. 160 MeV laser-accelerated protons from CH2 nano-targets for proton cancer therapy

    CERN Document Server

    Hegelich, B M; Albright, B J; Cheung, M; Dromey, B; Gautier, D C; Hamilton, C; Letzring, S; Munchhausen, R; Palaniyappan, S; Shah, R; Wu, H -C; Yin, L; Fernández, J C

    2013-01-01

    Proton (and ion) cancer therapy has proven to be an extremely effective even supe-rior method of treatment for some tumors 1-4. A major problem, however, lies in the cost of the particle accelerator facilities; high procurement costs severely limit the availability of ion radiation therapy, with only ~26 centers worldwide. Moreover, high operating costs often prevent economic operation without state subsidies and have led to a shutdown of existing facilities 5,6. Laser-accelerated proton and ion beams have long been thought of as a way out of this dilemma, with the potential to provide the required ion beams at lower cost and smaller facility footprint 7-14. The biggest challenge has been the achievement of sufficient particle energy for therapy, in the 150-250 MeV range for protons 15,16. For the last decade, the maximum exper-imentally observed energy of laser-accelerated protons has remained at ~60 MeV 17. Here we the experimental demonstration of laser-accelerated protons to energies exceeding 150 MeV, re...

  7. Intensity modulated radiation therapy for breast cancer: current perspectives

    Science.gov (United States)

    Buwenge, Milly; Cammelli, Silvia; Ammendolia, Ilario; Tolento, Giorgio; Zamagni, Alice; Arcelli, Alessandra; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Morganti, Alessio G

    2017-01-01

    Background Owing to highly conformed dose distribution, intensity modulated radiation therapy (IMRT) has the potential to improve treatment results of radiotherapy (RT). Postoperative RT is a standard adjuvant treatment in conservative treatment of breast cancer (BC). The aim of this review is to analyze available evidence from randomized controlled trials (RCTs) on IMRT in BC, particularly in terms of reduction of side effects. Methods A literature search of the bibliographic database PubMed, from January 1990 through November 2016, was performed. Only RCTs published in English were included. Results Ten articles reporting data from 5 RCTs fulfilled the selection criteria and were included in our review. Three out of 5 studies enrolled only selected patients in terms of increased risk of toxicity. Three studies compared IMRT with standard tangential RT. One study compared the results of IMRT in the supine versus the prone position, and one study compared standard treatment with accelerated partial breast IMRT. Three studies reported reduced acute and/or late toxicity using IMRT compared with standard RT. No study reported improved quality of life. Conclusion IMRT seems able to reduce toxicity in selected patients treated with postoperative RT for BC. Further analyses are needed to better define patients who are candidates for this treatment modality. PMID:28293119

  8. [Ozone therapy for radiation reactions and skin lesions after neutron therapy in patients with malignant tumors].

    Science.gov (United States)

    Velikaya, V V; Gribova, O V; Musabaeva, L I; Startseva, Zh A; Simonov, K A; Aleinik, A N; Lisin, V A

    2015-01-01

    The article discusses the problem of radiation complications from normal tissues in patients after therapy with fast neutrons of 6.3 MeV. The methods of treatment using ozone technologies in patients with radiation reactions and skin lesions on the areas of irradiation after neutron and neutron-photon therapy have been worked out. Ozone therapy showed its harmlessness and increased efficiency of complex treatment of these patients.

  9. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  10. Radiation therapy: model standards for determination of need

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, L.G.; Devins, T.B.

    1982-03-01

    Contents: Health planning process; Health care requirements (model for projecting need for megavoltage radiation therapy); Operational objectives (manpower, megavoltage therapy and treatment planning equipment, support services, management and evaluation of patient care, organization and administration); Compliance with other standards imposed by law; Financial feasibility and capability; Reasonableness of expenditures and costs; Relative merit; Environmental impact.

  11. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    Science.gov (United States)

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment.

  12. Hypofractionated Radiation Therapy for Breast Ductal Carcinoma In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, Lara [Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, Centre affilié à l' Université de Montréal, Montreal, Quebec (Canada); Hijal, Tarek [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Théberge, Valérie [Department of Radiation Oncology, Centre hospitalier universitaire de Québec, L' Hôtel-Dieu de Québec, Quebec (Canada); Centre des maladies du sein Deschênes-Fabia, Quebec (Canada); Fortin, Bernard [Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, Centre affilié à l' Université de Montréal, Montreal, Quebec (Canada); Vulpe, Horia [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Hogue, Jean-Charles [Centre des maladies du sein Deschênes-Fabia, Quebec (Canada); Centre hospitalier universitaire de Québec, Hôpital St-Sacrement, Quebec (Canada); Lambert, Christine [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Bahig, Houda [Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, Centre affilié à l' Université de Montréal, Montreal, Quebec (Canada); and others

    2013-12-01

    Purpose: Conventional radiation therapy (RT) administered in 25 fractions after breast-conserving surgery (BCS) is the standard treatment for ductal carcinoma in situ (DCIS) of the breast. Although accelerated hypofractionated regimens in 16 fractions have been shown to be equivalent to conventional RT for invasive breast cancer, few studies have reported results of using hypofractionated RT in DCIS. Methods and Materials: In this multicenter collaborative effort, we retrospectively reviewed the records of all women with DCIS at 3 institutions treated with BCS followed by hypofractionated whole-breast RT (WBRT) delivered in 16 fractions. Results: Between 2003 and 2010, 440 patients with DCIS underwent BCS followed by hypofractionated WBRT in 16 fractions for a total dose of 42.5 Gy (2.66 Gy per fraction). Boost RT to the surgical bed was given to 125 patients (28%) at a median dose of 10 Gy in 4 fractions (2.5 Gy per fraction). After a median follow-up time of 4.4 years, 14 patients had an ipsilateral local relapse, resulting in a local recurrence-free survival of 97% at 5 years. Positive surgical margins, high nuclear grade, age less than 50 years, and a premenopausal status were all statistically associated with an increased occurrence of local recurrence. Tumor hormone receptor status, use of adjuvant hormonal therapy, and administration of additional boost RT did not have an impact on local control in our cohort. On multivariate analysis, positive margins, premenopausal status, and nuclear grade 3 tumors had a statistically significant worse local control rate. Conclusions: Hypofractionated RT using 42.5 Gy in 16 fractions provides excellent local control for patients with DCIS undergoing BCS.

  13. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Harmsen, William [Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (United States); Blanchard, Miran [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Goetz, Matthew [Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jakub, James [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert; Petersen, Ivy; Rooney, Jessica [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Stauder, Michael [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yan, Elizabeth [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Laack, Nadia, E-mail: laack.nadia@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  14. Radiation protection system installation for the accelerator production of tritium/low energy demonstration accelerator project (APT/LEDA)

    CERN Document Server

    Wilmarth, J E; Tomei, T L

    2000-01-01

    The APT/LEDA personnel radiation protection system installation was accomplished using a flexible, modular proven system which satisfied regulatory orders, project design criteria, operational modes, and facility requirements. The goal of providing exclusion and safe access of personnel to areas where prompt radiation in the LEDA facility is produced was achieved with the installation of a DOE-approved Personnel Access Control System (PACS). To satisfy the facility configuration design, the PACS, a major component of the overall radiation safety system, conveniently provided five independent areas of personnel access control. Because of its flexibility and adaptability the Los-Alamos Neutron- Science-Center-(LANSCE)-designed Radiation Security System (RSS) was efficiently configured to provide the desired operational modes and satisfy the APT/LEDA project design criteria. The Backbone Beam Enable (BBE) system based on the LANSCE RSS provided the accelerator beam control functions with redundant, hardwired, ta...

  15. Radiative processes for Rindler and accelerating observers and the stress-tensor detector

    CERN Document Server

    De Paola, R

    1996-01-01

    We consider a monopole detector interacting with a massive scalar field. The radiative processes are discussed from the accelerated frame point of view. After this, we obtain the Minkowski vacuum stress tensor measured by the accelerated observer using a non-gravitational stress tensor detector as discussed by Ford and Roman (PRD 48, 776 (1993)). Finally, we analyse radiative processes of the monopole detector travelling in a world line that is inertial in the infinite past and has a constant proper acceleration in the infinite future.

  16. Accelerated hyperfractionated radiation, concurrent paclitaxel/cisplatin chemotherapy and surgery for stage III non-small cell lung cancer.

    Science.gov (United States)

    Adelstein, David J; Rice, Thomas W; Rybicki, Lisa A; Greskovich, John F; Ciezki, Jay P; Carroll, Marjorie A; DeCamp, Malcolm M

    2002-05-01

    The low surgical cure rate in patients with stage III non-small cell lung cancer has prompted an exploration of multimodality treatment strategies. Mature results are presented from a phase II trial of accelerated hyperfractionated radiation therapy, concurrent paclitaxel/cisplatin chemotherapy and surgery for these patients. Between 1994 and 1997, 45 patients with surgically demonstrated stage III non-small cell lung cancer underwent induction treatment with a 96 h continuous cisplatin infusion (20 mg/m(2) per day) and a 24 h infusion of paclitaxel (175 mg/m(2)) given concurrently with accelerated hyperfractionated radiation therapy (1.5 Gy twice daily) to a total dose of 30 Gy. Induction was completed in ten treatment (12 total) days. Surgical resection was scheduled 4 weeks later with a second identical course of chemoradiotherapy given 4-6 weeks post-operatively, to a total radiation dose of 60-63 Gy. Thirty-five patients had stage III(A) disease and ten had stage III(B) disease (eight with N(3) tumors). Induction toxicity included nausea in 89%, dysphagia in 89%, and neutropenia tolerable despite significant myelosuppression. Locoregional control is excellent and survival is better than historical expectations. Patients downstaged to mediastinal node negativity have a prognosis similar to those with de novo stage I(B) and II disease. Distant metastases are the major cause of treatment failure.

  17. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  18. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  19. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  20. A New Type of Accelerator for Charged Particle Cancer Therapy

    CERN Document Server

    Edgecock, Rob

    2013-01-01

    acceleration of protons and light ions for the treatment of certain cancers. They have unique features as they combine techniques from the existing types of accelerators, cyclotrons and synchrotrons, and hence look to have advantages over both for this application. However, these unique features meant that it was necessary to build one of these accelerators to show that it works and to undertake a detailed conceptual design of a medical machine. Both of these have now been done. This paper will describe the concepts of this type of accelerator, show results from the proof-of-principle machine (EMMA) and described the medical machine (PAMELA).

  1. [The application of total quality management (TQM) in quality management of radiation therapy].

    Science.gov (United States)

    Jiang, Rui-yao; Fu, Shen; Li, Bin

    2009-03-01

    The strategies and methods of the total quality management (TQM) need to applied in quality management of radiation therapy. We should improve the level of quality control and quality assurance in radiation therapy. By establishing quality control system in radiation therapy, standardization of radiation therapy workflow, strengthening quality control of devices and physical technique and paying attention to safety protection and staff training.

  2. Radiation stability of iron nanoparticles irradiated with accelerated iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, Nezavisimosty ave., 4, Minsk 220030 (Belarus); Tomsk Polytechnic University, Lenina ave., 2a, Tomsk 634028 (Russian Federation); Remnev, G.E., E-mail: remnev06@mail.ru [Tomsk Polytechnic University, Lenina ave., 2a, Tomsk 634028 (Russian Federation); Kvasov, N.T.; Safronov, I.V.; Shymanski, V.I. [Belarusian State University, Nezavisimosty ave., 4, Minsk 220030 (Belarus)

    2015-07-01

    Highlights: • Dynamic processes in nanoparticles after ion irradiation were studied. • The mechanism of the enhanced radiation stability of nanoparticles was showed. • The criteria of the enhanced radiation stability of nanoparticles was proposed. - Abstract: In the present work the dynamic processes occurring in a nanoscale iron particle exposed to irradiation with iron ions of different energies are studied in detailed. It is shown that the elastic and thermoelastic crystal lattice responses to irradiation form force factors affecting the evolution of defect-impurity system, which, in turn, leads to a decrease in the number of structural defects. Quantitative estimations of the spatial distribution of defects resulting in their migration to the surface were obtained. Such self-organization of nanoparticles exposed to ionizing radiation can be used as a basis for the production of radiation-resistant nanostructured materials capable of sustaining a long-term radiation influence.

  3. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Science.gov (United States)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  4. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.

    Science.gov (United States)

    Bleuel, D L; Donahue, R J; Ludewigt, B A; Vujic, J

    1998-09-01

    The 7Li(p,n)7Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF3, 7LiF, and D2O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo N-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF3 or 7LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to approximately 50% higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a 7LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq.

  5. Results of Radiation Therapy in Stage III Uterine Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Woo; Shin, Byung Chul; Yum, Ha Yong; Jeung, Tae Sig; Yoo, Myung Jin [Kosin University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    Purpose : The aim of this study is to analyze the survival rate, treatment failure and complication of radiation therapy alone in stage III uterine cervical cancer. Materials and Methods : From January 1980 through December 1985, 227 patients with stage II uterine cervical cancer treated with radiation therapy at Kosin Medical Center were retrospectively studied. Among 227 patients, 72 patients(31.7%) were stage IIIa, and 155 patients(68.3%) were stage IIIb according to FIGO classification. Age distribution was 32-71 years(median: 62 years). Sixty nine patients(95.8%) in stage IIIa and 150 patients(96.8%) in stage IIIb were squamous cell carcinoma. Pelvic lymph node metastasis at initial diagnosis was 8 patients (11.1%) in stage IIIa and 29 patients(18.7%) in stage IIIb. Among 72 patients with stage IIIa, 36 patients(50%) were treated with external radiation therapy alone by conventional technique (180-200 cGy/fr). And 36 patients(50%) were treated with external radiation therapy with intracavitary radiotherapy(ICR) with Cs137 sources, and among 155 patients with stage IIIb, 80 patients(51.6%) were treated with external radiation therapy alone and 75 patients(48.4%) were treated with external radiation therapy with ICR. Total radiation doses of stage IIIa and IIIb were 65-105 Gy(median : 78.5 Gy) and 65-125.5 Gy (median :83.5 Gy). Survival rate was calculated by life-table method. Results : Complete response rates were 58.3% (42 patients) in state IIIa and 56.1%(87 patients) in stage Iiib. Overall 5 year survival rates were 57% in stage IIIa and 40% in stage IIIb. Five year survival rates by radiation technique in stage IIIa and IIIb were 64%, 40% in group treated in combination of external radiation and ICR, and 50%, 40% in the group of external radiation therapy alone(P=NS). Five year survival rates by response of radiation therapy in stage IIIa and IIIb were 90%, 66% in responder group, and 10%, 7% in non-responder group (P<0.01). There were statistically no

  6. Experimental considerations on the determination of radiation fields in an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon C, L.; Ramirez J, F. J.; Garcia H, J. M.; Torres B, M. A. [ININ, Departamento de Sistemas Electronicos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez C, R.; Pena E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2013-10-01

    The determination of the different radiation fields in an electron accelerator requires the use of selected radiation detectors, in this work we describe the experimental considerations on the determination of the intensity of electrons and X-rays generated by Bremsstrahlung in an experimental electron accelerator covering the energy range from 80 keV to 485 keV. A lithium- drifted silicon detector, a high-purity germanium detector, a scintillation detector and a Pin diode were used in the experiments. Spectroscopic measurements allowed us to verify the terminal voltage of the accelerator. The Pin photodiode can measure the intensity of X-rays produced, with this information, we could determine its relationship with both the electron beam current and the accelerating voltage of the accelerator. (Author)

  7. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; /SLAC; Vylet, Vashek; /Duke U.; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a

  8. Shock acceleration and gamma radiation in the intracluster medium

    CERN Document Server

    Gabici, S

    2004-01-01

    Particle acceleration is expected to take place at shocks that form during the process of large scale structure formation. Electrons accelerated at such shocks can upscatter a small fraction of the photons in the cosmic microwave background up to the gamma ray band. Here we make predictions about the detectability of the $\\gamma$--ray emission from forming clusters of galaxies with future GeV and TeV gamma ray telescopes. We also estimate the contribution of these sources to the extragalactic diffuse gamma ray background.

  9. Shock acceleration and gamma radiation in the intracluster medium

    OpenAIRE

    2004-01-01

    Particle acceleration is expected to take place at shocks that form during the process of large scale structure formation. Electrons accelerated at such shocks can upscatter a small fraction of the photons in the cosmic microwave background up to the gamma ray band. Here we make predictions about the detectability of the $\\gamma$--ray emission from forming clusters of galaxies with future GeV and TeV gamma ray telescopes. We also estimate the contribution of these sources to the extragalactic...

  10. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jeppesen, Stefan Starup; Schytte, Tine; Jensen, Henrik R;

    2013-01-01

    Abstract Introduction. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) is now an accepted and patient friendly treatment, but still controversy exists about its comparability to conventional radiation therapy (RT). The purpose of this single...... and SBRT predicted improved prognosis. However, staging procedure, confirmation procedure of recurrence and technical improvements of radiation treatment is likely to influence outcomes. However, SBRT seems to be as efficient as conventional RT and is a more convenient treatment for the patients....

  11. The use of heavy charged particles in the radiation therapy of tumors

    CERN Document Server

    Kraft, G

    1995-01-01

    Beams of heavy charged particles like carbon or oxygen ions represent the ultimate tool of external radiotherapy of deep-seated tumors.Small range and lateral scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the perequisite for a successful treatment of tumors radioresistant to sparsely ionizing radiation.The possibility to perform target-conform irradiation and to control the achieved actual distribution using PET techniques guarantees that biological highly efficient stopping particles can be restricted to the tumor volume only.Although the physical and radiobiological properties of ion beams are very favorable for therapy, the necessity to produce these particles in an accelerator has restricted the general application of heavy ions up to now.Presently, the heavy ion accelerator SIS at GSI is the only source of heavy ion beams sufficient in enrgy and intensity for therapy in Eu...

  12. Targeted Alpha Therapy: The US DOE Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy

    Science.gov (United States)

    John, Kevin

    2017-01-01

    Targeted radiotherapy is an emerging discipline of cancer therapy that exploits the biochemical differences between normal cells and cancer cells to selectively deliver a lethal dose of radiation to cancer cells, while leaving healthy cells relatively unperturbed. A broad overview of targeted alpha therapy including isotope production methods, and associated isotope production facility needs, will be provided. A more general overview of the US Department of Energy Isotope Program's Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy will also be presented focusing on the accelerator-production of 225Ac and final product isolation methodologies for medical applications.

  13. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hui; Zhang Xu [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy Y. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-11-15

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T <4 cm, N0, M0, or Mx). Severe (grade {>=}3) RP and potential predictive factors were analyzed by univariate and multivariate logistic regression analyses. A scoring system was established to predict the risk of RP. Results: At a median follow-up time of 16 months after SABR (range, 4-56 months), 15 patients had severe RP (14 [18.9%] grade 3 and 1 [1.4%] grade 5) and 1 patient (1.4%) had a local recurrence. In univariate analyses, Eastern Cooperative Oncology Group performance status (ECOG PS) before SABR, forced expiratory volume in 1 second (FEV1), and previous planning target volume (PTV) location were associated with the incidence of severe RP. The V{sub 10} and mean lung dose (MLD) of the previous plan and the V{sub 10}-V{sub 40} and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 {<=}65% before SABR (P=.012), V{sub 20} {>=}30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 {<=}65%, a previous PTV spanning the bilateral mediastinum, and V{sub 20} {>=}30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  14. Technical basis of radiation therapy. Practical clinical applications. 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Seymour H. [Karolinska Institutet Stockholm (Sweden). Dept. of Oncol-Pathol; Perez, Carlos A. [Washington Univ. Medical Center, St. Louis, MO (United States). Dept. of Radiation Oncology; Purdy, James A. [California Univ., Sacramento, CA (United States). Dept. of Radiation Oncology; Poortmans, Philip [Institute Verbeeten, Tilburg (Netherlands). Dept. of Radiation Oncology

    2012-07-01

    This well-received book, now in its fifth edition, is unique in providing a detailed description of the technological basis of radiation therapy. Another novel feature is the collaborative writing of the chapters by North American and European authors. This considerably broadens the book's perspective and increases its applicability in daily practice throughout the world. The book is divided into two sections. The first covers basic concepts in treatment planning, including essential physics and biological principles related to time-dose-fractionation, and explains the various technological approaches to radiation therapy, such as intensity-modulated radiation therapy, tomotherapy, stereotactic radiotherapy, and high and low dose rate brachytherapy. Issues relating to quality assurance, technology assessment, and cost-benefit analysis are also reviewed. The second part of the book discusses in depth the practical clinical applications of the different radiation therapy techniques in a wide range of cancer sites. All of the chapters have been written by leaders in the field. This book will serve to instruct and acquaint teachers, students, and practitioners in the various fields of oncology with the basic technological factors and approaches in radiation therapy. (orig.)

  15. Radiation protection in large linear accelerators; Seguranca radiologica de aceleradores lineares de grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jose de Jesus Rivero, E-mail: rivero@con.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Sousa, Fernando Nuno Carneiro de, E-mail: fernandonunosousa@gmail.com [Aceletron Irradiacao lndustrial, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The electron linear accelerators can be used in industrial applications that require powerful sources of ionizing radiation. They have the important characteristic of not representing a radiation hazard when the accelerators remain electrically disconnected. With the plant in operation, a high reliability defense in depth reduces the risk of radiological accidents to extremely small levels. It is practically impossible that a person could enter into the radiation bunker with the accelerators connected. Aceletron Irradiacao Industrial, located in Rio de Janeiro, offers services of irradiation by means of two powerful electron linear accelerators, with 15 kW power and 10 MeV electron energy. Despite the high level of existing radiation safety, a simplified risk study is underway to identify possible sequences of radiological accidents. The study is based on the combined application of the event and fault trees techniques. Preliminary results confirm that there is a very small risk of entering into the irradiation bunker with the accelerators in operation, but the risk of an operator entering into the bunker during a process interruption and remaining there without notice after the accelerators were restarted may be considerably larger. Based on these results the Company is considering alternatives to reduce the likelihood of human error of this type that could lead to a radiological accident. The paper describes the defense in depth of the irradiation process in Aceletron Irradiacao Industrial, as well as the models and preliminary results of the ongoing risk analysis, including the additional safety measures which are being evaluated. (author)

  16. Study on the radiation problem caused by electron beam loss in accelerator tubes

    Institute of Scientific and Technical Information of China (English)

    LI Quan-Feng; GUO Bing-Qi; ZHANG Jie-Xi; CHEN Huai-Bi

    2008-01-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement.

  17. Interactive Visual Intervention Planning: Interactive Visualization for Intervention Planning in Particle Accelerator Environments with Ionizing Radiation

    CERN Document Server

    Fabry, Thomas; Feral, Bruno

    2013-01-01

    Intervention planning is crucial for maintenance operations in particle accelerator environments with ionizing radiation, during which the radiation dose contracted by maintenance workers should be reduced to a minimum. In this context, we discuss the visualization aspects of a new software tool, which integrates interactive exploration of a scene depicting an accelerator facility augmented with residual radiation level simulations, with the visualization of intervention data such as the followed trajectory and maintenance tasks. The visualization of each of these aspects has its effect on the final predicted contracted radiation dose. In this context, we explore the possible benefits of a user study, with the goal of enhancing the visual conditions in which the intervention planner using the software tool is minimizing the radiation dose.

  18. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy.

    Science.gov (United States)

    FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S; Galvin, James; Knopp, Michael V; Michalski, Jeff M; Rosen, Mark A; Bradley, Jeffrey D; Shankar, Lalitha K; Laurie, Fran; Cicchetti, M Giulia; Moni, Janaki; Coleman, C Norman; Deye, James A; Capala, Jacek; Vikram, Bhadrasain

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  19. Determinants of job satisfaction among radiation therapy faculty.

    Science.gov (United States)

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  20. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  1. Selective use of radiation therapy for neoplasms of the skin

    Energy Technology Data Exchange (ETDEWEB)

    Parker, R.G.

    1980-07-01

    Radiation therapy is preferable treatment for a minority of basal cell and epidermoid carcinomas of the skin. Proper use exploits the inherent advantage of preservation of function and cosmesis. Therefore, many cancers involving the eyelid, canthus, nose, nasolabial fold, pinna, ear canal, vermilion surface of the lower lip and skin of the chin can be advantageously treated by radiation therapy as compared to surgery, if pretreatment destruction of normal tissue is minimal. Although irradiation is equally effective, surgery is more expeditious for small lesions and cancers at other sites, which can be excised and followed by primary closure, and for large lesions if reconstruction will be required after destruction of the tumor. Radiation therapy can be effective, and usually is preferable treatment, for several other primary neoplasms of skin such as mycosis fungoides and Kaposi's sarcoma.

  2. Cone positioning device for oral radiation therapy.

    Science.gov (United States)

    Mahanna, G K; Ivanhoe, J R; Attanasio, R A

    1994-06-01

    This article describes the fabrication and modification of a peroral cone-positioning device. The modification provides added cone stability and prevents tongue intrusion into the radiation field. This device provides a repeatable accurate cone/lesion relationship and the fabrication technique is simplified, accurate, and minimizes patient discomfort.

  3. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Janet K., E-mail: janet.horton@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Blitzblau, Rachel C.; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Geradts, Joseph [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Chang, Zheng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Baker, Jay A. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Georgiade, Gregory S. [Department of Surgery, Duke University Medical Center, Durham, North Carolina (United States); Chen, Wei [Department of Bioinformatics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Siamakpour-Reihani, Sharareh; Wang, Chunhao [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Broadwater, Gloria [Department of Biostatistics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Groth, Jeff [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha; Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Barry, William T. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Duffy, Eileen A. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); and others

    2015-07-15

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  4. Electromagnetic Radiation : Variational Methods, Waveguides and Accelerators Including seminal papers of Julian Schwinger

    CERN Document Server

    Milton, Kimball A

    2006-01-01

    This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications.

  5. Current status of radiation therapy. Evidence-based medicine (EBM) of radiation therapy. Current management of patients with esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kenji [Tohoku Univ., Sendai (Japan). School of Medicine

    2002-03-01

    The best management for small mucosal esophageal cancer is generally endoscopic mucosal resection. However, for submucosal cancer and extensive mucosal caner, either radical surgery or radiation seems to be an equally efficacious option. Radiation therapy concurrent with chemotherapy is more effective than radiation therapy alone for patients with unresectable esophageal cancer. The key drugs are cisplatin and 5-fluorouracil. However, for patients with poor performance status or for aged patients, radiation therapy alone is still a choice of treatment. Surgery has generally been indicated for patients with resectable esophageal cancer. However, outcomes of concurrent chemoradiation therapy may be comparable with those of surgery. Therefore, a prospective randomized study should be performed to determine the best management for patients with resectable esophageal cancer. The usefulness of intra-cavitary irradiation for esophageal cancer has not been clarified. A prospective randomized trial with a large number of patients is necessary to determine the effectiveness of intra-cavitary irradiation. The best management for patients with loco-regionally recurrent esophageal cancer after surgery has not been determined. Intensive therapy should be considered if the site of recurrence is limited and the time interval from surgery to recurrence is long. Chemotherapy is essential in the management of patients with small cell esophageal cancer. However, the best local therapy has not been determined. (author)

  6. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  7. Khan's lectures handbook of the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M; Mihailidis, Dimitris

    2011-01-01

    Khan's Lectures: Handbook of the Physics of Radiation Therapy will provide a digest of the material contained in The Physics of Radiation Therapy. Lectures will be presented somewhat similar to a PowerPoint format, discussing key points of individual chapters. Selected diagrams from the textbook will be used to initiate the discussion. New illustrations will used, wherever needed, to enhance the understanding of important concepts. Discussion will be condensed and often bulleted. Theoretical details will be referred to the textbook and the cited literature. A problem set (practice questions) w

  8. Statistical Decision Theory Applied to Radiation Therapy Treatment Decisions

    OpenAIRE

    Schultheiss, T. E.; El-Mahdi, Anas M.

    1982-01-01

    Statistical decision theory has been applied to the treatment planning decision of radiation therapy. The decision involves the choice of parameters which determine the radiation dose distribution. To choose among dose distributions requires a decision rule which reflects the uncertainty of possible outcomes for any specific dose distribution and the various risks associated with each outcome. A relative gravity or morbidity is assigned to each possible complication of treatment. In this stud...

  9. Radiation dermatitis and pneumonitis following breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoden, Eisaku; Hiratsuka, Junichi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2000-09-01

    We investigated the frequency, degree and risk factors of radiation-induced dermatitis and pneumonitis in 255 patients receiving breast conserving therapy between April 1987 and April 1998. The majority of the patients underwent a wide excision or quadrantectomy with a level I, II axillary dissection, followed by radiotherapy consisting of 50 Gy/25 Fr/5 weeks to the preserved breast with a 4 MV beam by tangentially opposed portals using the half-field technique. Eleven patients received an additional 10 Gy/5 Fr of electron therapy to the tumor bed. Most of the patients developed radiation dermatitis which was limited to reddening or dry desquamation, with the exception of 14 patients with a localized moist reaction. The skin reaction was transient in all patients and improved with conservative treatments. Radiation pneumonitis appeared on chest X-rays in 30 patients, with a slight appearance in 21 and patchy appearance in 9. Three patients presented with persistent symptoms requiring medication. They were treated with steroids, resulting in complete resolution of the symptoms. A large volume of the chest wall within the irradiation field and a large area of irradiated skin were the risk factors of radiation dermatitis. The volume of irradiated lung significantly correlated with the frequency and degree of radiation pneumonitis. It was preferable that the maximum thickness of the involved lung should not exceed 3 cm. Complicated disease, adjuvant therapy and boost irradiation had no impact on the radiation dermatitis or pneumonitis. (author)

  10. Phototherapy cabinet for ultraviolet radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  11. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    CERN Document Server

    Chen, Kai; Kierstead, James; Takai, Helio; Rescia, Sergio; Hu, Xueye; Xu, Hao; Mead, Joseph; Lanni, Francesco; Minelli, Marena

    2014-01-01

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing d...

  12. Cancer of the breast. Radiation therapy.

    Science.gov (United States)

    Mercado, R; Deutsch, M

    1979-01-01

    There are many questions that have to be answered concerning the role of radiotherapy in the management of primary breast cancer. Hopefully, prospective clinical trials will provide some answers, but more basic research into the biology of breast cancer and the host-tumor relationship will be needed. There are indications that radiotherapy alone, or following minimal extirpative surgery in selected cases, may be as effective for control of breast cancer as conventional mastectomies. The role of radiotherapy following segmental mastectomy, with or without axillary dissection, needs to be clarified. The possibility exists that high LET (linear energy transfer) radiation such as neutron or pi meson beams may provide better local control than conventional radiation. Thus, it may be possible to treat effectively all primary breast cancers with such radiations and obviate the need for any type of mastectomy. It remains to be demonstrated whether adjuvant chemotherapy is as effective as radiotherapy in preventing chest wall and regional node recurrences. If it is not, there may be a place for both adjuvant chemotherapy and radiotherapy in the treatment of operable cancer of the breast. Likewise, effective chemotherapy combined with radiotherapy may increase the local and regional control achieved with radiotherapy alone and make more primary lesions suitable for treatment without mastectomy. Meyer (1970) recently called attention to the leukopenia and cellualr immune deficiency produced by irradiation to the thorax and mediastinum. Further study is necessary to define exactly how much immunosuppression results from radiotherapy, its clinical significance and what can be done to avoid or counter it. If Stjervsward's thesis (1974) concerning the deleterious effects of radiotherapy on survival is correct, then it is of great importance to identify those patients most likely to be adversely affected by radiotherapy. Conversely, it may be possible in the future to identify a

  13. Novel Silicon Devices for Radiation Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, Mara, E-mail: mara.bruzzi@unifi.it

    2016-02-11

    Modern radiotherapy techniques pose specific constraints in radiation-monitoring and dosimetry due to the occurrence of small radiation fields with high dose gradients, variation in space and time of the dose rate, variation in space and time of the beam energy spectrum. Novel devices coping with these strict conditions are needed. This paper reviews the most advanced technologies developed with silicon-based materials for clinical radiotherapy. Novel Si diodes as Pt-doped Si, epitaxial Si as well as thin devices have optimized performance, their response being independent of the accumulated dose, thus ensuring radiation tolerance and no need of recalibration. Monolithic devices based on segmented Si detectors can be easily tailored to optimize spatial resolution in the large active areas required in clinical radiotherapy. In particular, a monolithic device based on epitaxial p-type silicon, characterized by high spatial resolution and ability to directly measure temporal variations in dose modulation proved to be best viable solution for pre-treatment verifications in IMRT fields.

  14. Postoperative radiation therapy for malignant glioma. Results of conventional radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T.; Inoue, T.; Chatani, M.; Hata, K.; Taki, T.; Nii, Y.; Nakagawa, H.

    1987-02-01

    From December 1977 through September 1984, a total of 39 cases of malignant glioma were treated with radiation therapy (RT) postoperatively. Twenty-nine cases were classified into glioblastoma (GM) and 10 astrocytoma (AS) (low grade : 6 and anaplastic : 4) histologically. One third of cases received 50 Gy/25 FRX/5 WKS of whole brain RT. Another two thirds of cases underwent 60 Gy/30 FRX/6 WKS of whole brain or 50 Gy/25 FRX/5 WKS of whole brain + additional 20 Gy/10 FRX/2 WKS of localized field RT. Chemotherapy (BLM, MeCCNU and ACNU) was given for 34 cases. Survivals at 3 years for GM and AS were 12 % and 68 %, respectively. Prognostic factors for GM were age, neurologic function (RTOG), AJC-staging T-factor, pre-RT LDH level and volume of residual tumor. Corresponding factors for AS were histological subclassification and neurologic function (RTOG). However, RT dose and field did not impact on survival significantly. Acute adverse effects of RT were otitis media or externa (70 %) and conjunctivitis (8 %). Retinal bleeding was noted in three long-term survivors at 2 years after RT.

  15. Enhanced radiation pressure-assisted acceleration by temporally tuned counter-propagating pulses

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, B., E-mail: bastian.aurand@fysik.lth.se [Department of Physics, Lund University, 22100 Lund (Sweden); Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Kuschel, S.; Jäckel, O.; Rödel, C. [Helmholtz Institute Jena, 07743 Jena (Germany); Zhao, H.Y. [Institute of Modern Physics, 73000 Lanzhou (China); Herzer, S. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Paz, A.E.; Bierbach, J. [Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Elkin, B. [Fraunhofer Institut für Grenzflächen-und Bioverfahrenstechnik, 70569 Stuttgart (Germany); Karmakar, A. [Leibniz-Supercomputing Center, 85748 Garching (Germany); Gibbon, P. [ExtreMe Matter Institut, 64291 Darmstadt (Germany); Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Kaluza, M.C. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Kuehl, T. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Universität Mainz, 55099 Mainz (Germany)

    2014-03-11

    Within the last decade, laser-ion acceleration has become a field of broad interest. The possibility to generate short proton- or heavy ion bunches with an energy of a few tens of MeV by table-top laser systems could open new opportunities for medical or technical applications. Nevertheless, today's laser-acceleration schemes lead mainly to a temperature-like energy distribution of the accelerated ions, a big disadvantage compared to mono-energetic beams from conventional accelerators. Recent results [1] of laser-ion acceleration using radiation-pressure appear promising to overcome this drawback. In this paper, we demonstrate the influence of a second counter-propagating laser pulse interacting with a nm-thick target, creating a well defined pre-plasma.

  16. Radiative damping and electron beam dynamics in plasma-based accelerators.

    Science.gov (United States)

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  17. Radiative damping and electron beam dynamics in plasma-based accelerators

    Science.gov (United States)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  18. The Application of FLUKA to Dosimetry and Radiation Therapy

    Science.gov (United States)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  19. Immunomodulatory effects of radiation: what is next for cancer therapy?

    Science.gov (United States)

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  20. Optimizing proton therapy at the LBL medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  1. Optimizing proton therapy at the LBL medical accelerator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  2. Individual skin care during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.S. [Klinik fuer Strahlentherapie (Radioonkologie), Christian-Albrechts-Universitaet Kiel (Germany); Budach, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Eberhard-Carls-Universitaet Tuebingen (Germany); Doerr, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Medizinische Fakultaet Carl Gustav Carus, Dresden (Germany)

    1998-11-01

    Background: In many clinical settings, the irradiated patient feels additional discomfort by the inhibition of washing the treatment portals and interruption of his adapted skin care habits. Material and methods: An analysis of the scientific recommendations as well as an analysis of the skin dose to the irradiated portals has been performed. An individual scheme for skin care under radiation has been developed. Results: A substantial decrease of the skin dose is achieved in many modern radiation techniques. The consequent reduction of severe skin reactions allowed the use of water and mild soaps as has been approved within many radiotherapy departments. This has lead to an individualized concept for skin care under radiation treatment including the allowance of gentle washing. The skin marks may be saved by using highly tolerable adhesive plasters or small tattoo points, if they are not superfluous by using masks or single referee points instead of marks for the field borders. Conclusions: The individualized concept for skin care during radiation may offer improved life quality to the patient and may decrease the acute reactions of the skin at least in some cases. (orig.) [Deutsch] Hintergrund: In vielen klinischen Situationen erfaehrt der bestrahlte Patient zusaetzliche Belastungen durch das frueher ausgesprochene Waschverbot der Bestrahlungsfelder wie auch durch die Unterbrechung seiner langjaehrigen Hygienegewohnheiten. Material und Methoden: Es wurde eine Analyse der wissenschaftlichen Empfehlungen wie auch der heutzutage bei modernen Bestrahlungstechniken auftretenden Hautdosis durchgefuehrt. Ein individuelles Schema zur Pflege der bestrahlten Haut wurde entwickelt. Ergebnisse: Durch eine Verringerung der Hautdosis und damit der Inzidenz schwerer Hautreaktionen bei modernen Bestrahlungstechniken wird mittlerweile in vielen Abteilungen das `Waschverbot` fuer bestrahlte Haut gelockert. Dies hat zu einem individualisierten Hautpflegekonzept unter der Bestrahlung

  3. Charged particle diffusion and acceleration in Saturn's radiation belts

    Science.gov (United States)

    Mckibben, R. B.; Simpson, J. A.

    1980-01-01

    In the present paper, an attempt is made to determine, from the observed intensity profiles for protons and electrons in the region of L smaller than 4, whether population of Saturn's innermost trapped radiation zones from an external source is possible. It is found that if diffusion proceeds in an episodic rather than a steady-state manner (long periods of quiescence interrupted by brief periods of rapid diffusion), the basic features of the observed phase space density profiles are qualitatively reproduced for both the trapped protons and electrons.

  4. Radiation therapy for portal venous invasion by hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Keiichi Nakagawa; Masatoshi Makuuchi; Kuni Ohtomo; Hideomi Yamashita; Kenshiro Shiraishi; Naoki Nakamura; Masao Tago; Hiroshi Igaki; Yoshio Hosoi; Shuichiro Shiina; Masao Omata

    2005-01-01

    AIM: To clarify the efficacy and safety of three-dimensional conformal radiotherapy (3-D CRT) for this disease and to specify patient subgroups suitable for this treatment.METHODS: Fifty-two patients with HCC received PVI-targeted radiation therapy from January 1995 through December 2003. Portal venous invasion (PVI) was found in the second or lower order branches of the portal vein in 6 patients, in the first branch in 24 patients and in the main trunk in 22 patients. Child classifications of liver function before radiation therapy were A, B, and C for 19, 24 and 2 patients, respectively. All patients received three-dimensional conformal radiotherapy with a total dose ranging from 39 to 60 Gy (57.0 Gy in average).RESULTS: Overall survival rates at 1, 2, 3, 4, and 5 years were 45.1%, 25.3%, 15.2%, 10.1%, and 5.1%, respectively. Univariate analysis revealed that Child status, the number of tumor foci, tumor type,transcatheter arterial embolization (TAE) after radiation therapy were statistically significant prognostic factors.Multivariate analysis showed that the number of tumor foci and TAE after radiation therapy were statistically significant.CONCLUSION: The results of this study strongly suggest the efficacy of 3-D CRT as treatment for PVI in HCC. 3-D CRT is recommended in combination with postradiation TAE for PVI of HCC with 5 tumor foci or less in the liver and with Child A liver function.

  5. Pregnancy after radiation therapy for carcinoma of the cervix.

    Science.gov (United States)

    Browde, S; Friedman, M; Nissenbaum, M

    1986-01-01

    A successful pregnancy after intracavitary radiation therapy for carcinoma of the cervix is described. An additional 13 similar cases from the literature are reviewed. The possible reasons for the occurrence of these pregnancies despite irradiation to the ovaries, cervical canal and endometrium are discussed. The fact is emphasized that no genetic damage to the child was expected.

  6. Factors influencing radiation therapy student clinical placement satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane (Australia)

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  7. Surface dose with grids in electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-H.; Huang, C.-Y.; Lin, J.-P.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw

    2002-03-01

    This investigation attempts to solve the problem of the lack of skin-sparing effect in electron radiation therapy and to increase the tolerance of skin to radiation using the grid technique. Electron grid therapy involves the mounting of a Cerrobend grid in the electron cone. Film dosimetry was employed to measure the relative surface dose and the percentage depth dose profile of electron grid portals. Various grid hole diameters (d=0.45, 1.0, 1.5 cm) and grid hole spacings (s=0.4, 0.2 cm) were considered for electron beams from 6 to 14 MeV. Experimental results indicate that the electron grid technique can reduce the relative surface dose in electron radiation therapy. Degradations of the relative surface dose depend on the percentage of open area in the grid portal. A proper grid design allows the surface dose to be reduced and the range of nonhomogeneous doses to be limited to a depth at which the target volume can receive a homogeneous dose. The grid technique can lower the surface dose in electron radiation therapy.

  8. Radiation therapy of prostate cancer applied with cooling effect

    Energy Technology Data Exchange (ETDEWEB)

    Furuhata, Akihiko; Ogawa, Katsuaki; Miyazaki, Machiko; Iwai, Hiroshi [Yokosuka National Hospital, Kanagawa (Japan); Takeda, Takashi

    1995-05-01

    The radio-sensitivity of prostate carcinoma is a resistant one. Also a prostate locates close to rectum, urethra and bladder of which mucus membranes are intermediate sensitive for irradiation, and causes side effects frequently. In this study, we applied with hyperfraction and local membrane cooling to the radiation therapy of the prostate cancer. This brought favorable clinical results with decreased morbidities. (author).

  9. Waiting Lists for Radiation Therapy: A Case Study

    Directory of Open Access Journals (Sweden)

    Singer Peter A

    2001-04-01

    Full Text Available Abstract Background Why waiting lists arise and how to address them remains unclear, and an improved understanding of these waiting list "dynamics" could lead to better management. The purpose of this study is to understand how the current shortage in radiation therapy in Ontario developed; the implications of prolonged waits; who is held accountable for managing such delays; and short, intermediate, and long-term solutions. Methods A case study of the radiation therapy shortage in 1998-99 at Princess Margaret Hospital, Toronto, Ontario, Canada. Relevant documents were collected; semi-structured, face-to-face interviews with ten administrators, health care workers, and patients were conducted, audio-taped and transcribed; and relevant meetings were observed. Results The radiation therapy shortage arose from a complex interplay of factors including: rising cancer incidence rates; broadening indications for radiation therapy; human resources management issues; government funding decisions; and responsiveness to previous planning recommendations. Implications of delays include poorer cancer control rates; patient suffering; and strained doctor-patient relationships. An incompatible relationship exists between moral responsibility, borne by government, and legal liability, borne by physicians. Short-term solutions include re-referral to centers with available resources; long-term solutions include training and recruiting health care workers, improving workload standards, increasing compensation, and making changes to the funding formula. Conclusion Human resource planning plays a critical role in the causes and solutions of waiting lists. Waiting lists have harsh implications for patients. Accountability relationships require realignment.

  10. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  11. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Charlene; Zhang, Junran, E-mail: Junran.zhang@case.edu

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  12. Clinical Opportunities in Combining Immunotherapy with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2012-11-01

    Full Text Available Preclinical work in murine models suggests that local radiotherapy plus intratumoral syngeneic DC injection can mediate immunologic tumor eradication. Radiotherapy affects the immune response to cancer, besides the direct impact on the tumor cells, and other ways to coordinate immune modulation with radiotherapy have been explored. We review here the potential for immune mediated anticancer activity of radiation on tumors. This is mediated by antigen acquisition and presentation by dendritic cells, and through changes of lymphocytes’ activity. Recent work has implemented the combination of external beam radiation (EBRT with intratumoral injection of dendritic cells (DC. This included a pilot study of coordinated intraprostatic, autologous DC injection together with radiation therapy with five HLA-A2(+ subjects with high-risk, localized prostate cancer; the protocol used androgen suppression, external beam radiation therapy (25 fractions, 45 Gy, DC injections after fractions 5, 15, and 25, and then interstitial radioactive implant. Another was a phase II trial using neo-adjuvant cell death-inducing EBRT plus intra-tumoral DC in soft tissue sarcoma, to test if this would increase immune activity toward soft tissue sarcoma associated antigens. Clinical experience using radiation therapies combined with other systemic immune treatments are additionally surveyed, including use of investigational recombinant vaccinia and fowlpox, interleukin-2, toll like receptor 9 (TLR9 agonists and lymphocyte checkpoint inhibitors directed at PD1 and at CTLA4.

  13. Radiation therapy for neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Robert Petrarca

    2011-01-01

    Full Text Available Robert Petrarca, Timothy L JacksonDepartment of Ophthalmology, King’s College Hospital NHS Foundation Trust, London, UKAbstract: Antivascular endothelial growth factor (anti-VEGF therapies represent the standard of care for most patients presenting with neovascular (wet age-related macular degeneration (neovascular AMD. Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET. Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002, with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections.Keywords: wet age-related macular degeneration, neovascular, radiation therapy, epimacular brachytherapy, stereotactic radiosurgery, anti-VEGF

  14. Controls and Beam Diagnostics for Therapy-Accelerators

    CERN Document Server

    Eickhoff, H

    2000-01-01

    During the last four years GSI has developed a new procedure for cancer treatment by means of the intensity controlled rasterscan-method. This method includes active variations of beam parameters during the treatment session and the integration of 'on-line' PET monitoring. Starting in 1997 several patients have been successfully treated within this GSI experimental cancer treatment program; within this program about 350 patients shall be treated in the next 5 years. The developments and experiences of this program accompanied by intensive discussions with the medical community led to a proposal for a hospital based light ion accelerator facility for the clinic in Heidelberg. An essential part for patients treatments is the measurement of the beam properties within acceptance and constancy tests and especially for the rasterscan method during the treatment sessions. The presented description of the accelerator controls and beam diagnostic devices mainly covers the requests for the active scanning method, which...

  15. Protection Strategy of Sensitive Body Organs in Radiation Therapy

    CERN Document Server

    Abolfath, Ramin M

    2009-01-01

    In this paper, we investigate protection strategies of sensitive body anatomy against the irradiation to the cancerous moving tumors in intensity modulated radiation therapy. Inspired by optimization techniques developed in statistical physics and dynamical systems, we deploy a method based on variational principles and formulate an efficient genetic algorithm which enable us to search for global minima in a complex landscape of irradiation dose delivered to the radiosensitive organs at risk. We take advantage of the internal motion of body anatomy during radiation therapy to reduce the unintentional delivery of the radiation to sensitive organs. We show that the accurate optimization of the control parameters, compare to the conventional IMRT and widely used delivery based on static anatomy assumption, leads to a significant reduction of the dose delivered to the organs at risk.

  16. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, Erqi L.; Deng, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Pai, Reetesh K. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States)

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  17. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  18. Study on neutron radiation field of carbon ions therapy

    CERN Document Server

    Xu, Jun-Kui; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2015-01-01

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  19. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  20. Pelvic radiation therapy: Between delight and disaster

    Institute of Scientific and Technical Information of China (English)

    Kirsten; AL; Morris; Najib; Y; Haboubi

    2015-01-01

    In the last few decades radiotherapy was established as one of the best and most widely used treatmentmodalities for certain tumours. Unfortunately that came with a price. As more people with cancer survive longer an ever increasing number of patients are living with the complications of radiotherapy and have become, in certain cases, difficult to manage. Pelvic radiation disease(PRD) can result from ionising radiationinduced damage to surrounding non-cancerous tissues resulting in disruption of normal physiological functions and symptoms such as diarrhoea, tenesmus, incontinence and rectal bleeding. The burden of PRDrelated symptoms, which impact on a patient’s quality of life, has been under appreciated and sub-optimally managed. This article serves to promote awareness of PRD and the vast potential there is to improve current service provision and research activities.

  1. Giant calcified meningioma after radiation therapy; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Zenke, Kiichiro; Fukumoto, Shinya; Ohta, Shinsuke; Sakaki, Saburo (Ehime Univ., Shigenobu (Japan). School of Medicine); Matsui, Seishi

    1993-09-01

    We presented a case of secondary giant meningioma with dense calcification (brain stone) after radiation therapy for primary ependymoma removed 25 years before. A 31-year-old man was referred to our hospital because of generalized convulsion. He had received extirpation of an ependymoma in the left frontoparietal region and postoperative radiation therapy 25 years before. Skull X-ray and CT revealed a giant brain stone in the left parietal region. It was totally removed en bloc. Photomicrograph of the specimen showed proliferation of arachnoid cell-like tumor cells in narrow spaces surrounded by marked calcified lesions which showed partial ossification. The etiology and therapy of this tumor were discussed. (author).

  2. Radiation therapy in the treatment of aggressive fibromatoses (desmoid tumors).

    Science.gov (United States)

    Kiel, K D; Suit, H D

    1984-11-15

    Twenty-five patients with aggressive fibromatoses (desmoid tumors) have been treated or followed in the Department of Radiation Medicine at the Massachusetts General Hospital between 1972 and 1982. Seventeen patients were treated by radiation, 4 for primary and 13 for recurrent disease. Seven patients were treated in conjunction with surgery. Partial or complete regression was achieved in 76%, and 59% are without evidence of disease (NED) at 9 to 94 months follow-up. Eight of ten patients treated primarily with radiation have achieved complete response without an attempt at resection (five) or have achieved stabilization (three) of their disease after some regression. Consistent complete control was seen with doses above 60 Gy. Periods to 27 months were required to observe complete responses. Only three failures within the radiation field were observed, two after low doses (22 and 24 Gy, respectively). Eight patients were seen after resection but with uncertain or histologically minimum positive margins, and were followed regularly and not treated. One patient has failed to date and is NED after resection. Radiation therapy is recommended in those situations where wide-field resection without significant morbidity is not possible for gross local disease. If minimally positive margins exist after resection in a patient who may be followed carefully, frequent follow-up and prompt treatment at recurrence may be an effective alternative to immediate radiation therapy.

  3. Hawking Radiation of Dirac Particles on Rindler Horizon to a Uniformly Accelerating Observer

    Institute of Scientific and Technical Information of China (English)

    ZHANGJinK-Yi

    2003-01-01

    Following the method of Damour and Ruffini, the Hawking radiation of Dirac particles on Rindler horison to a uniformly accelerating observer is studied this paper. The temperature on Rindler horizon surface and the thermal spectrum formula of Dirac particles are obtained. The result is discussed.

  4. Hawking Radiation of Dirac Particles on Rindler Horizon to a Uniformly Accelerating Observer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Yi

    2003-01-01

    Following the method of Damour and Ruffini, the Hawking radiation of Dirac particles on Rindler horizonto a uniformly accelerating observer is studied in this paper. The temperature on Rindler horizon surface and the thermalspectrum formula of Dirac particles are obtained. The result is discussed.

  5. Recording Vavilov-Cherenkov radiation in a linear accelerator using a picosecond streak camera

    Science.gov (United States)

    Vorob'ev, N. S.; Gornostaev, P. B.; Gurov, S. M.; Dorokhov, V. L.; Zubko, A. E.; Lozovoi, V. I.; Meshkov, O. I.; Nikiforov, D. A.; Smirnov, A. V.; Shashkov, E. V.; Schelev, M. Ya

    2016-09-01

    Using a picosecond image converter camera with a linear sweep (PS-1/S1 streak camera developed at GPI RAS, Moscow), we have measured temporal parameters of Vavilov-Cherenkov radiation pulses. The radiation was generated by relativistic electrons passing through a quartz cone mounted on the axis of a vacuum chamber of a linear accelerator, which is a part of the VEPP-5 injection complex at the Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences (BINP SB RAS, Novosibirsk). The data obtained in these experiments provide an insight into the processes of formation of electron bunches and their 'quality' in a linear accelerator prior to injection of electrons into the accumulator-cooler. A conclusion is made regarding the advisability of streak camera application in tuning the linear accelerators for optimisation of electron bunch parameters.

  6. Cherenkov radiation and dielectric based accelerating structures: Wakefield generation, power extraction and energy transfer efficiency

    Science.gov (United States)

    Kanareykin, Alexei

    2010-06-01

    We present here our recent results of the Euclid Techlabs LLC/Argonne National Laboratory/St.Petersburg Electrotechnical University "LETI" collaboration on wakefield high energy acceleration of electron bunches in dielectric based accelerating structures. This program concentrates primarily on Cherenkov radiation studies providing efficient high energy generation aimed at a future 1 TeV collider. We report here on recent experiments in high power Cherenkov radiation and corresponding dielectric material developments and characterizations. Progress in diamond, quartz and microwave low-loss ceramic structure development in GHz and THz frequency ranges is presented. Beam Breakup effects and transverse bunch stability are discussed as well. We e report on recent progress on tunable dielectric based structure development. A special subject of our paper is transformer ratio enhancement schemes providing energy transfer efficiency for the dielectric based wakefield acceleration.

  7. Indications for radiation therapy in hypopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Teruki; Chatani, Masashi; Inoue, Toshihiko; Yoshino, Kunitoshi; Sato, Takeo (Osaka Prefectural Center for Adult Diseases (Japan)); Miyahara, Hiroshi

    1989-01-01

    With the aim of determining indications for radiotherapy in hypopharyngeal carcinoma, a retrospective analysis was made on 79 patients treated between 1977 and 1985. The patients were followed up for a median of 6 yr. and 2 mo. with a range of 3 yr. and 2 mo. to 8 yr. and 11 mo.. According to the UICC TNM classification system (1987), 11 patients were T1, 31 T2, 23 T3, and 14 T4; and 23 patients were N0, 18 N1, 9 N2a, 15 N2b, 7 N2c, and 7 N3. Radiotherapy was administered with radical intent (n=14), with palliative intent (n=11), preoperatively (n=32), and postoperatively (n=22). The 5-year survival rate was 23% in the radically treated group, 0% in the palliatively treated group, 31% in the preoperatively treated group, and 49% in the postoperatively treated group. It also depended significantly on N staging: 55% for N0 patients vs 28% for N1 patients and 29% for N2a-b patients. The most common recurrence or relapse occurred in the cervical lymph nodes, followed by distant and local sites. For N1-3 patients, local control was significantly better in the group treated with combined radiotherapy and surgery (36% for neck dissection and 70% for radical neck dissection), as compared with 9% for radiation alone. Patients receiving 50 Gy or more had significantly higher local control than those receiving less than 50 Gy (55% vs 22%). Patients of stage NO had lymph node metastases in the area irradiated with less than 50 Gy. The results revealed the following indications: (1) lesions of early T stage and N0 confined to the posterior wall or the upper half of the piriform recess for radical radiotherapy (less than 10% of all cases); (2) potentially curable lesions of N0-N2b, regardless of T stages, for pre- or post-operative radiotherapy; (3) the other advanced lesions for palliative radiotherapy. Radiation of 50 Gy or more combined with neck dissection was proposed in local control for N1-3 patients. (N.K.).

  8. Anaemia and radiation therapy; Anemie et radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Denis, F. [Clinique d' Oncologie et de Radiotherapie, INSERM U619, 37 - Tours (France); Lartigau, E. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France)

    2004-11-01

    Anaemia is frequent in cancer and may increase tumour hypoxia that stimulates angiogenesis. However, erythropoietin is a hypoxia-inducible stimulator of erythropoiesis which seems to improve quality of life in cancer patients. Two recent phase III randomized studies showed negative results using erythropoietin in head and neck cancer patients and in metastatic breast cancer patients with impaired specific survival. In vitro and in vivo experiments have provided erythropoietin-receptor expression in endothelial cancer cells including malignant tumours of the breast, prostate, cervix, lung, head and neck, ovary, melanoma, stomach, gut, kidney etc. Biologic effect of erythropoietin and its receptor linkage induces proliferation of human breast cancer and angiogenesis and may limit anti-tumour effect of cancer treatment, in part, by tumour vascularization improvement. In addition, the use of exogenous erythropoietin could be able to favour tumour progression by improving tumour oxygenation and nutriment supply. If erythropoietin receptor were functional in human cancer. the assessment of erythropoietin receptor expression on tumour cell may help to select patients benefiting from exogenous erythropoietin. However. the relationship between erythropoietin receptor expression, tumour growth and exogenous erythropoietin. requires more studies. The results of recent clinical trials suggest that using erythropoietin should be avoided in non-anemic patients and discussed in patients receiving curative therapy. (authors)

  9. Study on radiation damage to high energy accelerator components by irradiation in a nuclear reactor

    CERN Document Server

    Schönbacher, Helmut; Casta, J; Van de Voorde, M H

    1975-01-01

    The structural and other components used in high energy accelerators are continuously exposed to a wide spectrum of high energy particles and electromagnetic radiation. The resulting radiation damage may severely influence the functional capability of accelerator facilities. In order to arrive at an estimate of the service life of various materials in the radiation field, simulating experiments have to be carried out in a nuclear reactor. A large number of organic and inorganic materials, electronic components, metals, etc., intended specifically for use in 400 GeV proton synchrotron of CERN near Geneva, were irradiated in the ASTRA reactor in Seibersdorf near Vienna. The paper reports on the irradiation facilities available in this reactor for this purpose, on the dosimetry methods used, on the most important materials irradiated and on the results obtained in these experiments. (14 refs).

  10. Three dimensional conformal radiation therapy may improve the therapeutic ratio of radiation therapy after pneumonectomy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trouette, R.; Causse, N.; Elkhadri, M.; Caudry, M.; Maire, J.P.; Houlard, J.P.; Racaldini, L.; Demeaux, H.

    1995-12-01

    Three dimensional conformal radiation therapy would allow to decrease the normal tissue dose while maintaining the same target dose as standard treatment. To evaluate the feasibility of normal tissue dose reduction for ten patients with pneumonectomy for lung cancer, we determined the dose distribution to the normal tissue with 3-dimensional conformal radiation therapy (3-DCRT) and conventional treatment planning (CTP). Dose-volume histograms for target and normal tissue (lung, heart) were used for comparison of the different treatment planning. The mean percentages of lung and heart volumes which received 40 Gy with 3-DCRT were respectively 63% and 37% of the mean percentage of lung and volumes which received the same dose with CTP. These preliminary results suggest that conformal therapy may improve the therapeutic ratio by reducing risk to normal tissue.

  11. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  12. Intraoperative radiation therapy (IORT) in head and neck cancer

    Science.gov (United States)

    Kyrgias, George; Hajiioannou, Jiannis; Tolia, Maria; Kouloulias, Vassilios; Lachanas, Vasileios; Skoulakis, Charalambos; Skarlatos, Ioannis; Rapidis, Alexandros; Bizakis, Ioannis

    2016-01-01

    Abstract Background: Multimodality therapy constitutes the standard treatment of advanced and recurrent head and neck cancer. Since locoregional recurrence comprises a major obstacle in attaining cure, the role of intraoperative radiation therapy (IORT) as an add-on in improving survival and local control of the disease has been investigated. IORT allows delivery of a single tumoricidal dose of radiation to areas of potential residual microscopic disease while minimizing doses to normal tissues. Advantages of IORT include the conformal delivery of a large dose of radiation in an exposed and precisely defined tumor bed, minimizing the risk of a geographic miss creating the potential for subsequent dose reduction of external beam radiation therapy (EBRT). This strategy allows for shortening overall treatment time and dose escalation. The aim of this review is to summarize recent published work on the use of IORT as an adjuvant modality to treat common head and neck cancer in the primary or recurrent setting. Methods: We searched the Medline, Scopus, Ovid, Cochrane, Embase, and ISI Web of Science databases for articles published from 1980 up to March 2016. Results: Based on relevant publications it appears that including IORT in the multimodal treatment may contribute to improved local control. However, the benefit in overall survival is not so clear. Conclusion: IORT seems to be a safe, promising adjunct in the management of head and neck cancer and yet further well organized clinical trials are required to determine its role more precisely. PMID:27977569

  13. Orthovoltage intraoperative radiation therapy for pancreatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Kapp Daniel S

    2010-11-01

    Full Text Available Abstract Purpose To analyze the outcomes of patients from a single institution treated with surgery and orthovoltage intraoperative radiotherapy (IORT for pancreatic adenocarcinoma. Methods We retrospectively reviewed 23 consecutive patients from 1990-2001 treated with IORT to 23 discrete sites with median and mean follow up of 6.5 and 21 months, respectively. Most tumors were located in the head of the pancreas (83% and sites irradiated included: tumor bed (57%, vessels (26%, both the tumor bed/vessels (13% and other (4%. The majority of patients (83% had IORT at the time of their definitive surgery. Three patients had preoperative chemoradiation (13%. Orthovoltage X-rays (200-250 kVp were employed via individually sized and beveled cone applicators. Additional mean clinical characteristics include: age 64 (range 41-81; tumor size 4 cm (range 1.4-11; and IORT dose 1106 cGy (range 600-1500. Post-operative external beam radiation (EBRT or chemotherapy was given to 65% and 76% of the assessable patients, respectively. Outcomes measured were infield control (IFC, loco-regional control (LRC, distant metastasis free survival (DMFS, overall survival (OS and treatment-related complications. Results Kaplan-Meier (KM 2-year IFC, LRC, DMFS and OS probabilities for the whole group were 83%, 61%, 26%, and 27%, respectively. Our cohort had three grade 3-5 complications associated with treatment (surgery and IORT. Conclusions Orthovoltage IORT following tumor reductive surgery is reasonably well tolerated and seems to confer in-field control in carefully selected patients. However, distant metastases remain the major problem for patients with pancreatic adenocarcinoma.

  14. The effect of radiation therapy on hemophilic arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Gi; Shin, Dong Oh [School of Medicine, KyungHee University, Seoul (Korea, Republic of)

    2005-06-15

    Repetitive bleeding into the joint space is the cause of debilitative hemophilic arthropathy. To interrupt this process, we treated the hemophilic patients suffering from repetitive joint bleeding with radiation therapy. From 1997 to 2001, a total of 41 joints from 37 hemophilic arthropathy patients were treated with radiation therapy at KyungHee University Hospital. The treated joints were 35 ankles, 3 knees and 3 elbows, respectively. The age of the patients ranged from 4 to 27 years (median age: 11 years). The radiation dose ranged from 900 cGy to 2360 cGy (median dose: 900 cGy). The fraction size was 150 cGy, 180 cGy or 200 cGy. The number of bleeding in one year before and after radiotherapy was compared. There was a tendency of frequent bleeding for the patients younger than 11 ({rho} 0.051) but there was also a tendency for more improvement in this group ({rho} 0.057). The number of joint bleedings was related with joint pain ({rho} 0.012) and joint swelling ({rho} = 0.033) but not with the Arbold-Hilgartner stage ({rho} 0.739),cartilage destruction ({rho} = 0.718) and synovial hypertrophy ({rho} = 0.079). The number of bleeding was reduced in thirty-three cases, and eight cases showed no improvement after radiation therapy. The average number of bleeding in a month was 2.52 before radiotherapy, but this was reduced to 1.4 after radiotherapy ({rho} = 0.017). Radiation therapy was effective for the hemophilia patients with repetitive joint bleeding to decrease the bleeding frequency and to prevent hemophilic arthropathy.

  15. Occurrence of BOOP outside radiation field after tangential radiation therapy for breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Gohma, Iwao; Oida, Kazukiyo [Tenri Hospital, Nara (Japan)] (and others)

    2000-07-01

    We report three cases of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy using tangential fields for breast carcinoma. All patients complained of a cough between 14 and 20 weeks after completion of radiation therapy. Fever also developed in two of the three. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the same side as the radiation therapy. Laboratory data showed an increased level of C-reactive protein and an increased erythrocyte sedimentation rate. Bronchoalveolar lavage showed an elevated total cell count with a very high percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid clinical improvement and complete resolution of the radiographic abnormalities. This pulmonary disorder appears to be induced by radiation, especially when a tangential field is employed for breast carcinoma, though the etiology has not been fully investigated. It is important to be aware of this type of pulmonary complication in patients given radiotherapy for breast carcinoma. (author)

  16. Collaborative Model for Acceleration of Individualized Therapy of Colon Cancer

    Science.gov (United States)

    2015-12-01

    receive salvage therapy that results in only a few weeks of disease stability. We have proposed to employ a team science , systems biology based approach...Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold , B.J., and Pachter, L. 2010. Transcript assembly and quantification by...tumor xenografts (PDTX) have been widely used in predictive biomarker development and pathway modeling in cancer research. However, it has not been

  17. Scientists at Brookhaven contribute to the development of a better electron accelerator

    CERN Multimedia

    2004-01-01

    Scientists working at Brookhaven have developed a compact linear accelerator called STELLA (Staged Electron Laser Acceleration). Highly efficient, it may help electron accelerators become practical tools for applications in industry and medicine, such as radiation therapy (1 page)

  18. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Science.gov (United States)

    Cooper, Daniel; Bekah, Devesh; Nadeau, Jay

    2014-10-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  19. Delayed damage after radiation therapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yoshiyuki [Osaka Dental Univ., Hirakata (Japan)

    2000-03-01

    I investigated radiation damage, including osteoradionecrosis, arising from tooth extraction in fields that had received radiation therapy for head and neck cancer, and evaluated the effectiveness of pilocarpine for xerostomia. Between January 1990 and April 1996, I examined 30 patients for bone changes after tooth extraction in fields irradiated at the Department of Oral Radiology, Osaka Dental University Hospital. Nineteen of the patients had been treated for nasopharyngeal cancer and 11 for oropharyngeal cancer. Between January and April 1996, 4 additional patients were given pilocarpine hydrochloride (3-mg, 6-mg and 9-mg of KSS-694 orally three times a day) for 12 weeks and evaluated every 4 weeks as a base line. One had been treated for nasopharyngeal carcinoma, two for cancer of the cheek and one for an unknown carcinoma. Eighteen of the patients (11 with nasopharyngeal carcinoma and 7 with oropharyngeal carcinoma) had extractions. Use of preoperative and postoperative radiographs indicated that damage to the bone following tooth extraction after radiation exposure was related to whether antibiotics were administered the day before the extraction, whether forceps or elevators were used, and whether the tooth was in the field of radiation. Xerostomia improved in all 4 of the patients who received 6-mg or 9-mg of pilocarpine. It improved saliva production and relieved the symptoms of xerostomia after radiation therapy for head and neck cancer, although there were minor side effects such as fever. This information can be used to improve the oral environment of patients who have received radiation therapy for head and neck cancer, and to better understand their oral environment. (author)

  20. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Directory of Open Access Journals (Sweden)

    Daniel R. Cooper

    2014-10-01

    Full Text Available Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79. However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  1. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    Science.gov (United States)

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  2. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    Science.gov (United States)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  3. Accounting for radiation quality in heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kellerer, A.M. [LMU, Muenchen (Germany). Radiobiological Inst.]|[Gesellschaft fuer Strahlen- und Umweltforschung, Muenchen (Germany). Inst. fuer Nuklearbiologie

    1997-09-01

    This introductory contribution outlines the need for models and their use in radiotherapy dose planning. The linear-quadratic dose relation is now predominantly used in therapy dose planning. In Section I it is linked to the earlier quantitative scheme for conventional radiotherapy. In Section II two major approaches are presented in a form that makes them comparable; the section can be read by itself, if this comparison alone is of interest. Models for therapy planning are tools, largely of empirical character; they do not need to elucidate unknown mechanisms of radiation action. The emphasis is, therefore, on the computational scheme, not on its interpretation. (orig.)

  4. Photonuclear processes in the treatment room and patient during radiation therapy with 50 MV photons

    Energy Technology Data Exchange (ETDEWEB)

    Gudowska, Irena [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1997-10-01

    The objectives of this project were to determine the level of photoneutron radiation around the MM50 Racetrack Microtron at Karolinska Hospital, operating in different modes and to evaluate the photonuclear absorbed dose to the treated volume during therapy with a 50 MV photon beam. The photoneutron radiation has been studied both using a {sup 235}U fission chamber and by computer simulation. The estimated neutron equivalent dose due to accelerator produced neutrons delivered to the tissues inside and outside the treatment volume do not exceed the recommended values. However, there is a potential risk that the sensitive tissues (lens of the eye and gonads), outside the treatment volume, can receive a dose of about 300-500 mSv per photon treatment course of 60 Gy with a slight increase for secondary malignancies. 47 refs, 15 figs, 6 tabs.

  5. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  6. Impact of dose calculation algorithm on radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhou; Chen; Ying; Xiao; Jun; Li

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimizing the normal tissue complication probability.Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems.The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work.The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic.Further,the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups.All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.

  7. Multi-pass Accelerator-Recuperator (MARS) as Coherent X-ray Synchrotron Radiation Source

    Science.gov (United States)

    Kulipanov, Gennady; Skrinsky, Alexander; Vinokurov, Nikolai

    2007-01-01

    Creation of a fully spatial coherent 4th generation SR source is possible in case of a shift from the electron storage rings to accelerators with energy recovery. However, in practice, all the projects assume the use of a single-turn version (ERL) compared to our first proposal of 1997 to use a multi-turn accelerator-recuperator (MARS). The purpose of this report is presentation of the modern conception of MARS and comparison of the ERL and MARS based radiation sources from the viewpoint of their realization in practice.

  8. Study of the Synchrotron Radiation Emission from the NRL Modified Betatron Accelerator

    Science.gov (United States)

    Smith, Tab Jay

    1990-01-01

    Incoherent synchrotron radiation from a relativistic electron beam circulating in the magnetic field configuration of the NRL modified betatron accelerator has been studied numerically and experimentally. Numerical studies show that, for relativistic electron energies up to approximately 2 MeV, the single particle spectrum of radiation is dominated by a peak in the intensity distribution at the Doppler -shifted cyclotron frequency about the toroidal field. This intensity distribution very closely approximates the distribution for a linear helical electron trajectory with relativistic velocity along the axis of the helix. The radiated electric field oscillations, however, are 'modulated' due to the curvature of the major radius. As the electrons accelerate above an energy of a few MeV, the modulation width becomes so narrow that even the fast gyro-oscillation about the toroidal field produces no significant variation in the total radiated fields. Thus, the amplitude, polarization, and frequency content in the spectrum approaches that of a purely circular orbit. Experimental studies of the radiation have been conducted by monitoring the temporal evolution of radiated power during acceleration using fixed-frequency heterodyne receivers. Radiation was measured for electron beam energies in the range of 0.5 MeV to about 10 MeV, trapped beam currents up to approximately 500 A, and for values of toroidal guide field in the range of approximately 1900 to 3500 Gauss. At electron energies less than about 2 MeV, the polarization, amplitude, scaling with trapped beam current, and the temporal evolution of measured radiation during acceleration are in very good agreement with the predicted single particle spectrum. Furthermore, there is no evidence of collective emission at least within the frequency ranges 8 to 12 GHz and 26 to 40 GHz. The only significant discrepancy between the experimental and predicted results is the apparent absence of the horizontally polarized radiation

  9. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Valicenti, Richard K., E-mail: Richard.valicenti@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California, Davis School of Medicine, Davis, California (United States); Thompson, Ian [Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States); Albertsen, Peter [Division of Urology, University of Connecticut Health Center, Farmington, Connecticut (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Medical School, Rochester, Minnesota (United States); Goldenberg, S. Larry [Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia (Canada); Wolf, J. Stuart [Department of Urology, University of Michigan, Ann Arbor, Michigan (United States); Sartor, Oliver [Department of Medicine and Urology, Tulane Medical School, New Orleans, Louisiana (United States); Klein, Eric [Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio (United States); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Faraday, Martha M. [Four Oaks, Inc (United States)

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  10. Intensity-modulated radiation therapy for oropharyngeal cancer: radiation dosage constraint at the anterior mandible.

    NARCIS (Netherlands)

    Verdonck, H.W.; Jong, J.M. de; Granzier, M.E.; Nieman, F.H.; Baat, C. de; Stoelinga, P.J.W.

    2009-01-01

    Because the survival of endosseous implants in irradiated bone is lower than in non-irradiated bone, particularly if the irradiation dose exceeds 50Gy, a study was carried out to assess the irradiation dose in the anterior mandible, when intensity modulated radiation therapy (IMRT) is used. The hypo

  11. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham [Andrew Love Cancer Centre, Geelong Hospital, Geelong, Victoria (Australia)

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  12. Protection Strategy of Sensitive Body Organs in Radiation Therapy

    OpenAIRE

    Abolfath, Ramin M.; Papiez, Lech

    2009-01-01

    In this paper, we investigate protection strategies of sensitive body anatomy against the irradiation to the cancerous moving tumors in intensity modulated radiation therapy. Inspired by optimization techniques developed in statistical physics and dynamical systems, we deploy a method based on variational principles and formulate an efficient genetic algorithm which enable us to search for global minima in a complex landscape of irradiation dose delivered to the radiosensitive organs at risk....

  13. A practical three-dimensional dosimetry system for radiation therapy

    OpenAIRE

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...

  14. Massive osteolysis of the right clavicle developing after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, W.L.; Buzdar, A.U.; Libshitz, H.I.

    1988-07-15

    This report describes an unusual case of clavicular osteolysis, a late complication of radiation therapy for breast cancer, and demonstrates the diagnostic implications that radiotherapy changes can pose. Radiotherapy to the chest wall produces a spectrum of alterations in bone over time, ranging from early roentgenographic findings of osteoporosis and trabecular thickening to spontaneous fractures and changes that may be confused with metastatic disease or postirradiation sarcoma.

  15. Postprostatectomy radiation therapy: an evidence-based review.

    Science.gov (United States)

    Mishra, Mark V; Champ, Colin E; Den, Robert B; Scher, Eli D; Shen, Xinglei; Trabulsi, Edouard J; Lallas, Costas D; Knudsen, Karen E; Dicker, Adam P; Showalter, Timothy N

    2011-12-01

    While the majority of men with localized prostate cancer who undergo a radical prostatectomy will remain disease free, men with certain clinical and pathological features are known to be at an increased risk for developing a biochemical recurrence and, ultimately, distant metastatic disease. The optimal management of these patients continues to be a source of controversy. To date, three randomized Phase III trials have demonstrated that adjuvant radiation therapy (ART) for patients with certain adverse pathological features results in an improvement in several clinically-relevant end points, including biochemical recurrence-free survival and overall survival. Despite the evidence from these trials showing a benefit for ART, many believe that ART results in overtreatment and unwarranted treatment morbidity for a significant number of patients. Many physicians, therefore, instead advocate for close observation followed by early salvage radiation therapy (SRT) at the time of a biochemical recurrence. The purpose of this review is to evaluate the evidence for and to distinguish between ART and early SRT. We will also highlight current and future areas of research for this patient population, including radiation treatment dose escalation, hypofractionation and androgen deprivation therapy. We will also discuss the cost-effectiveness of ART and early SRT.

  16. Radiation recall secondary to adjuvant docetaxel after balloon-catheter based accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Nathan W. [Summer Intern, Mayo Clinic Arizona, Scottsdale, AZ (United States); Wong, William W., E-mail: wong.william@mayo.ed [Department of Radiation Oncology, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ 85259 (United States); Karlin, Nina J. [Division of Oncology, Mayo Clinic Arizona, Scottsdale, AZ (United States); Gray, Richard J. [Department of Surgery, Mayo Clinic Arizona, Scottsdale, AZ (United States)

    2010-08-15

    For early stage breast cancer, wide local excision and post-operative whole breast irradiation is a standard treatment. If adjuvant chemotherapy is recommended, radiation is usually given after completion of chemotherapy. In recent years, accelerated partial breast irradiation (APBI) with balloon-cathetered based brachytherapy has become an option for selected patients. For these patients, adjuvant chemotherapy would have to be administered after radiation. The sequence of treatment with radiation followed by chemotherapy results in increased risk of radiation recall reaction (RRD) in these patients. Docetaxel is becoming a more commonly used drug as adjuvant treatment for breast cancer. Here we report a case of docetaxel induced RRD after APBI with balloon-cathetered based brachytherapy. Such reaction would have an adverse impact on the cosmetic outcome and quality of life of the patient. For patients who develop an intense skin reaction after the administration of docetaxel following APBI, RRD should be considered in the differential diagnosis.

  17. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  18. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C [Wayne State University, Grosse Pointe, MI (United States); Borras, C [Radiological Physics and Health Services, Washington, DC (United States); Carlson, D [Yale University School of Medicine, New Haven, CT (United States)

    2014-06-15

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how

  19. RADIATION EFFECTS ON EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH UNIFORM MASS DIFFUSION

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2011-06-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion have been studied. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method. The effects of velocity, temperature and concentration are studied for different parameters like the thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with an increase in the parameter ‘a’.

  20. Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

    CERN Document Server

    Li, Guanjia; Ma, Zhongjian; Guo, Siming; Yan, Mingyang; Shi, Haoyu; Xu, Chao

    2015-01-01

    This paper described a measurement of accelerator neutron radiation field at a transport beam line of Beijing-TBF. The experiment place was be selected around a Faraday Cup with a graphite target impacted by electron beam at 2.5GeV. First of all, we simulated the neutron radiation experiment by FLUKA. Secondly, we chose six appropriate ERNMS according to their neutron fluence response function to measure the neutron count rate. Then the U_M_G package program was be utilized to unfolding experiment data. Finally, we drew a comparison between the unfolding with the simulation spectrum and made an analysis about the result.

  1. Remarks on Hawking radiation as tunneling from a uniformly accelerating black hole

    Indian Academy of Sciences (India)

    Xiao-Xiong Zeng; Jian-Song Hou; Shu-Zheng Yang

    2008-03-01

    Motivated by the Hamilton-Jacobi method of Angheben et al, we investigate the Hawking tunneling radiation from a uniformly accelerating rectilinear black hole for which the horizons and entropy are functions of . After several coordinate transformations, we conclude that when the self-gravitational interaction and energy conservation are taken into account, the actual radiation spectrum deviates from the thermal one and the tunneling rate is the function of though it is still related to the change of the Bekenstein-Hawking entropy.

  2. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a (60)Co Magnetic Resonance Image Guidance Radiation Therapy System

    DEFF Research Database (Denmark)

    Wooten, H Omar; Green, Olga; Yang, Min

    2015-01-01

    PURPOSE: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. METHODS AND MATERIALS......: The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup......% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within...

  3. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    Science.gov (United States)

    2017-01-01

    hazard prediction. New compact accelerator technologies for the delivery of proton and heavy ion therapy and relevant QA dosimetry instrumentation were an additional focus of MMND 2016. The ITRO program this year was dedicated to clinical aspects of innovative SBRT for cancer treatment. It represented a unique opportunity to learn from didactic lectures as well as case based discussions with world leaders in the field in the relaxed atmosphere of Hobart. As well as the outstanding scientific program, MMND ITRO 2016 included an Australian beach BBQ to celebrate Australia Day on the evening of 26th January and an exciting social program on 29th January followed by the conference dinner and great Australian hospitality. The MMND workshop represents an important next step for improving current cancer treatments with radiation and the development of new radiation based cancer treatments.

  4. Influence of radiation reaction force on ultraintense laser-driven ion acceleration.

    Science.gov (United States)

    Capdessus, R; McKenna, P

    2015-05-01

    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets.

  5. Radiation from Particles Accelerated in Relativistic Jet Shocks and Shear-flows

    CERN Document Server

    Nishikawa, K -I; Dutan, I; Zhang, B; Meli, A; Choi, E J; Min, K; Niemiec, J; Mizuno, Y; Medvedev, M; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D

    2014-01-01

    We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{\\pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{\\pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jet's initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing "Global" jet simulations containing shocks and velocity shears will ...

  6. Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime

    Institute of Scientific and Technical Information of China (English)

    LU Hai-Yang; WANG Cheng; LIU Jian-Sheng

    2011-01-01

    @@ Acceleration of protons by a circularly polarized laser pulse irradiating on a double-layer target is investigated by a theoretical model and particle-in-cell simulations.The target is made up of a heavy ion layer coated with a proton layer on the rear surface.The results show that when the first layer is transparent induced by the hole-boring effect, the whole proton layer is accelerated by the transmitted laser pulse to high energy with low energy spread.The quality of the proton beam generated from a double-layer target is better than that from a single-layer target.The improvement is attributed to the flat top structure of the electrostatic field caused by the electrons injected into the second layer.It is easier to control the spectrum quality by using a double-layer target rather than using a single-layer one when the radiation pressure acceleration is dominant.

  7. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars;

    2010-01-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large...... gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles....

  8. Hawking radiation of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black hole

    Institute of Scientific and Technical Information of China (English)

    吴双清; 蔡勖

    2002-01-01

    The quantum thermal effect of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black holeis investigated using the generalized tortoise coordinate transformation. The equations that determine the location, theHawking temperature of the event horizon and the thermal radiation spectrum of neutrinos are derived. Our resultsshow that the location and the temperature of the event horizon depend not only on the time but also on the angle.

  9. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, Jillian R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sato, Mariko; Chintagumpala, Murali [Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Ketonen, Leena [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Jeremy Y. [Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Okcu, M. Fatih; Su, Jack M. [Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Weinberg, Jeffrey [Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Boehling, Nicholas S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Khatua, Soumen [Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Adesina, Adekunle [Department of Pathology, Baylor College of Medicine, Texas Children' s Hospital, Houston, Texas (United States); Dauser, Robert; Whitehead, William E. [Department of Neurosurgery, Texas Children' s Hospital, Houston, Texas (United States); Mahajan, Anita, E-mail: amahajan@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  10. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    Directory of Open Access Journals (Sweden)

    Mei Lin

    2015-01-01

    Full Text Available Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression’s controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.

  11. GPU-based high-performance computing for radiation therapy.

    Science.gov (United States)

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B

    2014-02-21

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented.

  12. Models of Metal Poor Stars with Gravitational Settling and Radiative Accelerations I. Evolution and Abundance Anomalies

    CERN Document Server

    Richard, O; Richer, J; Turcotte, S; Turck-Chièze, S; Van den Berg, D A; Berg, Don A. Vanden

    2002-01-01

    Evolutionary models have been calculated for Pop II stars of 0.5 to 1.0$M_\\odot$ from the pre-main-sequence to the lower part of the giant branch. Rosseland opacities and radiative accelerations were calculated taking into account the concentration variations of 28 chemical species, including all species contributing to Rosseland opacities in the OPAL tables. The effects of radiative accelerations, thermal diffusion and gravitational settling are included. While models were calculated both for Z=0.00017 and 0.0017, we concentrate on models with Z=0.00017 in this paper. These are the first Pop II models calculated taking radiative acceleration into account. It is shown that, at least in a 0.8$M_\\odot$ star, it is a better approximation not to let Fe diffuse than to calculate its gravitational settling without including the effects of $g_{rad}(Fe)$. In the absence of any turbulence outside of convection zones, the effects of atomic diffusion are large mainly for stars more massive than 0.7$M_\\odot$. Overabundan...

  13. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group.

    Science.gov (United States)

    Xiao, Ying; Kry, Stephen F; Popple, Richard; Yorke, Ellen; Papanikolaou, Niko; Stathakis, Sotirios; Xia, Ping; Huq, Saiful; Bayouth, John; Galvin, James; Yin, Fang-Fang

    2015-05-08

    This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical

  14. Analysis of radiation pneumonitis outside the radiation field in breast conserving therapy for early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ogo, Etsuyo; Fujimoto, Kiminori; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine] (and others)

    2002-02-01

    In a retrospective study of radiation-induced pulmonary changes for patients with breast conserving therapy for early breast cancer, we sent questionnaires to the main hospitals in Japan. In this study, we analyzed pulmonary changes after tangential whole-breast irradiation. The purpose of this study was to determine the incidence and risk factors for radiation pneumonitis outside the radiation field. The questionnaires included patients data, therapy data, and lung injury information between August 1999 and May 2000. On the first questionnaires, answer letters were received from 107 institutions out of 158 (67.7%). On the second questionnaires, response rate (hospitals which had radiation pneumonitis outside the radiation field) was 21.7% (23/106). We could find no risk factors of this type of pneumonitis. We suggested that lung irradiation might trigger this type of pneumonitis which is clinically similar to BOOP (bronchiolitis obliterans organizing pneumonia). It developed in 1.5-2.1% among the patients with breast conserving surgery and tangential whole-breast irradiation. And it is likely appeared within 6 months after radiotherapy. (author)

  15. Hypofractionated Whole-Breast Radiation Therapy: Does Breast Size Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannan, Raquibul, E-mail: Raquibul.Hannan@gmail.com [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Thompson, Reid F.; Chen Yu; Bernstein, Karen; Kabarriti, Rafi; Skinner, William [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States); Chen, Chin C. [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Landau, Evan; Miller, Ekeni; Spierer, Marnee; Hong, Linda; Kalnicki, Shalom [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States)

    2012-11-15

    Purpose: To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). Materials and Methods: In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation >25 cm or planning target volume [PTV] >1500 cm{sub 3}) (n=97) and small-breasted patients (chest wall separation <25 cm and PTV <1500 cm{sub 3}) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). Results: The mean PTV V95 (percentage of volume receiving >= 95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving >= 105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). Conclusions: Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable

  16. Observation of radiation degradation of electrical insulators in the CERN particle accelerators

    Science.gov (United States)

    Chevalier, Ch.; Coste, V.; Fontaine, A.; Tavlet, M.

    1999-05-01

    For the selection of polymer-based materials to be used in radiation environments, radiation tests have been performed at the European Organization for Particle Physics Research (CERN) for several decades. According to the recommendations of the IEC Standard 544, mechanical tests are carried out, and the radiation degradation is measured after accelerated irradiations. It is well known that during long-term exposures, oxygen and moisture are allowed to diffuse in the materials and hence to induce more severe degradation; this phenomenon is known as the `dose-rate effect'. During machine shut-downs, samples of rigid and flexible polymeric insulators (magnet-coil resins and cable insulations) have been taken out and tested after several years of exposure in the Super Proton Synchrotron (SPS) and in the Large Electron-Position Collider (LEP). The mechanical test results are compared to the ones after the accelerated qualification tests, and to the ones of a study conducted in 1991 to estimate the lifetime of cables in the radiation environment of LEP 200. They confirm that thermoplastics are more sensitive to long-term irradiations than the thermosetting resins and the composites, but that the dose-rate effect cannot be neglected in the latter.

  17. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Luxemburgo Hospital, Mario Penna Institute, Belo Horizonte, MG (Brazil)

    2015-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  18. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Minas Gerais, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Instituto Mario Penna, Minas Gerais, MG (Brazil). Hospital Luxemburgo

    2013-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  19. Adjuvant postoperative radiation therapy for carcinoma of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Moon, Hye Seong; Kim, Seung Cheol; Kim, Chong Il; Ahn, Jung Ja [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2003-09-01

    This study was undertaken to evaluate the efficacy of postoperative radiotherapy, and to investigate the prognostic factors for FIGO stages IB-IIB cervical cancer patients who were treated with simple hysterectomy, or who had high-risk factors following radical hysterectomy and pelvic lymph node dissection. Between March 1986 and December 1998, 58 patients, with FIGO stages IB-IIB cervical cancer were included in this study, The indications for postoperative radiation therapy were based on the pathological findings, including lymph node metastasis, positive surgical margin, parametrial extension, Iymphovascular invasion, invasion of more than half the cervical stroma, uterine extension and the incidental finding of cervix cancer following simple hysterectomy. All patients received external pelvic radiotherapy, and 5 patients, received an additional intracavitary radiation therapy. The radiation dose from the external beam to the whole pelvis was 45 - 50 Gy. Vagina cuff irradiation was performed, after completion of the external beam irradiation, al a low-dose rate of CS-137, with the total dose of 4488-4932 chy (median: 4500 chy) at 5 mm depth from the vagina surface. The median follow-up period was 44 months (15-108 months), The 5-yr actuarial local control rate, distant free survival and disease-free survival rate were 98%, 95% and 94%, respectively. A univariate analysis of the clinical and pathological parameters revealed that the clinical stage (p=0.0145), status of vaginal resection margin (p=0.0002) and parametrial extension (p=0.0001) affected the disease-free survival. From a multivariate analysis, only a parametrial extension independently influenced the disease-free survival. Five patients (9%) experienced Grade 2 late treatment-related complications, such as radiation proctitis (1 patient), cystitis (3 patients) and lymphedema of the leg (1 patient). No patient had grade 3 or 4 complications. Our results indicate that postoperative radiation therapy can

  20. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Eftekhari

    2015-01-01

    Full Text Available Objective(s: Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed and 36 patients with right-sided cancer (controls] were enrolled. Dose-volume histogram (DVH [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46. In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03 and anterolateral (17.1% versus 2.8%, P=0.049 walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS of>3 was observed in twelve cases (34.3%, while in five of the controls (13.9%,(Odds ratio=1.3. There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial

  1. Shielding evaluation and acceptance testing of a prefabricated, modular, temporary radiation therapy treatment facility.

    Science.gov (United States)

    Ezzell, Gary A

    2004-01-01

    We have recently commissioned a temporary radiation therapy facility that is novel in two aspects: it was constructed using modular components, and the LINAC was installed in one of the modular sections before it was lifted into position. Additional steel and granular fill was added to the modular sections on-site during construction. The building will be disassembled and removed when no longer needed. This paper describes the radiation shielding specifications and survey of the facility, as well as the ramifications for acceptance testing occasioned by the novel installation procedure. The LINAC is a Varian 21EX operating at 6 MV and 18 MV. The radiation levels outside the vault satisfied the design criteria, and no anomalous leakage was detected along the joints of the modular structure. At 18 MV and 600 monitor units (MU) per minute, the radiation level outside the primary barrier walls was 8.5 micro Sv/h of photons; there were no detectable neutrons. Outside the direct-shielded door, the levels were 0.4 micro Sv/h of photons and 3.0 micro Sv/h of neutrons. The isocentricity of the accelerator met the acceptance criteria and was not affected by its preinstallation into an integrated baseframe and subsequent transport to the building site.

  2. Extrapleural pneumonectomy, photodynamic therapy and intensity modulated radiation therapy for the treatment of malignant pleural mesothelioma.

    Science.gov (United States)

    Du, Kevin L; Both, Stefan; Friedberg, Joseph S; Rengan, Ramesh; Hahn, Stephen M; Cengel, Keith A

    2010-09-01

    Intensity modulated radiation therapy (IMRT) has recently been proposed for the treatment of malignant pleural mesothelioma (MPM). Here, we describe our experience with a multimodality approach for the treatment of mesothelioma, incorporating extrapleural pneumonectomy, intraoperative photodynamic therapy and postoperative hemithoracic IMRT. From 2004-2007, we treated 11 MPM patients with hemithoracic IMRT, 7 of whom had undergone porfimer sodium-mediated PDT as an intraoperative adjuvant to surgical debulking. The median radiation dose to the planning treatment volume (PTV) ranged from 45.4-54.5 Gy. For the contralateral lung, V20 ranged from 1.4-28.5%, V5 from 42-100% and MLD from 6.8-16.5 Gy. In our series, 1 patient experienced respiratory failure secondary to radiation pneumonitis that did not require mechanical ventilation. Multimodality therapy combining surgery with increased doses of radiation using IMRT, and newer treatment modalities such as PDT , appears safe. Future prospective analysis will be needed to demonstrate efficacy of this approach in the treatment of malignant mesothelioma. Efforts to reduce lung toxicity and improve dose delivery are needed and provide the promise of improved local control and quality of life in a carefully chosen multidisciplinary approach.

  3. Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry.

    Science.gov (United States)

    Campajola, Luigi; Di Capua, Francesco

    2016-12-01

    Beyond their important economic role in commercial communications, satellites in general are critical infrastructure because of the services they provide. In addition to satellites providing information which facilitates a better understanding of the space environment and improved performance of physics experiments, satellite observations are also used to actively monitor weather, geological processes, agricultural development and the evolution of natural and man-made hazards. Defence agencies depend on satellite services for communication in remote locations, as well as for reconnaissance and intelligence. Both commercial and government users rely on communication satellites to provide communication in the event of a disaster that damages ground-based communication systems, provide news, education and entertainment to remote areas and connect global businesses. The space radiation environment is an hazard to most satellite missions and can lead to extremely difficult operating conditions for all of the equipment travelling in space. Here, we first provide an overview of the main components of space radiation environment, followed by a description of the basic mechanism of the interaction of radiation with matter. This is followed by an introduction to the space radiation hardness assurance problem and the main effects of natural radiation to the microelectronics (total ionizing dose, displacement damage and the single-event effect and a description of how different effects occurring in the space can be tested in on-ground experiments by using particle accelerators and radiation sources. We also discuss standards and the recommended procedures to obtain reliable results.

  4. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    Science.gov (United States)

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities.

  5. The evolving role of radiation therapy in paediatric oncology, Philadelphia, USA, 19-21 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, G. [Royal Prince Alfred Hospital, Camperdown, NSW (Australia); Sexton, M. [Peter MacCallum Cancer Institute, VIC (Australia).; Gray, A. [King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Oncology

    1995-11-01

    A summary of a conference reviewing recent developments and changes in the use of radiation therapy in paediatric oncology is reported. Although the use of radiation therapy has resulted in improved cure rates, the long-term complications of radiation in a paediatric population are recognised. More intensive systemic therapy and the increasing availability of prognostic data, including biological markers to tailor therapy to the individual patient, has resulted in a more selective use of radiation therapy. Changes in the management of specific tumour types are discussed.

  6. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    Science.gov (United States)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.; Kanekal, S. G.; Angelopoulos, V.; Green, J. C.; Goldstein, J.

    2016-06-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  7. Neurological Adverse Effects after Radiation Therapy for Stage II Seminoma

    DEFF Research Database (Denmark)

    Ebbeskov Lauritsen, Liv; Meidahl Petersen, Peter; Daugaard, Gedske

    2012-01-01

    We report 3 cases of patients with testicular cancer and stage II seminoma who developed neurological symptoms with bilateral leg weakness about 4 to 9 months after radiation therapy (RT). They all received RT to the para-aortic lymph nodes with a total dose of 40 Gy (36 Gy + 4 Gy as a boost....../or to the spinal cord. RT is believed to produce plexus injury by both direct toxic effects and secondary microinfarction of the nerves, but the exact pathophysiology of RT-induced injury is unclear. Since reported studies of radiation-induced neurological adverse effects are limited, it is difficult to estimate...... their frequency and outcome. The treatment of neurological symptoms due to RT is symptomatic....

  8. Combination Adriamycin and radiation therapy in gynecologic cancers

    Energy Technology Data Exchange (ETDEWEB)

    Watring, W.G.; Byfield, J.E.; Lagasse, L.D.; Lee, Y.D.; Juillard, G.; Jacobs, M.; Smith, M.L.

    1974-12-01

    Anthracyclic antibiotics, of which adriamycin is representative, have the ability to bind to cellular DNA and thereby interfere with the X ray repair process. When radiation survival curves of tissue cultures were studied, increased cell-killing was noted in those cultures with adriamycin over those without the drug. The mechanism by which this occurs may be related to a reduced rate of DNA strand break rejoining, as demonstrated by use of alkaline sucrose gradient techniques. A preliminary clinical Phase I study, in which patients with advanced gynecologic malignancy were treated by simultaneous adriamycin and X radiation, suggests that combined therapy is well-tolerated, and that such combinations may prove useful in selected patients.

  9. Hypofractionated radiation therapy of oral melanoma in five cats.

    Science.gov (United States)

    Farrelly, John; Denman, David L; Hohenhaus, Ann E; Patnaik, Amiya K; Bergman, Philip J

    2004-01-01

    Five cats with melanoma involving the oral cavity were treated with hypofractionated radiation therapy (RT). Cobalt photons were used to administer three fractions of 8.0 Gray (Gy) for a total dose of 24 Gy. Four cats received radiation on days 0, 7, and 21 and one cat received radiation on days 0, 7, and 13. One of the cats received additional irradiation following the initial treatment course. Two cats received chemotherapy. Their age ranged from 11 to 15 years with a median age of 12 years. Three cats had a response to radiation, including one complete response and two partial responses. All five cats were euthanized due to progression of disease, with one cat having evidence of metastatic disease at the time of euthanasia. The median survival time for the five cats was 146 days (range 66-224 days) from the start of RT. The results of this study suggest that oral melanoma in cats may be responsive to hypofractionated RT, but response does not seem to be durable.

  10. Role of Local Radiation Therapy in Cancer Immunotherapy.

    Science.gov (United States)

    Demaria, Sandra; Golden, Encouse B; Formenti, Silvia C

    2015-12-01

    The recent success of cancer immunotherapy has demonstrated the power of the immune system to clear tumors, generating renewed enthusiasm for identifying ways to induce antitumor immune responses in patients. Natural antitumor immune responses are detectable in a fraction of patients across multiple malignant neoplasms and can be reactivated by targeting rate-limiting immunosuppressive mechanisms. In most patients, however, interventions to induce a de novo antitumor immune response are necessary. We review growing evidence that radiation therapy targeted to the tumor can convert it into an in situ tumor vaccine by inducing release of antigens during cancer cell death in association with proinflammatory signals that trigger the innate immune system to activate tumor-specific T cells. In addition, radiation's effects on the tumor microenvironment enhance infiltration of activated T cells and can overcome some of the barriers to tumor rejection. Thus, the complementary effects of radiation on priming and effector phases of antitumor immunity make it an appealing strategy to generate immunity against a patient's own individual tumor, that through immunological memory, can result in long-lasting systemic responses. Several anecdotal cases have demonstrated the efficacy of combining radiation with available immunotherapies, and results of prospective trials are forthcoming.

  11. Injectable Colloidal Gold in a Sucrose Acetate Isobutyrate Gelating Matrix with Potential Use in Radiation Therapy

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Binderup, Tina; Hansen, Anders Elias

    2014-01-01

    External beam radiation therapy relies on the ability to deliver high radiation doses to tumor cells with minimal exposure to surrounding healthy tissue. Advanced irradiation techniques, including image-guided radiation therapy (IGRT), rely on the ability to locate tumors to optimize the therapeu...

  12. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Science.gov (United States)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  13. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  14. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Science.gov (United States)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  15. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  16. 3D measurement of absolute radiation dose in grid therapy

    Energy Technology Data Exchange (ETDEWEB)

    Trapp, J V [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia); Warrington, A P [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Partridge, M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Philps, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Leach, M O [Cancer Research UK Clinical MR Research Group, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  17. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay C. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Diehn, Felix E. [Department of Radiology, Mayo Clinic, Rochester, Minnesota (United States); Boughey, Judy C. [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert W., E-mail: mutter.robert@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  18. Treatment of retinoblastoma by precision megavoltage radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, J.; Peperzeel, H.A. van (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Tan, K.E.W.P. (Royal Dutch Eye Hospital, Utrecht, Netherlands)

    1985-02-01

    The principal treatment concept in the Utrecht Retinoblastoma Centre is megavoltage irradiation, followed by light coagulation and/or cryotherapy if there is any doubt as to whether the residual tumour is still active. Radiation therapy is administered by means of a simple but highly accurate temporal beam technique. A standardized dose of 45 Gy is given in 15 fractions of 3 Gy at 3 fractions per week. From 1971 to 1982, 39 children with retinoblastoma have been irradiated in at least one eye. Of the 73 affected eyes, 18 were primarily enucleated, one received light coagulation only, and 54 received radiation therapy. Of the 54 irradiated eyes, 32 were additionally treated by light coagulation and/or cryotherapy for suspicious residual tumour (in 29 eyes), recurrent tumour (in 1 eye), and/or new tumour (in 3 eyes) and 10 were ultimately enucleated. Two eyes also received hyperthermia. The percentages of cure of the irradiated eyes with a minimum follow-up of 2 years were 100% (14/14), 100% (9/9), 83% (10/12), 79% (11/14) and 0% (0/5) in the Reese-Ellsworth groups I to V-A, respectively. Of the saved eyes 95% achieved useful vision. Eighteen eyes developed a clinically detectable radiation cataract; in five of these the lens was aspirated. Cataracts developed exclusively in those lenses of which a posterior portion of more than 1 mm had to be included in the treatment field. The likelihood and the degree of cataract formation was found to be directly related to the dose of radiation to the germinative zone of the lens epithelium. The minimum cataractogenic dose found in this series was 8 Gy.

  19. What will it take for laser driven proton accelerators to be applied to tumor therapy?

    Science.gov (United States)

    Linz, Ute; Alonso, Jose

    2007-09-01

    After many years on the periphery of cancer therapy, the successes of proton and ion beams in tumor therapy are gradually receiving a higher degree of recognition. The considerable construction and acquisition costs are usually invoked to explain the slow market penetration of this favorable treatment modality. Recently, high-intensity lasers have been suggested as a potential, cost-saving alternative to cyclotrons or synchrotrons for oncology. This article will detail the technical requirements necessary for successful implementation of ion beam therapy (IBT)—the general term for proton and heavier-ion therapy. It will summarize the current state of laser acceleration of protons and will outline the very substantial developments still necessary for this technology to be successfully applied to IBT.

  20. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    Science.gov (United States)

    Bateman, F. B.; Desrosiers, M. F.; Hudson, L. T.; Coursey, B. M.; Bergstrom, P. M.; Seltzer, S. M.

    2003-08-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  1. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Ferguson, P.D. [Missouri Univ., Rolla, MO (United States). Dept. of Nuclear Engineering; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1993-10-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10{sup 20} neutrons/m{sup 2}s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons.

  2. Cherenkov radiation in a surface wave accelerator based on silicon carbide

    Science.gov (United States)

    Wang, Tianhong; Khudik, Vladimir; Shvets, Gennady

    2016-10-01

    We report on our theoretical investigations of Cherenkov-type emission of surface phonon polaritons (SPPs) by relativistic electron bunches. The polaritons are confined by a planar waveguide comprised of two SiC slabs separated by an air gap. The SPPs are generated in the spectral range known as the reststrahlen band, where the dielectric permittivity of SiC is negative. Two surface modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. However, both exhibits rapid spatial oscillations and beats behind the moving charge. Moreover, the longitudinal mode forms a reversed Cherenkov radiation cone due the negative group velocity for sufficiently small air gaps, but the transverse mode does not. The wakefield acceleration of electron beam inside the structure is also studied. Transverse instabilities and BBU effects can be suppressed by flat driver beam, meanwhile the longitudinal mode can support accelerating fields >1 GeV.

  3. Topical pimecrolimus and tacrolimus do not accelerate photocarcinogenesis in hairless mice after UVA or simulated solar radiation

    DEFF Research Database (Denmark)

    Lerche, C.M.; Philipsen, P.A.; Poulsen, T.;

    2009-01-01

    the absence of carcinogenic effect of tacrolimus alone and in combination with simulated solar radiation (SSR) on hairless mice. The aim of this study is to determine whether pimecrolimus accelerates photocarcinogenesis in combination with SSR or pimecrolimus and tacrolimus accelerate photocarcinogenesis...

  4. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  5. Image-guided radiation therapy. Paradigm change in radiation therapy; Bildgestuetzte Strahlentherapie. Paradigmenwechsel in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, F. [Universitaetsmedizin Mannheim der Universitaet Heidelberg, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Belka, C. [Klinikum der Ludwig-Maximilians-Universitaet, Klinik fuer Strahlentherapie und Radioonkologie, Muenchen (Germany); Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet, Institut fuer Klinische Radiologie, Muenchen (Germany); Schoenberg, S.O. [Universitaetsmedizin Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Mannheim (Germany)

    2012-03-15

    The introduction of image-guided radiotherapy (IGRT) has changed the workflow in radiation oncology more dramatically than any other innovation in the last decades. Imaging for treatment planning before the initiation of the radiotherapy series does not take alterations in patient anatomy and organ movement into account. The principle of IGRT is the temporal and spatial connection of imaging in the treatment position immediately before radiation treatment. The actual position and the target position are compared using cone-beam computed tomography (CT) or stereotactic ultrasound. The IGRT procedure allows a reduction of the safety margins and dose to normal tissue without an increase in risk of local recurrence. In the future the linear treatment chain in radiation oncology will be developed based on the closed-loop feedback principle. The IGRT procedure is increasingly being used especially for high precision radiotherapy, e.g. for prostate or brain tumors. (orig.) [German] Die Einfuehrung der bildgestuetzten Radiotherapie (IGRT - ''image-guided radiotherapy'') hat wie kaum eine andere Innovation die Behandlungsablaeufe in der Radioonkologie veraendert. Eine einmalige Bildgebung zur Bestrahlungsplanung vor der Behandlungsserie beruecksichtigt nicht die Aenderung der Patientengeometrie und die Organbeweglichkeit. Das Prinzip der IGRT besteht in der raeumlichen und zeitlichen Zusammenfuehrung von Bildgebung in der Bestrahlungsposition unmittelbar vor der eigentlichen Bestrahlung. Mittels Cone-beam-CT oder stereotaktischem Ultraschall wird die Ist- mit der Sollposition verglichen. Die IGRT erlaubt die Reduktion der Sicherheitssaeume und damit die Schonung des Normalgewebes, ohne das Rezidivrisiko zu erhoehen. Zukuenftig wird die lineare Behandlungskette in der Radioonkologie durch eine geschlossene, multipel rueckgekoppelte Therapieschleife ersetzt werden. Speziell bei Praezisionsbestrahlungen wie z. B. Prostata- oder Hirntumoren kommt die IGRT

  6. Radiation reaction effect on laser driven auto-resonant particle acceleration

    Science.gov (United States)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  7. Radiation reaction effect on laser driven auto-resonant particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  8. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  9. Acceleration and radiation of ultra-high energy protons in galaxy clusters

    CERN Document Server

    Vannoni, G; Gabici, S; Kelner, S R; Prosekin, A

    2009-01-01

    Clusters of galaxies are believed to be capable to accelerate protons at accretion shocks to energies exceeding 10^18 eV. At these energies, the losses caused by interactions of cosmic rays with photons of the Cosmic Microwave Background Radiation (CMBR) become effective and determine the maximum energy of protons and the shape of the energy spectrum in the cutoff region. The aim of this work is the study of the formation of the energy spectrum of accelerated protons at accretion shocks of galaxy clusters and of the characteristics of their broad band emission. The proton energy distribution is calculated self-consistently via a time-dependent numerical treatment of the shock acceleration process which takes into account the proton energy losses due to interactions with the CMBR. We calculate the energy distribution of accelerated protons, as well as the flux of broad-band emission produced by secondary electrons and positrons via synchrotron and inverse Compton scattering processes. We find that the downstre...

  10. Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-01-01

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

  11. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  12. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    Science.gov (United States)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm‑2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5–150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10‑14–10‑11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011–1013 Gy s‑1) can be used to investigate early radiation processes in native ionization tracks, down to 10‑12 s and 10‑9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of

  13. Investigation of the possibility of using photoneutron beams for radiation therapy.

    Science.gov (United States)

    Brahme, A; Montelius, A; Nordell, B; Reuthal, M; Svensson, H

    1980-11-01

    The possibility has been investigated of using electrons accelerated by a 50 MeV racetrack microtron for generation of photoneutron beams for radiation therapy. Central axis depth-dose curves have been measured in an A-150 tissue-equivalent phantom. Neutron half-value depths between 4.4 and 5.2 g cm-2 were obtained at an SSD of 100 cm for different converter materials and target geometries. At an absorbed dose ratio of 1:1 for neutrons and photons at the dose maximum, the total absorbed dose rates are estimated to be 0.1 Gy min-1 at 100 micronA electron current and a SSD of 100 cm. At a depth of 5 cm the neutron to photon absorbed dose ratio is typically 1:2 and the OER is expected to be about 1.8. Some dose distributional and radiobiological advantages of a physically mixed beam of neutrons and photons for external beam radiation therapy are discussed.

  14. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  15. The use of customized spreadsheets in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Balog, J.P.; Sibata, C.H.; Podgorsak, M.B.; Shin, K.H. [Roswell Park Memorial Inst., Buffalo, NY (United States)

    1995-06-01

    A number of radiation-therapy-related uses based on a commercially available spreadsheet program have been developed at our facility. The graphics and display capabilities inherent in these spreadsheet programs allow for concise visual results. The spreadsheets are used as an independent check for several types of radiation therapy dose calculations. A spreadsheet will verify the monitor units (MU) or time required to deliver a prescribed dose to a point on an isodose line as calculated by a commercial treatment planning system. Spreadsheet programs have been developed to perform the calculations necessary for the output calibration of cobalt and high-energy photon and electron beams according to the TG-21 protocol. The user must indicate which beam, electrometer, chamber, phantom material, temperature, pressure and depth of measurement that apply. The MU per arc is calculated based on the following: the average depth per arc as obtained from a commercial radiosurgery program, the collimator size, and the prescription dose. The patient`s width is entered into the spreadsheet program, which then calculates the MU needed to deliver a prescribed dose to the midline. (author).

  16. Radiation therapy plan checks in a paperless clinic.

    Science.gov (United States)

    Siochi, R Alfredo; Pennington, Edward C; Waldron, Timothy J; Bayouth, John E

    2009-01-27

    Traditional quality assurance checks of a patient's radiation therapy plan involve printing out treatment parameters from the treatment planning system and the "record and verify" (R&V) system and visually checking the information for one-to-one correspondence. In a paperless environment, one can automate this process through independent software that can read the treatment planning data directly and compare it against the parameters in the R&V system's database. In addition to verifying the data integrity, it is necessary to check the logical consistency of the data and the accuracy of various calculations. The results are then imported into the patient's electronic medical record. Appropriate workflows must be developed to ensure that no steps of the QA process are missed. This paper describes our electronic QA system (EQS), consisting of in-house software and workflows. The EQS covers 3D conformal and intensity modulated radiation therapy, electrons, stereotactic radiosurgery, total body irradiation, and clinical set ups with and without virtual simulation. The planning systems handled by our EQS are ADAC Pinnacle and Varian FASTPLAN, while the R&V systems are LANTIS and VARIS. The improvement in our plan check process over the paperless system is described in terms of the types of detected errors. The potential problems with the implementation and use of the EQS, as well as workarounds for data that are not easily accessible through electronic means, are described.

  17. Study of four cases of radiation colitis needed operation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigeru; Takesue, Yoshio; Yokoyama, Takashi [Hiroshima Univ. (Japan). School of Medicine] [and others

    1996-09-01

    On the 4 cases of operation for the late radiation effect, the process and notes for radiation colitis were described. Case 1; a female of 57 y with cervical carcinoma (IIIb) received 59.8 Gy of external irradiation and 24.0 Gy of intracervical irradiation. About 8 months after the radiotherapy, anemia due to gut bleeding was observed and hemorrhage was seen in the colon with the colon fiber. One year later, colostomy was performed. Case 2; a female of 79 y with cervical carcinoma (IIb) received 50.0 Gy of external irradiation and 18.0 Gy of intracervical irradiation. About 8 months after the therapy, gut bleeding and ileac symptom were observed and ulcer and stenosis in the sigmoid colon were seen. Sigmoidectomy was performed. Case 3; a female of 75 y with cervical carcinoma (IIIb) received external 49.8 Gy irradiation and intracervical 23.0 Gy irradiation. About 4 months after the therapy, anemia and ulcer with hemorrhage in the sigmoidal colon were recognized. Sigmoidectomy and colostomy were performed. Case 4; a female of 68 y with cervical carcinoma (IIb) and chronic renal failure received 50.4 Gy of external irradiation post hysterectomy. About 5 months later, iliac symptom was observed. She received ileectomy and then colostomy but died of MOF due to renal failure. (K.H.)

  18. Inflammatory bowel diseases activity in patients undergoing pelvic radiation therapy

    Science.gov (United States)

    Seisen, Thomas; Klotz, Caroline; Mazeron, Renaud; Maroun, Pierre; Petit, Claire; Deutsch, Eric; Bossi, Alberto; Haie-Meder, Christine; Chargari, Cyrus; Blanchard, Pierre

    2017-01-01

    Background Few studies with contradictory results have been published on the safety of pelvic radiation therapy (RT) in patients with inflammatory bowel disease (IBD). Methods From 1989 to 2015, a single center retrospective analysis was performed including all IBD patients who received pelvic external beam radiation therapy (EBRT) or brachytherapy (BT) for a pelvic malignancy. Treatment characteristics, IBD activity and gastrointestinal (GI) toxicity were examined. Results Overall, 28 patients with Crohn’s disease (CD) (n=13) or ulcerative colitis (n=15) were included in the present study. Median follow-up time after irradiation was 5.9 years. Regarding IBD activity, only one and two patients experienced a severe episode within and after 6 months of follow-up, respectively. Grade 3/4 acute GI toxicity occurred in 3 (11%) patients, whereas one (3.6%) patient experienced late grade 3/4 GI toxicity. Only patients with rectal IBD location (P=0.016) or low body mass index (BMI) (P=0.012) experienced more severe IBD activity within or after 6 months following RT, respectively. Conclusions We report an acceptable tolerance of RT in IBD patients with pelvic malignancies. Specifically, a low risk of uncontrolled flare-up was observed. PMID:28280621

  19. Practice comparisons between accelerated resolution therapy, eye movement desensitization and reprocessing and cognitive processing therapy with case examples.

    Science.gov (United States)

    Hernandez, Diego F; Waits, Wendi; Calvio, Lisseth; Byrne, Mary

    2016-12-01

    Recent outcomes for Cognitive Processing Therapy (CPT) and Prolonged Exposure (PE) therapy indicate that as many as 60-72% of patients retain their PTSD diagnosis after treatment with CPT or PE. One emerging therapy with the potential to augment existing trauma focused therapies is Accelerated Resolution Therapy (ART). ART is currently being used along with evidence based approaches at Fort Belvoir Community Hospital and by report has been both positive for clients as well as less taxing on professionals trained in ART. The following is an in-practice theoretical comparison of CPT, EMDR and ART with case examples from Fort Belvoir Community Hospital. While all three approaches share common elements and interventions, ART distinguishes itself through emphasis on the rescripting of traumatic events and the brevity of the intervention. While these case reports are not part of a formal study, they suggest that ART has the potential to augment and enhance the current delivery methods of mental health care in military environments.

  20. Stage IA non-Hodgkin's lymphoma of the Waldeyer's ring; Limited chemotherapy and radiation therapy versus radiation therapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Minoru (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology Dept. of Radiology, National Defense Medical College, Saitama (Japan)); Kondo, Makoto (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Hiramatsu, Hideko (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Ikeda, Yasuo (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Hematology); Mikata, Sumio (Chiba Univ. (Japan). School of Medicine); Katayama, Michiaki (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Ito, Hisao (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Kusano, Shoichi (Dept. of Radiology, National Defense Medical College, Saitama (Japan)); Kubo, Asuchishi (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology)

    1993-01-01

    Seventeen patients with stage IA non-Hodgkin's lymphoma of the Waldeyer's ring were treated with radiation therapy with or without chemotherapy. All lesions were judged as having intermediate grade malignancy in the Working Formulation. Eight patients received combined treatment with three cycles of cylcophosphamide, doxorubicin, vincristine and prednison (CHOP) and radiation therapy with 30 to 40 Gy. Another 9 patients were treated with radiation therapy 40 to 60 Gy alone. After a median follow-up of 69 months, all 8 patients, treated with combined modality were alive and relapse-free whereas 4 of the 9 treated with irradiation alone had relapsed. All relapses occurred transdiaphragmatically. Two of the 4 relapsing patients were saved, but the other two died of the disease. The 5-year relapse-free and cause-specific survival rates were 100% and 100% in the combined modality group, and 56% and 76% in the radiation therapy alone group (relapse-free: p=0.04, cause-specific: p=0.16). There were no serious complications related to treatment, although most patients complained of mouth dryness and most patients given CHOP had paresthesia. Our opinion was that the total impact of these two side-effects on quality of life was less pronounced after combined modality than after radiation therapy alone. Limited chemotherapy and radiation therapy seemed to be more beneficial than radiation therapy alone not only in relapse-free survival but also in quality of life after treatment. (orig.).

  1. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    Energy Technology Data Exchange (ETDEWEB)

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W. [Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); Komarnicky, Lydia T., E-mail: lydia.komarnicky-kocher@drexelmed.edu [Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, Pennsylvania (United States)

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  2. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    Science.gov (United States)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  3. Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets

    CERN Document Server

    Weng, S M; Sheng, Z M

    2014-01-01

    The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.

  4. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-10-1-0582 TITLE: ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer PRINCIPAL...ETS gene fusion status associated with clinical outcomes following radiation therapy , by analyzing both the collected biomarker and clinical data...denotes absence of an ERG fusion). ETS gene fusions status did not predict outcomes following radiation therapy , as demonstrated by Kaplan Meier

  5. Managing Radiation Therapy Side Effects: What to Do When You Have Loose Stools (Diarrhea)

    Science.gov (United States)

    ... rice • White toast Fruits and other foods • Applesauce • Bananas • Canned fruit, such as peaches and pears • Gelatin ( ... series of 9 Radiation Therapy Side Effects Fact Sheets at: www. cancer. gov/ radiation- side- effects

  6. Induced radioactivity of materials by stray radiation fields at an electron accelerator

    CERN Document Server

    Rokni, S H; Gwise, T; Liu, J C; Roesler, S

    2002-01-01

    Samples of soil, water, aluminum, copper and iron were irradiated in the stray radiation field generated by the interaction of a 28.5 GeV electron beam in a copper-dump in the Beam Dump East facility at the Stanford Linear Accelerator Center. The specific activity induced in the samples was measured by gamma spectroscopy and other techniques. In addition, the isotope production in the samples was calculated with detailed Monte Carlo simulations using the FLUKA code. The calculated activities are compared to the experimental values and differences are discussed.

  7. Some aspects of radiation protection near high-energy proton accelerators

    CERN Document Server

    Tuyn, Jan Willem Nicolaas

    1977-01-01

    The CERN site near Geneva borders Satigny and Meyrin in Switzerland and Saint-Genis-Pouilly and Prevention in France. The 600 MeV proton synchrocyclotron (SC) has been in operation since 1957, the 28 GeV proton synchrotron (PS) since 1960, and the Intersecting Storage Rings (ISR) since 1971. A fourth large accelerator, the 400 GeV super proton synchrotron (SPS), will soon be in service. The internal and external radiation protection problems caused by these machines, together with the solutions, are reviewed in the light of experience. (5 refs).

  8. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Byeong Mo Kim

    2015-11-01

    Full Text Available Ionizing radiation (IR, such as X-rays and gamma (γ-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  9. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.

    Science.gov (United States)

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-11-10

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  10. Skeletal sequelae of radiation therapy for malignant childhood tumors

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D' Angio, G.J.; Drummond, D.S. (UMDNJ Robert Wood Johnson Medical School, New Brunswick (USA))

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.

  11. Shielding analysis of proton therapy accelerators: a demonstration using Monte Carlo-generated source terms and attenuation lengths.

    Science.gov (United States)

    Lai, Bo-Lun; Sheu, Rong-Jiun; Lin, Uei-Tyng

    2015-05-01

    Monte Carlo simulations are generally considered the most accurate method for complex accelerator shielding analysis. Simplified models based on point-source line-of-sight approximation are often preferable in practice because they are intuitive and easy to use. A set of shielding data, including source terms and attenuation lengths for several common targets (iron, graphite, tissue, and copper) and shielding materials (concrete, iron, and lead) were generated by performing Monte Carlo simulations for 100-300 MeV protons. Possible applications and a proper use of the data set were demonstrated through a practical case study, in which shielding analysis on a typical proton treatment room was conducted. A thorough and consistent comparison between the predictions of our point-source line-of-sight model and those obtained by Monte Carlo simulations for a 360° dose distribution around the room perimeter showed that the data set can yield fairly accurate or conservative estimates for the transmitted doses, except for those near the maze exit. In addition, this study demonstrated that appropriate coupling between the generated source term and empirical formulae for radiation streaming can be used to predict a reasonable dose distribution along the maze. This case study proved the effectiveness and advantage of applying the data set to a quick shielding design and dose evaluation for proton therapy accelerators.

  12. Clinical significance of radiation therapy in breast recurrence and prognosis in breast-conserving surgery

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Reiki; Nagao, Kazuharu; Miyayama, Haruhiko [Kumamoto City Hospital (Japan)] [and others

    1999-03-01

    Significant risk factors for recurrence of breast cancer after breast-conserving therapy, which has become a standard treatment for breast cancer, are positive surgical margins and the failure to perform radiation therapy. In this study, we evaluated the clinical significance of radiation therapy after primary surgery or breast recurrence. In 344 cases of breast-conserving surgery, disease recurred in 43 cases (12.5%), which were classified as follows: 17 cases of breast recurrence, 13 cases of breast and distant metastasis, and 13 cases of distant metastasis. Sixty-two patients (16.7%) received radiation therapy. A positive surgical margin and younger age were significant risk factors for breast recurrence in patients not receiving postoperative radiation therapy but not in patients receiving radiation therapy. Radiation therapy may be beneficial for younger patients with positive surgical margins. Furthermore, radiation therapy after recurrence was effective in the cases not treated with postoperative radiation but not in cases with inflammatory recurrence. Patients with breast recurrence alone had significantly higher survival rates than did patients with distant metastases regardless of breast recurrence. These findings suggest that the adaptation criteria of radiation therapy for local control must be clarified. (author)

  13. Estimation of impairment of gustation and salivary secretion after radiation therapy for head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yoshiyuki; Fuwa, Nobukazu; Kikuchi, Yuzo [Aichi Cancer Center, Nagoya (Japan). Hospital; Morita, Kozo; Murao, Takayuki; Yokoi, Motoo

    1995-06-01

    To estimate impairment of gustation and salivary secretion after radiation therapy, we classified the degree of gustation and xerostomia into 4 grades in 50 patients who had received radiation therapy for head and neck malignancies. We found that gustation recovered in most patients regardless of radiation dose, but salivary secretion recovered only when radiation dose was less than 40 to 50 Gy on the gland of the affected side and less than 30 to 40 Gy on the opposite side. (author).

  14. Radiation therapy for feline cutaneous squamous cell carcinoma using a hypofractionated protocol.

    Science.gov (United States)

    Cunha, Simone C S; Carvalho, Luis Alfredo V; Canary, Paulo Cesar; Reisner, Marcio; Corgozinho, Katia B; Souza, Heloisa J M; Ferreira, Ana Maria R

    2010-04-01

    The objective of this paper was to evaluate the efficacy of a hypofractionated radiation protocol for feline facial squamous cell carcinoma (SCC). Twenty-five histologically confirmed SCCs in 15 cats were treated with four fractions of 7.6-10Gy each, with 1 week intervals. The equipment used was a linear accelerator Clinac 2100 delivering electron beam of 4 or 6MeV, and a bolus of 5 or 10mm was used in all lesions. Of the lesions, 44% were staged as T4, 16% as T3, 8% as T2 and 32% as T1. Of the irradiated lesions, 40% had complete response, 12% had partial response and 48% had no response (NR) to the treatment. For T1 tumors, 62.5% had complete remission. Mean overall survival time was 224 days. Owners requested euthanasia of cats having NR to the treatment. Mean disease free time was 271 days. Side effects observed were skin erythema, epilation, ulceration and conjunctivitis, which were graded according to Veterinary Radiation Therapy Oncology Group (VRTOG) toxicity criteria. Response rates found in this study (52%) were lower when compared to other protocols, probably due to technique differences, such as fractionation schedule, bolus thickness and energy penetration depth. However, the hypofractionated radiation protocol was considered safe for feline facial SCC. Modifications of this protocol are being planned with the objective of improving the cure rates in the future.

  15. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    Science.gov (United States)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  16. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    Science.gov (United States)

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  17. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  18. Evaluation and redesign of radiation shielding in a radionuclide production facility at a particle accelerator / Onalenna Kegopotsemang

    OpenAIRE

    Kegopotsemang, Onalenna

    2004-01-01

    iThemba LABS is a particle accelerator facility housing a radionuclide production facility that uses a 66 MeV proton beam to produce radionuclides for medical and industrial use. Ionising radiation is produced by a variety of sources at Themba LABS. Ionising is a health hazard. High doses can cause acute radiation syndrome, i.e. "radiation sickness". Lower doses cannot cause acute symptom, but carry a risk of radiation-related cancer. Ionising radiation is also detrimental to materials, and c...

  19. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto Galvao [Centro de Radioterapia Hospital Luxemburgo, Belo Horizonte, MG (Brazil)

    2011-07-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  20. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    Energy Technology Data Exchange (ETDEWEB)

    Karlica, Mile, E-mail: mile.karlica@icranet.org [La Sapienza University of Rome - ICRANet, Piazzale Aldo Moro 5, 00189 Rome (Italy)

    2015-12-17

    In this talk we present the sponge” model and its possible implications on the GRB afterglow light curves. “Sponge” model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  1. Experimental demonstration of a new radiation mechanism: emission by an oscillating, accelerated, superluminal polarization current

    CERN Document Server

    Ardavan, A; Ardavan, H; Fopma, J; Halliday, D; Hayes, W

    2004-01-01

    We describe the experimental implementation of a superluminal ({\\it i.e.} faster than light {\\it in vacuo}) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments lead one to expect that the radiation emitted from each volume element of such a polarization current will comprise a \\v{C}erenkov-like envelope with two sheets that meet along a cusp. The emission from the experimental machine is in good agreement with these expectations, the combined effect of the volume elements leading to tightly-defined beams of a well-defined geometry, determined by the source speed and trajectory. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These are due to the detection over a short time period (in the laboratory frame) of radiation emitted over a considerably longer period of source time. Consequently, the intensity of the radiation at these angles was observed to decline more slowly with increasing d...

  2. Radiation therapy of lung carcinoma; Strahlentherapie des Bronchialkarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, S.; Debus, J.; Hof, H.; Bischof, M. [Universitaetsklinikum Heidelberg, Abteilung Radioonkologie und Strahlentherapie, Heidelberg (Germany)

    2010-08-15

    At first presentation and primary diagnosis approximately 50% of patients with non-small cell lung carcinoma (NSCLC) and 25% of patients with small cell lung carcinoma (SCLC) have a potentially curable tumor stage. Definitive, adjuvant and neoadjuvant radio- (chemo-)therapy play an important role as part of multimodal treatment approaches. High radiation doses can be achieved in tumor areas with modern radiotherapy planning and treatment techniques without an increase of side-effects. The 3 year overall survival after primary radiotherapy is approximately 50% for patients with NSCLC in stage I and 20% in stage IIIA. Radiotherapy can be used in patients with progressive metastatic disease after insufficient response to systemic therapy with threatening thoracic symptoms and for palliative treatment of cerebral, lymphatic and osseous metastases. (orig.) [German] Etwa 50% der Patienten mit einem nichtkleinzelligen Bronchialkarzinom (NSCLC, ''non-small cell lung carcinoma'') und 25% der Patienten mit einem kleinzelligen Bronchialkarzinom (SCLC, ''small cell lung carcinoma'') befinden sich zum Zeitpunkt der Primaerdiagnose in einem potenziell heilbaren Tumorstadium. Die definitive, adjuvante und neoadjuvante Radio- (chemo-)therapie hat im Rahmen der multimodalen Behandlungskonzepte einen festen Stellenwert. Durch den Einsatz modernster Techniken bei der Bestrahlungsplanung und -therapie koennen hohe Strahlendosen bei gleichzeitiger Schonung des gesunden Gewebes appliziert werden. Die 3-Jahres-Ueberlebensraten fuer Patienten mit NSCLC betragen nach primaerer Bestrahlung {approx}50% im Stadium I und {approx}20% im Stadium IIIA. Im metastasierten Stadium wird eine Radiotherapie bei unzureichendem Ansprechen der systemischen Behandlung mit drohender thorakaler Symptomatik sowie zur palliativen Behandlung zerebraler, lymphogener oder ossaerer Metastasen eingesetzt. (orig.)

  3. submitter Radiation Protection Studies for CERN LINAC4/SPL Accelerator Complex

    CERN Document Server

    Mauro, Egidio; Silari, Marco

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H$^-$ linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This thesis summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed 1) to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, 2) to estimate the radiological i...

  4. Automatic CT simulation optimization for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  5. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Christopher A., E-mail: barkerc@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Postow, Michael A. [Department of Medicine, Melanoma and Sarcoma Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  6. Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX

    Science.gov (United States)

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Cummings, J. R.; Hovestadt, D.; Kanekal, S.; Klecker, B.; Mewaldt, R. A.; Zwickl, R. D.

    1994-01-01

    High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.

  7. Shielding design and dose assessment for accelerator based neutron capture therapy.

    Science.gov (United States)

    Howard, W B; Yanch, J C

    1995-05-01

    Preparations are ongoing to test the viability and usefulness of an accelerator source of epithermal neutrons for ultimate use in a clinical environment. This feasibility study is to be conducted in a shielded room located on the Massachusetts Institute of Technology campus and will not involve patient irradiations. The accelerator production of neutrons is based on the 7Li(p, n)7Be reaction, and a maximum proton beam current of 4 mA at an energy of 2.5 MeV is anticipated. The resultant 3.58 x 10(12) neutrons s-1 have a maximum energy of 800 keV and will be substantially moderated. This paper describes the Monte Carlo methods used to estimate the neutron and photon dose rates in a variety of locations in the vicinity of the accelerator, as well as the shielding configuration required when the device is run at maximum current. Results indicate that the highest absorbed dose rate to which any individual will be exposed is 3 microSv h-1 (0.3 mrem h-1). The highest possible yearly dose is 0.2 microSv (2 x 10(-2) mrem) to the general public or 0.9 mSv (90 mrem) to a radiation worker in close proximity to the accelerator facility. The shielding necessary to achieve these dose levels is also discussed.

  8. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    Science.gov (United States)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  9. Gamma radiation and magnetic field mediated delay in effect of accelerated ageing of soybean.

    Science.gov (United States)

    Kumar, Mahesh; Singh, Bhupinder; Ahuja, Sumedha; Dahuja, Anil; Anand, Anjali

    2015-08-01

    Soybean seeds were exposed to gamma radiation (0.5, 1, 3 and 5 kGy), static magnetic field (50, 100 and 200 mT) and a combination of gamma radiation and magnetic energy (0.5 kGy + 200 mT and 5 kGy + 50 mT) and stored at room temperature for six months. These seeds were later subjected to accelerated ageing treatment at 42 °C temperature and 95-100 % relative humidity and were compared for various physical and biochemical characteristics between the untreated and the energized treatments. Energy treatment protected the quality of stored seeds in terms of its protein and oil content . Accelerated aging conditions, however, affected the oil and protein quantity and quality of seed negatively. Antioxidant enzymes exhibited a decline in their activity during aging while the LOX activity, which reflects the rate of lipid peroxidation, in general, increased during the aging. Gamma irradiated (3 and 5 kGy) and magnetic field treated seeds (100 and 200 mT) maintained a higher catalase and ascorbate peroxidase activity which may help in efficient scavenging of deleterious free radical produced during the aging. Aging caused peroxidative changes to lipids, which could be contributed to the loss of oil quality. Among the electromagnetic energy treatments, a dose of 1-5 kGy of gamma and 100 mT, 200 mT magnetic field effectively slowed the rate of biochemical degradation and loss of cellular integrity in seeds stored under conditions of accelerated aging and thus, protected the deterioration of seed quality. Energy combination treatments did not yield any additional protection advantage.

  10. Early effects of preoperative radiation therapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Shigeo; Igarashi, Tatsuo; Ito, Haruo

    1983-10-01

    22 patients with high grade invasive bladder cancer were treated with preoperative radiation therapy (910 rad by fast neutron or 3000 rad by X ray during 2 weeks) followed by radical cystectomy and urinary diversion. 62.5 % of patients showed reduction in tumor size more than 50% evaluated by cystogram. Stage down was observed in 38% of patients compared between clinical and pathological stage. Histopathological effect of GII or GIII, according to the criteria described by Ohboshi, was noticed in 79 % of the patients. Better effect seemed to be obtained in fast neutron treated group than in X ray group. 19 patients received curative surgery, and 18 patients were alive without recurrence after 10 months (mean observed term). One died from lung metastasis 4.5 months after surgery. 50% of the patients complained of side effects of irradiation although they were tolerable, and 32% of the patients had major complications of surgery.

  11. External radiation therapy for internal fistulation of malignant obstructive jaundice

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Yoshikazu; Miyazaki, Minoru; Yasumasa, Keigo; Higuti, Takuya; Hayashi, Hiroki; Iwahashi, Masahiro; Ishikawa, Shirou; Sumimura, Junichi; Nagai, Isao [Kinan General Hospital, Tanabe, Wakayama (Japan)

    1999-03-01

    Internal fistulation is one of way to improve QOL for patients afflicted by malignant obstructive jaundice. Of 15 patients with obstructive jaundice secondary to malignancy in the past three years, percutaneous transhepatic biliary drainage (PTBD) was performed in all cases, and internal fistulation was achieved in six and not in the other nine. Three of successful cases were irradiated with 10 MV x-ray using parallel opposing fields, with average dose of 29 Gy. There were no complaints of vomiting and nausea, pneumonia, or GI bleeding during radiation therapy. For the irradiated cases, it took 52 days from PTBD to fistulation. Internal fistulated patients had no problem with cholangitis or tube trouble, and all were discharged with good QOL. (author)

  12. [Big data and their perspectives in radiation therapy].

    Science.gov (United States)

    Guihard, Sébastien; Thariat, Juliette; Clavier, Jean-Baptiste

    2017-02-01

    The concept of big data indicates a change of scale in the use of data and data aggregation into large databases through improved computer technology. One of the current challenges in the creation of big data in the context of radiation therapy is the transformation of routine care items into dark data, i.e. data not yet collected, and the fusion of databases collecting different types of information (dose-volume histograms and toxicity data for example). Processes and infrastructures devoted to big data collection should not impact negatively on the doctor-patient relationship, the general process of care or the quality of the data collected. The use of big data requires a collective effort of physicians, physicists, software manufacturers and health authorities to create, organize and exploit big data in radiotherapy and, beyond, oncology. Big data involve a new culture to build an appropriate infrastructure legally and ethically. Processes and issues are discussed in this article.

  13. [Radiation therapy in simultaneous choroidal and brain metastases].

    Science.gov (United States)

    Conill, C; Jorcano, S; Planas, I; Marruecos, J; Casas, F; Fontenla, J R

    2005-09-01

    Choroidal metastases from lung cancer can be the initial clinical manifestation of metastasic disease, although they generally coexist with at least two more metastasic sites. The most common symptom is decreased vision, however 20% of brain metastases can present with visual alterations. A differential diagnosis within brain metastases and/or choroidal is necessary. We present the case of a patient with lung cancer and decreased vision who was diagnosed as simultaneous choroidal and brain metastases. Radiation therapy (20Gy/5fractions) significantly improves decreased vision. This case shows that, although life expectancy of patients with metastasic lung cancer is short, an adequate diagnosis and treatment, can improve the quality of life of those patients.

  14. On-Line Adaptive Radiation Therapy: Feasibility and Clinical Study

    Directory of Open Access Journals (Sweden)

    Taoran Li

    2010-01-01

    Full Text Available The purpose of this paper is to evaluate the feasibility and clinical dosimetric benefit of an on-line, that is, with the patient in the treatment position, Adaptive Radiation Therapy (ART system for prostate cancer treatment based on daily cone-beam CT imaging and fast volumetric reoptimization of treatment plans. A fast intensity-modulated radiotherapy (IMRT plan reoptimization algorithm is implemented and evaluated with clinical cases. The quality of these adapted plans is compared to the corresponding new plans generated by an experienced planner using a commercial treatment planning system and also evaluated by an in-house developed tool estimating achievable dose-volume histograms (DVHs based on a database of existing treatment plans. In addition, a clinical implementation scheme for ART is designed and evaluated using clinical cases for its dosimetric qualities and efficiency.

  15. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  16. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  17. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve

  18. Modern Radiation Therapy for Primary Cutaneous Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena, E-mail: lena.specht@regionh.dk [Departments of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Dabaja, Bouthaina [Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester (United Kingdom); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Stanford, California (United States)

    2015-05-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era.

  19. A practical three-dimensional dosimetry system for radiation therapy.

    Science.gov (United States)

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical

  20. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Karen [Department of Radiation Oncology, Liverpool Hospital, Sydney (Australia); Stewart, James [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Kelly, Valerie [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Xie, Jason [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Brock, Kristy K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Moseley, Joanne [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Cho, Young-Bin; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Lundin, Anna; Rehbinder, Henrik; Löf, Johan [RaySearch Laboratories AB, Stockholm (Sweden); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario (Canada); Milosevic, Michael, E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  1. Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma

    Directory of Open Access Journals (Sweden)

    Satoru Takeuchi

    2014-01-01

    Full Text Available Background: A recent phase 1/2 clinical trial argued for caution for the use of sulfasalazine in progressive glioblastoma (GBM. However, the study enrolled patients with recurrent or progressive high-grade glioma indicating that patients recruited probably had severe disease. Thus, the study may not accurately reflect the effectiveness of sulfasalazine for GBM and we hypothesized that earlier sulfasalazine administration may lead to anticancer effects. Aim: The aim of this study was to investigate whether sulfasalazine can improve the outcomes of patients with newly diagnosed GBM. Subjects and Methods: A total of 12 patients were treated with temozolomide and sulfasalazine with radiation therapy after surgery. Twelve patients with primary GBM treated with temozolomide and radiation therapy formed the control group. Progression-free survival (PFS, overall survival (OS and seizure-free survival (SFS curves were obtained using the Kaplan-Meier method. The survival curves were compared using the log-rank test. Results: The median OS, PFS and SFS did not differ between the groups. Grade 3 or 4 adverse events occurred over the duration of the study in nine (75% patients. The median SFS was 12 months in nine patients who received sulfasalazine administration for more than 21 days, which was strongly but not significantly longer than the 3 months observed in the control group (P = 0.078. Conclusions: Sulfasalazine treatment with temozolomide plus radiotherapy for newly diagnosed primary GBM is associated with a high rate of discontinuation due to hematologic toxic effects. This treatment may have no effect on OS or PFS, although it may improve seizure control if an adequate dose can be administered.

  2. Proton-minibeam radiation therapy: A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y. [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Fois, G. R. [Dipartimento di Fisica, Universita degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042 (Italy)

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  3. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  4. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  5. A Patterns of Care Study of the Various Radiation Therapies for Prostate Cancer among Korean Radiation Oncologists in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung Univ., Daegu (Korea, Republic of); Kim, Jae Sung; Ha, Sung Whan [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2008-06-15

    To conduct a nationwide academic hospital patterns of the practice status and principles of radiotherapy for prostate cancer. The survey will help develop the framework of a database of Korean in Patterns of Case Study. A questionnaire about radiation treatment status and principles was sent to radiation oncologists in charge of prostate cancer treatment at thirteen academic hospitals in Korea. The data was analyzed to find treatment principles among the radiation oncologists when treating prostate cancer. The number of patients with prostate cancer and treated with radiation ranged from 60 to 150 per academic hospital in Seoul City and 10 to 15 outside of Seoul City in 2006. The primary diagnostic methods of prostate cancer included the ultrasound guided biopsy on 6 to 12 prostate sites (mean=9), followed by magnetic resonance imaging and a whole body bone scan. Internal and external immobilizations were used in 61.5% and 76.9%, respectively, with diverse radiation targets. Whole pelvis radiation therapy (dose ranging from 45.0 to 50.4 Gy) was performed in 76.9%, followed by the irradiation of seminal vesicles (54.0{approx}73.8 Gy) in 92.3%. The definitive radiotherapy doses were increased as a function of risk group, but the range of radiation doses was wide (60.0 to 78.5 Gy). Intensity modulated radiation therapy using doses greater than 70 Gy, were performed in 53.8% of academic hospitals. In addition, the simultaneous intra-factional boost (SIB) technique was used in three hospitals; however, the target volume and radiation dose were diverse. Radiation therapy to biochemical recurrence after a radical prostatectomy was performed in 84.6%; however, the radiation dose was variable and the radiation field ranged from whole pelvis to prostate bed. The results of this study suggest that a nationwide Korean Patterns of Care Study is necessary for the recommendation of radiation therapy guidelines of prostate cancer.

  6. An analysis of the incidence and related factors for radiation dermatitis in breast cancer patients who receive radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Young; Kwon, Hyoung Cheol; Kim, Jung Soo [Dept. of Radiation Oncology, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Heui Kwan [Prebyterian Medical Center, Jeonju (Korea, Republic of)

    2010-11-15

    We analyzed the incidence and related factors of radiation dermatitis; at first, to recognize whether a decrease in radiation dermatitis is possible or not in breast cancer patients who received radiation therapy. Of 338 patients, 284 with invasive breast cancer who received breast conservation surgery with radiotherapy at Chonbuk National University Hospital from January 2007 to June 2009 were evaluated. Patients who also underwent bolus, previous contralateral breast irradiation and irradiation on both breasts were excluded. For patients who appeared to have greater than moderate radiation dermatitis, the incidence and relating factors for radiation dermatitis were analyzed retrospectively. A total of 207 and 77 patients appeared to have RTOG grade 0/1 or above RTOG grade 2 radiation dermatitis, respectively. The factors found to be statistically significant for the 77 patients who appeared to have greater than moderate radiation dermatitis include the presence of lymphocele due to the stasis of lymph and lymph edema which affect the healing disturbance of radiation dermatitis (p=0.003, p=0.001). Moreover, an allergic reaction to plaster due to the immune cells of skin and the activation of cytokine and concomitant hormonal therapy were also statistically significant factors (p=0.001, p=0.025). Most of the breast cancer patients who received radiation therapy appeared to have a greater than mild case of radiation dermatitis. Lymphocele, lymphedema, an allergy to plaster and concomitant hormonal therapy which affect radiation dermatitis were found to be significant factors. Consequently, we should eliminate lymphocele prior to radiation treatment for patients who appear to have an allergic reaction to plaster. We should also instruct patients of methods to maintain skin moisture if they appear to have a greater than moderate case of radiation dermatitis.

  7. Stroke-like Migraine Attacks after Radiation Therapy Syndrome

    Institute of Scientific and Technical Information of China (English)

    Qian Zheng; Li Yang; Li-Ming Tan; Li-Xia Qin; Chun-Yu Wang; Hai-Nan Zhang

    2015-01-01

    Objective:To summarize the clinical presentation,pathogenesis,neuroimaging,treatment,and outcome of stroke-like migraine attacks after radiation therapy (SMART) syndrome,and to propose diagnostic criteria for this disorder.Data Sources:We searched the PubMed database for articles in English published from 1995 to 2015 using the terms of "stroke-like AND migraine AND radiation." Reference lists of the identified articles and reviews were used to retrieve additional articles.Study Selection:Data and articles related to late-onset effects of cerebral radiation were selected and reviewed.Results:SMART is a rare condition that involves complex migraines with focal neurologic deficits following cranial irradiation for central nervous system malignancies.The recovery,which ranges from hours to days to weeks,can be partial or complete.We propose the following diagnostic criteria for SMART:(1) Remote history of therapeutic external beam cranial irradiation for malignancy;(2) prolonged,reversible clinical manifestations mostly years after irradiation,which may include migraine,seizures,hemiparesis,hemisensory deficits,visuospatial defect,aphasia,confusion and so on;(3) reversible,transient,unilateral cortical gadolinium enhancement correlative abnormal T2 and fluid-attenuated inversion recovery signal of the affected cerebral region;(4) eventual complete or partial recovery,the length of duration of recovery ranging from hours to days to weeks;(5) no evidence of residual or recurrent tumor;(6) not attributable to another disease.To date,no specific treatment has been identified for this syndrome.Conclusions:SMART is an extremely rare delayed complication of brain irradiation.However,improvements in cancer survival rates have resulted in a rise in its frequency.Hence,awareness and recognition of the syndrome is important to make a rapid diagnosis and avoid aggressive interventions such as brain biopsy and cerebral angiography.

  8. Long-term outcomes for adult craniopharyngioma following radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masson-Cote, Laurence; Masucci, Giuseppina Laura; Millar, Barbara-Ann; Laperriere, Normand J. [Dept. of Radiation Oncology, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada); Atenafu, Eshetu G. [Dept. of Biostatistics, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada); Cusimano, Michael [Dept. of Surgery, Div. of Neurosurgery, St. Michaels Hospital, Toronto (Canada); Croul, Sidney [Dept. of Pathology, Univ. of Toronto, Toronto (Canada); Mason, Warren [Dept. of Medicine, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada); Sahgal, Arjun [Dept. of Radiation Oncology, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada), E-mail: Arjun.sahgal@rmp.uhn.on.ca; Dept. of Radiation Oncology, Sunnybrook Health Sciences Center, Univ. of Toronto, Toronto (Canada)

    2013-01-15

    Background. We report long-term outcomes in adult patients with craniopharyngioma following surgery and radiation therapy (RT). Material and methods. Fifty-three patients treated with RT (median, 50 Gy in 25 fractions) between 1980 and 2009 with pathologically confirmed craniopharyngioma were reviewed (53% solid and 47% cystic/solid). The median age was 53 years (range, 22-76), 53% were female, 83% were sub-totally resected, 6% were gross totally resected and 11% had a biopsy and/or cyst aspiration alone. RT was delivered adjuvantly in 53% of patients as opposed to salvage intent upon progression. Results. Median follow-up was seven years (86 months, range, 8-259). The 5- and 10-year progression-free survival (PFS) rates were 85% and 69%, overall survival (OS) rates were 76% and 70%, and cause-specific survival (CSS) rates were both 88%, respectively. Both univariable and multivariable analysis identified age (<53 or {>=}53) as a prognostic factor for OS (p =0.0003) and CSS (p =0.05). PFS was observed to be worse in patients with >2 surgeries prior to RT (p =0.01). Neither the intent of radiation or tumor type (cystic vs. solid/cystic) were prognostic or predictive. New endocrinopathies and visual dysfunction were observed in 53% and 17% of patients post-surgery, and in 11% and 6% post-RT, respectively. Conclusion. We report long-term favorable PFS, CSS and OS for craniopharyngioma post-RT. We observe age as a significant prognostic factor, however, timing of radiation was not.

  9. On bolus for megavoltage photon and electron radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Vedang [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Palmer, Lisa; Mudge, Ray [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Jiang, Runqing [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Fleck, Andre [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Schaly, Bryan [London Regional Cancer Program, London, Ontario (Canada); Osei, Ernest [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Charland, Paule, E-mail: paule.charland@grhosp.on.ca [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada)

    2013-10-01

    Frequently, in radiation therapy one must treat superficial lesions on cancer patients; these are at or adjacent to the skin. Megavoltage photon radiotherapy penetrates through the skin to irradiate deep-seated tumors, with skin-sparing property. Hence, to treat superficial lesions, one must use a layer of scattering material to feign as the skin surface. Although megavoltage electron beams are used for superficial treatments, one occasionally needs to enhance the dose near the surface. Such is the function of a “bolus,” a natural or synthetically developed material that acts as a layer of tissue to provide a more effective treatment to the superficial lesions. Other uses of boluses are to correct for varying surface contours and to add scattering material around the patient's surface. Materials used as bolus vary from simple water to metal and include various mixtures and compounds. Even with the modernization of the technology for external-beam therapy and the emergence of various commercial boluses, the preparation and utilization of a bolus in clinical radiotherapy remains an art. Considering the varying experiences and practices, this paper briefly summarizes available boluses that have been proposed and are employed in clinical radiotherapy. Although this review is not exhaustive, it provides some initial guidance and answers questions that may arise in clinical practice.

  10. Molecular targeted treatment and radiation therapy for rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Friederike; Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus [Dept. of Radiation Therapy, Univ. of Frankfurt/Main (Germany)

    2009-06-15

    Background: EGFR (epidermal growth factor receptor) and VEGF (vascular endothelial growth factor) inhibitors confer clinical benefit in metastatic colorectal cancer when combined with chemotherapy. An emerging strategy to improve outcomes in rectal cancer is to integrate biologically active, targeted agents as triple therapy into chemoradiation protocols. Material and methods: cetuximab and bevacizumab have now been incorporated into phase I-II studies of preoperative chemoradiation therapy (CRT) for rectal cancer. The rationale of these combinations, early efficacy and toxicity data, and possible molecular predictors for tumor response are reviewed. Computerized bibliographic searches of Pubmed were supplemented with hand searches of reference lists and abstracts of ASCO and ASTRO meetings. Results: the combination of cetuximab and CRT can be safely applied without dose compromises of the respective treatment components. Disappointingly low rates of pathologic complete remission have been noted in several phase II studies. The K-ras mutation status and the gene copy number of EGFR may predict tumor response. The toxicity pattern (radiation-induced enteritis, perforations) and surgical complications (wound healing, fistula, bleeding) observed in at least some of the clinical studies with bevacizumab and CRT warrant further investigations. Conclusion: longer follow-up (and, finally, randomized trials) is needed to draw any firm conclusions with respect to local and distant failure rates, and toxicity associated with these novel treatment approaches. (orig.)

  11. Hyperbaric Oxygen Therapy in Treating Long-Term Gastrointestinal Adverse Effects Caused by Radiation Therapy in Patients With Pelvic Cancer

    Science.gov (United States)

    2011-07-14

    Bladder Cancer; Cervical Cancer; Colorectal Cancer; Endometrial Cancer; Gastrointestinal Complications; Long-term Effects Secondary to Cancer Therapy in Adults; Ovarian Cancer; Prostate Cancer; Radiation Toxicity; Sarcoma; Testicular Germ Cell Tumor; Vaginal Cancer

  12. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  13. The concept and evolution of involved site radiation therapy for lymphoma

    DEFF Research Database (Denmark)

    Specht, Lena; Yahalom, Joachim

    2015-01-01

    We describe the development of radiation therapy for lymphoma from extended field radiotherapy of the past to modern conformal treatment with involved site radiation therapy based on advanced imaging, three-dimensional treatment planning and advanced treatment delivery techniques. Today, radiatio...

  14. Doses to Carotid Arteries After Modern Radiation Therapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M.V.; Brodin, Nils Patrik; Aznar, Marianne Camille

    2013-01-01

    Hodgkin lymphoma (HL) survivors are at an increased risk of stroke because of carotid artery irradiation. However, for early-stage HL involved node radiation therapy (INRT) reduces the volume of normal tissue exposed to high doses. Here, we evaluate 3-dimensional conformal radiation therapy (3D-C...

  15. Dysuria Following Stereotactic Body Radiation Therapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Einsley-Marie eJanowski

    2015-07-01

    Full Text Available Background: Dysuria following prostate radiation therapy is a common toxicity that adversely affects patients’ quality of life and may be difficult to manage. Methods: 204 patients treated with stereotactic body radiation therapy (SBRT from 2007 to 2010 for localized prostate carcinoma with a minimum follow up of three years were included in this retrospective review of prospectively collected data. All patients were treated to 35-36.25Gy in 5 fractions delivered with robotic SBRT with real time fiducial tracking. Dysuria and other lower urinary tract symptoms were assessed via Question 4b (Pain or burning on urination of the Expanded Prostate Index Composite (EPIC-26 and the American Urological Association (AUA Symptom Score at baseline and at routine follow up. Results: 204 patients (82 low-, 105 intermediate-, and 17 high risk according to the D’Amico classification at a median age of 69 years (range 48-91 received SBRT for their localized prostate cancer with a median follow up of 47 months. Bother associated with dysuria significantly increased from a baseline of 12% to a maximum of 43% at one month (p<0.0001. There were two distinct peaks of moderate to severe dysuria bother at 1 month and at 6-12 months, with 9% of patients experiencing a late transient dysuria flare. While a low level of dysuria was seen through the first two years of follow-up, it returned to below baseline by two years (p=0.91. The median baseline AUA score of 7.5 significantly increased to 11 at 1 month (p<0.0001 and returned to 7 at 3 months (p= 0.54. Patients with dysuria had a statistically higher AUA score at baseline and at all follow-ups up to 30 months. Dysuria significantly correlated with dose and AUA score on multivariate analysis. Frequency and strain significantly correlated with dysuria on stepwise multivariate analysis.Conclusions: The rate and severity of dysuria following SBRT is comparable to patients treated with other radiation modalities.

  16. Radiation Reaction Effect on Laser Driven Auto-Resonant Particle Acceleration

    CERN Document Server

    Sagar, Vikram; Kaw, P K

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear as well as circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region the two significant effects on particle dynamics are seen viz., (1) saturation in energy gain by the initially resonant particle, (2) net energy gain by a initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the optimum choice of parameters this scheme can be efficiently used to produce electrons with energies in the range of hundreds of TeV. The quantum corrections to the Landu-Lifshitz equation of motion have also been taken into account. The difference in the energy gain...

  17. Accelerated aging tests of radiation damaged lasers and photodiodes for the CMS tracker optical links

    CERN Document Server

    Gill, K; Batten, J; Cervelli, G; Grabit, R; Jensen, F; Troska, Jan K; Vasey, F

    1999-01-01

    The combined effects of radiation damage and accelerated ageing in COTS lasers and p-i-n photodiodes are presented. Large numbers of these devices are employed in future High Energy Physics experiments and it is vital that these devices are confirmed to be sufficiently robust in terms of both radiation resistance and reliability. Forty 1310 nm InGaAsP edge-emitting lasers (20 irradiated) and 30 InGaAs p- i-n photodiodes (19 irradiated) were aged for 4000 hours at 80 degrees C with periodic measurements made of laser threshold and efficiency, in addition to p-i-n leakage current and photocurrent. There were no sudden failures and there was very little wearout- related degradation in either unirradiated or irradiated sample groups. The results suggest that the tested devices have a sufficiently long lifetime to operate for at least 10 years inside the Compact Muon Solenoid experiment despite being exposed to a harsh radiation environment. (13 refs).

  18. Prevention of normal tissue complications in radiation therapy of head and neck cancer : the role of 3D conformal radiation therapy (3DCRT)

    NARCIS (Netherlands)

    O.B. Wijers (Oda)

    2002-01-01

    textabstractIn The Netherlands. head and neck cancer (3.9%) ranks the eighth most frequemly diagnoscd malignant tumor. Radiation therapy (IIT) plays an important role in the treatmem of patients with head and neck cancer, as they constitute approximately 6% of those treated in a routine radiation th

  19. Radioterapia estereotáctica Stereotactic radiation therapy

    Directory of Open Access Journals (Sweden)

    J.J. Aristu

    2009-01-01

    independent of the patient to achive a precise location of the lesion. Stereotactic radiotherapy generate highly conformal, precisely focused radiation beams to administer very high doses of radiation without increasing the radiation to healthy surrounding organs or structures. When the procedure is carried out in one treatment session the procedure is termed radiosurgery, and when the treatment is administered in several fractions, the radiation modality is termed stereotactic radiotherapy. Special systems of patient immobilization (guides or stereotactic frames are required together with radiotherapy devices capable of generating conformal beams (lineal accelerator, gammaknife, cyberknife, tomotherapy, cyclotrons. Modern stereotactic radiotherapy techniques employ intra-tumoural radio-opaque fiducials or CT image systems included in the irradiation device, which make possible a precise location of mobile lesions in each treatment session. Besides, technological advances permit breathing synchronized radiation (gating and tracking for maximum tightening of margins and excluding a greater volume of healthy tissue. Radiosurgery is mainly indicated in benign or malign cerebral lesions less than 3-4 centimetres (arteriovenous malformations, neurinomas, meningiomas, cerebral metastases and stereotactic radiotherapy is basically administered in tumours of extracraneal location that require high conformation and precision, such as inoperable early lung cancer and liver metastasis.

  20. The Role of Hypofractionated Radiation Therapy with Photons, Protons and Heavy Ions for Treating Extracranial Lesions

    Directory of Open Access Journals (Sweden)

    Aaron Michael Laine

    2016-01-01

    Full Text Available Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and in addition there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward.

  1. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  2. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  3. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  4. Surgical treatment and radiation therapy of frontal lobe meningiomas in 7 dogs.

    Science.gov (United States)

    Uriarte, Ane; Moissonnier, Pierre; Thibaud, Jean-Laurent; Reyes-Gomez, Edouard; Devauchelle, Patrick; Blot, Stéphane

    2011-07-01

    The cases of 7 adult dogs with generalized seizures managed by surgical excision and radiation therapy for frontal lobe meningiomas were reviewed. The neurological examination was unremarkable in 6 of the 7 dogs. Five dogs were operated on using a bilateral transfrontal sinus approach and 2 using a unilateral sinotemporal approach to the frontal lobe. One dog was euthanized 14 d after surgery; radiation therapy was initiated 3 wk after surgery in the remaining 6 dogs. Long-term follow-up consisted of neurological examination and magnetic resonance imaging (MRI) and/or computed tomography (CT) scan after radiation therapy. The mean survival time for dogs that had surgery and radiation therapy was 18 mo after surgery. Frontal lobe meningiomas have been associated with poor prognosis. However, the surgical approaches used in these cases, combined with radiation therapy, allow a survival rate for frontal lobe meningiomas similar to that for meningiomas located over the cerebral convexities.

  5. Very High Dose-Rate Radiobiology and Radiation Therapy for Lung Cancer

    Science.gov (United States)

    2015-02-01

    SLAC ) National Accelerator Laboratory. Our in-vitro studies have demonstrated a statistically significant higher cell kill with fast irradiation...between Stanford University Department of Radiation Oncology and the Accelerator Research Division at Stanford Linear Accelerator Center ( SLAC ) National...MG 10 10 s, 30 s, 3 min, and 30 min 60 MeV ( SLAC ) A549, HCT116 2, 6, 10, 12 15 min, 20 min 120 MeV ( SLAC ) For the photon irradiations, we

  6. An approach towards bronchoscopic-based gene therapy using electrical field accelerated plasmid droplets.

    Science.gov (United States)

    Hradetzky, D; Boehringer, S; Geiser, Th; Gazdhar, A

    2012-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease affecting the distal lung, due to failure of the alveolar epithelium to heal after micro-injuries, leading to inefficient gas exchange and resulting in death. Therapeutic options are very limited. A new therapeutic approach based on gene therapy restores the self-healing process within the lung in the experimental setup. A basic requirement of this therapy is the successful transduction of genes into the alveolar epithelium in the distal part of the lung, for which a new therapeutic instrument is required. In this paper we present the concept and first experimental results of a device which uses an electrical field to accelerate the charged droplets of plasmid suspension toward the tissue and which overcomes cell membrane with its impact energy. The aim is to develop a therapeutic device capable of being integrated into minimally invasive procedures such as bronchoscopy.

  7. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  8. Laser-driven wakefield electron acceleration and associated radiation sources; Acceleration electronique par sillage laser et sources de rayonnements associees

    Energy Technology Data Exchange (ETDEWEB)

    Davoine, X

    2009-10-15

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme.

  9. Radiation therapy with or without chemotherapy and hyperthermia for recurrent rectal cancer. Efficacy and disadvantage of combined therapy

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Takashi; Fujii, Ikuzo; Yoshino, Masanari; Nagata, Kenji; Imamura, Masahiro; Uda, Mitsunobu; Yamamoto, Keizo; Tanaka, Yoshimasa [Kansai Medical Univ., Moriguchi, Osaka (Japan)

    1997-03-01

    Forty-seven patients with intrapelvic recurrent rectal cancer were prescribed radiation alone (17 cases), radiation and chemotherapy (18 cases) or radiation with hyperthermia (12 cases) from 1989 to 1995. To discuss efficacies and disadvantages of these combined therapies, tumor response rate, pain control rate, duration of tumor control and pain control, and influence on patients` survival were evaluated. Radiation was delivered to the whole pelvis. Mean total dose was 45.5 Gy (1.5-2 Gy/fraction). Chemotherapy consisted 5-FU or CDDP and ADM. Hyperthermia were added 3-6 times concomitantly to the radiation. In all patients receiving more than 30 Gy radiation, tumor response rate was 56.8%. Tumor response rates were 35.3%, 43.7% and 41.7% in the radiation alone group, radiation and chemotherapy group and radiation with hyperthermia group respectively. Radiation combined chemotherapy was more effective for the tumor less than 5 cm diameter than radiation alone. In cases receiving over 50 Gy radiation, combined treatments were more effective than radiation alone. Pain relief was obtained in 75.9% of patients and there were no difference between three treatment groups. Tumor control was significantly prolonged in combined groups. Median survival periods were 6, 10 and 7 months for radiation alone, radiation and chemotherapy, and radiation with hyperthermia respectively. In PR cases and for tumors under 5 cm in diameter, there were no difference between three groups. In cases receiving over 50 Gy radiation, survival period was prolonged in radiation with hyperthermia. Fourteen patients developed acute toxicity (Leucopenia) and late complication due to bowel obstruction. The incidence of bowel complication was 27.8% for radiation and chemotherapy and 33.3% for radio-hyperthermia, while 17.6%, significantly low percentage, for radiation alone. Bowel obstruction may occur positively correlated with postsurgical adhesions and infections at initial surgery. (K.H.)

  10. Low Incidence of Fatigue after Hypofractionated Stereotactic Body Radiation Therapy for Localized Prostate Cancer

    OpenAIRE

    Dash, Chiranjeev; Demas, Kristina; Uhm, Sunghae; Hanscom, Heather N; Kim, Joy S; Suy, Simeng; Davis, Kimberly M.; Sween, Jennifer; Collins, Sean; Lucile L Adams-Campbell

    2012-01-01

    Background: Fatigue is a common side effect of conventional prostate cancer radiation therapy. The increased delivery precision necessitated by the high dose per fraction of stereotactic body radiation therapy (SBRT) offers the potential of reduce target volumes and hence the exposure of normal tissues to high radiation doses. Herein, we examine the level of fatigue associated with SBRT treatment. Methods: Forty patients with localized prostate cancer treated with hypofractionated SBRT, and a...

  11. Low Incidence of Fatigue after Hypofractionated Stereotactic Body Radiation Therapy (SBRT) for Localized Prostate Cancer

    OpenAIRE

    Chiranjeev eDash; Kristina eDemas; Sunghae eUhm; Hanscom, Heather N; Kim, Joy S; Simeng eSuy; Davis, Kimberly M.; Jennifer eSween; Sean eCollins; Lucile L Adams-Campbell

    2012-01-01

    Background: Fatigue is a common side-effect of conventional prostate cancer radiation therapy. The increased delivery precision necessitated by the high dose per fraction of stereotactic body radiation therapy (SBRT) offers the potential of reduce target volumes and hence the exposure of normal tissues to high radiation doses. Herein, we examine the level of fatigue associated with SBRT treatment.Methods: Forty patients with localized prostate cancer treated with hypofractionated SBRT, an...

  12. Stevens-Johnson syndrome limited to multiple sites of radiation therapy in a patient receiving phenobarbital.

    Science.gov (United States)

    Duncan, K O; Tigelaar, R E; Bolognia, J L

    1999-03-01

    Stevens-Johnson syndrome (SJS) is a severe cutaneous eruption that most often appears as an adverse reaction to a medication. There have been 21 reported cases of atypical erythema multiforme, toxic epidermal necrolysis, and SJS arising in patients receiving radiation therapy in addition to phenytoin, phenobarbital, or carbamazepine. We report the second case of SJS resulting from concomitant phenobarbital and radiation therapy, in which the eruption was limited to the sites of radiation, which were multiple.

  13. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Xiang-Yu Su; Pei-Dang Liu; Hao Wu; Ning Gu

    2014-01-01

    Radiation therapy performs an important function in cancer treatment. However, resistance of tumor cells to radiation therapy still remains a serious concern, so the study of radiosensitizers has emerged as a persistent hotspot in radiation oncology. Along with the rapid advancement of nanotechnology in recent years, the potential value of nanoparticles as novel radiosensitizers has been discovered. hTis review summarizes the latest experimental ifndings bothin vitro andin vivo and attempts to highlight the underlying mechanisms of response in nanoparticle radiosensitization.

  14. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cartelli, D.; Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina); Castell, W. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Di Paolo, H. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Kesque, J.M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina)

    2011-12-15

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  15. Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats.

    Science.gov (United States)

    Frank, J A; Wang, Y; Osorio, O; Matthay, M A

    2000-10-01

    To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.

  16. New developments of 11C post-accelerated beams for hadron therapy and imaging

    CERN Document Server

    Augusto, R S; Wenander, F; Penescu, L; Orecchia, R; Parodi, K; Ferrari, A; Stora, T

    2016-01-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production...

  17. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    Science.gov (United States)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  18. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  19. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration

    Science.gov (United States)

    Wan, Y.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Lu, W.; Gu, Y. Q.; Silva, L. O.; Joshi, C.; Mori, W. B.

    2016-12-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  20. Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets

    CERN Document Server

    Budaj, Jan; Salmeron, Raquel; Hubeny, Ivan

    2015-01-01

    There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, iron, olivines with 0% and 50% iron content, pyroxenes with 0%, 20% and 60% iron content, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2 to 500 micron and modal particle radii from 0.01 mi...

  1. Physical mechanism of the transverse instability in radiation pressure ion acceleration

    CERN Document Server

    Wan, Y; Zhang, C J; Li, F; Wu, Y P; Hua, J F; Lu, W; Gu, Y Q; Silva, L O; Joshi, C; Mori, W B

    2016-01-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this letter, a theoretical model and supporting two-dimensional (2D) Particle-in-Cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasi-static ions, a mechanism similar to the transverse two stream instability in the inertial confinement fusion (ICF) research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse break-up of the target.

  2. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hindley, Andrew, E-mail: andrew.hindley@lthtr.nhs.uk [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom); Zain, Zakiyah [College of Arts and Sciences, Universiti Utara Malaysia, Kedah (Malaysia); Wood, Lisa [Department of Social Sciences, Lancaster Medical School, Lancaster (United Kingdom); Whitehead, Anne [Medical and Pharmaceutical Statistics Research Unit, Lancaster University, Lancaster (United Kingdom); Sanneh, Alison; Barber, David; Hornsby, Ruth [Rosemere Cancer Centre, Royal Preston Hospital, Preston (United Kingdom)

    2014-11-15

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected.

  3. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Science.gov (United States)

    2010-10-01

    ... educational methodologies. —Must be credentialed in radiation therapy technology or possess suitable..., with suitable experience, qualified in radiation therapy technology and educational methodologies and... written course syllabi which describe competencies and learning objectives to be achieved. The...

  4. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Panettieri, Vanessa [William Buckland Radiotherapy Centre, Alfred Hospital, Commercial Road, Melbourne (Australia); Panakis, Niki; Bates, Nicholas [Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Lester, Jason F. [Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff (United Kingdom); Jain, Pooja [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Landau, David B. [Department of Radiotherapy, Guy' s and St. Thomas' NHS Foundation Trust, London (United Kingdom); Nahum, Alan E.; Mayles, W. Philip M. [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Fenwick, John D. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom)

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  5. Successful High Power Acceleration of the HSC Type Injector for Cancer Therapy in IMP

    CERN Document Server

    Lu, Liang

    2015-01-01

    A Hybrid single cavity (HSC) linac, which is formed by combining a radio frequency quadrupole (RFQ) structure and a drift tube (DT) structure into one interdigital-H (IH) cavity, is fabricated and assembled as a proof of principle (PoP) type injector for cancer therapy synchrotron according to the series researches. The injection method of the HSC linac adopt a direct plasma injection scheme (DPIS), which is considered to be the only method for accelerating an intense current heavy ion beam produced by a laser ion source (LIS). The input beam current of the HSC was designed to be 20 milliampere (mA) C6+ ions. According to numerical simulations, the HSC linac could accelerate a 6-mA C6+ beam which meets requirement of the needed particle number for cancer therapy use (108~9 ions per pulse). The injection system adopted HSC injector with the method of DPIS can make the existing multi-turn injection system and the stripping system unnecessary, and also can make the beam pipe of the existing synchrotron magnets d...

  6. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  7. A cord blood monocyte–derived cell therapy product accelerates brain remyelination

    Science.gov (United States)

    Buntz, Susan; Scotland, Paula; Xu, Li; Noeldner, Pamela; Patel, Sachit; Wollish, Amy; Gunaratne, Aruni; Gentry, Tracy; Matsushima, Glenn K.; Kurtzberg, Joanne; Balber, Andrew E.

    2016-01-01

    Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding–mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions. PMID:27699230

  8. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, 101 Sec. 2, K