WorldWideScience

Sample records for accelerated focused ultrasound

  1. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  2. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  3. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  4. Ultrasound focusing images in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Michiko; Tanaka, Yukihiro; Tamura, Shin-ichiro [Department of Applied Physics, Hokkaido University, Sapporo (Japan)

    2002-03-04

    We study theoretically ultrasound focusing in periodic multilayered structures, or superlattices, by solving the wave equation with the Green function method and calculating the transmitted ultrasound amplitude images of both the longitudinal and transverse modes. The constituent layers assumed are elastically isotropic but the periodically stacked structure is anisotropic. Thus anisotropy of ultrasound propagation is predicted even at low frequencies and it is enhanced significantly at higher frequencies due to the zone-folding effect of acoustic dispersion relations. An additional effect studied is the interference of ultrasound (known as the internal diffraction), which can be recognized when the propagation distance is comparable to the ultrasound wavelength. Numerical examples are developed for millimetre-scale Al/polymer multilayers used recently for imaging experiment with surface acoustic waves. (author)

  5. Treatment of Movement Disorders With Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Paul S Fishman

    2017-05-01

    Full Text Available Although the use of ultrasound as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists or neurologists are familiar with this technology. Stereotactic brain lesioning had been widely used as a treatment for medically refractory patients with essential tremor (ET, Parkinson disease (PD, and dystonia but has been largely replaced by deep brain stimulation (DBS surgery, with advantages both in safety and efficacy. However, DBS is associated with complications including intracerebral hemorrhage, infection, and hardware malfunction. The occurrence of these complications has spurred interest in less invasive stereotactic brain lesioning methods including magnetic resonance imaging–guided high intensity–focused ultrasound (FUS surgery. Engineering advances now allow sound waves to be targeted noninvasively through the skull to a brain target. High intensities of sonic energy can create a coagulation lesion similar to that of older radiofrequency stereotactic methods, but without opening the skull, recent Food and Drug Administration approval of unilateral thalamotomy for treatment of ET. Clinical studies of stereotactic FUS for aspects of PD are underway. Moderate intensity, pulsed FUS has also demonstrated the potential to safely open the blood-brain barrier for localized delivery of therapeutics including proteins, genes, and cell-based therapy for PD and related disorders. The goal of this review is to provide basic and clinical neuroscientists with a level of understanding to interact with medical physicists, biomedical engineers, and radiologists to accelerate the application of this powerful technology to brain disease

  6. Synthetic focusing in ultrasound modulated tomography

    KAUST Repository

    Kuchment, Peter

    2010-09-01

    Several hybrid tomographic methods utilizing ultrasound modulation have been introduced lately. Success of these methods hinges on the feasibility of focusing ultrasound waves at an arbitrary point of interest. Such focusing, however, is difficult to achieve in practice. We thus propose a way to avoid the use of focused waves through what we call synthetic focusing, i.e. by reconstructing the would-be response to the focused modulation from the measurements corresponding to realistic unfocused waves. Examples of reconstructions from simulated data are provided. This non-technical paper describes only the general concept, while technical details will appear elsewhere. © 2010 American Institute of Mathematical Sciences.

  7. Spatial filters for focusing ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gori, Paola

    2001-01-01

    . A new method for making spatial matched filter focusing of RF ultrasound data is proposed based on the spatial impulse response description of the imaging. The response from a scatterer at any given point in space relative to the transducer can be calculated, and this gives the spatial matched filter...

  8. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  9. Advancements in Catheter-Directed Ultrasound-Accelerated Thrombolysis

    NARCIS (Netherlands)

    Doomernik, Denise E.; Schrijver, A. Marjolein; Zeebregts, Clark J.; de Vries, Jean-Paul P. M.; Reijnen, Michel M. P. J.

    2011-01-01

    Purpose: To review all available literature on catheter-directed ultrasound-accelerated thrombolysis for peripheral artery occlusions, stroke, deep venous thrombosis, and pulmonary embolism. Methods: A systematic literature search was performed, using MEDLINE, EMBASE and Cochrane databases. A total

  10. Advancements in catheter-directed ultrasound-accelerated thrombolysis.

    NARCIS (Netherlands)

    Doomernik, D.E.; Schrijver, A.M.; Zeebregts, C.J.A.; Vries, J.P. de; Reijnen, M.M.P.J.

    2011-01-01

    PURPOSE: To review all available literature on catheter-directed ultrasound-accelerated thrombolysis for peripheral artery occlusions, stroke, deep venous thrombosis, and pulmonary embolism. METHODS: A systematic literature search was performed, using MEDLINE, EMBASE and Cochrane databases. A total

  11. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications.

  12. An integrated ultrasound-guided high intensity focused ultrasound system for in-vivo experiment

    Science.gov (United States)

    Liu, Dalong; Ebbini, Emad S.

    2017-03-01

    We present the system architecture of an integrated Ultrasound-guided High Intensity Focused Ultrasound (USgHIFU) system for image-guided surgery and temperature tracking in vivo. The system is capable of operating with multiple frontends. Current implementation has a SonixRP for imaging and a custom designed dual mode ultrasound array (DMUA) system (32Tx/32Rx) for imaging/therapy. The highlights of the system include a fully-programmable, multiple data stream capable data processing engine, and an arbitrarily programmable high power array driver that is able to synthesize complex beam patterns in space and time. The data processing engine features a pipeline-style design that can be programmed on-the-fly by re-arranging the pre-verified GPU-accelerated high performance pipeline blocks, which cover an extensive range from basic functions such as filtering to specialized processing like speckle tracking. Furthermore, the pipeline design also has the option of bringing in MATLAB (Mathworks, Natick, MA, US) as part of the processing chain, thus vastly increase the capability of the system. By properly balancing the processing load between GPU-enabled routine and MATLAB script. This allows one to achieve a high degree of flexibility while meeting real-time constraints. Results are presented from in vivo rat experiment. Where low dose of therapeutic ultrasound was delivered into the hind limb of the Copenhagen rats using DMUA and temperature was tracked using a linear probe (HST, Ultrasonix). The data is processed in realtime with MATLAB in the loop to perform temperature regularization. Results show that we can reliably track the low temperature heating in the presence of motion artifacts (respiration and pulsation).

  13. NONINVASIVE MEASUREMENT OF LOCAL THERMAL DIFFUSIVITY USING BACKSCATTERED ULTRASOUND AND FOCUSED ULTRASOUND HEATING

    OpenAIRE

    2008-01-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create...

  14. FOCUSING AND ACCELERATION OF BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.; ZADOROZHNY,V.

    2000-04-07

    A new approach to solving the kinetic equation for the beam distribution function, (very useful from the practical point of view), is discussed, in which the authors also obtain a complement to the Skrinsky's condition for the self-focused bunched beam. This problem belongs to the theory of nonlinear systems in which both regular and chaotic motion is possible. The kinetic approach, based on Vlasov-Poisson equations, are used to investigate the focusing and acceleration of bunched beam. Special attention is given to the studies of stability in a bunched beam by means of the two norm, which may be used to describe t!he motion of high-energy particles.

  15. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-Bo; FAN Ting-Bo; GUO Xia-Sheng; ZHANG Dong

    2010-01-01

    @@ We study the influence of tissue inhomogeneity on the focused ultrasound based on the phase screen model and the acoustic nonlinear equation.The inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen.Six polyethylene(PE)plates with various correlation lengths and standard deviations are made to mimic the inhomogeneity induced by the human body abdominal.Results indicate that the correlation length affects the side lobe structure of the beam pattern; while the standard deviation is associated with the focusing capability.This study provides a theoretical and experimental basis for the development of a precise treatment plan for high intensity focused ultrasound.

  16. Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model.

    Science.gov (United States)

    Khokhlova, Tatiana D; Wang, Yak-Nam; Simon, Julianna C; Cunitz, Bryan W; Starr, Frank; Paun, Marla; Crum, Lawrence A; Bailey, Michael R; Khokhlova, Vera A

    2014-06-03

    The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has been recently gaining momentum. In HIFU, ultrasound energy from an extracorporeal source is focused within the body to ablate tissue at the focus while leaving the surrounding organs and tissues unaffected. Most HIFU therapies are designed to use heating effects resulting from the absorption of ultrasound by tissue to create a thermally coagulated treatment volume. Although this approach is often successful, it has its limitations, such as the heat sink effect caused by the presence of a large blood vessel near the treatment area or heating of the ribs in the transcostal applications. HIFU-induced bubbles provide an alternative means to destroy the target tissue by mechanical disruption or, at its extreme, local fractionation of tissue within the focal region. Here, we demonstrate the feasibility of a recently developed approach to HIFU-induced ultrasound-guided tissue fractionation in an in vivo pig model. In this approach, termed boiling histotripsy, a millimeter-sized boiling bubble is generated by ultrasound and further interacts with the ultrasound field to fractionate porcine liver tissue into subcellular debris without inducing further thermal effects. Tissue selectivity, demonstrated by boiling histotripsy, allows for the treatment of tissue immediately adjacent to major blood vessels and other connective tissue structures. Furthermore, boiling histotripsy would benefit the clinical applications, in which it is important to accelerate resorption or passage of the ablated tissue volume, diminish pressure on the surrounding organs that causes discomfort, or insert openings between tissues.

  17. Portable ultrasound in disaster triage: a focused review.

    Science.gov (United States)

    Wydo, S M; Seamon, M J; Melanson, S W; Thomas, P; Bahner, D P; Stawicki, S P

    2016-04-01

    Ultrasound technology has become ubiquitous in modern medicine. Its applications span the assessment of life-threatening trauma or hemodynamic conditions, to elective procedures such as image-guided peripheral nerve blocks. Sonographers have utilized ultrasound techniques in the pre-hospital setting, emergency departments, operating rooms, intensive care units, outpatient clinics, as well as during mass casualty and disaster management. Currently available ultrasound devices are more affordable, portable, and feature user-friendly interfaces, making them well suited for use in the demanding situation of a mass casualty incident (MCI) or disaster triage. We have reviewed the existing literature regarding the application of sonology in MCI and disaster scenarios, focusing on the most promising and practical ultrasound-based paradigms applicable in these settings.

  18. Focused Acute Medicine Ultrasound (FAMUS) - point of care ultrasound for the Acute Medical Unit.

    Science.gov (United States)

    Smallwood, Nicholas; Dachsel, Martin; Matsa, Ramprasad; Tabiowo, Eugene; Walden, Andrew

    2016-01-01

    Point of care ultrasound (POCU) is becoming increasingly popular as an extension to clinical examination techniques. Specific POCU training pathways have been developed in specialties such as Emergency and Intensive Care Medicine (CORE Emergency Ultrasound and Core UltraSound Intensive Care, for example), but until this time there has not been a curriculum for the acutely unwell medical patient outside of Critical Care. We describe the development of Focused Acute Medicine Ultrasound (FAMUS), a curriculum designed specifically for the Acute Physician to learn ultrasound techniques to aid in the management of the unwell adult patient. We detail both the outline of the curriculum and the process involved for a candidate to achieve FAMUS accreditation. It is anticipated this will appeal to both Acute Medical Unit (AMU) clinicians and general physicians who deal with the unwell or deteriorating medical or surgical patient. In time, the aspiration is for FAMUS to become a core part of the AIM curriculum.

  19. High-Intensity Focused Ultrasound Therapy: an Overview for Radiologists

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sun; Rhim, Hyun Chul; Lim, Hyo Keun; Choi, Dong Il [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Min Joo [College of Medicine, Cheju National University, Jeju (Korea, Republic of)

    2008-08-15

    High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expected that current obstacles to implementation will be resolved in the near future. In this review, we provide an overview of high-intensity focused ultrasound therapy from the basic physics to recent clinical studies with an interventional radiologist's perspective for the purpose of improving the general understanding of this cutting-edge technology as well as speculating on future developments

  20. High-intensity focused ultrasound therapy: an overview for radiologists.

    Science.gov (United States)

    Kim, Young-sun; Rhim, Hyunchul; Choi, Min Joo; Lim, Hyo Keun; Choi, Dongil

    2008-01-01

    High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expected that current obstacles to implementation will be resolved in the near future. In this review, we provide an overview of high-intensity focused ultrasound therapy from the basic physics to recent clinical studies with an interventional radiologist's perspective for the purpose of improving the general understanding of this cutting-edge technology as well as speculating on future developments.

  1. Focused ultrasound transducer for thermal treatment.

    Science.gov (United States)

    Umemura, Shin-ichiro

    2015-03-01

    Air-backed transducers have been employed for thermal ultrasonic treatment including both ablation and hyperthermia because the power efficiency rather than the bandwidth is a main concern, unlike a typical imaging transducer working in a pulse mode. The characteristic of an air-backed piezoelectric transducer with a matching layer is analysed, and the role and choice of the matching layer is discussed. An element size of a focused array transducer, appropriate for such thermal treatment, is then estimated, and the characteristic of a piezoceramic transducer element of such a size was numerically analysed using a finite element code. The characteristic of a piezocomposite transducer element is also numerically analysed and its suitability to such a therapeutic array transducer is discussed.

  2. Focusing of ferroelectret air-coupled ultrasound transducers

    Science.gov (United States)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  3. Microwave thermal imaging of scanned focused ultrasound heating: animal experiments

    Science.gov (United States)

    Zhou, Tian; Meaney, Paul M.; Hoopes, P. Jack; Geimer, Shireen D.; Paulsen, Keith D.

    2011-03-01

    High intensity focused ultrasound (HIFU) uses focused ultrasound beams to ablate localized tumors noninvasively. Multiple clinical trials using HIFU treatment of liver, kidney, breast, pancreas and brain tumors have been conducted, while monitoring the temperature distribution with various imaging modalities such as MRI, CT and ultrasound. HIFU has achieved only minimal acceptance partially due to insufficient guidance from the limited temperature monitoring capability and availability. MR proton resonance frequency (PRF) shift thermometry is currently the most effective monitoring method; however, it is insensitive in temperature changes in fat, susceptible to motion artifacts, and is high cost. Exploiting the relationship between dielectric properties (i.e. permittivity and conductivity) and tissue temperature, in vivo dielectric property distributions of tissue during heating were reconstructed with our microwave tomographic imaging technology. Previous phantom studies have demonstrated sub-Celsius temperature accuracy and sub-centimeter spatial resolution in microwave thermal imaging. In this paper, initial animal experiments have been conducted to further investigate its potential. In vivo conductivity changes inside the piglet's liver due to focused ultrasound heating were observed in the microwave images with good correlation between conductivity changes and temperature.

  4. Numerical simulations of clinical focused ultrasound functional neurosurgery

    Science.gov (United States)

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-04-01

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  5. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    Science.gov (United States)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  6. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  7. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating.

    Science.gov (United States)

    Anand, Ajay; Kaczkowski, Peter J

    2008-09-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization.

  8. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    Science.gov (United States)

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion.

  9. Intracranial treatment envelope mapping of transcranial focused ultrasound

    Science.gov (United States)

    Eames, Matthew D. C.; Hananel, Arik; Kassell, Neal F.; Snell, John W.

    2012-11-01

    Presented here are the results of a volumetric, thermal treatment envelope map for transcranial focused ultrasound. The aim was to determine the treatable volume of the intracranial cavity in order to identify potential clinical applications and direct future research efforts. It was determined that thalamic targets are optimal for both transcranical MRg-FUS systems used in this work, which operate at 220 kHz and 650 kHz, respectively. It is hoped that future research efforts will focus on expanding these treatment envelopes in order to expand the possible neurosurgical applications for this technology.

  10. The thresholds and mechanisms of tissue injury by focused ultrasound

    Science.gov (United States)

    Simon, Julianna

    Therapeutic ultrasound is used in clinics around the world to treat ailments such as uterine fibroids, kidney stones, and plantar fasciitis. While many of the therapeutic effects of ultrasound are elicited by hyperthermia, bubbles can also interact with tissue to produce beneficial effects. For example, bubbles are used in boiling histotripsy to de-bulk tissue and are used in shock wave lithotripsy to break kidney stones. However, the same bubbles that break the kidney stones also damage the kidney, which is why bubble damage is a concern in every ultrasound application including fetal imaging. Whether the aim is to emulsify a tumor or image a fetus, understanding the thresholds and mechanisms of tissue injury by bubbles in an ultrasound field is important for all ultrasound applications and was the goal of this dissertation. One specific application of therapeutic ultrasound, known as boiling histotripsy, uses shock wave heating to explosively expand a millimeter-size boiling bubble at the transducer focus and fractionate bulk tissue. Yet it was unclear how the millimeter-size boiling or vapor bubble broke down the tissue into its submicron components. In this dissertation, we experimentally tested the hypothesis that ultrasonic atomization, or the emission of fine droplets from an acoustically excited liquid film, is the mechanism by which the millimeter-size boiling bubble in boiling histotripsy fractionates tissue into its submicron components. Using high speed photography, we showed that tissue can behave as a liquid such that a miniature acoustic fountain forms and atomization occurs within a millimeter-size cavity that approximates the boiling or vapor bubble produced by boiling histotripsy. The end result of tissue atomization was a hole in the tissue surface. After showing that tissue can be eroded by atomization, a series of experiments were conducted to determine the tissue properties that influence atomization. The results indicated that highly

  11. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    Science.gov (United States)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.

  12. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    Science.gov (United States)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  13. Localized Harmonic Motion Imaging for Focused Ultrasound Surgery Targeting

    Science.gov (United States)

    Curiel, Laura; Hynynen, Kullervo

    2011-01-01

    Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired RF signal. Silicon phantom studies were performed in order to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions as compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude. PMID:21683514

  14. Optimizing sonication protocols for transthoracic focused ultrasound surgery

    Science.gov (United States)

    Gao, J.; Volovick, A.; Cao, R.; Nabi, G.; Cochran, S.; Melzer, A.; Huang, Z.

    2012-11-01

    During transthoracic focused ultrasound surgery (TFUS), the intervening ribs absorb and reflect the majority of the ultrasound energy excited by an acoustic source, resulting in pain, bone injuries and insufficient energy delivered to the target organs of liver, kidney, and pancreas. Localized hot spots may also exist at the interfaces between the ribs and soft tissue and in the highly absorptive regions such as the skin and connective tissue. The aims of this study were to clarify the effects of focal beam distortion and frequency-dependent rib heating in TFUS and to propose possible techniques to reduce the side-effects of rib heating and increase ultrasound efficacy. Frequency-dependent heating at the target and the ribs were estimated using finite element analysis (PZFlex, Weidlinger Associates Inc, USA) along with experimental verification on a range of different phantoms. The ratio of ultrasonic power density at the target and the ribs, the time-varying spatial distribution of temperature, and the ablated focus of each sonication were taken as key indicators to determine the optimal operating frequency. Comparison with a patient specific model was also made. TFUS seems to be useful to treat tumours that are small and near the surface of the abdominal organs. For targets deep inside these organs, severe attenuation of energy occurs, suggesting that purely ultrasound thermal ablation with advanced heating patterns will have limited effects in improving the treatment efficacy. Results demonstrate that the optimal ultrasound frequency is around 0.8 MHz for the configurations considered, but this may shift to higher frequencies with changes in the axial and lateral positions of the tumours relative to the ribs. To date, we have elucidated the most important effects and correlated these with idealised anatomical geometry. The changes in frequency and other techniques such as selection of excited element patterns in FUS arrays had some effect. However, more advanced

  15. Focused ultrasound surgery-induced vascular occlusion in fetal medicine

    Science.gov (United States)

    Rivens, Ian H.; Rowland, Ian; Denbow, Mark; Fisk, Nicholas M.; Leach, Martin O.; ter Haar, Gail R.

    1998-04-01

    Aim: This study investigates whether it is possible to occlude blood flow in vivo using high intensity focused ultrasound surgery (FUS). Such an effect could be used in the non-invasive treatment of fetal dysfunctions. Conclusion: Our ability to curtail blood flow using FUS allows the possibility of non-invasively treating feto-fetal transfusion syndrome by occluding the placental shunt vessels responsible for the vascular imbalance in twins sharing a placenta. This would have advantages over currently available interventional treatments (surgery or intrauterine lasers), which have significant related mortality and morbidity.

  16. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Science.gov (United States)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  17. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schad, Kelly C; Hynynen, Kullervo, E-mail: khynynen@sri.utoronto.c [Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto (Canada)

    2010-09-07

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 {mu}m in diameter and diluted to a concentration of 8 x 10{sup 6} droplets mL{sup -1}. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  18. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound

    Science.gov (United States)

    Hughes, Alec; Huang, Yuexi; Pulkkinen, Aki; Schwartz, Michael L.; Lozano, Andres M.; Hynynen, Kullervo

    2016-11-01

    Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within 23.2+/- {{13.6}\\circ} of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.

  19. Focusing of geodesic congruences in an accelerated expanding Universe

    CERN Document Server

    Albareti, F D; de la Cruz-Dombriz, A

    2012-01-01

    We study the accelerated expansion of the Universe through its consequences on a congruence of geodesics. We make use of the Raychaudhuri equation which describes the evolution of the expansion rate for a congruence of timelike or null geodesics. In particular, we focus on the space-time geometry contribution to this equation. By straightforward calculation from the metric of a Robertson-Walker cosmological model, it follows that in an accelerated expanding Universe the space-time contribution to the Raychaudhuri equation is positive for the fundamental congruence, favoring a non-focusing of the congruence of geodesics. However, the accelerated expansion of the present Universe does not imply a tendency of the fundamental congruence to diverge. It is shown that this is in fact the case for certain congruences of timelike geodesics without vorticity. Therefore, the focusing of geodesics remains feasible in an accelerated expanding Universe. Furthermore, a negative contribution to the Raychaudhuri equation from...

  20. Ejection of small droplet from microplate using focused ultrasound

    Science.gov (United States)

    Tanaka, Hiroki; Mizuno, Yosuke; Nakamura, Kentaro

    2017-08-01

    We discussed an ultrasonic system for single-droplet ejection from a microplate, which is one of the basic and important procedures in the noncontact handling of droplets in air. In this system, a 1.5 MHz concave transducer located below the microplate is used for chasing the liquid surface through a pulse echo method, and also for the ejection of a 1 µL single droplet by the burst of focused ultrasound. We investigated the relationship between the droplet ejection characteristics, the distance from the transducer to the surface of liquid, the material property, and the excitation condition of the focused ultrasonic transducer. It was verified that the optimal position of the transducer was off the focal point of sound pressure by ±1 mm, because the sound intensity had to be controlled to eject a single droplet. Subsequently, we confirmed experimentally that the ejected droplet volume linearly depended on the surface tension of the liquid, and that the droplet volume and ejection velocity were determined by the Webber number, Reynolds number, and Ohnesolge number. In addition, by optimizing the duration of the burst ultrasound, the droplet volume and ejection velocity were controlled.

  1. Use of High Intensity Focused Ultrasound for Treating Malignant Tumors

    Institute of Scientific and Technical Information of China (English)

    WenzhiChen; ZhibiaoWang; FengWu; JinBai; HuiZhu; JianzhongZou; KequanLi; FanglinXie; ZhilongWang

    2004-01-01

    OBJECTIVE To investigate the efficacy and side effects of high intensity focused ultrasound(HIFU) in the treatment of malignant solid tumors. METHODS Thirty patients who refused surgery and/or were refractory to chemotherapy were treated by HIFU alone, with the efficacy and side effects monitored as follows: observation of vital organ signs; functional assay of important organs; imaging examinations including: digital subtraction angiography (DSA), CT, MRI, single photon emission computed tomography (SPECT), large core needle biopsy, complications and metastasis. RESULTS After HIFU therapy, the vital signs remained stable and the functions of the heart, lung, kidney and liver were also normal. DSA images showed that small or larger arteries were not damaged. After a follow-up of 10-38 months(mean 23.1 months), 26 patients(87%) were alive. The volume of the tumor underwent complete regression in 10 patients. Shrinkage of the tumor volume ≥50% was observed in 13 patients. Eight of 13 patients were examined by large core needle biopsy, all showing necrosis and/or fibrosis though 3 patients(10%) had local recurrence. Two of these were retreated again by HIFU and the locally recurrent tumors were controlled. New metastases developed in 5 patients after H IFU. Two patients suffered from peripheral nerve injuriy and they have recovered during the follow-up. One patient developed skin injury. CONCLUSION High intensity focused ultrasound is effective and safe in the treatment of malignant solid tumors.

  2. Blood coagulation using High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Nguyen, Phuc V.; Oh, Junghwan; Kang, Hyun Wook

    2014-03-01

    High Intensity Focused Ultrasound (HIFU) technology provides a feasible method of achieving thermal coagulation during surgical procedures. One of the potential clinical benefits of HIFU can induce immediate hemostasis without suturing. The objective of this study was to investigate the efficiency of a HIFU system for blood coagulation on severe vascular injury. ngHIFU treatment was implemented immediately after bleeding in artery. The ultrasound probe was made of piezoelectric material, generating a central frequency of 2.0 MHz as well as an ellipsoidal focal spot of 2 mm in lateral dimension and 10 mm in axial dimension. Acoustic coagulation was employed on a perfused chicken artery model in vitro. A surgical incision (1 to 2 mm long) was made with a scapel on the arterial wall, and heparinized autologous blood was made to leak out from the incision with a syringe pump. A total of 5 femoral artery incisions was treated with the HIFU beam. The intensity of 4500 W/cm2 at the focus was applied for all treatments. Complete hemostasis was achieved in all treatments, along with the treatment times of 25 to 50 seconds. The estimated intraoperative blood loss was from 2 to 5 mL. The proposed HIFU system may provide an effective method for immediate blood coagulation for arteries and veins in clinical applications.

  3. MR-guided focused ultrasound: a potentially disruptive technology.

    Science.gov (United States)

    Bradley, William G

    2009-07-01

    A disruptive technology is a technological innovation that overturns the existing dominant technologies in a market. Magnetic resonance (MR)-guided focused ultrasound (MRgFUS) is a noninvasive procedure based on the combination of real-time MR anatomic guidance, MR thermometry, and high-intensity focused ultrasound. Several hundred transducer elements become convergent at a point under MR guidance, leading to heating and coagulation necrosis. Outside the focal point, there is no significant heating. There is no need to break the skin for procedures in the body or to perform a craniotomy for procedures in the brain. This lack of invasiveness is what makes MRgFUS so disruptive compared with surgery. At present, MRgFUS has been used for the ablation of uterine fibroids, breast tumors, painful bony metastases, and liver tumors. In the brain, it has been used for the ablation of glioblastomas and for functional neurosurgery. Phantom and animal studies suggest future applications for prostate cancer and acute stroke treatment.

  4. Phase Relation of Harmonics in Nonlinear Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    Zhe-Fan Peng; Wei-Jun Lin; Shi-Lei Liu; Chang Su; Hai-Lan Zhang; Xiu-Ming Wang

    2016-01-01

    The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimentally.The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the finite difference time domain method.Experimental waveforms are measured by a robust needle hydrophone.Then the relative phase quantity is introduced and obtained by using the zero-phase filter.The results show that the nth harmonic relative phase quantity is approximately (n-1)π/3 at geometric center and increases along the axial direction.Moreover,the relative phase quantity decreases with the increase of source amplitude.This phase relation gives an explanation of some nonlinear phenomena such as the discrepancy of positive and negative pressure.

  5. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    Energy Technology Data Exchange (ETDEWEB)

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  6. Noninvasive skin tightening: focus on new ultrasound techniques

    Directory of Open Access Journals (Sweden)

    Fabi SG

    2015-02-01

    Full Text Available Sabrina Guillen Fabi Goldman, Butterwick, Fitzpatrick, Groff and Fabi, Cosmetic Laser Dermatology, San Diego, CA, USA Abstract: Microfocused ultrasound (MFU has been recently developed to meet the ever-growing public demand for achieving significant, noninvasive skin lifting and tightening. MFU can be focused on subcutaneous tissue where the temperature briefly reaches greater than 60°C, producing small (<1 mm3 thermal coagulation points to a depth of up to 5 mm within the mid-to-deep reticular layer of the dermis and subdermis. The intervening papillary dermal and epidermal layers of skin remain unaffected. The application of heat at these discrete thermal coagulation points causes collagen fibers in the facial planes such as the superficial musculoaponeurotic system and platysma, as well as the deep reticular dermis, to become denatured, contracting and stimulating de novo collagen. A commercially available device combines MFU with high-resolution ultrasound imaging (MFU-V, which enables visualization of tissue planes to a depth of 8 mm and allows the user to see where the MFU energy will be applied (Ultherapy®; Ulthera Inc., Mesa, AZ, USA. Using different transducers, MFU-V treatment can be customized to meet the unique physical characteristics of each patient by adjusting energy and focal depth of the emitted ultrasound. By targeting the facial superficial musculoaponeurotic system, noninvasive tightening and lifting of sagging facial and neck skin and improvements in the appearance of wrinkles can be achieved. MFU-V can also improve lines and wrinkles of the décolleté. Treatment protocols for the use of MFU-V continue to be refined, and its use in combination with other rejuvenation techniques has been demonstrated. Brief discomfort that often occurs during treatment can be minimized with oral nonsteroidal anti-inflammatory drugs. Other treatment-related adverse events include transient erythema, edema, and occasional bruising. MFU-V is

  7. Controlled Hyperthermia with MRI-guided Focused Ultrasound

    DEFF Research Database (Denmark)

    Hokland, Steffen; Salomir, Rares; Pedersen, Michael

    within the plane ROI with steep temperature gradients at its boundaries. Covering the ROI by several consecutive spirals individually modified with respect to applied FUS power and local speed of the focal point based on the MRI temperature maps, the thermal profile may be controlled towards a pre......Introduction: Hyperthermia is an appealing oncological treatment since the significant regions of hypoxia contained in most solid tumours are known to be sensitive to the cytotoxic effect of heat. However, due to the seemingly insurmountable technical difficulties associated with delivering thermal...... doses sufficient to induce cellular deactivation thermotherapy is still regarded as an experimental treatment. In contrast to other thermo-therapeutic modalities Focused Ultrasound (FUS) may be employed non-invasively to deliver a highly localized thermal build-up in deep seated regions of the body...

  8. Ultrasound imaging and evaluation of lesion induced by High Intensity Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    ZHONG Hui; WAN Mingxi; JIANG Yifeng; WANG Supin

    2006-01-01

    The present study was to investigate the differential imaging method for detecting HIFU (High Intensity Focused Ultrasound)-induced lesions and the estimation of variation of attenuation for lesion evaluation with log spectral difference algorithm. Experiment results of bovine muscle and liver in vitro were acquired. Several algorithms for lesion detection - Absolute Difference (AD), Sum Absolute Differences (SAD) and Sum Squared Differences (SSD) - were analyzed with several window sizes and threshold values. Then three attenuation parameters were compared to evaluate the degree of tissue damage. It was found that variation of the mean attenuation △(α) was an effective parameter to evaluate lesions.

  9. Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.

    Science.gov (United States)

    Lee, Junsu; Jang, Jihun; Chang, Jin Ho

    2017-03-01

    In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm(2) was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm(2). The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.

  10. Rapid motion correction in MR-guided high-intensity focused ultrasound heating using real-time ultrasound echo information.

    Science.gov (United States)

    de Oliveira, Philippe Lourenço; de Senneville, Baudouin Denis; Dragonu, Iulius; Moonen, Chrit T W

    2010-11-01

    The objective of this study was to evaluate the feasibility of integrating real-time ultrasound echo guidance in MR-guided high-intensity focused ultrasound (HIFU) heating of mobile targets in order to reduce latency between displacement analysis and HIFU treatment. Experiments on a moving phantom were carried out with MRI-guided HIFU during continuous one-dimensional ultrasound echo detection using separate HIFU and ultrasound imaging transducers. Excellent correspondence was found between MR- and ultrasound-detected displacements. Real-time ultrasound echo-based target tracking during MR-guided HIFU heating is shown with the dimensions of the heated area similar to those obtained for a static target. This work demonstrates that the combination of the two modalities opens up perspectives for motion correction in MRI-guided HIFU with negligible latency.

  11. Design and implementation of capacitive micromachined ultrasonic transducers for high intensity focused ultrasound

    OpenAIRE

    Yamaner, Yalçın Feysel; Yamaner, Yalcin Feysel

    2011-01-01

    High intensity focused ultrasound (HIFU) is a medical procedure for noninvasive treatment of cancers. High intensity focused ultrasound is used to heat and destroy the diseased tissue. Piezoelectricity has been the core mechanism for generation of ultrasound waves in the treatment. Focusing can be done by using spherically curved transducers or using a lens or electronically steering sound waves by using phased arrays. Current research in HIFU technology targets the development of MR-guided m...

  12. Pulsed-focusing recirculating linacs for muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  13. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  14. Auto-focusing accelerating hyper-geometric laser beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-02-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory.

  15. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  16. Focused ultrasound induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    GUO Qian; JIANG Li-xin; HU Bing

    2012-01-01

    Background The incidence and mortality rate of pancreatic cancer have increased dramatically in China over recent decades.Focused ultrasound (FU) has been somewhat successful in treating pancreatic cancer.The purpose of this study was to investigate apoptosis in pancreatic cancer cells induced by FU.Methods Suspension of human pancreatic carcinoma cell line PaTu 8988t was radiated by FU,using five doses with different radiation parameters and patterns,including one blank control.Temperature increase of the cell suspension was monitored.Cell apoptosis and death after FU radiation was observed using fluorescence microscopy and was tested by flow cytometer at 3,6,12,24,and 48 hours after ultrasound radiation.Results The maximum cell suspension temperatures following five radiation doses were 28°C,(42.20±2.17)°C,(50.80±0.84)°C,(55.80±2.17)°C,and (65.20±3.11)°C; differences between the doses were statistically significant (P <0.05).The apoptosis rate peaked at 24 hours after radiation,at (0.56±0.15)%,(1.28±0.16)%,(1.84±0.29)%,(5.74±1.15)%,and (2.00±0.84)% for the five doses; differences between the doses were statistically significant (P <0.05).Between doses 1-4,cell apoptosis rates increased as the Tmax increased.In dose 5,as the Tmax was above 60°C,the apoptosis rate decreased.Conclusion Sub-threshold thermal exposures of FU radiation with a continuous radiation pattern could result in higher oercentage of apoptosed cells.

  17. Echinococcus granulosus: protoscolicidal effect of high intensity focused ultrasound.

    Science.gov (United States)

    Zou, Xiaoyi; Wang, Junan; Zhao, Hailong; Zhang, Jing; Wu, Weihua; Ye, Bin

    2009-04-01

    High intensity focused ultrasound (HIFU) is a new non-invasive technique which can cause cell death and tissue necrosis by focusing high-energy ultrasonic waves on a single location. The aim of our work is to investigate the damaging effect of HIFU on Echinococcus granulosus protoscolices, as well as its inhibitory effect on growth of hydatid cysts derived from protoscolices. The damaging effect of HIFU on protoscolices was investigated by following parasite mortality after irradiation, while the inhibitory effect was investigated by infection experiments in vivo. The results demonstrated that HIFU was able to damage protoscolices and the protoscolicidal effect was dose-dependent and showed late-onset. The growth of protoscolices that survived the exposure to HIFU was obviously suppressed in vitro, and the mean weight of hydatid cysts resulting from such protoscolices in the experimental group was less than that in controls. Evidences including the protoscolicidal effect, fragmentized protoscolices and low post exposure temperatures, suggest that cavitation may contribute to the protoscolicidal effect of HIFU. In addition, the structure of the germinal membrane in cysts developing from the irradiated protoscolices was not as normal or intact as that from non-irradiated ones, and morphological changes related to degeneration were observed, suggesting that HIFU could prevent protoscolices from developing normal germinal membrane and consequently stop the proliferation of secondary hydatid cysts. HIFU demonstrated damaging effect on protoscolices, inhibited the growth of protoscolices in vitro and in vivo, and could be a possible therapeutic option for cystic echinococcosis.

  18. MR-guided focused ultrasound surgery, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, David, E-mail: djs9c@virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia 22908 (United States); Benedict, Stanley [Department of Radiation Oncology, University of California Davis, Davis, California 95817 (United States); Diederich, Chris [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94115 (United States); Gedroyc, Wladyslaw [Department of Medicine, Imperial College, London SW7 2AZ (United Kingdom); Klibanov, Alexander [Departments of Medicine, Cardiovascular Medicine, and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908 (United States); Larner, James [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2013-08-01

    MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20/20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.

  19. Transcranial focused ultrasound stimulation of human primary visual cortex

    Science.gov (United States)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  20. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.

    Science.gov (United States)

    Civale, John; Rivens, Ian; Ter Haar, Gail; Morris, Hugh; Coussios, Constantin; Friend, Peter; Bamber, Jeffrey

    2013-09-01

    High-intensity focused ultrasound (HIFU) is rapidly gaining acceptance as a non-invasive method for soft tissue tumor ablation, but improvements in the methods of treatment delivery, planning and monitoring are still required. Backscatter temperature imaging (BTI) uses ultrasound to visualize heating-induced echo strain and may be used to indicate the position of the HIFU focal region using low-power "sub-lesioning" exposure. The technique may also provide a quantitative tool for assessing the efficacy of treatment delivery if apparent strain measurements can be related to the underlying temperature rise. To obtain temperature estimates from strain measurements, the relationship between these variables has to be either measured or otherwise assumed from previous calibrations in similar tissues. This article describes experimental measurements aimed at deriving the relationship between temperature rise and apparent strain in the laboratory environment using both ex vivo bovine liver tissue samples and normothermically perfused porcine livers. A BTI algorithm was applied to radiofrequency ultrasound echo data acquired from a clinical ultrasound scanner (Z.One, Zonare Medical Systems, Mountain View, CA, USA) where the imaging probe was aligned with the focal region of a HIFU transducer. Temperature measurements were obtained using needle thermocouples implanted in the liver tissue. A series of "non-ablative" HIFU exposures giving peak temperatures below 10°C were made in three separate ex vivo bovine livers, yielding an average strain/temperature coefficient of 0.126 ± 0.088 percentage strain per degree Celsius. In the perfused porcine livers at a starting temperature of 38°C (normal body temperature) the strain/temperature coefficients were found to be 0.040 ± 0.029 percentage strain per degree Celsius. The uncertainty in these results is directly linked to the precision of the strain measurement, as well as the naturally occurring variance between different

  1. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery.

    Science.gov (United States)

    Chen, Yu; Chen, Hangrong; Shi, Jianlin

    2015-01-07

    The successful cancer eradication in a noninvasive manner is the ultimate objective in the fight against cancer. As a "bloodless scalpel," high-intensity focused ultrasound (HIFU) is regarded as one of the most promising and representative noninvasive therapeutic modalities for cancer surgery. However, large-scale clinical applications of HIFU are still in their infancy because of critical efficiency and safety issues which remain to be solved. Fortunately, recently developed nanobiotechnology provides an alternative efficient approach to improve such important issues in HIFU, especially for cancer therapy. This Research News presents the very recent exciting progresses on the elaborate design and fabrication of organic, inorganic, and organic/inorganic hybrid nanoparticles for enhancing the HIFU ablation efficiency against tumor tissues. It is highly expected that this Research News can arouse more extensive research enthusiasm on the development of functional nanomaterials for highly efficient HIFU-based synergistic therapy, which will give a promising noninvasive therapeutic modality for the successful cancer therapy with minimal damage to surrounding normal tissues, due to the noninvasive and site-specific therapeutic features of HIFU.

  2. Extracorporeal High-Intensity Focused Ultrasound Treatment for Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    HuiZhu; FengWu; WenzhiChen; YoudeCao; JinBai; ZhibiaoWang

    2004-01-01

    OBJECTIVE To evaluate the clinical safety and efficacy of using highintensity focused ultrasound (HIFU) therapy, for breast cancer, and to select the appropriate methods in evaluating the therapeutic effects.METHODS A total of 24 patients with breast cancer underwent HIFU treatment 1-2 weeks before receiving modified radical mastectomy. During and after HIFU therapy, changes in blood pressure, breath, pulse and peripheral blood oxygen saturation were monitored. At the same time, the damage of the skin and tissue produced by HIFU at the target region was evaluated as well. Surgically excised samples were used for pathological examinations to evaluate the HIFU-induced destruction of the targeted tissue. Three patients received Tc-ECT and 1 MRI examinations before and after HIFU.RESULTS HIFU treatment had no apparent influence on either the tissue nearby the target or on vital signs of the patients. Pathological, tc-ECT and MRI examinations demonstrated that targeted tissue showed complete coagulative necrosis.CONCLUSION Under the guidance of real-time ultrasonic imaging, HIFU can effectively and safely destroy the breast cancer mass and 99MTc-ECT and MRI examination can be utilized to evaluate the therapeutic effects.HIFU may become one of the options for breast cancer therapy in the future.

  3. Treatment of glaucoma with high intensity focused ultrasound.

    Science.gov (United States)

    Aptel, Florent; Lafon, Cyril

    2015-05-01

    Glaucoma is a common disease mainly due to an increase in pressure inside the eye, leading to a progressive destruction of the optic nerve, potentially to blindness. Intraocular pressure (IOP) is the result of a balance between production of liquid that fills the eye--aqueous humour--and its resorption. All treatments for glaucoma aim to reduce IOP and can therefore have two mechanisms of action: reducing aqueous humour production by the partial destruction or medical inhibition of the ciliary body--the anatomical structure responsible for production of aqueous humour--or facilitating the evacuation of aqueous humour from the eye. Several physical methods can be used to destroy the ciliary body, e.g. laser, cryotherapy, microwave. All these methods have two major drawbacks: they are non-selective for the organ to be treated and they have an unpredictable dose–effect relationship. High intensity focused ultrasound (HIFU) can be used to coagulate the ciliary body and avoid these drawbacks. A commercially available device was marketed in the 1980s, but later abandoned, essentially for technical reasons. A smaller circular device using miniaturised transducers was recently developed and proposed for clinical practice. Experimental studies have shown selective coagulation necrosis of the treated ciliary body. The first three clinical trials in humans have shown that this device was well tolerated and allowed a significant, predictable and sustained reduction of IOP. The aim of this contribution is to present a summary of the work concerning the use of HIFU to treat glaucoma.

  4. Therapeutic Potential of Transcranial Focused Ultrasound for Rett Syndrome

    Science.gov (United States)

    Tsai, Shih-Jen

    2016-01-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder occurring almost exclusively in females and is caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2) in the majority of cases. MeCP2 is essential for the normal function of nerve cells, including neuronal development, maturation, and synaptic activity. RTT is characterized by normal early development followed by autistic-like features, slowed brain and head growth, gait abnormalities, seizures, breathing irregularities, and cognitive disabilities. Medical management in RTT remains supportive and symptomatic. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of RTT. Recent studies have shown a phenotypic reversal by increasing BDNF expression in a RTT mouse model. Thus, manipulation of BDNF expression/signaling in the brain could be therapeutic for this disease. Transcranial focused ultrasound for (tFUS) can noninvasively focally modulate human cortical function, stimulate neurogenesis, and increase BDNF in animal studies. Consequently, tFUS may be of therapeutic potential for Rett syndrome. Further evaluation of the therapeutic effects of tFUS in Mecp2 deficient animal models is needed before clinical trials can begin. PMID:27786169

  5. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    Directory of Open Access Journals (Sweden)

    Leon Telis

    2017-01-01

    Full Text Available Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months’ follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon.

  6. Effects of Dynamic Changes in Ultrasound Attenuation and Blood Perfusion on Lesion Formation of Multiple focus Pattern during Ultrasound Surgery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chen-xi; BAI Jing-feng; CHEN Ya-zhu

    2007-01-01

    A nonlinear finite-element program was developed to simulate the dynamic evolution of coagulation in tissue considering temperature and thermal-dose dependence of the ultrasound attenuation and blood perfusion rate.The effects of these dynamic parameters on the lesion formation were investigated in the particular case of ultrasound hepatic ablation with bi-focus intensity pattern.The results of simulations were compared that incorporate dynamic changes of ultrasound attenuation and perfusion and results that neglect these effects.The result shows that thermal-dose-dependent ultrasound attenuation is the dominating factor in the full dynamic model.If the dynamic ultrasound attenuation is ignored, a relatively significant underestimation of the temperature rise appears in the focal plane and the region next to the focal plane, resulting in an underestimation in predicting diameter of coagulation.Higher heating intensity leads to greater underestimation.

  7. Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure.

    Science.gov (United States)

    Ghoshal, Goutam; Kemmerer, Jeremy P; Karunakaran, Chandra; Abuhabsah, Rami; Miller, Rita J; Sarwate, Sandhya; Oelze, Michael L

    2014-10-01

    Quantitative ultrasound (QUS) imaging is hypothesized to map temperature elevations induced in tissue with high spatial and temporal resolution. To test this hypothesis, QUS techniques were examined to monitor high-intensity focused ultrasound (HIFU) exposure of tissue. In situ experiments were conducted on mammary adenocarcinoma tumors grown in rats and lesions were formed using a HIFU system. A thermocouple was inserted into the tumor to provide estimates of temperature at one location. Backscattered time-domain waveforms from the tissue during exposure were recorded using a clinical ultrasonic imaging system. Backscatter coefficients were estimated using a reference phantom technique. Two parameters were estimated from the backscatter coefficient (effective scatterer diameter (ESD) and effective acoustic concentration (EAC). The changes in the average parameters in the regions corresponding to the HIFU focus over time were correlated to the temperature readings from the thermocouple. The changes in the EAC parameter were consistently correlated to temperature during both heating and cooling of the tumors. The changes in the ESD did not have a consistent trend with temperature. The mean ESD and EAC before exposure were 120 ± 16 μm and 32 ± 3 dB/cm3, respectively, and changed to 144 ± 9 μm and 51 ± 7 dB/cm3, respectively, just before the last HIFU pulse was delivered to the tissue. After the tissue cooled down to 37 °C, the mean ESD and EAC were 126 ± 8 μm and 35 ± 4 dB/cm3, respectively. Peak temperature in the range of 50-60 °C was recorded by a thermocouple placed just behind the tumor. These results suggest that QUS techniques have the potential to be used for non-invasive monitoring of HIFU exposure.

  8. Focused-ultrasound termination of an early pregnancy in rhesus macaques (Macaca mulatta): a pilot study.

    Science.gov (United States)

    Du, Yong-Hong; Zou, Jian-Zhong; Bai, Jin; Zhan, Yang; Wu, Feng; Wang, Zhi-Biao

    2012-12-01

    We explored the effectiveness, safety, and feasibility of focused ultrasound in terminating undesired pregnancy. A high-intensity focused ultrasound therapeutic unit was employed to terminate early pregnancies in rhesus macaques. B-mode ultrasound incorporated within the system was used to locate and study the gestational sacs of 6 rhesus macaques with gestation ages of 37 to 66 days, and varying modes of ultrasound exposure were adopted in the termination of the early pregnancies of the rhesus macaques. After focused ultrasound exposure, B-mode ultrasound of the gestational sacs showed significant lethal changes. Of the 6 rhesus macaques, 5 underwent complete abortions whereas 1 rhesus macaque underwent an incomplete abortion. The rhesus macaques resumed their menstrual cycles 50 days after focused-ultrasound treatment. The results suggested that focused ultrasound could be safe, feasible, and effective in terminating early pregnancies in rhesus macaques. As a novel physical method, it may be a promising ablation for a potentially clinical application. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    OpenAIRE

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics,...

  10. HIGH-INTENSITY FOCUSED ULTRASOUND CASTRATION FOR BREAST CANCER PATIENTS

    Institute of Scientific and Technical Information of China (English)

    王书文; 和新盈; 石景森; 赵东利; 李明众; 王诚; 薛文华

    2003-01-01

    Objective: To evaluate the safety and efficacy of external high-intensity focused ultrasound(HIFU) castration for breast cancerous patients after mastectomy if they are at a high risk of recurrence. Methods: We recruited 52 consecutive patients with primary operable breast cancer who were treated with mastectomy with excision of regional lymph nodes. Patients were positive for ER and PR immuno- cytochemical staining, node-positive, un-menopause, over 40 years old and were divided into two groups randomly. For castration, 26 patients received one or two times of HIFU treatment within five days, and the other patients received radiotherapy with DT 18Gy/9 f/11days. During and after the treatment, local changes and systemic response of the patients were observed. Results: After 1 month treatment, levels of serum E1 and E2 were significantly decreased compared to before treatment in HIFU groups (P<0.01 and P<0.001). The same changes were occurred in radiotherapy(RT) groups (P<0.05 and P<0.01). The levels of serum E1 or E2 in RT groups were higher than in HIFU groups (P<0.05). The symptom distribution of 'climacteric syndrome' of HIFU groups were significantly different from RT groups (P<0.01). The follow-up time was 4 months. The incidence of amenorrhea was 100% in all patients. No serious complications were seen. The temperature, pulse, blood pressure, and respiratory rate of the patients were almost normal. Conclusion: We have shown that the use of HIFU in the castrating of patients with breast cancer is feasible, safe and effective. This technology may provide a rapid noninvasive alterative to conventional bilateral oophorectomy or RT castration.

  11. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light

    CERN Document Server

    Ruan, Haowen; Yang, Changhuei

    2015-01-01

    Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which is able to focus light with improved efficiency and sub-ultrasound wavelength resolution. This method ultrasonically destructs microbubbles, and measures the wavefront change to compute and render a suitable time-reversed wavefront solution for focusing. We demonstrate that the TRUME technique can create an optical focus at the site of bubble destruction with a size of ~2 microns. Due to the nonlinear pressure-to-destruction response, the TRUME technique can break the addressable focus resolution barrier imposed by the ultrasound focus. We experimentally demonstrate a 2-fold ad...

  12. H-Mode Accelerating Structures with PMQ Beam Focusing

    CERN Document Server

    Kurennoy, Sergey S; O'Hara, James F; Olivas, Eric R; Wangler, Thomas P

    2011-01-01

    We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic computations, multi-particle beam-dynamics simulations with high currents, and thermal-stress analysis - for an IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or ...

  13. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  14. Triggered Drug Release from Superhydrophobic Meshes using High-Intensity Focused Ultrasound

    OpenAIRE

    Yohe, Stefan T.; Kopechek, Jonathan A.; Porter, Tyrone M; Colson, Yolonda L.; Grinstaff, Mark W.

    2013-01-01

    Application of high-intensity focused ultrasound to drug-loaded superhydrophobic meshes affords triggered drug release by displacing an entrapped air layer. The air layer within the superhydrophobic meshes is characterized using direct visualization and B-mode imaging. Drug-loaded superhydrophobic meshes are cytotoxic in an in vitro assay after ultrasound treatment.

  15. Towards MR-guided high intensity focused ultrasound ablation of liver tumors

    NARCIS (Netherlands)

    Wijlemans, J.W.

    2015-01-01

    Magnetic Resonance-guided High Intensity Focused Ultrasound (MR-HIFU) is a promising technique which can be used for completely non-invasive tissue ablation. The converging ultrasound beam penetrates the skin and subcutaneous tissues with damage, while heating the tissue only in the focal point. The

  16. Evaluate thermal lesion using Nakagami imaging for monitoring of high-intensity focused ultrasound

    Science.gov (United States)

    Zhang, Siyuan; Li, Chong; Zhou, Fanyu; Wang, Supin; Wan, Mingxi

    2017-03-01

    High-intensity focused ultrasound (HIFU) is currently being developed as a noninvasive technique for the treatment of cancer located in various tissues. Cavitation microbubbles (MBs) have been potential to aid treatment while the acoustic posterior shadowing effects of MBs influence the accuracy for defining the location and range of ablated thermal lesions during focused ultrasound surgery when using ultrasonic monitoring imaging. This work explored the feasibility of using ultrasonic Nakagami imaging to evaluate the ablated region induced by focused ultrasound exposures at different acoustic power levels in transparent tissue-mimicking phantoms.

  17. [Genetic algorithm application to multi-focus patterns of 256-element phased array for focused ultrasound surgery].

    Science.gov (United States)

    Xu, Feng; Wan, Mingxi; Lu, Mingzhu

    2008-10-01

    The genetic optimal algorithm and sound field calculation approach for the spherical-section phased array are presented in this paper. The in-house manufactured 256-element phased array focused ultrasound surgery system is briefly described. The on-axis single focus and off-axis single focus are simulated along with the axis-symmetric six-focus patter and the axis-asymmetric four-focus pattern using a 256-element phased array and the genetic optimal algorithm and sound field calculation approach. The experimental results of the described 256-element phased array focused ultrasound surgery system acting on organic glass and phantom are also analyzed. The results of the simulations and experiments confirm the applicability of the genetic algorithm and field calculation approaches in accurately steering three dimensional foci and focus.

  18. Ultrasound-Accelerated Thrombolysis in Patients With Intracardiac Thrombi: A Case Series.

    Science.gov (United States)

    Yadlapati, Ajay; Sweis, Ranya; Schimmel, Daniel

    2016-03-01

    We describe a case series of 3 patients presenting with intracardiac thrombi treated with standard anticoagulation therapy and intervention with ultrasound-accelerated thrombolysis therapy. Right-sided intracardiac thrombi portend significant mortality due to their susceptibility for embolization and pulmonary embolus despite the continuation of current standard of therapy of parenteral anticoagulation and surgical embolectomy if warranted. We demonstrate the safety and clinical efficacy of ultrasound-accelerated thrombolysis therapy with the EkoSonic Endovascular System infusion catheter system (EKOS Corporation) and highlight its use in resolving intracardiac thrombi and impeding the propagation of pulmonary emboli.

  19. High-intensity focused ultrasound treatment of abnormal vaginal bleeding secondary to uterine myoma.

    Science.gov (United States)

    Lim, Jung Hyun; Chung, Dong Jin; Lim, Young Tec; Cho, Sae Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2011-03-01

    We describe the use of high-intensity focused ultrasound for acute vaginal bleeding secondary to uterine myoma in 2 young female patients. Both patients had episodes of abnormal vaginal bleeding with severe dysmenorrhea that was not efficiently controlled by medical treatment. After high-intensity focused ultrasound ablation, both vaginal bleeding control and symptom relief were achieved without postinterventional complications. The patients remained free of symptoms during 2 months of follow-up and regained normal menstruation after high-intensity focused ultrasound therapy. High-intensity focused ultrasound treatment is one of the least invasive options for dysfunctional vaginal bleeding and may be an effective and safe alternative to other procedures in women of reproductive age with abnormal vaginal bleeding secondary to uterine myoma.

  20. Focused cardiac ultrasound in the emergency department for patients admitted with respiratory symptoms

    DEFF Research Database (Denmark)

    Laursen, C. B.

    2015-01-01

    triage, patients with cardiac arrest, patients with undifferentiated shock, patients with cardiopulmonary instability, patients with respiratory symptoms, trauma patients with suspected cardiac injuries, and assessment of the fluid status before fluid loading. When using focused cardiac ultrasound (US...

  1. MR-guided high-intensity focused ultrasound treatment of uterine fibroids

    OpenAIRE

    2016-01-01

    Antonia Wiggermann,1 Michael Beldoch,1 Friederike Hoellen,2 Peter Hunold1 1Clinic for Radiology and Nuclear Medicine, 2Department of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Lübeck, Germany Abstract: Uterine fibroids are benign, encapsulated uterine tumors, representing the most common reason for hysterectomy in premenopausal women. High-intensity focused ultrasound (HIFU; also known as focused ultrasound surgery) is a noninvasive technique leading to tissu...

  2. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K [National Cancer Institute, Rockville, MD (United States); O' Neill, B [The Methodist Hospital Research Institute, Houston, TX (United States)

    2014-06-15

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g. Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.

  3. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  4. Ultrasound accelerated Claisen Schmidt condensation: A green route to chalcones

    Science.gov (United States)

    Calvino, V.; Picallo, M.; López-Peinado, A. J.; Martín-Aranda, R. M.; Durán-Valle, C. J.

    2006-06-01

    Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This "green" method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.

  5. Phase-shift nano-emulsions induced cavitation and ablation during high intensity focused ultrasound exposure

    Science.gov (United States)

    Qiao, Yangzi; Yin, Hui; Chang, Nan; Wan, Mingxi

    2017-03-01

    Phase-shift Nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The aim of this work was to provide spatial and temporal information on PSNE induced cavitation and ablation effects during pulsed high intensity focused ultrasound (HIFU) exposure. The PSNEs were composed of perfluorohaxane (PFH) and bovine serum albumin (BSA), and then uniformly distributed in a transparent polyacrylamide phantom. The Sonoluminescence (SL) method was employed to visualize the cavitation distribution and formation process of PSNEs induced cavitation. For the phantom which was used for ablation observation, heat sensitive BSA was added. When the temperature generated by ultrasound exposure was high enough to denature BSA, the transparent phantom would turn out white lesions. The shape of the lesion and the formation process were compared with those of cavitation. Each of the pulse contained 12 cycles for a duration of 10 µs. And the duty cycle changed from 1:10 to 1:40. The total "on" time of HIFU was 2s. PSNE can evidently accelerate cavitation emitting bright SL in pre-focal region. The cavitation was generated layer by layer towards the transducer. The formed bubble wall can block acoustic waves transmitting to the distal end. And the lesion appeared to be separated into two parts. One in pre-focal region stemmed from one point and grew quickly toward the transducer. The other in focal region was formed by merging some small white dots, and grew much slower. The influence of duty cycle has also been examined. The lower duty cycle with longer pulse-off time would generate more intense cavitation, however, smaller lesion. Bubble cloud gradually developed within phantom would greatly influence the cavitation and ablation

  6. Controlled Hyperthermia with MRI-guided Focused Ultrasound

    DEFF Research Database (Denmark)

    Hokland, Steffen; Salomir, Rares; Pedersen, Michael

    -based temperature maps. Discussion MRI-thermometry: Of the various MRI-based thermometers the temperature dependent chemical shift of the proton resonance frequency (PRF) is the most widely used providing accurate and high resolution temperature maps. The primary weaknesses of PRF-based thermometry...... is the vulnerability to motion-artifacts, baseline drift and the fact that the PRF in lipids is independent of temperature. FUS-technology: At moderate intensities absorption of ultrasound (US) in tissue results in a local increase in temperature. As in other wave phenomena the extent of the focal point...

  7. Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound

    CERN Document Server

    Jaros, Jiri; Treeby, Bradley E

    2014-01-01

    Model-based treatment planning and exposimetry for high-intensity focused ultrasound (HIFU) requires the numerical simulation of nonlinear ultrasound propagation through heterogeneous and absorbing media. This is a computationally demanding problem due to the large distances travelled by the ultrasound waves relative to the wavelength of the highest frequency harmonic. Here, the k-space pseudospectral method is used to solve a set of coupled partial differential equations equivalent to a generalised Westervelt equation. The model is implemented in C++ and parallelised using the message passing interface (MPI) for solving large-scale problems on distributed clusters. The domain is partitioned using a 1D slab decomposition, and global communication is performed using a sparse communication pattern. Operations in the spatial frequency domain are performed in transposed space to reduce the communication burden imposed by the 3D fast Fourier transform. The performance of the model is evaluated using grid sizes up ...

  8. Nonlinear propagation of focused ultrasound in layered biological tissues based on angular spectrum approach

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiao-Feng; Zhou Lin; Zhang Dong; Gong Xiu-Fen

    2005-01-01

    Nonlinear propagation of focused ultrasound in layered biological tissues is theoretically studied by using the angular spectrum approach (ASA), in which an acoustic wave is decomposed into its angular spectrum, and the distribution of nonlinear acoustic fields is calculated in arbitrary planes normal to the acoustic axis. Several biological tissues are used as specimens inserted into the focusing region illuminated by a focused piston source. The second harmonic components within or beyond the biological specimens are numerically calculated. Validity of the theoretical model is examined by measurements. This approach employing the fast Fourier transformation gives a clear visualization of the focused ultrasound, which is helpful for nonlinear ultrasonic imaging.

  9. [Focused surgical bedside ultrasound: E-FAST (focused assessment with sonography in trauma) - abdominal aortic aneurysm - cholecystolithiasis - acute appendicitis].

    Science.gov (United States)

    Studer, Maria; Studer, Peter

    2014-06-04

    Ultrasound is an easy to learn and highly efficient diagnostic tool to complete the clinical examination and improve bedside decision-making. In the trauma room, surgeons are often required to make a quick decision as to whether or not a patient needs an emergency intervention or whether further diagnostics are required. For this reason, education of surgeons in performing focused emergency ultrasound is pivotal. The goal of ICAN is to improve and expand the education of surgeons in Switzerland. This article provides a short review of the most frequent surgical pathologies encountered in the emergency room.

  10. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy

    Science.gov (United States)

    Xiong, Wenli; Wang, Pan; Hu, Jianmin; Jia, Yali; Wu, Lijie; Chen, Xiyang; Liu, Quanhong; Wang, Xiaobing

    2015-12-01

    Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor.

  11. Study of focusing characteristics of ultrasound for designing acoustic lens in ultrasonic moxibustion device

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Hyun; Song, Sung Jin; Kim, Hak Joon [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-04-15

    Traditional moxibustion therapy can cause severe pain and leave scarring burns at the moxibustion site as it relies on the practitioner's subjective and qualitative treatment. Recently, ultrasound therapy has received attention as an alternative to moxibustion therapy owing to its objectiveness and quantitative nature. However, in order to convert ultrasound energy into heat energy, there is a need to precisely understand the ultrasound-focusing characteristics of the acoustic lens. Therefore, in this study, an FEM simulation was performed for acoustic lenses with different geometries a concave lens and zone lens as the geometry critically influences ultrasound focusing. The acoustic pressure field, amplitude, and focal point were also calculated. Furthermore, the performance of the fabricated acoustic lens was verified by a sound pressure measurement experiment.

  12. Sub-array patterns of spherical-section phased array for high intensity focused ultrasound surgery

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaodong; WANG Xufei; LU Mingzhu; WAN Mingxi

    2005-01-01

    The sub-array field patterns of spherical-section phased array were implemented for noninvasive ultrasound surgery of liver-tumor. The sub-array approach included field calculation, pseudo-inverse method and genetic algorithm. The sub-arrays uncovered by ribs according to scanned images normally emitted ultrasound. The results from different sub-arrays demonstrated quite satisfied acoustic performances, which included qualified focus size and intensity level for ultrasound surgery with single-focus and multi-foci patterns. Moreover, the patterns could decrease power accumulation on the ribs, and avoid damaging normal tissues. Thus the sub-array method provides a promising tool for phased array ultrasound propagating through strong obstacles like human rib cage, and it may broaden the therapeutic area, make the surgery safer and more flexible.

  13. Evaluation of frequency-dependent ultrasound attenuation in transparent medium using focused shadowgraph technique

    Science.gov (United States)

    Iijima, Yukina; Kudo, Nobuki

    2017-07-01

    Acoustic fields of a short-pulsed ultrasound propagating through a transparent medium with ultrasound attenuation were visualized by the focused shadowgraph technique. A brightness waveform and its spatial integrations were derived from a visualized field image and compared with a pressure waveform measured by a membrane hydrophone. The experimental results showed that first-order integration of the brightness wave has good agreement with the pressure waveforms. Frequency-dependent attenuation of the pulse propagating through castor oil was derived from brightness and pressure waveforms, and attenuation coefficients determined from focused shadowgraphy and hydrophone techniques showed good agreement. The results suggest the usefulness of the shadowgraph technique not only for the visualization of ultrasound fields but also for noncontact estimation of rough pressure waveforms and correct ultrasound attenuation.

  14. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  15. Impact of Focused Ultrasound-enhanced Drug Delivery on Survival in Rats with Glioma

    Science.gov (United States)

    Treat, Lisa Hsu; Zhang, Yongzhi; McDannold, Nathan; Hynynen, Kullervo

    2009-04-01

    Malignancies of the brain remain difficult to treat with chemotherapy because the selective permeability of the blood-brain barrier (BBB) blocks many potent agents from reaching their target. Previous studies have illustrated the feasibility of drug and antibody delivery across the BBB using MRI-guided focused ultrasound. In this study, we investigated the impact of focused ultrasound-enhanced delivery of doxorubicin on survival in rats with aggressive glioma. Sprague-Dawley rats were implanted with 9 L gliosarcoma cells in the brain. Eight days after implantation, each rat received one of the following: (1) no treatment (control), (2) a single treatment with microbubble-enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v. liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin (FUS+DOX). The survival time from implantation to death or euthanasia was recorded. We observed a modest but significant increase in median survival time in rats treated with combined MRI-guided focused ultrasound chemotherapy, compared to chemotherapy alone (p0.10). Our study demonstrates for the first time a therapeutic benefit achieved with ultrasound-enhanced drug delivery across the blood-brain barrier. This confirmation of efficacy in an in vivo tumor model indicates that targeted drug delivery using MRI-guided focused ultrasound has the potential to have a major impact on the treatment of patients with brain tumors and other neurological disorders.

  16. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability

    Science.gov (United States)

    Mooney, Skyler J.; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier. PMID:27459643

  17. MRI-guided High-Intensity Focused Ultrasound of Breast Cancer

    NARCIS (Netherlands)

    Merckel, L.G.

    2014-01-01

    Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for completely noninvasive tumor ablation. This thesis focuses on its application for the treatment of patients with breast cancer. The first part of the thesis describes the role of breast MRI for

  18. MRI-guided High-Intensity Focused Ultrasound of Breast Cancer

    NARCIS (Netherlands)

    Merckel, L.G.

    2014-01-01

    Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for completely noninvasive tumor ablation. This thesis focuses on its application for the treatment of patients with breast cancer. The first part of the thesis describes the role of breast MRI for

  19. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  20. Acceleration and Focusing of Electrons and Positrons Using a 30 GeV Drive Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark J

    2003-04-07

    A series of plasma wakefield acceleration (PWFA) experiments are being conducted with a 30 GeV drive beam from the Stanford Linear Accelerator Center (SLAC). These experiments continue to address the application of meter-scale plasmas to focus and accelerate electrons and positrons in the context of future applications to high-energy accelerators.

  1. On the Development of Focused Ultrasound Liquid Atomizers

    Directory of Open Access Journals (Sweden)

    Ahmed M. Al-Jumaily

    2017-01-01

    Full Text Available This paper reviews the evolution of focused ultrasonic transducers of various kinds for fluid atomization and vaporization. Ultrasonic transducers used for atomization purposes in biomedical, pharmaceutical, or industrial applications, such as surface acoustic wave (SAW transducers, array of micromachined nozzles, and Fourier horn micromachined nozzles with or without a central channel, are all presented and compared. For simplicity of manufacturing and low cost, we focus on plates and curved and corrugated structures for biomedical humidification.

  2. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An In vitro study

    Science.gov (United States)

    Suo, Dingjie; Jin, Zhiyang; Jiang, Xiaoning; Dayton, Paul A.; Jing, Yun

    2017-01-01

    High intensity focused ultrasound (HIFU) has recently emerged as a promising alternative approach for thrombolysis. However, the high acoustic energy required by HIFU could elicit thermal damage bioeffects, impeding the clinical translation of this technique. This paper investigates the use of dual-frequency focused ultrasound (DFFU) mediated by microbubbles (MBs) to minimize the acoustic power required for thrombolysis in vitro. It was found that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). In addition, SFFU needs about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency is also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation is likely responsible for the improved thrombolysis under DFFU and MBs.

  3. Feasibility of a focused ultrasound training programme for medical undergraduate students.

    Science.gov (United States)

    Wong, Ivan; Jayatilleke, Thilina; Kendall, Richard; Atkinson, Paul

    2011-03-01

    Although ultrasound is a core skill for many clinical specialties, UK medical schools are not currently required to teach this skill. The College of Emergency Medicine (CEM) has championed the use of ultrasound to answer focused clinical questions in emergency settings. We have designed and piloted an ultrasound training course for undergraduate medical students addressing one important indication: ultrasound assessment of the abdominal aorta. Fourteen clinical students, who had no prior experience of using ultrasound, received focused ultrasound training in the form of didactic instruction, a short bedside practical workshop and self-directed learning over a 20-day period. At the end of this period, the students were assessed by a structured viva and an observed structured clinical examination (OSCE) used for accreditation by the CEM. The primary endpoint was the number of students who passed the assessment. The secondary endpoint was the accuracy of the students' anatomical measurements. Thirteen of the 14 (93%) students completed the training and assessment. Eight of the 13 (62%) students passed both the viva and OSCE, and were deemed to have achieved the CEM standard. The measurements by the competent students were not statistically different from those of experienced practitioners. We have shown for the first time that it is feasible to train inexperienced undergraduate students to scan the abdominal aorta to a professional standard using a focused training course. It is time for the medical education community to address whether focused ultrasound training should accompany traditional clinical skills, such as using a stethoscope, in UK medical school curricula. © Blackwell Publishing Ltd 2011.

  4. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    Science.gov (United States)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  5. Use of stationary focused ultrasound fields for characterization of tissue and localized tissue ablation

    Science.gov (United States)

    Winey, Brian Andrew

    Ultrasound-induced blood stasis has been observed for more than 30 years. The physical understanding of the phenomenon has not been fully explored. Analytical descriptions of the acoustic interaction with spheres in suspension have been derived but the physical implications and limitations have not been demonstrated. The analytical expressions will be tested against physical observations using numerical simulations. The simulations will begin with stationary spheres and continue with the inclusion of moving spheres and a moving suspending fluid. To date, experimental observations of acoustically induced blood stasis have been either in vitro or invasive. We demonstrate ultrasound-induced blood stasis in murine normal leg muscle versus tumor-bearing legs, observed through noninvasive measurements of optical spectroscopy, and discuss possible diagnostic uses for this effect of ultrasound. We derive the optimal optical wavelengths for measuring the effects of the ultrasound at small source detector separations. Using optical oximetry performed at the optimal wavelengths, we demonstrate that effects of ultrasound can be used to differentiate tumor from normal leg muscle tissue in mice. To provide a statistical analysis of the experiments, we propose a novel diagnostic algorithm that quantitatively differentiates tumor from nontumor with maximum specificity 0.83, maximum sensitivity 0.79, and area under receiver-operating-characteristics curve 0.90. Ultrasound has long been known to cause tissue heating when applied in high intensities. More recently, interest has arisen in the area of High Intensity Focused Ultrasound (HIFU) for localized tissue heating effects, specifically thermal ablation. All present techniques employ focused traveling high intensity acoustic waves to create a region of elevated temperature. Such high intensity traveling waves can be damaging to normal tissue in the vicinity of the focal region, and have demonstrated surface burns and caused

  6. Focused ultrasound: concept for automated transcutaneous control of hemorrhage in austere settings.

    Science.gov (United States)

    Kucewicz, John C; Bailey, Michael R; Kaczkowski, Peter J; Carter, Stephen J

    2009-04-01

    High intensity focused ultrasound (HIFU) is being developed for a range of clinical applications. Of particular interest to NASA and the military is the use of HIFU for traumatic injuries because HIFU has the unique ability to transcutaneously stop bleeding. Automation of this technology would make possible its use in remote, austere settings by personnel not specialized in medical ultrasound. Here a system to automatically detect and target bleeding is tested and reported. The system uses Doppler ultrasound images from a clinical ultrasound scanner for bleeding detection and hardware for HIFU therapy. The system was tested using a moving string to simulate blood flow and targeting was visualized by Schlieren imaging to show the focusing of the HIFU acoustic waves. When instructed by the operator, a Doppler ultrasound image is acquired and processed to detect and localize the moving string, and the focus of the HIFU array is electronically adjusted to target the string. Precise and accurate targeting was verified in the Schlieren images. An automated system to detect and target simulated bleeding has been built and tested. The system could be combined with existing algorithms to detect, target, and treat clinical bleeding.

  7. Acute Cholecystitis Detected by Serial Emergency Department Focused Right Upper Quadrant Ultrasound

    Directory of Open Access Journals (Sweden)

    David Bosch

    2016-06-01

    Full Text Available Acute cholecystitis is a common etiology of acute right upper quadrant pain in patients presenting to the emergency department (ED. The use of ED-focused right upper quadrant ultrasound (RUQ US is becoming more widely utilized to evaluate abdominal pain thought to be hepatobiliary in nature. We describe a case series of two patients with acute cholecystitis detected by serial ED-focused RUQ US. Case 1: A woman presented to the ED with epigastric pain of acute onset. She was initially found to have a mild leukocytosis and cholelithiasis detected by ED-focused RUQ US. Seventy-five minutes later, the patient had a repeat bedside ultrasound by the same sonographer that showed visual evidence of acute cholecystitis that was later confirmed by surgical pathology. She was treated operatively. Case 2: A man with known cholelithiasis presents to the ED with acute-onset RUQ pain. Initial RUQ ultrasound performed by the Department of Radiology (University of Colorado Hospital was equivocal, showing cholelithiasis with a mildly thickened wall and no pericholecystic fluid. A repeat ED-focused RUQ ultrasound 5 hours later showed increased wall thickness and pericholecystic fluid. The patient was subsequently taken for same-day cholecystectomy. This case series demonstrates the dynamic and progressive nature of acute cholecystitis detected by ED-focused RUQ US. It also highlights how serial bedside ultrasonography can reduce harm, appropriately triage patients with hepatobiliary disease and lead to reductions in overall morbidity.

  8. Targeted Drug Delivery to the Brain by MRI-guided Focused Ultrasound

    Science.gov (United States)

    Treat, Lisa Hsu; McDannold, Nathan; Vykhodtseva, Natalia; Zhang, Yongzhi; Tam, Karen; Hynynen, Kullervo

    2006-05-01

    The effect of focused ultrasound on the absorption of liposome-encapsulated doxorubicin in the brain was investigated. By applying focused ultrasound in the presence of microbubble ultrasound contrast agent, we achieved targeted drug delivery to the brain in vivo. Tissue drug concentrations in sonicated brain corresponded with cytotoxic levels measured in various human tumors and were significantly different from those measured in unexposed contralateral control samples (p ⩽ 0.02). In addition, increased MR signal enhancement at the focal location on contrast-enhanced T1-weighted fast spin echo images correlated with increased penetration of doxorubicin into brain tissue (r = 0.85), indicating the potential of MRI to be used as an indicator of blood-brain barrier permeability during treatment. Further investigation is required to evaluate the efficacy of this technique and to optimize its parameters for clinical application.

  9. Photoacoustic-guided focused ultrasound (PAFUSion for identifying reflection artifacts in photoacoustic imaging

    Directory of Open Access Journals (Sweden)

    Mithun Kuniyil Ajith Singh

    2015-12-01

    Full Text Available Influence of acoustic inhomogeneities and resulting reflection artifacts is an important problem in reflection-mode photoacoustic imaging. Absorption of light by skin and superficial optical absorbers will generate photoacoustic transients, which traverse into the tissue and get reflected from structures having different acoustic impedance. These reflected photoacoustic signals, when reconstructed, may appear in the region of interest, which causes difficulties in image interpretation. We propose a novel method to identify and potentially eliminate reflection artifacts in photoacoustic images using photoacoustic-guided focused ultrasound [PAFUSion]. Our method uses focused ultrasound pulses to mimic the wave field produced by photoacoustic sources and thus provides a way to identify reflection artifacts in clinical combined photoacoustic and pulse-echo ultrasound. Simulation and phantom results are presented to demonstrate the validity and impact of this method. Results show that PAFUSion can identify reflections in photoacoustic images and thus envisages potential for improving photoacoustic imaging of acoustically inhomogeneous tissue.

  10. Miniaturized Cell Lysis Device Using Spherically Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    李刚; 肖宏; 郭旻; 程京

    2003-01-01

    A prototype of a miniaturized cell lysis device developed using a concave spherical transducer is capable of lysing bacteria without added chemical denaturants, enzymes or microparticles and is capable of efficiently lysing yeast without any mechanical or enzymatic pretreatment.The device is designed for miniature bio-analysis systems where cell lysing is needed to obtain intracellular materials for further analysis such as DNA identification.The device lysis efficiency was evaluated using viable cell counts and microscopy.Additionally, the device efficiency was compared with that of traditional chemical cell lysis methods using standard molecular biological techniques such as agarose gels and ultraviolet (UV) spectroscopy.The results indicate that efficient bacteria and cell disruption can be achieved through a low-voltage-driven and spherically focused high-frequency ultrasonic device.

  11. A prototype stimulator system for noninvasive Low Intensity Focused Ultrasound delivery.

    Science.gov (United States)

    Mulgaonkar, Amit P; Singh, Rahul S; Babakhanian, Meghedi; Culjat, Martin O; Grundfest, Warren S; Gorgulho, Alessandra; Lacan, Goran; De Salles, Antonio A F; Bystritsky, Alexander; Melega, William P

    2012-01-01

    A prototype Low Intensity Focused Ultrasound (LIFU) stimulator system was developed to evaluate non-invasive neuromodulation in a large animal model. We conducted a feasibility study on a Göttingen minipig, demonstrating reversible, targeted transcranial neuromodulation. The hypothalamus of the minipig was repeatedly stimulated with LIFU which evoked temporally correlated increases in both heart rate and blood pressure.

  12. 76 FR 43119 - Medical Devices; General and Plastic Surgery Devices; Classification of the Focused Ultrasound...

    Science.gov (United States)

    2011-07-20

    ... focused ultrasound exposure (thermal damage), such as erythema, edema, pigmentary changes, and pain. These... risk is addressed by recommended treatment parameters that have been shown to be safe with little or no... risk is addressed by recommended treatment parameters that have been shown to be safe with little or no...

  13. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Directory of Open Access Journals (Sweden)

    Hun-Hee Kim

    2016-02-01

    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  14. Focused ultrasound for treatment of uterine myoma: From experimental model to clinical practice

    Directory of Open Access Journals (Sweden)

    Terzić Milan

    2008-01-01

    Full Text Available It is well known that focused ultrasound has a biologic effect on tissue. High intensity focused ultrasound (HIFU on a small target area raises the temperature of the tissue enough to denaturate proteins and cause irreversible cell damage. The tight focus of the ultrasound energy allows delivery of the intended dose to a very precise location. The resulting coagulation necrosis is relatively painless. The application of this method in the human clinical setting has required pilot studies on an animal model. Although the treatment had a high success rate, there was a significant percentage of complications, mainly attributed to the technical drawbacks of the procedure. Therefore, this method has been modified for use in humans, and the HIFU is now guided, monitored and controlled by magnetic resonance imaging (MRI. In October 2004, Food and Drug Adiministration (FDA approved MRI guided focused ultrasound treatment of uterine fibroids in humans. Since then, successful treatment of uterine myomas by HIFU has been performed in thousands of women.

  15. International consensus on use of focused ultrasound for painful bone metastases : Current status and future directions

    NARCIS (Netherlands)

    Huisman, Merel; ter Haar, Gail; Napoli, Alessandro; Hananel, Arik; Ghanouni, Pejman; Lövey, György; Nijenhuis, Robbert J; van den Bosch, Maurice A A J; Rieke, Viola; Majumdar, Sharmila; Marchetti, Luca; Pfeffer, Raphael M; Hurwitz, Mark D

    2015-01-01

    Focused ultrasound surgery (FUS), in particular magnetic resonance guided FUS (MRgFUS), is an emerging non-invasive thermal treatment modality in oncology that has recently proven to be effective for the palliation of metastatic bone pain. A consensus panel of internationally recognised experts in

  16. Bone metastasis treatment using magnetic resonance-guided high intensity focused ultrasound

    NARCIS (Netherlands)

    Yeo, Sin Yuin; Elevelt, Aaldert; Donato, Katia; van Rietbergen, Bert; ter Hoeve, Natalie D.; van Diest, Paul J.; Grüll, Holger

    2015-01-01

    Objectives: Bone pain resulting from cancer metastases reduces a patient's quality of life. Magnetic Resonance-guided High Intensity Focused Ultrasound (MR-HIFU) is a promising alternative palliative thermal treatment technique for bone metastases that has been tested in a few clinical studies. Here

  17. International consensus on use of focused ultrasound for painful bone metastases : Current status and future directions

    NARCIS (Netherlands)

    Huisman, Merel; ter Haar, Gail; Napoli, Alessandro; Hananel, Arik; Ghanouni, Pejman; Lövey, György; Nijenhuis, Robbert J; van den Bosch, Maurice A A J; Rieke, Viola; Majumdar, Sharmila; Marchetti, Luca; Pfeffer, Raphael M; Hurwitz, Mark D

    2015-01-01

    Focused ultrasound surgery (FUS), in particular magnetic resonance guided FUS (MRgFUS), is an emerging non-invasive thermal treatment modality in oncology that has recently proven to be effective for the palliation of metastatic bone pain. A consensus panel of internationally recognised experts in f

  18. International consensus on use of focused ultrasound for painful bone metastases : Current status and future directions

    NARCIS (Netherlands)

    Huisman, Merel; ter Haar, Gail; Napoli, Alessandro; Hananel, Arik; Ghanouni, Pejman; Lövey, György; Nijenhuis, Robbert J; van den Bosch, Maurice A A J|info:eu-repo/dai/nl/182981630; Rieke, Viola; Majumdar, Sharmila; Marchetti, Luca; Pfeffer, Raphael M; Hurwitz, Mark D

    2015-01-01

    Focused ultrasound surgery (FUS), in particular magnetic resonance guided FUS (MRgFUS), is an emerging non-invasive thermal treatment modality in oncology that has recently proven to be effective for the palliation of metastatic bone pain. A consensus panel of internationally recognised experts in f

  19. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data

    Science.gov (United States)

    Dillon, C. R.; Borasi, G.; Payne, A.

    2016-01-01

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one.

  20. Electron Acceleration by a Focused Gaussian Laser Pulse in Vacuum

    Institute of Scientific and Technical Information of China (English)

    何峰; 余玮; 陆培祥; 徐涵

    2004-01-01

    By numerically solving the relativistic equations of motion of a single electron in laser fields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. When the drifting distance is comparable to or even longer than the corresponding Rayleigh length, the evolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration and deceleration leads to the conclusion that the electron can be accelerated effectively and extracted by the longitudinal ponderomotive force. For intensities above, an electron's energy gain about MeV can be realized, and the energetic electron is parallel with the propagation axis.

  1. Enhancement of antitumor vaccine in ablated hepatocellular carcinoma by high-intensity focused ultrasound

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether tumor debris created by high-intensity focused ultrasound(HIFU)could trigger antitumor immunity in a mouse hepatocellular carcinoma model. METHODS:Twenty C57BL/6J mice bearing H22 hepatocellular carcinoma were used to generate antitumor vaccines.Ten mice underwent HIFU ablation,and the remaining 10 mice received a sham-HIFU procedure with no ultrasound irradiation.Sixty normal mice were randomly divided into HIFU vaccine,tumor vaccine and control groups.These mice were immunized w...

  2. Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez

    1999-01-01

    Modern ultrasound scanners estimate the blood velocity by tracking the movement of the blood scatterers along the ultrasound beam. This is done by emitting pulsed ultrasound fields and finding the shift in position from pulse to pulse by correlating the received signals. Only the velocity component...... along the beam direction is found, and this is a serious limitation in the current scanners, since most blood vessels are parallel to the skin surface. A method to find the velocity across the vessel has been suggested by Bonnefous (1988). Here a number of parallel receive beams are measured and used...... or across it or in any direction to the beam. The focused lines, thus, follow the flow and a cross-correlation of lines from different pulses can find the movement of the blood particles between pulse emissions and, thus, the blood velocity. The new approach is investigated using the Field II simulation...

  3. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    Science.gov (United States)

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.

  4. Physician-performed Focused Ultrasound: An Update on Its Role and Performance

    Directory of Open Access Journals (Sweden)

    Sornsupha Limchareon

    2015-06-01

    Full Text Available There is an increase in the use of focused ultrasound (US by physicians because it offers the major benefit of reduction in time to diagnosis. Some of these physicians have received formal training on focused US, others have not received any such training. However, among the formal training given on focused US, there is inconsistency across the teaching protocols. This review presents performances of focused US commonly performed by physicians, compared with radiology US. The various teaching protocols are also discussed.

  5. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation

    Science.gov (United States)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    Objective. While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. Approach. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. Main results. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10-3 °C) for a 0.5 s exposure. Significance. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  6. Compare ultrasound-mediated heating and cavitation between flowing polymer- and lipid-shelled microbubbles during focused ultrasound exposures.

    Science.gov (United States)

    Zhang, Siyuan; Zong, Yujin; Wan, Mingxi; Yu, Xiaojun; Fu, Quanyou; Ding, Ting; Zhou, Fanyu; Wang, Supin

    2012-06-01

    This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.

  7. Ultrasound

    Science.gov (United States)

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  8. Review on triggered liposomal drug delivery with a focus on ultrasound.

    Science.gov (United States)

    Moussa, Hesham G; Martins, Ana M; Husseini, Ghaleb A

    2015-01-01

    Chemotherapy is widely used for cancer treatment; however, it causes unwanted side effects in patients. To avoid these adverse effects, nanocarriers have been developed, which can be loaded with the chemotherapeutic agents, directed to the cancer site and, once there, are exposed to stimuli that will trigger the drug release. Liposomes can be chemically modified to increase their circulation time, their stability, and their sensitivity to specific stimulus. Additionally, ligands can be conjugated to their surface, allowing for their specific binding to receptors overexpressed on the surface of cancer cells and the subsequent internalization via endocytosis. Using a triggering mechanism, including temperature, ultrasound, enzymes or a change in pH, the release of the drug is controlled and induced inside the cells, hence avoiding drug release in systemic circulation, which in turn reduces the undesired side effects of conventional chemotherapy. Ultrasound has been widely studied as a drug release trigger from liposomes, due to its well-known physics and previous uses in medicine. This review focuses on liposome-based drug delivery systems, using different trigger mechanisms, with a focus on ultrasound. The physical mechanisms of ultrasound release are also investigated and the results of in vitro and in vivo studies are summarized.

  9. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling.

    Science.gov (United States)

    Khokhlova, Tatiana D; Canney, Michael S; Khokhlova, Vera A; Sapozhnikov, Oleg A; Crum, Lawrence A; Bailey, Michael R

    2011-11-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound.

  10. Ultrasound window-modulated compounding Nakagami imaging: Resolution improvement and computational acceleration for liver characterization.

    Science.gov (United States)

    Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang

    2016-08-01

    Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation.

  11. DUAL-FOCUS THERAPEUTIC ULTRASOUND TRANSDUCER FOR PRODUCTION OF BROAD TISSUE LESIONS

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan M.; Shung, K. Kirk

    2011-01-01

    In noninvasive high-intensity focused ultrasound (HIFU) treatment, formation of a large tissue lesion per sonication is desirable for reducing the overall treatment time. The goal of this study is to show the feasibility of enlarging tissue lesion size with a dual-focus therapeutic ultrasound transducer (DFTUT) by increasing the depth-of-focus (DOF). The proposed transducer consists of a disc- and an annular-type element of different radii of curvatures to produce two focal zones. To increase focal depth and to maintain uniform beamwidth of the elongated DOF, each element transmits ultrasound of a different center frequency: the inner element at a higher frequency for near field focusing and the outer element at a lower frequency for far field focusing. By activating two elements at the same time with a single transmitter capable of generating a dual-frequency mixed signal, the overall DOF of the proposed transducer may be extended considerably. A prototype transducer composed of a 4.1 MHz inner element and a 2.7 MHz outer element was fabricated to obtain preliminary experimental results. The feasibility the proposed technique was demonstrated through sound field, temperature and thermal dose simulations. The performance of the prototype transducer was verified by hydrophone measurements and tissue ablation experiments on a beef liver specimen. When several factors affecting the length and the uniformity of elongated DOF of the DFTUT are optimized, the proposed therapeutic ultrasound transducer design may increase the size of ablated tissues in the axial direction and, thus, decreasing the treatment time for a large volume of malignant tissues especially deep-seated targets. PMID:20870346

  12. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

    Science.gov (United States)

    Hariharan, Prasanna; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Nagaraja, Srinidhi; Myers, Matthew R

    2014-12-01

    In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.

  13. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    Science.gov (United States)

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-12-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate a tissue into submicron-sized fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-sized boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-sized boiling bubble creates submicron-sized tissue fragments remains. The hypothesis of this work is that the tissue can behave as a liquid such that it atomizes and forms a fountain within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2 MHz HIFU transducer (maximum in situ intensity of 24 000 W cm-2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation was observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy.

  14. Feasibility of MRI-guided Focused Ultrasound as Organ-Sparing Treatment for Testicular Cancer

    Science.gov (United States)

    Staruch, Robert; Curiel, Laura; Chopra, Rajiv; Hynynen, Kullervo

    2009-04-01

    High cure rates for testicular cancer have prompted interest in organ-sparing surgery for patients with bilateral disease or single testis. Focused ultrasound (FUS) ablation could offer a noninvasive approach to organ-sparing surgery. The objective of this study was to determine the feasibility of using MR thermometry to guide organ-sparing focused ultrasound surgery in the testis. The testes of anesthetized rabbits were sonicated in several discrete locations using a single-element focused transducer operating at 2.787MHz. Focal heating was visualized with MR thermometry, using a measured PRF thermal coefficient of -0.0089±0.0003 ppm/° C. Sonications at 3.5-14 acoustic watts applied for 30 seconds produced maximum temperature elevations of 10-80° C, with coagulation verified by histology. Coagulation of precise volumes in the testicle is feasible with MRI-guided focused ultrasound. Variability in peak temperature for given sonication parameters suggests the need for online temperature feedback control.

  15. Laser-enhanced thermal effect of moderate intensity focused ultrasound on bio-tissues

    Science.gov (United States)

    Zhao, JinYu; Zhang, ShuYi; Shui, XiuJi; Fan, Li

    2017-09-01

    For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound (HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound (MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.

  16. Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Kullervo Hynynen

    2011-01-01

    Full Text Available Recent works on focused ultrasound (FUS have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU.

  17. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    Science.gov (United States)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  18. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Vincent Y. T. [Dept. of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong (China)

    2017-04-15

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition.

  19. Outcome of unintended pregnancy after ultrasound-guided high-intensity focused ultrasound ablation of uterine fibroids.

    Science.gov (United States)

    Qin, Juan; Chen, Jin-Yun; Zhao, Wen-Peng; Hu, Liang; Chen, Wen-Zhi; Wang, Zhi-Biao

    2012-06-01

    To evaluate the safety of ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation of uterine fibroids among women with unintentional pregnancy within 1 year of therapy. A retrospective analysis was conducted of 435 women who underwent USgHIFU therapy at Chongqing Medical University, China, between October 1, 2006, and October 1, 2009. Unplanned pregnancy was reported by 24 women within 1 year of USgHIFU ablation; 8 of these women had desired pregnancy before undergoing treatment. A total of 27 fibroids were detected, 24 of which were treated (mean volume 65.9±58.8 cm(3)). Pregnancy was continued by 7 women without any complications. One pregnant woman who had desired pregnancy before therapy underwent an induced abortion owing to concerns about the effects of USgHIFU on the fetus. Fourteen women without pregnancy intention before USgHIFU therapy chose to undergo induced abortion; 2 women experienced spontaneous abortion. No adhesion occurred after USgHIFU therapy. Furthermore, USgHIFU, labor, and abortion had no effect on subsequent menstruation or sexual activities. Pregnancy within 1 year after USgHIFU ablation of uterine fibroids appears safe; however, large scale studies are required to confirm these data. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Displacement analysis of diagnostic ultrasound backscatter: a methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy.

    Science.gov (United States)

    Speyer, Gavriel; Kaczkowski, Peter J; Brayman, Andrew A; Crum, Lawrence A

    2010-07-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented.

  1. A novel image-guided high-intensity focused ultrasound system for tumor treatment

    Science.gov (United States)

    Wu, Zhiqiang; Wu, Puwei; Chen, Bojie; Guan, Jian; Huang, Zheng

    2004-07-01

    A novel ultrasonography-guided high intensity focused ultrasound (HIFU) system (FS-100; Force Electronics Co. Ltd, Chongqing, China) was developed for non-invasive thermal ablation of tumor. The proprietary therapy delivery system is an integration of the digital image progressing, automatic control and the high intensity focused ultrasound thermal ablation devices. The therapeutic ultrasound probe (φ = 240 mm) consists of eight circular HIFU transducers with a curved surface of a diameter of 60 mm. Dual focused beams generated from the probe were used in this system for thermal delivery. The probe has the maximal resonance frequency of 1 MHz, a maximal treatment depth of 160 mm and focal spot diameter of 3 mm. The maximal intensity at the focal spot is 10,000 W/cm2. The imaging and HIFU components are located on top of the device, therefore, the focused ultrasound beams can be delivered to the patient in a supine position. The motion, targeting and localization of the probe are controlled by a PMAC-PC motion controller and an 8-independent-axis mechanical device. The linear motion error of the probe localization is <= 0.1 mm. The ultrasonographic image information is used for treatment planning and therapeutic interventions, such as target definition and registration, visualization of the three-dimensional anatomy of desired target(s), automatic positioning the thermal beams on targets, controlling thermal delivery, and rapid evaluation of target response post-treatment. The preclinical experimental results will be presented. The safety, feasibility and effectiveness of this novel HIFU system will be tested.

  2. High-intensity focused ultrasound to treat primary hyperparathyroidism: a feasibility study in four patients

    DEFF Research Database (Denmark)

    Kovatcheva, Roussanka D; Vlahov, Jordan D; Shinkov, Alexander D;

    2010-01-01

    Many patients with primary hyperparathyroidism either decline or are not candidates for surgical parathyroidectomy. There are drawbacks to medical therapy as well as percutaneous ethanol injection as alternative therapies for primary hyperparathyroidism. Therefore, in this pilot study, our aim...... was to test the feasibility, safety, and efficacy of a newly developed noninvasive high-intensity focused ultrasound (HIFU) technique for the nonsurgical management of primary hyperparathyroidism....

  3. A Rectourethral Fistula due to Transrectal High-Intensity Focused Ultrasound Treatment: Diagnosis and Management

    OpenAIRE

    2012-01-01

    Colovesical fistula (CVF) is an abnormal connection between the enteric and the urinary systems. The rectourethral fistula (RUF) is a possible but extremely rare complication of treatment of prostate cancer with “transrectal High-Intensity Focused Ultrasound (HIFU) treatment.” We present a case of CVF due to HIFU treatment of recurrent prostate cancer. The case was assessed with cystography completed with a pelvic CT scan—with MPR, MIP, and VR reconstruction—before emptying the bladder. Since...

  4. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    OpenAIRE

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potentia...

  5. TU-B-210-00: MR-Guided Focused Ultrasound Therapy in Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  6. Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment.

    Science.gov (United States)

    Napoli, Alessandro; Mastantuono, Marco; Cavallo Marincola, Beatrice; Anzidei, Michele; Zaccagna, Fulvio; Moreschini, Oreste; Passariello, Roberto; Catalano, Carlo

    2013-05-01

    To determine the preliminary feasibility, safety, and clinical efficacy of magnetic resonance (MR)-guided focused ultrasound for the treatment of painful osteoid osteoma. This prospective institutional review board-approved study involved six consecutive patients (five males and one female; mean age, 21 years) with a diagnosis of osteoid osteoma based on clinical and imaging findings. All patients underwent MR-guided focused ultrasound ablation after providing informed consent. Lesions located in the vertebral body were excluded. The number of sonications and the energy deposition were recorded. Treatment success was determined at 1, 3, and 6 months after treatment. A visual analog scale (VAS) score for pain was used to assess changes in symptoms. MR imaging features of osteoid osteoma (edema, hyperemia, and nidus vascularization) were considered at baseline and at imaging follow-up. Treatment was performed with a mean of 4 sonications ± 1.8 (standard deviation), with a mean energy deposition of 866 J ± 211. No treatment- or anesthesia-related complications occurred. The pre- and posttreatment mean VAS scores significantly differed (7.9 ± 1.4 and 0.0 ± 0.0, respectively). At imaging, the edema and hyperemia associated with osteoid osteoma gradually disappeared in all lesions. However, nidus vascularization still persisted after treatment in four of six patients. This limited series demonstrated that MR-guided focused ultrasound treatment of osteoid osteoma can be performed safely with a high rate of success and without apparent treatment-related morbidity.

  7. [Effects of high intensity focused ultrasound with SonoVue on blood vessels pathological examinations].

    Science.gov (United States)

    Qin, Yan; Bai, Jin; Li, Faqi; Wang, Zhibiao

    2010-12-01

    The injury of tumor blood vessels will break up the nutrition supply for the tumor. In this paper, we investigated the effects exerted by high intensity focused ultrasound (HIFU) combined with ultrasound microbubble agent on blood vessels. Ultrasound diagnosis was used to find the goat hepatic blood vessels each being approximately 3mm in diameter. HIFU was focused on the blood vessels. The acoustic power was 250W; HIFU irradiating Mode was line scan (the length of the line: 10 mm; speed: 3 mm/s; irradiating time: 30s). In the experimental group, 0.03 ml/kg SonoVue was injected into the goat before HIFU irradiation,while normal saline was given to the control group. The goats were killed at 24h after HIFU irradiation, then goat liver tissues and blood vessels of target area were taken out. HE staining and Victoria's blue and Ponceau's staining of tissue section showed that the endothelial cells of blood vessels dropped off and became necrosed, and the continuity of blood vessels was interrupted. HIFU combined with SonoVue will damage large blood vessels on HIFU focus, but there is no evident discrepancy between the group with SonoVue and the group without SonoVue.

  8. Measurement of temperature decrease caused by blood flow in focused ultrasound irradiation by thermal imaging method

    Science.gov (United States)

    Tsuchiya, Takenobu; Hatano, Yuichi; Mori, Yashunori; Shen, Rakushin; Endoh, Nobuyuki

    2016-07-01

    In this study, to estimate the local temperature changes caused by a thick blood vessel, the temperature distribution in a tissue phantom with a thick blood vessel during focused ultrasound irradiation was measured by a thermal imaging method. The blood flow rate in the simulated blood vessel was varied and the relationship between flow rate and temperature decrease was examined. The phantom using the thermal imaging method is divided into two parts, and the increases in temperature distribution as a function of blood flow rate are measured using a thermocamera under constant ultrasound irradiation. The irradiation conditions of ultrasound waves were a central frequency of 1 MHz, a wave number length of 200 cycles, and a duty ratio of 0.2. The irradiation duration was 5 min, and the ultrasound intensity I SPTA was 36 W/cm2. The amount of temperature decrease caused by the cooling effect of blood flow increased with the blood flow rate and it became constant at a certain threshold of blood flow rate. The threshold of blood flow rate is about 250 ml/min.

  9. Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

    Science.gov (United States)

    Bazan-Peregrino, Miriam; Rifai, Bassel; Carlisle, Robert C; Choi, James; Arvanitis, Costas D; Seymour, Leonard W; Coussios, Constantin C

    2013-07-10

    Oncolytic viruses (OV) and ultrasound-enhanced drug delivery are powerful novel technologies. OV selectively self-amplify and kill cancer cells but their clinical use has been restricted by limited delivery from the bloodstream into the tumor. Ultrasound has been previously exploited for targeted release of OV in vivo, but its use to induce cavitation, microbubble oscillations, for enhanced OV tumor extravasation and delivery has not been previously reported. By identifying and optimizing the underlying physical mechanism, this work demonstrates that focused ultrasound significantly enhances the delivery and biodistribution of systemically administered OV co-injected with microbubbles. Up to a fiftyfold increase in tumor transgene expression was achieved, without any observable tissue damage. Ultrasound exposure parameters were optimized as a function of tumor reperfusion time to sustain inertial cavitation, a type of microbubble activity, throughout the exposure. Passive detection of acoustic emissions during treatment confirmed inertial cavitation as the mechanism responsible for enhanced delivery and enabled real-time monitoring of successful viral delivery.

  10. Localized Ablation of Thyroid Tissue by High-Intensity Focused Ultrasound: an Alternative to Surgery?

    Science.gov (United States)

    Esnault, Olivier; Franc, Brigitte; Chapelon, Jean-Yves; Lacoste, Francois

    2006-05-01

    PURPOSE: The aim of this study was to evaluate the feasibility of using a High-intensity focused ultrasound (HIFU) device to obtain a localised destruction of the thyroid with no damage to adjacent tissues. MATERIALS AND METHODS: The ewe model was used because its thyroid gland is easily accessible with ultrasound. The animals were anaesthetised with 10 mg / kg IV injection of Penthothal. The HIFU pulses were generated by a 3-MHz spherical transducer under ultrasound guidance. Macroscopic and microscopic tissue lesions were identified after formalin fixation of the anterior part of the ewe's neck. RESULTS: After determining the optimal instrument settings to obtain localized thyroid ablation, the repeatability of the method was evaluated using a HIFU prototype designed specifically for human use: in 13 ewes (26 treated lobes), an average of 20 (range: 14-27) ultrasound pulses (pulse duration: 3 s) per lobe covering a mean volume of 0.5 cm3 (range: 0.3-0.7 cm3) were delivered. The ewes were sacrificed 2-5 weeks after treatment delivery. No damage to the nerves, trachea, esophagus or muscle was observed. Only 3 ewes suffered superficial skin burns. The desired thyroid lesions were obtained in 25/26 treated lobes, as demonstrated by fibrotic tissues, which replaced necrotic areas. CONCLUSION: These results obtained in the ewe model show that thyroid lesions of defined volume can be induced safely and suggest that the HIFU device is now ready for human trials.

  11. Magnetic resonance image-guided versus ultrasound-guided high-intensity focused ultrasound in the treatment of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Sheng Li; Pei-Hong Wu

    2013-01-01

    Image-guided high-intensity focused ultrasound (HIFU) has been used for more than ten years,primarily in the treatment of liver and prostate cancers.HIFU has the advantages of precise cancer ablation and excellent protection of healthy tissue.Breast cancer is a common cancer in women.HIFU therapy,in combination with other therapies,has the potential to improve both oncologic and cosmetic outcomes for breast cancer patients by providing a curative therapy that conserves mammary shape.Currently,HIFU therapy is not commonly used in breast cancer treatment,and efforts to promote the application of HIFU is expected.In this article,we compare different image-guided models for HIFU and reviewed the status,drawbacks,and potential of HIFU therapy for breast cancer.

  12. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  13. Single-element focused ultrasound transducer method for harmonic motion imaging.

    Science.gov (United States)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa E

    2006-07-01

    The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model first indicated that, unlike in the two-beam configuration, the amplitude-modulated beam produced a stable focal zone for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were performed on gelatin phantoms and ex vivo tissues. The radiation force was generated by a 4.68 MHz focused ultrasound (FUS) transducer using a 50 Hz amplitude-modulated wave. A 7.5 MHz pulse-echo transducer was used to acquire rf echoes during the application of the harmonic radiation force. Consecutive rf echoes were acquired with a pulse repetition frequency (PRF) of 6.5 kHz and 1D cross-correlation was performed to estimate the resulting axial tissue displacement. The HMI technique was shown capable of estimating stiffness-dependent displacement amplitudes. Finally, taking advantage of the real-time capability of the HMI technique, temperature-dependent measurements enabled monitoring ofHIFU sonication in ex vivo tissues. The new HMI method may thus enable a highly-localized force and stiffness-dependent measurements as well as real-time and low-cost HIFU monitoring.

  14. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  15. An intelligent nanotheranostic agent for targeting, redox-responsive ultrasound imaging, and imaging-guided high-intensity focused ultrasound synergistic therapy.

    Science.gov (United States)

    Wang, Xia; Chen, Hangrong; Zhang, Kun; Ma, Ming; Li, Faqi; Zeng, Deping; Zheng, Shuguang; Chen, Yu; Jiang, Lixin; Xu, Huixiong; Shi, Jianlin

    2014-04-09

    A novel multifunctional nanotheranostic agent with targeting, redox-responsive ultrasound imaging and ultrasound imaging-guided high-intensity focused ultrasound (HIFU) therapy (MSNC-PEG-HA(SS)-PFH, abbreviated as MPH(SS)-PFH) capabilities is developed. The redox-responsive guest molecule release and ultrasound imaging functions can be both integrated in such a "smart" theranostic agent, which is accomplished by the redox-triggered transition from the crosslinking state to retrocrosslinking state of the grafted polyethylene glycol-disulfide hyaluronic acid molecules on the particle surface when reaching a reducing environment in vitro. More importantly, under the tailored ultrasound imaging guiding, in vivo Hela tumor-bearing nude mice can be thoroughly and spatial-accurately ablated during HIFU therapy, due to the targeted accumulation, responsive ultrasound imaging guidance and the synergistic ablation functions of nanotheranostic agent MPH(SS)-PFH in the tumors. This novel multifunctional nano-platform can serve as a promising candidate for further studies on oncology therapy, due to its high stability, responsive and indicative ultrasound imaging of tumors, and enhanced HIFU therapeutic efficiency and spatial accuracy under ultrasound-guidance.

  16. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    FAN Ting-Bo; LIU Zhen-Bo; ZHANG Zhe; ZHANG DONG; GONG Xiu-Fen

    2009-01-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.

  17. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    Science.gov (United States)

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  18. Modeling and Predicting Tissue Movement and Deformation for High Intensity Focused Ultrasound Therapy

    Science.gov (United States)

    Liao, Xiangyun; Yuan, Zhiyong; Lai, Qianfeng; Guo, Jiaxiang; Zheng, Qi; Yu, Sijiao; Tong, Qianqian; Si, Weixin; Sun, Mingui

    2015-01-01

    Purpose In ultrasound-guided High Intensity Focused Ultrasound (HIFU) therapy, the target tissue (such as a tumor) often moves and/or deforms in response to an external force. This problem creates difficulties in treating patients and can lead to the destruction of normal tissue. In order to solve this problem, we present a novel method to model and predict the movement and deformation of the target tissue during ultrasound-guided HIFU therapy. Methods Our method computationally predicts the position of the target tissue under external force. This prediction allows appropriate adjustments in the focal region during the application of HIFU so that the treatment head is kept aligned with the diseased tissue through the course of therapy. To accomplish this goal, we utilize the cow tissue as the experimental target tissue to collect spatial sequences of ultrasound images using the HIFU equipment. A Geodesic Localized Chan-Vese (GLCV) model is developed to segment the target tissue images. A 3D target tissue model is built based on the segmented results. A versatile particle framework is constructed based on Smoothed Particle Hydrodynamics (SPH) to model the movement and deformation of the target tissue. Further, an iterative parameter estimation algorithm is utilized to determine the essential parameters of the versatile particle framework. Finally, the versatile particle framework with the determined parameters is used to estimate the movement and deformation of the target tissue. Results To validate our method, we compare the predicted contours with the ground truth contours. We found that the lowest, highest and average Dice Similarity Coefficient (DSC) values between predicted and ground truth contours were, respectively, 0.9615, 0.9770 and 0.9697. Conclusion Our experimental result indicates that the proposed method can effectively predict the dynamic contours of the moving and deforming tissue during ultrasound-guided HIFU therapy. PMID:25993644

  19. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    Directory of Open Access Journals (Sweden)

    M. Thanou

    2013-01-01

    Full Text Available Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS- mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery.

  20. Characterization of Different Microbubbles in Assisting Focused Ultrasound-Induced Blood-Brain Barrier Opening

    Science.gov (United States)

    Wu, Sheng-Kai; Chu, Po-Chun; Chai, Wen-Yen; Kang, Shih-Tsung; Tsai, Chih-Hung; Fan, Ching-Hsiang; Yeh, Chih-Kuang; Liu, Hao-Li

    2017-04-01

    Microbubbles (MBs) serve as a critical catalyst to amplify local cavitation in CNS capillary lumen to facilitate focused ultrasound (FUS) to transiently open the blood-brain barrier (BBB). However, limited understanding is available regarding the effect of different microbubbles to induce BBB opening. The aim of this study is to characterize different MBs on their effect in FUS-induced BBB opening. Three MBs, SonoVue, Definity, and USphere, were tested, with 0.4-MHz FUS exposure at 0.62-1.38 of mechanical index (MI) on rats. Evans blue, dynamic contrast-enhanced (DCE) MRI and small-animal ultrasound imaging were used as surrogates to allow molecule-penetrated quantification, BBB-opened observation, and MBs circulation/persistence. Cavitation activity was measured via the passive cavitation detection (PCD) setup to correlate with the exposure level and the histological effect. Under given and identical MB concentrations, the three MBs induced similar and equivalent BBB-opening effects and persistence. In addition, a treatment paradigm by adapting exposure time is proposed to compensate MB decay to retain the persistence of BBB-opening efficiency in multiple FUS exposures. The results potentially improve understanding of the equivalence among MBs in focused ultrasound CNS drug delivery, and provide an effective strategy for securing persistence in this treatment modality.

  1. High-intensity focused ultrasound for thyroid nodule ablation: the evidence to date

    Directory of Open Access Journals (Sweden)

    Kovatcheva RD

    2017-01-01

    Full Text Available Roussanka D Kovatcheva,1 Katja Zaletel,2 1Department of Thyroid and Metabolic Bone Disorders, Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria; 2Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia Abstract: Thyroid nodules are common in occurrence and most of them are benign in nature. Some of these nodules are to be treated as they continue to grow or cause undesirable symptoms. Recently, several minimally invasive thermal ablation techniques have been introduced to overcome the complications of traditional methods such as surgery. High-intensity focused ultrasound (HIFU is the latest advance in treatment modalities, which is a noninvasive procedure that permits localized target destruction without affecting the surrounding tissues. HIFU is currently used in the treatment of various solid malignant and benign tumors. The purpose of this review is to provide an introduction to the literature, principles, and advances of HIFU therapy of benign thyroid nodules, as well as to provide a discussion on its efficacy, complications, and future. Keywords: thyroid nodule, high-intensity focused ultrasound, ultrasound guidance, ablation techniques

  2. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    Science.gov (United States)

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system.

  3. Real-time feedback control for high-intensity focused ultrasound system using localized motion imaging

    Science.gov (United States)

    Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Azuma, Takashi; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Yoshinaka, Kiyoshi; Takagi, Shu; Matsumoto, Yoichiro

    2015-07-01

    High-intensity focused ultrasound (HIFU) is one of the noninvasive treatment for tumors. Visualizing the treated area inside the human body is necessary to control the HIFU exposure. Localized motion imaging (LMI) using ultrasound to induce and detect tissue deformation is one technique to detect a change in tissue stiffness caused by thermal coagulation. In experiments with porcine liver, LMI has shown to detect deformation with less than 20% accuracy. We have developed a prototype feedback control system using real-time LMI. In this system, coagulation size was measured every 1 s and controlled to correspond to a targeted size. The typical size error was reduced to 14% from 35%. LMI displacements in normal and coagulated tissues were sufficiently different to discriminate between coagulated areas and noncoagulated ones after HIFU sonication and to visualize treated areas after HIFU treatment.

  4. A radiation emission shielding method for high intensity focus ultrasound probes.

    Science.gov (United States)

    Wu, Hao; Shen, Guofeng; Chen, Yazhu

    2015-01-01

    Electromagnetic compatibility (EMC) is a key issue in the design and development of safe and effective medical instruments. The treatment probes of high intensity focused ultrasound (HIFU) systems not only receive and transmit electromagnetic waves, but also radiate ultrasound waves, resulting in electromagnetic coupling. In this paper, an electromagnetic shielding method involving the enclosure of the probe in a copper wire mesh was introduced. First, sound pressure distribution simulations and measurements were performed using a hydrophone in order to evaluate the effects of the wire mesh on the acoustic performance of the HIFU system. The results indicated that the wire mesh did not disturb the normalized sound pressure field. In addition, the attenuation of the maximum pressure in the focal plane was equal to 6.2%. Then, the electronic emission level was tested in a chamber. After the implementation of the wire mesh, the 10-100 MHz frequency band radiation was suppressed, and the HIFU system satisfied the national EMC standards.

  5. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    Science.gov (United States)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  6. Curvelet based automatic segmentation of supraspinatus tendon from ultrasound image: a focused assistive diagnostic method.

    Science.gov (United States)

    Gupta, Rishu; Elamvazuthi, Irraivan; Dass, Sarat Chandra; Faye, Ibrahima; Vasant, Pandian; George, John; Izza, Faizatul

    2014-12-04

    Disorders of rotator cuff tendons results in acute pain limiting the normal range of motion for shoulder. Of all the tendons in rotator cuff, supraspinatus (SSP) tendon is affected first of any pathological changes. Diagnosis of SSP tendon using ultrasound is considered to be operator dependent with its accuracy being related to operator's level of experience. The automatic segmentation of SSP tendon ultrasound image was performed to provide focused and more accurate diagnosis. The image processing techniques were employed for automatic segmentation of SSP tendon. The image processing techniques combines curvelet transform and mathematical concepts of logical and morphological operators along with area filtering. The segmentation assessment was performed using true positives rate, false positives rate and also accuracy of segmentation. The specificity and sensitivity of the algorithm was tested for diagnosis of partial thickness tears (PTTs) and full thickness tears (FTTs). The ultrasound images of SSP tendon were taken from medical center with the help of experienced radiologists. The algorithm was tested on 116 images taken from 51 different patients. The accuracy of segmentation of SSP tendon was calculated to be 95.61% in accordance with the segmentation performed by radiologists, with true positives rate of 91.37% and false positives rate of 8.62%. The specificity and sensitivity was found to be 93.6%, 94% and 95%, 95.6% for partial thickness tears and full thickness tears respectively. The proposed methodology was successfully tested over a database of more than 116 US images, for which radiologist assessment and validation was performed. The segmentation of SSP tendon from ultrasound images helps in focused, accurate and more reliable diagnosis which has been verified with the help of two experienced radiologists. The specificity and sensitivity for accurate detection of partial and full thickness tears has been considerably increased after segmentation when

  7. Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles.

    Directory of Open Access Journals (Sweden)

    Juyoung Park

    Full Text Available The blood-retinal barrier (BRB prevents most systemically-administered drugs from reaching the retina. This study investigated whether burst ultrasound applied with a circulating microbubble agent can disrupt the BRB, providing a noninvasive method for the targeted delivery of systemically administered drugs to the retina. To demonstrate the efficacy and reversibility of such a procedure, five overlapping targets around the optic nerve head were sonicated through the cornea and lens in 20 healthy male Sprague-Dawley rats using a 690 kHz focused ultrasound transducer. For BRB disruption, 10 ms bursts were applied at 1 Hz for 60 s with different peak rarefactional pressure amplitudes (0.81, 0.88 and 1.1 MPa. Each sonication was combined with an IV injection of a microbubble ultrasound contrast agent (Definity. To evaluate BRB disruption, an MRI contrast agent (Magnevist was injected IV immediately after the last sonication, and serial T1-weighted MR images were acquired up to 30 minutes. MRI contrast enhancement into the vitreous humor near targeted area was observed for all tested pressure amplitudes, with more signal enhancement evident at the highest pressure amplitude. At 0.81 MPa, BRB disruption was not detected 3 h post sonication, after an additional MRI contrast injection. A day after sonication, the eyes were processed for histology of the retina. At the two lower exposure levels (0.81 and 0.88 MPa, most of the sonicated regions were indistinguishable from the control eyes, although a few tiny clusters of extravasated erythrocytes (petechaie were observed. More severe retinal damage was observed at 1.1 MPa. These results demonstrate that focused ultrasound and microbubbles can offer a noninvasive and targeted means to transiently disrupt the BRB for ocular drug delivery.

  8. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  9. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.

  10. Strategy of high efficiency and refined high-intensity focused ultrasound and ultrasound monitoring imaging of thermal lesion and cavitation

    Science.gov (United States)

    Wan, Mingxi; Zhang, Siyuan; Lu, Mingzhu; Hu, Hong; Jing, Bowen; Liu, Runna; Zhong, Hui

    2017-03-01

    We proposed that high efficiency high-intensity focused ultrasound (HIFU) could be achieved by using a splitting transducer with various frequencies and focusing patterns, and explored the feasibility of using ultrafast active cavitation imaging (UACI), pulse inversion (PI) sub-harmonic cavitation imaging and bubble wavelet transform imaging for monitoring of cavitation during HIFU, as well as the ultrasonic B-mode images, differential integrated backscatter (IBS) images, Nakagami images and elastography for monitoring HIFU-induced lesion. The use of HIFU splitting transducer had the potential to increase the size of the thermal lesion in a shorter duration and may improve the ablation efficiency of HIFU and would shorten the exposure duration significantly. The spatial-temporal evolution of residual cavitation bubbles at the tissue-water interface was obtained by UACI and the results showed that the UACI had a frame rate high enough to capture the transient behavior of the cavitation bubbles. The experiments demonstrated that comparing with normal sub-harmonic and PI harmonic images, PI sub-harmonic images had higher sensitivity and CTR, which was conducive to showing cavitation bubbles. The CTR would be further improved by combining PI ultrafast plane wave transmitting with cavitation bubble wavelet transform.

  11. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography.

    Science.gov (United States)

    Casper, Andrew; Liu, Dalong; Ebbini, Emad S

    2012-01-01

    A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback.

  12. IN VIVO MONITORING OF FOCUSED ULTRASOUND SURGERY USING LOCAL HARMONIC MOTION

    Science.gov (United States)

    Curiel, Laura; Chopra, Rajiv; Hynynen, Kullervo

    2009-01-01

    The present study established the feasibility of a technique for monitoring FUS lesion formation in vivo using localized harmonic motion (LHM) measurements. Oscillatory motion (frequencies between 50 and 300 Hz) was generated within tissues by induction of a periodic radiation force with a focused ultrasound (FUS) transducer. The harmonic motion was estimated using cross-correlation of RF ultrasonic signals acquired at different instances during the motion by using a confocal diagnostic ultrasound transducer. The technique was evaluated in vivo in rabbit muscle (14 locations) in an MR imager for simultaneous ultrasound harmonic motion tracking and MR thermometry. The measured maximum amplitude of the induced harmonic motion before and after the lesion formation was significantly different for all the tested motion frequencies and decreased between 17 and 81% depending on the frequency and location. During the FUS exposure a drop in the maximum amplitude value was observed and a threshold value could be associated to the formation of a thermal lesion. A series of controlled sonications was performed by stopping the exposure when the threshold value in LHM amplitude was reached and the presence of a thermal lesion was confirmed by MR imaging. LHM measurements were also used to perform a spatial scan of the tissues across the exposure region and the thermal lesions could be detected as a reduction in the maximum motion amplitude value at the sonication region. PMID:18805626

  13. Development and characterization of a blood mimicking fluid for high intensity focused ultrasound.

    Science.gov (United States)

    Liu, Yunbo; Maruvada, Subha; King, Randy L; Herman, Bruce A; Wear, Keith A

    2008-09-01

    A blood mimicking fluid (BMF) has been developed for the acoustic and thermal characterizations of high intensity focused ultrasound (HIFU) ablation devices. The BMF is based on a degassed and de-ionized water solution dispersed with low density polyethylene microspheres, nylon particles, gellan gum, and glycerol. A broad range of physical parameters, including attenuation coefficient, speed of sound, viscosity, thermal conductivity, and diffusivity, were characterized as a function of temperature (20-70 degrees C). The nonlinear parameter B/A and backscatter coefficient were also measured at room temperature. Importantly, the attenuation coefficient is linearly proportional to the frequency (2-8 MHz) with a slope of about 0.2 dB cm(-1) MHz(-1) in the 20-70 degrees C range as in the case of human blood. Furthermore, sound speed and bloodlike backscattering indicate the usefulness of the BMF for ultrasound flow imaging and ultrasound-guided HIFU applications. Most of the other temperature-dependent physical parameters are also close to the reported values in human blood. These properties make it a unique HIFU research tool for developing standardized exposimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU ablation devices.

  14. Design of a compact focusing lens system with short acceleration tube at 300 kV

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki, E-mail: ishii.yasuyuki@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohkubo, Takeru; Kojima, Takuji; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2011-10-15

    A compact focusing lens system with high demagnification over 1500 was designed to form an ion nanobeam with 346 keV energy by adding a short distance acceleration tube for beam acceleration and focusing downstream of the existing double acceleration lens system. The demagnification, focusing points and aberrations of the acceleration tube were studied using beam trajectory calculation. The acceleration tube was designed to have a length of 140 mm and a demagnification of 2 at its acceleration tube voltage of 300 kV, which resulted in a new compact focusing lens system with a total length of about 640 mm. In addition, the maximum voltage and electric-field of the acceleration tube were confirmed experimentally on the built device to be 300 kV and 30 kV/cm, respectively. The final beam size formed by the system was estimated to be 130 nm in diameter using the design parameters. The result suggests that an ion nanobeam of 346 keV can be formed by an apparatus having the reasonable length of 2 m, which permits us to develop a system for 1 MV by elongating its tube length.

  15. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).

    Science.gov (United States)

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-07

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p tissue ablation and can be fully integrated into any HMI

  16. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.

    Science.gov (United States)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-03-07

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  17. Multi-parametric monitoring and assessment of High Intensity Focused Ultrasound (HIFU) boiling by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): An ex vivo feasibility study

    Science.gov (United States)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase-shift during high energy HIFU treatment with tissue boiling. Forty three (n=43) thermal lesions were formed in ex vivo canine liver specimens (n=28). Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-s, 20-s and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and Passive Cavitation Detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δφ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite unpredictable changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property change throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration

  18. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.

    Science.gov (United States)

    Chen, Gin-Shin; Liu, Hsin-Chih; Lin, Yu-Cheng; Lin, Yu-Li

    2013-01-01

    Piezocomposites with 1-3 connectivity have been extensively used in medical imaging transducers and high-intensity focused ultrasound transducers, but most studies of 1-3 piezocomposites address medical imaging applications. The purpose of this study was to completely investigate 1-3 composites specifically for high-power ultrasonic transducer applications via a series of experimental analyses. PZT4-epoxy composite focused transducers with various aspect ratios and volume fractions were constructed in-house for the evaluation of the coupling factor, dielectric loss tangent, quality factor, bandwidth, acoustic impedance, and electroacoustic efficiency. The experimental analyses demonstrated that although the coupling factor of composite transducers was higher than that of the ceramic transducer, the composite transducers had a lower efficiency due to the high dielectric loss and high mechanical energy loss of the composites. In addition, the bandwidth and acoustic impedance of composite transducers were superior to the ceramic transducer. For the composite transducers, the efficiency and acoustic impedance were inversely proportional to the aspect ratio and linearly proportional to the volume fraction. The coupling of inter pillars that are too close to each other could cause a significant decrease in the efficiency of the composite transducer. With an appropriate design in terms of the aspect ratio, volume fraction, and PZT-pillar spacing, a high-efficiency composite high-intensity focused ultrasound transducer can be achieved.

  19. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    Science.gov (United States)

    Singh, Mithun Kuniyil Ajith; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2016-12-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and ex vivo measurements on porcine tissue.

  20. Modes of targets in water excited and identified using radiation pressure of modulated focused ultrasound

    Science.gov (United States)

    Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip

    2016-11-01

    The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.

  1. Numerical simulation of ultrasound thermotherapy of brain with a scanned focus transducer

    Science.gov (United States)

    Behnia, Sohrab; Ghalichi, Farzan; Jafari, Amin; Bonabi, Ashkan

    2005-04-01

    Brain tumors are one of the most difficult ones to treat. The margin between destruction of the tumor and damage to the surrounding tissue is narrow in the brain. Ultrasound could be an effective treatment because of its ability to propagate deep in tissue and induce temperature rise at the focus while leaving the surrounding tissue intact. This study investigates whether using a fix-focus transducer could destroy brain tumor cells, in a cost effective manner which reduces the treatment time significantly. In this work an appropriate fix-focus transducer was designed considering effective parameters and limitations which are dominant in this case. Then a real 2-D brain model was constructed from a MR image. A piece of the skull bone has been removed to allow ultrasound to propagate into the brain. The resultant pressure field and the temperature rise were calculated by Rayleigh integral and bio-heat equation on the model. The obtained results were promising indicating that toxic temperatures could be obtained in short treatment times. This could be of great advantage especially in treating primary brain tumors.

  2. Functional Assay of Cancer Cell Invasion Potential Based on Mechanotransduction of Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Andrew C. Weitz

    2017-08-01

    Full Text Available Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145 and bladder (T24/83 cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84. In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making.

  3. HIGH INTENSITY FOCUSED ULTRASOUND FOR TREATMENT UNRESECTABLE MALIGNANT TUMORS IN 75 PATIENTS

    Institute of Scientific and Technical Information of China (English)

    郑国强

    2004-01-01

    Objective: To study preliminary experience of high intensity focused ultrasound (HIFU) for unresectable malignant tumors in 75 patients. Methods: The clinical data of 75 patients with unresectable tumor was analyzed retrospectively. Results: Among 75 patients, ten out of 57 cases achieved good local control in short-term, 5 patients liver tumor, 4 patients with tumor in the chest wall and one patient with bone matestics. Seven patients had skin burn and 2 patients developed intestinal perforations. Conclusion: HIFU is a novel tool for local tumor treatment. HIFU treatment for patients with unresectable tumor in the chest wall is effective.

  4. Magnetic resonance-guided focused ultrasound: a new technology for clinical neurosciences.

    Science.gov (United States)

    Jolesz, Ferenc A; McDannold, Nathan J

    2014-02-01

    Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an old idea but a new technology that may change the entire clinical field of the neurosciences. TcMRgFUS has no cumulative effect, and it is applicable for repeatable treatments, controlled by real-time dosimetry, and capable of immediate tissue destruction. Most importantly, it has extremely accurate targeting and constant monitoring. It is potentially more precise than proton beam therapy and definitely more cost effective. Neuro-oncology may be the most promising area of future TcMRgFUS applications.

  5. Relationship between the exposure dose of high intensity focused ultrasound and the heated necrosis element

    Institute of Scientific and Technical Information of China (English)

    FENG Ruo; ZHANG Qiang; LI Faqi; ZHENG Xiaozheng; BAI Jin; XU Jianyi; WANG Yaojun; WANG Zhibiao

    2004-01-01

    Heated necrosis element of tissues is the basis for treating tumor by high intensity focused ultrasound (HIFU), so study on the relationship between the HIFU exposure dose and the heated necrosis element of tissues is of great significance for both HIFU clinical applications and basic research. Using Pennes and Rayleigh formulae the relationship between the exposure dose of an annular focused transducer and the heated necrosis element (I.e. Biological focused region) in a bovine liver in vitro at a depth of 2 cm is simulated in an exposure dose range with radiation sound intensity of 7000~25400 W/cm2 and exposure time of 0~20 s. The theoretical results appear to be in quite good agreement with the experimental ones. It is shown that on the basis of existing theories the heated necrosis element produced by HIFU exposure can be predicted. The deviation of the theory from the experiments under higher exposure dose has also been discussed.

  6. Impact of microbubble enhanced, pulsed, focused ultrasound on tumor circulation of subcutaneous VX2 cancer

    Institute of Scientific and Technical Information of China (English)

    Li Peijing; Zhu Mei; Xu Yali; Zhao Yang; Gao Shunji; Liu Zheng; Gao Yun-hua

    2014-01-01

    Background Intravascular microbubble-enhanced acoustic cavitation is capable of disrupting the vascular walls of capillaries and small vessels.This study was designed to investigate the impact of microbubble-enhanced,pulsed and focused ultrasound (MEUS) on the blood perfusion of subcutaneous VX2 tumors in rabbits.Methods Subcutaneous VX2 cancers in twenty New Zealand rabbits were treated by combining high-pressure amplitude,pulsed and focused therapeutic ultrasound (TUS) and intravenous microbubble injections.The TUS transducer was operated with a peak negative pressure of 4.6 MPa and a duty cycle of 0.41%.Controls were subcutaneous VX2 cancers treated with TUS or microbubbles only.Contrast-enhanced ultrasound (CEUS) and intravenous Evans Blue (EB) perfusion were performed to assess the tumor circulation.The tumor microvascular disruption was assessed by histological examination.Results CEUS showed that the tumor circulation almost vanished after MEUS treatment.The average peak grayscale value (GSV) of tumor CEUS dropped significantly from 84.1±22.4 to 15.8±10.8 in the MEUS-treated tumors but no significant GSV changes were found in tumors in the two control groups.The mean tumor EB content of the MEUS-treated tumors was significantly lower than that of the controls.Histological examination found scattered tumor microvascular disruption with intercellular edema after MEUS treatment.Conclusion The tumor circulation of VX2 cancers can be arrested or significantly reduced by MEUS due to microvascular disruption.

  7. Focused ultrasound examination of the chest on patients admitted with acute signs of respiratory problems

    DEFF Research Database (Denmark)

    Riishede, M; Laursen, C B; Teglbjærg, L S

    2016-01-01

    INTRODUCTION: Patients with acute respiratory problems poses a diagnostic challenge because similar symptoms can be caused by various pathological conditions. Focused ultrasound examination (f-US) of the heart and lungs has proven to increase the diagnostic accuracy in these patients. In this pro......INTRODUCTION: Patients with acute respiratory problems poses a diagnostic challenge because similar symptoms can be caused by various pathological conditions. Focused ultrasound examination (f-US) of the heart and lungs has proven to increase the diagnostic accuracy in these patients...... presumptive diagnosis at 4 hours from admission. METHODS AND ANALYSIS: This is a semiblinded randomised prospective study. 288 patients will be included and randomised into the control or intervention group. All patients receive a standard diagnostic evaluation by the EP to assess the primary presumptive....... As standard for correct diagnosis, we perform a blinded journal audit after discharge. As primary analysis, we use the intention-to-treat analysis. CONCLUSIONS: This study is the first multicentre trial in EDs to investigate whether f-US, in the hands of the EP, increases the proportion of correct diagnosis...

  8. Promoting inertial cavitation by nonlinear frequency mixing in a bifrequency focused ultrasound beam.

    Science.gov (United States)

    Saletes, Izella; Gilles, Bruno; Bera, Jean-Christophe

    2011-01-01

    Enhancing cavitation activity with minimal acoustic intensities could be interesting in a variety of therapeutic applications where mechanical effects of cavitation are needed with minimal heating of surrounding tissues. The present work focuses on the relative efficiency of a signal combining two neighbouring frequencies and a one-frequency signal for initiating ultrasound inertial cavitation. Experiments were carried out in a water tank, using a 550kHz piezoelectric composite spherical transducer focused on targets with 46μm roughness. The acoustic signal scattered, either by the target or by the cavitation bubbles, is filtered using a spectral and cepstral-like method to obtain an inertial cavitation activity measurement. The ultrasound excitations consist of 1.8ms single bursts of single frequency f(0)=550kHz excitation, in the monofrequency case, and of dual frequency f(1)=535kHz and f(2)=565kHz excitation, in the bifrequency case. It is shown that depending on the value of the monofrequency cavitation threshold intensity the bifrequency excitation can increase or reduce the cavitation threshold. The analysis of the thresholds indicates that the mechanisms involved are nonlinear. The progress of the cavitation activity beyond the cavitation threshold is also studied. The slope of the cavitation activity considered as a function of the acoustic intensity is always steeper in the case of the bifrequency excitation. This means that the delimitation of the region where cavitation occurs should be cleaner than with a classical monofrequency excitation.

  9. H-mode accelerating structures with PMQ focusing for low-beta ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S [Los Alamos National Laboratory; O' Hara, James F [Los Alamos National Laboratory; Olivas, Eric R [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2010-01-01

    We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis - are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

  10. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  11. Effect of acoustic streaming on tissue heating due to high-intensity focused ultrasound

    CERN Document Server

    Solovchuk, Maxim A; Thiriet, Marc; Lin, Win-Li

    2011-01-01

    The influences of blood vessels and focused location on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors is studied. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field in the hepatic cancerous region. The model is based on the linear Westervelt and bioheat equations as well as the nonlinear Navier-Stokes equations for the liver parenchyma and blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. Different blood vessel diameters and focal point locations were investigated. We found from this three-dimensional numerical study that in large blood vessels both the convective cooling and acoustic streaming can change considerably the temperature field and the thermal lesion near blood vessels. If the blood vessel is located within the beam width, both acoustic streaming and blood flow cooling effects should be taken into account. The predicted temperature ...

  12. Efficient low-beta H-mode accelerating structures with PMQ focusing

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S [Los Alamos National Laboratory; O' Hara, James F [Los Alamos National Laboratory; Olivas, Eric R [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2008-01-01

    We are developing high-efficiency room-temperature RF accelerating structures for beam velocities in the range of a few percent of the speed of light by merging two well-known ideas: H-mode cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we have found that the H-mode structures with PMQ focusing provide a very efficient and practical accelerator for light-ion beams of considerable currents. Such accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications such as a compact deuteron-beam accelerator up to the energy of a few MeV.

  13. Optimal injection scheme for electron acceleration by a tightly focused laser beam

    Institute of Scientific and Technical Information of China (English)

    Chen Min; Sheng Zheng-Ming; Zhang Jie

    2005-01-01

    Electron dynamics and energy gain in a tightly focused laser beam in vacuum are investigated by numerical simulations. There exist two acceleration mechanisms, i.e. acceleration by the longitudinal field or by the transverse field, which corresponds to two different trajectories. The relationship between the energy gain and the injection parameters of electrons, including the injection angle and momentum, is shown. For given laser parameters, the optimum injection parameters can be obtained.

  14. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity

    Directory of Open Access Journals (Sweden)

    Chung Yong-An

    2011-03-01

    Full Text Available Abstract Background Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS to non-invasively suppress epileptic activity in an animal model (rat, which was induced by the intraperitonial injection of pentylenetetrazol (PTZ. Results After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm2 used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue. Conclusions These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.

  15. Focused Vascular Ultrasound for the Assessment of Atherosclerosis: A Proof-of-Concept Study.

    Science.gov (United States)

    Johri, Amer M; Calnan, Catherine M; Matangi, Murray F; MacHaalany, Jimmy; Hétu, Marie-France

    2016-09-01

    Current decisions to refer for angiographic coronary assessment are based on pain character, risk scores, stress testing, and occasionally calcium scoring. Carotid plaque has emerged as an effective vascular biomarker, but the cost and time of a full carotid ultrasound examination are disadvantageous. Focused vascular ultrasound (FOVUS) is a rapid limited assessment of carotid plaque that can be conducted by non-vascular-trained operators. The objective of the study was to determine the test characteristics of FOVUS for the assessment of significant coronary atherosclerosis in symptomatic patients referred for cardiac assessment. In this prospective study, FOVUS was performed in 208 outpatients at low to intermediate risk undergoing same-day angiography. Carotid artery maximal plaque height was measured in each participant. A previously established receiver operating characteristic curve determined that a value of ≥1.5 mm was the threshold for significant angiographic coronary artery disease. FOVUS scan results, alone or combined with stress testing, were analyzed for the prediction of significant coronary artery disease. The negative predictive value and sensitivity of plaque height alone by FOVUS were found to be 77% and 93%, respectively. Adding the FOVUS scan result to stress testing significantly increased the negative predictive value and sensitivity of these traditional risk stratification tools. Rapid carotid plaque height measurement by FOVUS enhanced atherosclerosis risk prediction in patients referred for cardiac assessment. Rapid plaque quantification had good negative predictive value and high sensitivity alone or in combination with stress testing. FOVUS may serve as a potential point-of-care ultrasound tool in the integrated assessment of cardiac pain. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  16. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging.

    Science.gov (United States)

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K Kirk; Kim, Hyung Ham

    2015-06-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.

  17. Focused ultrasound-modulated glomerular ultrafiltration assessed by functional changes in renal arteries.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available This study demonstrates the feasibility of using focused ultrasound (FUS to modulate glomerular ultrafiltration by renal artery sonication and determine if protein-creatinine ratios are estimated through vascular parameters. All animal experiments were approved by our Animal Care and Use Committee. The renal arteries of Sprague-Dawley rats were surgically exposed and sonicated at various acoustic power levels using a FUS transducer with a resonant frequency of 1 MHz. The mean peak systolic velocity (PSV of the blood flow was measured by Doppler ultrasound imaging. Urinary protein-creatinine ratios were calculated during the experiments. Histological examination of renal arteries and whole kidneys was performed. The PSV, pulsatility index, and resistance index of blood flow significantly increased in the arteries after FUS sonication without microbubbles (p<0.05. The change in normalized protein-creatinine ratios significantly increased with increasing acoustic power, but such was not observed when microbubbles were administered. Furthermore, no histological changes were observed in the hematoxylin- and eosin-stained sections. Glomerular ultrafiltration is regulated temporarily by renal artery sonication without microbubbles. Monitoring vascular parameters are useful in estimating the normalized change in protein-creatinine ratios.

  18. A Pilot Study Investigating the Potential of High-Intensity Focused Ultrasound to Treat Tumours Rapidly

    Science.gov (United States)

    Cranston, Jonathan M.; Rivens, Ian; ter Haar, Gail; Kennedy, James

    2007-05-01

    The aim of this project was to investigate the possibility of rapid tumour destruction by a novel method of treating the periphery of a tumour and inducing ischemia by impeding the blood supply. Ex vivo experiments were initially carried out in bovine liver to determine the optimum conditions for focal depth, gantry transducer speed circle diameter and intensity of the ultrasound beam. In vivo experiments were then performed in PGV rat livers implanted with a HSN fibrosarcoma cell line. The tumours were treated by novel technique of creating an annular lesion around the perimeter of the tumour. Macroscopic and microscopic examination of the lesion at post mortem was performed. In addition histological examination of the untreated tumour which was within the annular circle of treatment was examined. This showed evidence of karyolytic nuclei a week after treatment suggesting death by infarction within this area. There was also some evidence of endothelial damage in the blood vessels with fragmented nuclei visible in the lumen. The work presented here adds to our understanding of how high intensity focused ultrasound may be used to treat tumours in as faster and more efficient way. Further work in this area will facilitate the design of future therapeutic interventions in the medical and veterinary world.

  19. Segmentation Method for Magnetic Resonance-Guided High-Intensity Focused Ultrasound Therapy Planning

    Directory of Open Access Journals (Sweden)

    A. Vargas-Olivares

    2017-01-01

    Full Text Available High-intensity focused ultrasound (HIFU is a minimally invasive therapy modality in which ultrasound beams are concentrated at a focal region, producing a rise of temperature and selective ablation within the focal volume and leaving surrounding tissues intact. HIFU has been proposed for the safe ablation of both malignant and benign tissues and as an agent for drug delivery. Magnetic resonance imaging (MRI has been proposed as guidance and monitoring method for the therapy. The identification of regions of interest is a crucial procedure in HIFU therapy planning. This procedure is performed in the MR images. The purpose of the present research work is to implement a time-efficient and functional segmentation scheme, based on the watershed segmentation algorithm, for the MR images used for the HIFU therapy planning. The achievement of a segmentation process with functional results is feasible, but preliminary image processing steps are required in order to define the markers for the segmentation algorithm. Moreover, the segmentation scheme is applied in parallel to an MR image data set through the use of a thread pool, achieving a near real-time execution and making a contribution to solve the time-consuming problem of the HIFU therapy planning.

  20. Targeted therapy of animal eyes with tumors by laser-generated focused ultrasound (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Demirci, Hakan; Guo, L. Jay

    2016-03-01

    Cavitation therapy based on high-amplitude focused ultrasound (e.g., Histotripsy) has shown great promise in clinical trials. The technique realizes localized treatments of tissues and diseased cells by controlling cavitation zones, which can be even smaller than its acoustic spot sizes. Also, the short pressure pulse used in the technique can minimize the unwanted heat accumulation, which the conventional piezoelectric transducers suffer from due to low operating frequencies and relatively long acoustic pulses. However, this modality requires bulky system composed of array of piezoelectric elements and electric amplifiers in order to obtain high pressure amplitude. Moreover, especially when treating an area much smaller than the acoustic spot size, this approach may be vulnerable to nucleation sites within the focal volume, which can potentially induce cavitation and thus enlarge the total treatment area. Here, we show targeted cell-level therapy by using laser generated ultrasound. By employing a concave lens coated by a carbon nanotube (CNT)-polymer composite, high-amplitude acoustic pressure can be obtained at a tight focal spot (<100 um). The small focal spot, comparable to cavitation zone, lead to controlled cavitation treatment. Such feature can be exploited for treating intraocular tumors but without harming other parts of the eye (e.g. healthy retina and choroid) and therefore preserve the vision of the patients. We demonstrate that the localized disruption effects can be used for cell-level surgery to remove cells and to kill cells. Some experimental examples are shown using animal eyeballs.

  1. Induction of apoptosis in vivo in the rabbit brain with focused ultrasound and Optison.

    Science.gov (United States)

    Vykhodtseva, Natalia; McDannold, Nathan; Hynynen, Kullervo

    2006-12-01

    Histologic effects of focused ultrasound (FUS) exposures combined with an ultrasound contrast agent (Optison) were investigated to examine whether the lesions were dominated by apoptosis or necrosis. The rabbit brains (n = 17) were sonicated (1.5 MHz, peak rarefactional pressure amplitude: 1.4 to 8.8 MPa) after Optison was injected intravenously (IV). MRI and light microscopy were used to examine tissue effects. To detect apoptosis, TUNEL staining based on labeling of DNA strand breaks was used. The average number of apoptotic and necrotic cells in 300 x 220 microm microscopic fields were counted in 18 representative lesions. Lesions in the rabbit brains were created at lowered acoustic power levels when FUS was combined with Optison. In histology, the lesions exhibited red blood cell extravasations and destruction of blood vessels. At 4 h after sonication, the lesions lost many cells, and the remaining cells exhibited both necrotic and apoptotic features. Overall, apoptosis dominated; there were, on average, 32.3 +/- 13.2 apoptotic cells per microscopic field compared with only 5.1 +/- 3.4 necrotic cells per field. In conclusion, FUS combined with Optison could produce lesions that are dominated by apoptosis, presumably induced primarily via ischemia after cavitation-produced damage to the brain vasculature.

  2. In vitro cell system for studying molecular mechanisms of action associated with low intensity focused ultrasound

    Science.gov (United States)

    Babakhanian, Meghedi; Fan, Richard E.; Mulgaonkar, Amit P.; Singh, Rahul; Culjat, Martin O.; Danesh, Shahab M.; Toro, Ligia; Grundfest, Warren; Melega, William P.

    2012-03-01

    Low intensity focused ultrasound (LIFU) is now being considered as a noninvasive brain therapy for clinical applications. We maintain that LIFU can efficiently deliver energy from outside the skull to target specific brain regions, effecting localized neuromodulation. However, the underlying molecular mechanisms that drive this LIFU-induced neuromodulation are not well-defined due, in part, to our lack of understanding of how particular sets of LIFU delivery parameters affect the outcome. To efficiently conduct multiple sweeps of different parameters and determine their effects, we have developed an in-vitro system to study the effects of LIFU on different types of cells grown in culture. Presently, we are evaluating how LIFU affects the ionic flux that may underlie neuronal excitation and inhibition observed in-vivo. The results of our in-vitro studies will provide a rationale for selection of optimal LIFU parameter to be used in subsequent in-vivo applications. Thus, a prototype ultrasound cell assay system has been developed to conduct these studies, and is described in this work.

  3. Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney

    CERN Document Server

    Suomi, Visa; Treeby, Bradley; Cleveland, Robin

    2016-01-01

    Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and sound-speed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0....

  4. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively).

  5. Physiological Motion and Registration of Abnormalities in Liver During Focused Ultrasound Surgery

    Science.gov (United States)

    Chauhan, Sunita; Rh, Abhilash

    Continuous deformation and dislocation of soft tissues in the abdominal and thoracic region presents a major issue for effective targeting of all non-invasive ablative modalities such as radiotherapy/surgery and Focused Ultrasound Surgery. Most significant among these is the movement of the target organs due to physiological processes such as respiration. The movement is found to be most significant for liver and kidneys. We studied movement and compensation strategies with the aim to implement them during ultrasound ablation using our robotic system for targeted FUS dose delivery. The motion pattern of the liver can be assumed to be in a single plane as it closely follows the movement of the diaphragm. However, the movement of kidneys is three dimensional and follows complicated patterns. Kidney motion is highly subject specific and has poor repeatability. In our research, we quantify the relation of liver movement and the breathing pattern so as to achieve real-time movement compensation using a prediction-correlation approach.

  6. Sonablate-500TM Transrectal High-intensity Focused Ultrasound (HIFU) for Benign Prostatic Hyperplasia Patients

    Institute of Scientific and Technical Information of China (English)

    L(U) Jun; HU Weilie; WANG Wei; ZHANG Yuanfeng; CHEN Zhaoyang; YE Zhangqun

    2007-01-01

    To evaluate the safety and efficacy of transrectal high-intensity focused ultrasound (HIFU) in the treatment of benign prostatic hyperplasia (BPH), serial studies were conducted in 150 BPH pa- tients before and 30 min, 1, 2, 6 and 12 month(s) after Sonablate-500TM HIFU treatment. A sili- con-coated indwelling 16F latex catheter was placed during the determination of the therapy zone. Preoperative and postoperative evaluations were made by using the international prostate symptom score (IPSS), quality of life (QOL), uroflowmetric findings and transrectal ultrasound, and incidence of complications. The cystourethrography was done in 23 patients within 1 year postoperatively. The results showed that after HIFU treatment, IPSS and QOL scores were significantly decreased at 1, 2, 6 and 12 month(s) (P<0.01). Maximum urine flow rate (6.0 to 17.2 mL/s, P<0.01), PVR (75.0 to 30.3,P<0.01) and prostatic volume (65.0 to 38.1 mL, P<0.05) were significantly improved 12 months after the operation. Recurrent urinary retention (n=2) and urethrorectal fistula (n=1) occurred at the 15th postoperative day. The duration of the HIFU prostate ablation was 25-90 rain. The mean time for an indwelling catheter was 3-19 days. These data demonstrate that treatment of BPH with Sonab- late-500TM HIFU is safe and effective.

  7. Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound

    Directory of Open Access Journals (Sweden)

    Yang FY

    2012-02-01

    Full Text Available Feng-Yi Yang1, Ming-Che Teng1, Maggie Lu2, Hsiang-Fa Liang2, Yan-Ru Lee1, Chueh-Chuan Yen3, Muh-Lii Liang4,5, Tai-Tong Wong51Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 2Drug Delivery Laboratory, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 3Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, 4Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, 5Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, TaiwanBackground: High-dose tissue-specific delivery of therapeutic agents would be a valuable clinical strategy. We have previously shown that repeated transcranial focused ultrasound is able to increase the delivery of Evans blue significantly into brain tissue. The present study shows that repeated pulsed high-intensity focused ultrasound (HIFU can be used to deliver high-dose atherosclerotic plaque-specific peptide-1 (AP-1-conjugated liposomes selectively to brain tumors.Methods: Firefly luciferase (Fluc-labeled human GBM8401 glioma cells were implanted into NOD-scid mice. AP-1-conjugated liposomal doxorubicin or liposomal doxorubicin alone was administered followed by pulsed HIFU and the doxorubicin concentration in the treated brains quantified by fluorometer. Growth of the labeled glioma cells was monitored through noninvasive bioluminescence imaging and finally the brain tissue was histologically examined after sacrifice.Results: Compared with the control group, the animals treated with 5 mg/kg injections of AP-1 liposomal doxorubicin or untargeted liposomal doxorubicin followed by repeated pulsed HIFU not only showed significantly enhanced accumulation of drug at the sonicated tumor site but also a significantly elevated tumor-to-normal brain drug

  8. Heating in vascular tissue and flow-through tissue phantoms induced by focused ultrasound

    Science.gov (United States)

    Huang, Jinlan

    High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one's ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis

  9. Constant-momentum acceleration time-of-flight mass spectrometry with energy focusing.

    Science.gov (United States)

    Dennis, Elise A; Ray, Steven J; Gundlach-Graham, Alexander W; Enke, Christie G; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2013-12-01

    Fundamental aspects of constant-momentum acceleration time-of-flight mass spectrometry (CMA-TOFMS) are explored as a means to improve mass resolution. By accelerating all ions to the same momentum rather than to the same energy, the effects of the initial ion spatial and energy distributions upon the total ion flight time are decoupled. This decoupling permits the initial spatial distribution of ions in the acceleration region to be optimized independently, and energy focus, including ion turn-around-time error, to be accomplished with a linear-field reflectron. Constant-momentum acceleration also linearly disperses ions across time according to mass-to-charge (m/z) ratio, instead of the quadratic relationship between flight time and m/z found in conventional TOFMS. Here, CMA-TOFMS is shown to achieve simultaneous spatial and energy focusing over a selected portion of the mass spectrum. An orthogonal-acceleration time-of-flight system outfitted with a reduced-pressure DC glow discharge (GD) ionization source is used to demonstrate CMA-TOFMS with atomic ions. The influence of experimental parameters such as the amplitude and width of the time-dependent CMA pulse on mass resolution is investigated, and a useful CMA-TOFMS focusing window of 2 to 18 Da is found for GD-CMA-TOFMS.

  10. The Efficacy of High-Intensity Focused Ultrasound (HIFU) in Advanced Pancreatic Cancer

    Institute of Scientific and Technical Information of China (English)

    Bo Xie; Jiajun Ling; Weiming Zhang; Xueqin Huang; Jihua Zhen; Yanzhe Huang

    2008-01-01

    OBJECTIVE To observe the efficacy of high-intensity focused ultrasound (HIFU)in the treatment of late-stage pancreatic cancer.METHODS Sixteen patients with advanced pancreatic cancer received HIFU therapy.Evaluation of efficacy was made on the basis of changes in clinical symptoms and variations in the tumor echo and size.RESULTS Clinical symptoms such as pain were significantly alleviated,echo of the tumor was enhanced with B-US and the quality of life such as eating,sleeping and mental status was markedly improved;no serious complications were observed.CONCLUSION The use of HIFU in the treatment of advanced pancreatic cancer is feasible and safe.It is effective in killing the carcinoma cells and alleviaring pain.This technique may offer non-invasive therapy for the treatment of patients with late-stage pancreatic cancer.

  11. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    Science.gov (United States)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal-noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  12. Grains unchained: local fluidization of a granular packing by focused ultrasound.

    Science.gov (United States)

    Lidon, Pierre; Taberlet, Nicolas; Manneville, Sébastien

    2016-02-28

    We report experimental results on the dynamics of a granular packing submitted to high-intensity focused ultrasound. Acoustic radiation pressure is shown to remotely induce local rearrangements within a pile as well as global motion around the focal spot in an initially jammed system. We demonstrate that this fluidization process is intermittent for a range of acoustic pressures and hysteretic when the pressure is cycled. Such a first-order-like unjamming transition is reproduced in numerical simulations in which the acoustic pressure field is modeled by a localized external force. Further analysis of the simulated packings suggests that in the intermittent regime unjamming is not associated with any noticeable prior structural signature. A simple two-state model based on effective temperatures is proposed to account for these findings.

  13. A Rectourethral Fistula due to Transrectal High-Intensity Focused Ultrasound Treatment: Diagnosis and Management.

    Science.gov (United States)

    Fiaschetti, Valeria; Manenti, Guglielmo; Di Poce, Isabelle; Fornari, Maria; Ricci, Aurora; Finazzi Agrò, Enrico; Simonetti, Giovanni

    2012-01-01

    Colovesical fistula (CVF) is an abnormal connection between the enteric and the urinary systems. The rectourethral fistula (RUF) is a possible but extremely rare complication of treatment of prostate cancer with "transrectal High-Intensity Focused Ultrasound (HIFU) treatment." We present a case of CVF due to HIFU treatment of recurrent prostate cancer. The case was assessed with cystography completed with a pelvic CT scan-with MPR, MIP, and VR reconstruction-before emptying the bladder. Since the CT scan confirmed that the fistula involved solely the urethra and excluded even a minimal involvement of the bladder, it was possible to employ a conservative treatment by positioning a Foley catheter of monthly duration, in order to allow the urethra to rest. Still today, after 6 months, the patient is in a good clinical condition and has not shown yet signs of a recurrence of the fistula.

  14. Investigations on the heating effect of PE-LD induced by high-intensity focused ultrasound.

    Science.gov (United States)

    Oehm, Lukas; Bach, Sascha; Majschak, Jens-Peter

    2016-08-01

    High-intensity focused ultrasound is widely applied in tissue treatment as well as for heating of solid polymer materials. Previous studies investigating the heating effect in polymer materials utilized sound transmission through water or other fluids at low HIFU power. In this study, the ultrasonic transducer possesses a solid sound conductor made of aluminum and a high HIFU power of above 100W was applied to heat solid PE-LD samples. Temperature measurements were performed by calibrated non-invasive infrared thermal imaging. A strong heating effect with heating above melting temperature and evaporation temperature within less than 1s of irradiation was observed. Furthermore, the acoustic coupling defined by the force applied by the ultrasonic applicator to the polymer material was found to be fundamental to induce the heating effect. This investigation reveals HIFU for new applications in the field of polymer processing.

  15. Magnetic resonance-guided focused ultrasound surgery for leiomyoma-associated infertility

    Science.gov (United States)

    Bouwsma, Esther V. A.; Gorny, Krzysztof R.; Hesley, Gina K.; Jensen, Jani R.; Peterson, Lisa G; Stewart, Elizabeth A.

    2017-01-01

    Objective To describe magnetic resonance-guided focused ultrasound surgery (FUS) as a treatment for a case of leiomyoma-associated infertility. Design Case report from a randomized clinical trial. Setting Academic medical center. Patient(s) A 37-year-old woman with known leiomyomas and a history of 18 months of home-inseminations from a known donor. Intervention(s) Magnetic resonance-guided FUS treatment of uterine fibroids, where the dominant fibroid distorted the uterine cavity. Main Outcome Measure(s) Pregnancy. Result(s) A viable intrauterine pregnancy, with a full-term vaginal delivery, was conceived after a single clomiphene citrate and intrauterine insemination cycle. Conclusion(s) The role of FUS for enhancement of fertility in women with nonhysteroscopically resectable uterine fibroids distorting the uterine cavity should be investigated further. PMID:21570071

  16. Magnetic resonance-guided focused ultrasound surgery (MRgFUS) treatment for uterine fibroids

    Science.gov (United States)

    Abdullah, BJJ; Subramaniam, RV; Omar, SS; Wragg, P; Ramli, N; Wui, AL; Lee, CC; Yusof, Y

    2010-01-01

    Magnetic Resonance-guided focused Ultrasound Surgery (MRgFUS) is gaining popularity as an alternative to medical and surgical interventions in the management of symptomatic uterine fibroids. Studies have shown that it is an effective non-invasive treatment with minimal associated risks as compared to myomectomy and hysterectomy. MRgFUS can be offered to a majority of patients suffering from symptomatic uterine fibroids. It has been suggested that the use of broader inclusion criteria as well as the mitigation techniques makes it possible to offer MRgFUS to a much larger subset of patients than previously believed. This paper will describe how MRgFUS treatment for uterine fibroids is performed at the University of Malaya Medical Centre, Kuala Lumpur, Malaysia. PMID:21611036

  17. Focused ultrasound-mediated drug delivery through the blood-brain barrier.

    Science.gov (United States)

    Burgess, Alison; Shah, Kairavi; Hough, Olivia; Hynynen, Kullervo

    2015-05-01

    Despite recent advances in blood-brain barrier (BBB) research, it remains a significant hurdle for the pharmaceutical treatment of brain diseases. Focused ultrasound (FUS) is one method to transiently increase permeability of the BBB to promote drug delivery to specific brain regions. An introduction to the BBB and a brief overview of the methods, which can be used to circumvent the BBB to promote drug delivery, is provided. In particular, we discuss the advantages and limitations of FUS technology and the efficacy of FUS-mediated drug delivery in models of disease. MRI for targeting and evaluating FUS treatments, combined with administration of microbubbles, allows for transient, reproducible BBB opening. The integration of a real-time acoustic feedback controller has improved treatment safety. Successful clinical translation of FUS has the potential to transform the treatment of brain disease worldwide without requiring the development of new pharmaceutical agents.

  18. Influence of the abdominal wall on the nonlinear propagation of focused therapeutic ultrasound

    Institute of Scientific and Technical Information of China (English)

    Liu Zhen-Bo; Fan Ting-Bo; Zhang Dong; Gong Xiu-Fen

    2009-01-01

    y This article theoretically studies the influence of inhomogeneous abdominal walls on focused therapeutic ultrasound based on the phase screen model. An inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen. Variations of acoustic parameters such as peak positive pressure, peak negative pressure, and acoustic intensity are discussed with respect to the phase screen statistics of human abdominal walls. Results indicate that the abdominal wall can result in energy loss of the sound in the focal plane. For a typical human abdominal wall with correlation length of 7.9 mm and variance of 0.36, the peak acoustic intensity radiated from a 1 MHz transmitter with a radius of 30 mm can be reduced by about 14% at the focal plane.

  19. Erythrocytes and microbubble contrast agents, improve the therapeutic efficiency of high intensity focused ultrasound

    Science.gov (United States)

    Takegami, Kenji; Kaneko, Yukio; Watanabe, Toshiaki; Maruyama, Toshiyuki; Matsumoto, Yoichiro; Nagawa, Hirokazu

    2005-03-01

    Erythrocytes, an well as Levovist microbubble contrast agent, enhance the heating effect of high intensity focused ultrasound (HIFU) and increase the coagulation volume produced by HIFU irradiation. In vitro experiments used human plasma with various concentrations of human erythrocytes in combination with or without Levovist. In vivo experiments used eight Japan white rabbits with three levels of anaemia. Using a 2.17 MHz transducer, HIFU was applied for 60 seconds, and the temperature rise and the volume of coagulation necrosis was evaluated. There was a significant correlation between the HIFU-induced temperature rise and hematocrit, with a correlation coefficient of 0.998 (p=0.0001). Although the temperature rise was smaller at low hematocrit, it was significantly increased by adding Levovist to the suspension (panaemia group was significantly increased by using Levovist (p<0.01).

  20. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  1. Influence of Early Pregnancy Termination by Focused Ultrasound Beams on Menstrual Recovery of Macaques

    Institute of Scientific and Technical Information of China (English)

    Yong-hong DU; Zheng-ai XIONG; Jian-zhong ZOU; Yi TAN; Jin BAI; Zhi-biao WANG

    2004-01-01

    Objective To explore the effects on macaques' menstrual recovery after terminating early pregnancy by focused ultrasound beams (FUB)Methods FUB was used to terminate early pregnancy in 5 macaques with gestation duration ranging from 37-66 d. Two circles after the recovery of menstruation, color Doppler flow imaging (CDFI) and magnetic resonance imaging (MRI) were used to estimate the shape, size and blood flow of uterus, and pathological examinations were performed to check against any lesions to uterine endometrium and ovary.Results Forty days after FUB abortion, menstruation recovered and the volume and duration of each macaque's menstruation were not changed compared with those before gestation. CDFI and MRI suggested that the siz.e and shape of uterus were normal.The endometrial line was clear and no lesions were found in adjacent organs.Conclusion FUB termination of early pregnancy in macaques did not damage their ovarian tissue and had no influence on subsequent menstrual recovery.

  2. [High-intensity focused ultrasound and prostate cancer: technology, state of the art and future].

    Science.gov (United States)

    Vespasiani, G; Asimakopoulos, A D; Finazzi Agrò, E; Virgili, G

    2008-01-01

    BACKGROUND. The potential applications of the high-intensity focused ultrasound (HIFU) as a minimally invasive therapy of the localized prostate cancer explain the growing interest of the urologic community towards this technique. HIFU has been assessed for its role in the treatment of localized prostate cancer in patients who otherwise would not have benefited from surgery, and in local recurrences after radiation failure. Methods. Relevant information on HIFU treatment was identified through a literature search of published studies. RESULTS. High biochemical efficacy, excellent tumor local control and favorable mid- and long-term oncological data with a low morbidity rate have been shown in many series of patients. CONCLUSIONS. Although HIFU is a recent and emerging technology, it has been well studied and developed to a point that HIFU will undoubtedly be an effective alternative to radiation therapy.

  3. A Rectourethral Fistula due to Transrectal High-Intensity Focused Ultrasound Treatment: Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Valeria Fiaschetti

    2012-01-01

    Full Text Available Colovesical fistula (CVF is an abnormal connection between the enteric and the urinary systems. The rectourethral fistula (RUF is a possible but extremely rare complication of treatment of prostate cancer with “transrectal High-Intensity Focused Ultrasound (HIFU treatment.” We present a case of CVF due to HIFU treatment of recurrent prostate cancer. The case was assessed with cystography completed with a pelvic CT scan—with MPR, MIP, and VR reconstruction—before emptying the bladder. Since the CT scan confirmed that the fistula involved solely the urethra and excluded even a minimal involvement of the bladder, it was possible to employ a conservative treatment by positioning a Foley catheter of monthly duration, in order to allow the urethra to rest. Still today, after 6 months, the patient is in a good clinical condition and has not shown yet signs of a recurrence of the fistula.

  4. Pulsed application of focused ultrasound to the LI4 elicits deqi sensations: pilot study.

    Science.gov (United States)

    Yoo, Seung-Schik; Lee, Wonhye; Kim, Hyungmin

    2014-08-01

    Focused ultrasound (FUS) techniques enable the delivery of acoustic pressure waves to a localized, specific region of anatomy, and mechanically stimulate the sonicated region when given in a train of pulses. The present pilot study examines if the pulsed application of acoustic waves focused to an acupuncture point (LI4, Hegu), i.e. FUS acupuncture, can elicit deqi sensations. The FUS was generated by a single-element ultrasound transducer, and delivered to the LI4 of acupuncture-naïve participants (n=10) for a duration of 1s using 2 ms tone-burst-duration and 50 Hz pulse repetition frequency. The subjective ratings of deqi descriptors were obtained across different conditions, i.e. FUS acupuncture using acoustic intensities of 1 and 3 W/cm(2) (spatial-peak temporal-averaged intensity, Ispta), sham sonication condition, tactile stimulation using a von Frey monofilament, and needle-based real and sham acupuncture. We also measured the presence of sharp pain, unpleasantness, and anxiety level during each condition. The FUS acupuncture given at 3 W/cm(2) elicited deqi sensation ratings similar to those acquired during the needle-based acupuncture condition across the subjects, with significantly reduced levels of non-deqi related sensations, such as sharp pain, anxiety and unpleasantness. The lower acoustic intensity also generated deqi sensations, but at a lesser degree than the ones acquired using the higher acoustic intensity. Neither the sham conditions nor the tactile stimulation elicited deqi sensations. The present data on acoustic acupuncture, with its exquisite spatial and depth control, along with the ability to electronically adjust its intensity, may suggest its potential utilization as an alternative mode of acupuncture, although further study is needed to probe its clinical efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preliminary assessment of one-dimensional MR elastography for use in monitoring focused ultrasound therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Le [Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 (United States); Glaser, Kevin J [Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic Foundation, 200 1st St. SW, Rochester, MN 55905, Rochester, MN 55905 (United States); Rouviere, Olivier [Department of GenitoUrinary Radiology, Hopital E Herriot, 5, place d' Arsonval, 69003 Lyon (France); Gorny, Krzysztof R [Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic Foundation, 200 1st St. SW, Rochester, MN 55905, Rochester, MN 55905 (United States); Chen, Shigao [Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic Foundation, 200 1st St. SW, Rochester, MN 55905, Rochester, MN 55905 (United States); Manduca, Armando [Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic Foundation, 200 1st St. SW, Rochester, MN 55905, Rochester, MN 55905 (United States); Ehman, Richard L [Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic Foundation, 200 1st St. SW, Rochester, MN 55905, Rochester, MN 55905 (United States); Felmlee, Joel P [Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic Foundation, 200 1st St. SW, Rochester, MN 55905, Rochester, MN 55905 (United States)

    2007-09-21

    The purpose of this work is to assess a fast technique that measures tissue stiffness and temperature during focused ultrasound thermal therapy (FUS). A one-dimensional (1D) MR elastography (MRE) pulse sequence was evaluated for the purpose of obtaining rapid measurements of thermally induced changes in tissue stiffness and temperature for monitoring FUS treatments. The accuracy of the 1D measurement was studied by comparing tissue displacements measured by 1D MRE with those measured by the well-established 2D MRE pulse sequence. The reproducibility of the 1D MRE measurement was assessed, in gel phantoms and ex vivo porcine tissue, for varied FUS intensity levels (31.5-199.9 W cm{sup -2}) and over a range of displacements at the focus (0.1-1 {mu}m). Temperature elevations in agarose gel phantoms were measured using 1D MRE and calibrated using fiberoptic-thermometer-based measurements. The 1D MRE displacement measurements are highly correlated with those obtained with the 2D technique (R{sup 2} = 0.88-0.93), indicating that 1D MRE can successfully measure tissue displacement. Ten repeated trials at each FUS power level yielded a minimum detectable displacement change of 0.2 {mu}m in phantoms and 0.4 {mu}m in tissue (at 95% confidence level). The 1D MRE temperature measurements correlated well with temperature changes measured simultaneously with fiberoptic thermometers (R{sup 2} = 0.97). The 1D MRE technique is capable of detecting tissue displacements as low as 0.4 {mu}m, which is an order of magnitude smaller than 5 {mu}m displacements expected during FUS therapy (Le et al 2005 AIP Conf. Proc.: Ther. Ultrasound 829 186-90). Additionally, 1D MRE was shown to provide adequate measurements of temperature elevations in tissue. These findings indicate that 1D MRE may be an effective tool for monitoring FUS treatments.

  6. MR guided focused ultrasound: technical acceptance measures for a clinical system

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, K R; Hangiandreou, N J; Hesley, G K; Gostout, B S; McGee, K P; Felmlee, J P [Department of Radiology, Mayo Clinic, Rochester, MN 55905 (United States)

    2006-06-21

    Magnetic resonance (MR) guided focused ultrasound (MRgFUS) is a hybrid technique which offers efficient and safe focused ultrasound (FUS) treatments of uterine fibroids under MR guidance and monitoring. As a therapy device, MRgFUS requires systematic testing over a wide range of operational parameters prior to use in the clinical environment. We present technical acceptance tests and data for the first clinical MRgFUS system, ExAblate (registered) 2000 (InSightec Inc., Haifa, Israel), that has been FDA approved for treating uterine fibroids. These tests characterize MRgFUS by employing MR temperature measurements in tissue mimicking phantoms. The coronal scan plane is empirically demonstrated to be most reliable for measuring temperature elevations resulting from high intensity ultrasound (US) pulses ('sonications') and shows high sensitivity to changes in sonication parameters. Temperatures measured in the coronal plane were used as a measure of US energy deposited within the focal spot for a range of sonication parameters used in clinical treatments: spot type, spot length, output power, sonication duration, US frequency, and depth of sonication. In addition, MR images acquired during sonications were used to measure effective diameters and lengths of available sonication spot types and lengths. At a constant 60 W output power, the effective spot type diameters were measured to vary between 4.7 {+-} 0.3 mm and 6.6 {+-} 0.4 mm; treatment temperatures were found to decrease with increasing spot diameter. Prescribing different spot lengths was found to have no effect on the measured length or on measured temperatures. Tests of MRgFUS positioning accuracy determined errors in the direction parallel to the propagation of the US beam to be significantly greater than those in the perpendicular direction; most sonication spots were erroneously positioned towards the FUS transducer. The tests reported here have been demonstrated to be sufficiently sensitive to

  7. Experimental confirmation of transverse focusing and adiabatic damping in a standing wave linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, S.; Rosenzweig, J.B.; Anderson, S.; Frigola, P.; Hogan, M.; Murokh, A.; Pellegrini, C.; Serafini, L.; Travish, G.; Tremaine, A. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1547 (United States)

    1997-09-01

    The measurement of the transverse phase-space map, or transport matrix, of a relativistic electron in a high-gradient, radio-frequency linear accelerator (rf linac) at the UCLA photoinjector is reported. This matrix, which indicates the effects of acceleration (adiabatic damping), first-order transient focusing, and ponderomotive second-order focusing, is measured as a function of both rf field amplitude and phase in the linac. The elements of the matrix, determined by observation of centroid motion at a set of downstream diagnostics due to deflections induced by a set of upstream steering magnets, compare well with previously developed analytical theory [J. Rosenzweig and L. Serafini, Phys. Rev. E {bold 49}, 1599 (1994)]. The determinant of the matrix is obtained, yielding a direct confirmation of trace space adiabatic damping. Implications of these results on beam optics at moderate energy in high-gradient linear accelerators such as rf photoinjectors are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  8. Alternating-phase-focused IH-DTL for an injector of heavy-ion medical accelerators

    Science.gov (United States)

    Iwata, Y.; Yamada, S.; Murakami, T.; Fujimoto, T.; Fujisawa, T.; Ogawa, H.; Miyahara, N.; Yamamoto, K.; Hojo, S.; Sakamoto, Y.; Muramatsu, M.; Takeuchi, T.; Mitsumoto, T.; Tsutsui, H.; Watanabe, T.; Ueda, T.

    2006-12-01

    A compact Drift-Tube-Linac (DTL) using an Interdigital H-mode (IH) cavity was designed for an injector of medical accelerators. For beam focusing, the method of Alternating-Phase-Focusing (APF) was applied. The APF IH-DTL can accelerate heavy ions having a charge-to-mass ratio of q/m={1}/{3} up to 4.0 MeV/u. Having optimized an array of synchronous phases for cells, namely arranging drift tubes and gaps appropriately, both longitudinal and transverse focusing strengths were produced just with the rf acceleration field, and therefore no focusing element or cooling equipments had to be installed in the cavity. This allowed us to employ a rather high operating frequency, and hence to design a compact and cost-effective cavity. A further advantage of the APF linac can be found in its operation. Since the parameters to be adjusted are just the level and phase of the input rf, beam tuning can be made with ease. Consequently, the APF linac is suitable for an injector for medical accelerators. Tuning methods of the gap voltages and cavity frequency as well as the design of the cavity for APF IH-DTL have been developed. After constructing the cavity, measurements of the electric field and tuning of the gap voltages were performed. Finally, the rf power was fed into the cavity. In this paper, the design and results of the measurements are described.

  9. Focused ultrasound solid-liquid extraction for the determination of organic biomarkers in beachrocks.

    Science.gov (United States)

    Blanco-Zubiaguirre, L; Arrieta, N; Iturregui, A; Martinez-Arkarazo, I; Olivares, M; Castro, K; Olazabal, M A; Madariaga, J M

    2015-11-01

    Beachrocks are consolidated coastal sedimentary formations resulting mainly from the relative rapid cementation of beach sediments by different calcium carbonate polymorphs. Although previous works have already studied the elemental composition and the mineral phases composing these cements, few of them have focused their attention on the organic matter present therein. This work describes an extraction methodology based on focused ultrasound solid-liquid extraction (FUSLE), followed by analysis using large volume injection (LVI) in a programmable temperature vaporizer (PTV) combined with gas chromatography-mass spectrometry (GC-MS) in order to determine organics such as polycyclic aromatic hydrocarbons (PAHs) and biomarkers (hopanes), which can increase and confirm the information obtained so far. This goal has been achieved after the optimization of the main parameters affecting the extraction procedure, such as, extraction solvent, FUSLE variables (amplitude, extraction time and pulse time) and also variables affecting the LVI-PTV (vent time, injection speed and cryo-focusing temperature). The developed method rendered results comparable to traditional extraction methods in terms of accuracy (77-109%) and repeatability (RSD<23%). Finally, the analyses performed over real beachrock samples from the Bay of Biscay (Northern Spain) revealed the presence of the 16 EPA priority PAHs, as well as some organic biomarkers which could increase the knowledge about such beachrock formation.

  10. Focused ultrasound of the pleural cavities and the pericardium by nurses after cardiac surgery.

    Science.gov (United States)

    Graven, Torbjørn; Wahba, Alexander; Hammer, Anne Marie; Sagen, Ove; Olsen, Øystein; Skjetne, Kyrre; Kleinau, Jens Olaf; Dalen, Havard

    2015-02-01

    We aimed to study the feasibility and reliability of focused ultrasound (US) examinations to quantify pericardial (PE)- and pleural effusion (PLE) by a pocket-size imaging device (PSID) performed by nurses in patients early after cardiac surgery. After a 3-month training period, with cardiologists as supervisors, two nurses examined 59 patients (20 women) with US using a PSID at a median of 5 days after cardiac surgery. The amount of PE and PLE was classified in four categories by US (both) and chest x-ray (PLE only). Echocardiography, including US of the pleural cavities, by experienced cardiologists was used as reference. Focused US by the nurses was more sensitive than x-ray to detect PLE. The correlations of the quantification of PE and PLE by the nurses and reference was r (95% confidence interval) 0.76 (0.46-0.89) and 0.81 (0.73-0.89), both p nurses. Cardiac nurses were able to obtain reliable measurements and quantification of both PE and PLE bedside by focused US and outperform the commonly used chest x-ray regarding PLE after cardiac surgery.

  11. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    Science.gov (United States)

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus

  12. Ultrasound

    Science.gov (United States)

    ... Saunders; 2014:chap 66. Cosgrove DO, Eckersley RJ, Harvey CJ, Lim A. Ultrasound. In: Adam A, Dixon AK, Gillard ... Northside Radiology Associates, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  13. H-mode accelerating structures with permanent-magnet quadrupole beam focusing

    Science.gov (United States)

    Kurennoy, S. S.; Rybarcyk, L. J.; O'Hara, J. F.; Olivas, E. R.; Wangler, T. P.

    2012-09-01

    We have developed high-efficiency normal-conducting rf accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3D modeling—electromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysis—for an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H-mode structures with PMQ focusing for higher beam velocities are also presented. H-PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.

  14. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  15. Modelling the temperature evolution of bone under high intensity focused ultrasound.

    Science.gov (United States)

    ten Eikelder, H M M; Bošnački, D; Elevelt, A; Donato, K; Di Tullio, A; Breuer, B J T; van Wijk, J H; van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H

    2016-02-21

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  16. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  17. Focused ultrasound simultaneous irradiation/MRI imaging, and two-stage general kinetic model.

    Directory of Open Access Journals (Sweden)

    Sheng-Yao Huang

    Full Text Available Many studies have investigated how to use focused ultrasound (FUS to temporarily disrupt the blood-brain barrier (BBB in order to facilitate the delivery of medication into lesion sites in the brain. In this study, through the setup of a real-time system, FUS irradiation and injections of ultrasound contrast agent (UCA and Gadodiamide (Gd, an MRI contrast agent can be conducted simultaneously during MRI scanning. By using this real-time system, we were able to investigate in detail how the general kinetic model (GKM is used to estimate Gd penetration in the FUS irradiated area in a rat's brain resulting from UCA concentration changes after single FUS irradiation. Two-stage GKM was proposed to estimate the Gd penetration in the FUS irradiated area in a rat's brain under experimental conditions with repeated FUS irradiation combined with different UCA concentrations. The results showed that the focal increase in the transfer rate constant of Ktrans caused by BBB disruption was dependent on the doses of UCA. Moreover, the amount of in vivo penetration of Evans blue in the FUS irradiated area in a rat's brain under various FUS irradiation experimental conditions was assessed to show the positive correlation with the transfer rate constants. Compared to the GKM method, the Two-stage GKM is more suitable for estimating the transfer rate constants of the brain treated with repeated FUS irradiations. This study demonstrated that the entire process of BBB disrupted by FUS could be quantitatively monitored by real-time dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI.

  18. Focused ultrasound facilitated thermo-chemotherapy for targeted retinoblastoma treatment: a modeling study.

    Science.gov (United States)

    Wang, Shutao; Mahesh, Sankaranarayana P; Liu, Ji; Geist, Craig; Zderic, Vesna

    2012-07-01

    Retinoblastoma is the most common type of intraocular tumors in children. Currently, with early detection and improved systemic chemo-adjuvant therapies, treatment paradigm has shifted from survival to globe salvation/vision preservation. The objective of our work has been to explore the possible application of focused ultrasound (FUS) for targeted drug delivery in the posterior pole retinoblastoma. Specifically, theoretical models were implemented to evaluate the feasibility of using FUS to generate localized hyperthermia in retinal tumor areas, for potential triggering the chemotherapeutic agent deployment from heat-sensitive drug carriers. In-vitro experiments were conducted in tissue-mimicking phantoms with embedded excised rabbit eyes to validate the reliability of the modeling results. After confirming the reliability of our model, various FUS transducer parameters were investigated to induce maximal hyperthermia coverage in the tumor, while sparing adjacent eye structures (e.g. the lens). The evaluated FUS parameters included operating frequency, total acoustic power, geometric dimensions, transducer f-number, standoff distance, as well as different pulsing scenarios. Our modeling results suggest that the most suitable ultrasound frequency for this type of treatments was in the range of 2-3.5 MHz depending on the size of retinoblastoma. Appropriate transducer f-number (close to 1) and standoff distance could be selected to minimize the risks of over-heating undesired regions. With the total acoustic power of 0.4 W, 56.3% of the tumor was heated to hyperthermic temperature range (39-44 °C) while the temperature in lens was maintained below 41 °C. In conclusion, FUS-induced hyperthermia for targeted drug delivery may be a viable option in treatments of juxta-foveal or posterior pole retinoblastomas. Future in-vivo studies will allow us to determine the effectiveness and safety of the proposed approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo

    Science.gov (United States)

    Kruse, D. E.; Mackanos, M. A.; O'Connell-Rodwell, C. E.; Contag, C. H.; Ferrara, K. W.

    2008-07-01

    The development of transgenic reporter mice and advances in in vivo optical imaging have created unique opportunities to assess and analyze biological responses to thermal therapy directly in living tissues. Reporter mice incorporating the regulatory regions from the genes encoding the 70 kDa heat-shock proteins (Hsp70) and firefly luciferase (luc) as reporter genes can be used to non-invasively reveal gene activation in living tissues in response to thermal stress. High-intensity-focused ultrasound (HIFU) can deliver measured doses of acoustic energy to highly localized regions of tissue at intensities that are sufficient to stimulate Hsp70 expression. We report activation of Hsp70-luc expression using 1 s duration HIFU heating to stimulate gene expression in the skin of the transgenic reporter mouse. Hsp70 expression was tracked for 96 h following the application of 1.5 MHz continuous-wave ultrasound with spatial peak intensities ranging from 53 W cm-2 up to 352 W cm-2. The results indicated that peak Hsp70 expression is observed 6-48 h post-heating, with significant activity remaining at 96 h. Exposure durations were simulated using a finite-element model, and the predicted temperatures were found to be consistent with the observed Hsp70 expression patterns. Histological evaluation revealed that the thermal damage starts at the stratum corneum and extends deeper with increasing intensity. These results indicated that short-duration HIFU may be useful for inducing heat-shock expression, and that the period between treatments needs to be greater than 96 h due to the protective properties of Hsp70.

  20. Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, D E; Ferrara, K W [Department of Biomedical Engineering, University of California, Davis, CA 95616 (United States); Mackanos, M A; O' Connell-Rodwell, C E; Contag, C H [Stanford University School of Medicine, Stanford, CA 94305 (United States)], E-mail: dekruse@ucdavis.edu, E-mail: kwferrara@ucdavis.edu, E-mail: mackanos@stanford.edu, E-mail: ceoconnell@stanford.edu, E-mail: ccontag@stanford.edu

    2008-07-07

    The development of transgenic reporter mice and advances in in vivo optical imaging have created unique opportunities to assess and analyze biological responses to thermal therapy directly in living tissues. Reporter mice incorporating the regulatory regions from the genes encoding the 70 kDa heat-shock proteins (Hsp70) and firefly luciferase (luc) as reporter genes can be used to non-invasively reveal gene activation in living tissues in response to thermal stress. High-intensity-focused ultrasound (HIFU) can deliver measured doses of acoustic energy to highly localized regions of tissue at intensities that are sufficient to stimulate Hsp70 expression. We report activation of Hsp70-luc expression using 1 s duration HIFU heating to stimulate gene expression in the skin of the transgenic reporter mouse. Hsp70 expression was tracked for 96 h following the application of 1.5 MHz continuous-wave ultrasound with spatial peak intensities ranging from 53 W cm{sup -2} up to 352 W cm{sup -2}. The results indicated that peak Hsp70 expression is observed 6-48 h post-heating, with significant activity remaining at 96 h. Exposure durations were simulated using a finite-element model, and the predicted temperatures were found to be consistent with the observed Hsp70 expression patterns. Histological evaluation revealed that the thermal damage starts at the stratum corneum and extends deeper with increasing intensity. These results indicated that short-duration HIFU may be useful for inducing heat-shock expression, and that the period between treatments needs to be greater than 96 h due to the protective properties of Hsp70.

  1. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    Science.gov (United States)

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain.

  2. Simulation of high-intensity focused ultrasound lesions in presence of boiling.

    Science.gov (United States)

    Grisey, Anthony; Yon, Sylvain; Letort, Véronique; Lafitte, Pauline

    2016-01-01

    The lesions induced by high-intensity focused ultrasound (HIFU) thermal ablations are particularly difficult to simulate due to the complexity of the involved phenomena. In particular, boiling has a strong influence on the lesion shape. Thus, it must be accounted for if it happens during the pulses to be modeled. However, no acoustic model enables the simulation of the resulting wave scattering. Therefore, we propose an equivalent model for the heat deposition pattern in the presence of boiling. Firstly, the acoustic field is simulated with k-Wave and the heat source term is calculated. Then, a thermal model is designed, including the equivalent model for boiling. It is rigorously calibrated and validated through the use of diversified ex vivo and in vivo data, including usually unexploited data types related to the bubble clouds. The proposed model enabled to efficiently simulate unitary pulses properties, including the sizes of the lesions, their morphology, the boiling onset time, and the influence of the boiling onset time on the lesions sizes. In this article, the whole procedure of model design, calibration, and validation is discussed. In addition to depicting the creative use of data, our modeling approach focuses on the understanding of the mechanisms influencing the shape of the lesion. Further work is required to study the influence of the remaining bubble clouds in the context of pulse groups.

  3. Focused cardiac ultrasound is feasible in the general practice setting and alters diagnosis and management of cardiac disease

    Directory of Open Access Journals (Sweden)

    James Yates

    2016-08-01

    Full Text Available Background: Ultrasound-assisted examination of the cardiovascular system with focused cardiac ultrasound by the treating physician is non-invasive and changes diagnosis and management of patient’s with suspected cardiac disease. This has not been reported in a general practice setting. Aim: To determine whether focused cardiac ultrasound performed on patients aged over 50 years changes the diagnosis and management of cardiac disease by a general practitioner. Design and setting: A prospective observational study of 80 patients aged over 50 years and who had not received echocardiography or chest CT within 12 months presenting to a general practice. Method: Clinical assessment and management of significant cardiac disorders in patients presenting to general practitioners were recorded before and after focused cardiac ultrasound. Echocardiography was performed by a medical student with sufficient training, which was verified by an expert. Differences in diagnosis and management between conventional and ultrasound-assisted assessment were recorded. Results and conclusion: Echocardiography and interpretation were acceptable in all patients. Significant cardiac disease was detected in 16 (20% patients, including aortic stenosis in 9 (11% and cardiac failure in 7 (9%, which were missed by clinical examination in 10 (62.5% of these patients. Changes in management occurred in 12 patients (15% overall and 75% of those found to have significant cardiac disease including referral for diagnostic echocardiography in 8 (10%, commencement of heart failure treatment in 3 (4% and referral to a cardiologist in 1 patient (1%. Routine focused cardiac ultrasound is feasible and frequently alters the diagnosis and management of cardiac disease in patients aged over 50 years presenting to a general practice.

  4. Low-intensity focused ultrasound (LIFU-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging

    Directory of Open Access Journals (Sweden)

    Liu J

    2017-01-01

    Full Text Available Jianxin Liu,1,* Tingting Shang,1,* Fengjuan Wang,1 Yang Cao,1 Lan Hao,1 JianLi Ren,1,2 Haitao Ran,1,2 Zhigang Wang,1,2 Pan Li,1,2 Zhiyu Du3 1Chongqing Key Laboratory of Ultrasound Molecular Imaging, 2Department of Ultrasound, 3Postgraduate Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: The commonly used ultrasound (US molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs, a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocyanine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors. Keywords: low-intensity focused ultrasound, perfluoropentane nanodroplets, acoustic droplet vaporization, ultrasound molecular imaging, targeting

  5. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  6. MRI methods for the evaluation of high intensity focused ultrasound tumor treatment : Current status and future needs

    NARCIS (Netherlands)

    Hectors, Stefanie J C G; Jacobs, Igor; Moonen, Chrit T W; Strijkers, Gustav J; Nicolay, Klaas

    2016-01-01

    Thermal ablation with high intensity focused ultrasound (HIFU) is an emerging noninvasive technique for the treatment of solid tumors. HIFU treatment of malignant tumors requires accurate treatment planning, monitoring and evaluation, which can be facilitated by performing the procedure in an MR-gui

  7. Magnetic resonance-guided focused ultrasound surgery for the noninvasive curative ablation of tumors and palliative treatments: a review.

    Science.gov (United States)

    Kopelman, Doron; Papa, Moshe

    2007-05-01

    This article reviews and discusses the up-to-date data on and feasibility of focused ultrasound surgery. This technique uses high-energy ultrasound beams that can be directed to penetrate through the skin and various soft tissues, focus on the target, and destroy tumors by increasing the temperature at the targeted tissue volume. The boundaries of the treatment area are sharply demarcated (focused) without causing damage to the surrounding organs. Although the idea of using sound waves to ablate tumors was first demonstrated in the 1940 s, only recent developments have enabled this technology to become more controlled and, hence, more feasible. The major breakthrough toward its clinical use came with coupling the thermal ablative process to advanced imaging. The development of magnetic resonance as the foundation to guide and evaluate the end results of focused ultrasound surgery treatment, the image guidance of the ultrasound beam, and the development of a reliable method for tissue temperature measurement and real-time feedback of the extent of tissue destruction have pushed this novel technology forward in oncological practice.

  8. Efficacy of Magnetic Resonance-guided Focused Ultrasound Surgery for Bone Metastases Pain Palliation

    Science.gov (United States)

    Kawasaki, Motohiro; Nanba, Hirofumi; Kato, Tomonari; Tani, Toshikazu; Ushida, Takahiro

    2011-09-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a novel treatment method that achieves non-invasive thermal ablation by focusing many ultrasound waves on a target tissue with real-time monitoring of the location and temperature of the target during the procedure. We investigated the palliative effect on pain and safety of MRgFUS in painful bone metastases. Six patients (mean age, 65.8 years) who met eligibility criteria for the clinical study approved by our Institutional Ethics Committee based on the cooperative protocol were treated with MRgFUS. Targeted sites included the sacrum (n = 1), ilium (n = 2), scapula (n = 2), and femur (n = 1). The mean follow-up period was 9.2 months. All procedures were performed as a single-session treatment using the treatment system that is integrated into the patient table of a magnetic resonance image (MRI) scanner. Endpoints were change in the intensity of pain due to bone metastases from before to after the treatment, as measured on a numerical rating scale, pain interference with daily activities as determined by the Brief pain inventory (BPI), change in images, and safety. Pain relief was obtained in all patients early after treatment, with a reduction in the mean pain score from 6.0±1.3 at baseline to 1.2±1.0 at the end of follow-up as well as in pain interference with daily activities. The mean time required for a single-session treatment was 83.7±37.0 min, with a mean number of sonications required of 13.3±3.7 and mean energy applied of 846.4±273.5 J. No significant growth of tumors was observed, nor were there treatment-related adverse events. These results suggest that MRgFUS has a non-invasive palliative effect on the localized pain in patients with bone metastasis. MRgFUS could become an option in treatment strategies for painful bone metastases in the future.

  9. High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch

    Science.gov (United States)

    Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.

    2016-10-01

    The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of Gene Therapy Combined with Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2012-09-01

    the observed enhancement are not well understood. It is thought mainly due to the nonthermal effects of ultrasound —mechanical streaming and cavitation ...AD ________________ Award Number: W81XWH-08-1-0469 TITLE: MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of (Enter title of award...Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER Gene Therapy Combined with Androgen Deprivation and Radiotherapy W81XWH-08-1-0469 for Prostate

  11. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications - for example in particle therapie or short-pulse radiographic diagnostics - requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. The scaling shows that above a few MeV a solenoid needs to be pulsed or super-conducting, whereas the quadrupoles can remai...

  12. Non-thermal ablation of rabbit liver VX2 tumor by pulsed high intensity focused ultrasound with ultrasound contrast agent: Pathological characteristics

    Institute of Scientific and Technical Information of China (English)

    Cheng-Wen Zhou; Fa-Qi Li; Yan Qin; Chun-Mei Liu; Xiao-Lin Zheng; Zhi-Biao Wang

    2008-01-01

    AIM:To investigate the pathological characteristics of non-thermal damage induced by pulsed high intensity focused ultrasound (PHIFU) combined with ultrasound contrast agent (UCA),SonoVue (Bracco SpA,Milan,Italy) in rabbit liver VX2 tumor.METHODS:Liver VX2 tumor models were established in 20 rabbits,which were divided randomly into PHIFU combined with ultrasound contrast agent group (PHIFU + UCA group) and sham group.In the PHIFU + UCA group,0.2 mL of SonoVue was injected intravenously into the tumor,followed by ultrasound exposure of Isp 5900 W/cm2.The rabbits were sacrificed one day after ultrasound exposure.Specimens of the exposed tumor tissues were obtained and observed pathologically under light microscope and transmission electron microscope.The remaining tumor tissues were sent for 2,3,5-Triphenyltetrazolium chloride (TTC) staining.RESULTS:Before TTC staining,tumor tissues in both the sham and the PHIFU + UCA groups resembled gray fish meat.After TTC staining,the tumor tissues were uniformly stained red,with a clear boundary between tumor tissue and normal tissue.Histological examination showed signs of tumor cell injury in PHIFU + UCA group,with cytoplasmic vacuoles of various sizes,chromatin margination and karyopyknosis.Electron microscopic examination revealed tumor cell volume reduction,karyopyknosis,chromatin margination,intercellular space widening,the presence of high electron-density apoptotic bodies and vacuoles in cytoplasm.CONCLUSION:The non-thermal effects of PHIFU combined with UCA can be used to ablate rabbit liver VX2 tumors.

  13. Complications of high intensity focused ultrasound in patients with recurrent and metastatic abdominal tumors

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun Li; Guo-Liang Xu; Mo-Fa Gu; Guang-Yu Luo; Zhang Rong; Pei-Hong Wu; Jian-Chuan Xia

    2007-01-01

    AIM: To analyze the local and systemic complications of high intensity focused ultrasound (HIFU) for patients with recurrent and metastatic abdominal tumors.METHODS: From Aug 2001 to Aug 2004, 17 patients with recurrent and metastatic abdominal tumors were enrolled in this study. Real-time sonography was taken, and vital signs, liver and kidney function, skin burns, local reactions, and systemic effects were observed and recored before, during, and after HIFU. CT and MRI were also taken before and after HIFU.RESULTS: All 17 patients had skin burns and pAln in the treatment region; the next common complication was neurapraxia of the stomach and intestines to variable degrees. The other local and systemic complications were relatively rare. Severe complications were present in two patients; one developed a superior mesenteric artery infarction resulting in necrosis of the entire small intestines, and the other one suffered from a perforation in terminal ileum due to HIFU treatment.CONCLUSION: Although HIFU is a one of noninvasive treatments for the recurrent and metastatic abdominal tumors, there are still some common and severe complications which need serious consideration.

  14. PATHOMORPHISM OF PROSTATE CANCER DURING HIGH-INTENSITY FOCUSED ULTRASOUND TREATMENT

    Directory of Open Access Journals (Sweden)

    R. N. Fomkin

    2014-07-01

    Full Text Available The purpose of the study was to evaluate the efficiency of prostate cancer (PC treatment using high-intensity focused ultrasound (HIFU on the basis of morphometric and immunohistochemical (IHC analyses of postoperative prostate biopsy specimens. The study subjects were 40 patients with localized and locally advanced PC. The postoperative morphological analysis was made on the basis of standard hematoxylineosin staining and morphometric and IHC studies using the following antibodies: PCNA, Bcl-2, AMACR, Е-cadherin, and ANDR (Dako. Pre- and post-HIFU therapy histological examination of the routinely hematoxylin-eosin-stained specimens showed that the therapeutic pathomorphism of the tumor corresponded to grades III and IV. It was established that the IHC study should be used as an additional crite-rion for the efficiency of PC therapy after HIFU ablation. In spite of positive clinical, laboratory, instrumental, and objective changes, the patients with high AMACR and Bcl-2 levels and decreased Е-cadherin expression may be considered as a group at risk for prolonged malignant growth or recurrent PC.

  15. Focused ultrasound-mediated sonochemical internalization: an alternative to light-based therapies

    Science.gov (United States)

    Gonzales, Jonathan; Nair, Rohit Kumar; Madsen, Steen J.; Krasieva, Tatiana; Hirschberg, Henry

    2016-07-01

    Activation of sonosensitizers via focused ultrasound (FUS), i.e., sonodynamic therapy has been proposed as an extension to light-activated photodynamic therapy for the treatment of brain as well as other tumors. The use of FUS, as opposed to light, allows treatment to tumor sites buried deep within tissues as well as through the intact skull. We have examined ultrasonic activation of sonosensitizers together with the anticancer agent bleomycin (BLM), i.e., sonochemical internalization (SCI). SCI is a technique that utilizes FUS for the enhanced delivery of endo-lysosomal trapped macromolecules into the cell cytoplasm in a similar manner to light-based photochemical internalization. The released agent can, therefore, exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Our results indicate that, compared to drug or FUS treatment alone, FUS activation of the sonosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to grow as three-dimensional tumor spheroids in vitro.

  16. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor

    Science.gov (United States)

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.

    2016-06-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.

  17. Electrophysiological Changes Correlated with Temperature Increases Induced by High-Intensity Focused Ultrasound Ablation

    Science.gov (United States)

    Wu, Z.; Kumon, R. E.; Laughner, J. I.; Efimov, I. R.; Deng, C. X.

    2014-01-01

    To gain better understanding of the detailed mechanisms of high-intensity focused ultrasound (HIFU) ablation for cardiac arrhythmias, we investigated how the cellular electrophysiological (EP) changes were correlated with temperature increases and thermal dose (cumulative equivalent minutes [CEM43]) during HIFU application using Langendorff-perfused rabbit hearts. Employing voltage-sensitive dye di-4-ANEPPS, we measured the EP and temperature during HIFU using simultaneous optical mapping and infrared imaging. Both action potential amplitude (APA) and AP duration at 50% repolarization (APD50) decreased with temperature increases, and APD50 was more thermally sensitive than APA. EP and tissue changes were irreversible when HIFU-induced temperature increased above 52.3 ± 1.4 °C and log10(CEM43) above 2.16 ± 0.51 (n = 5), but were reversible when temperature was below 50.1 ± 0.8 °C and log10(CEM43) below −0.9 ± 0.3 (n = 9). EP and temperature/thermal dose changes were spatially correlated with HIFU induced tissue necrosis surrounded by a transition zone. PMID:25516446

  18. Analgesic effect of high intensity focused ultrasound in patients with advanced pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xinjin Tan; Jian Chen; Li Ren; Ruilu Lin; Zailian Chen

    2013-01-01

    Objective:The aim of this study was to evaluate the analgesic ef ect of high intensity focused ultrasound (HIFU) in patients with advanced pancreatic cancer. Methods:A total of 106 patients with advanced pancreatic cancer accompanied by abdominal pain were treated by HIFU. Pain intensities and quantities of morphine consumption before and after treatment were observed and compared. Results:The average pain intensities before treatment, and at d3, d7 after treatment were 5.80 ± 2.14, 2.73 ± 2.68, 2.45 ± 2.43 respectively (P<0.01). Fifty-nine cases (55.7%) got to extremely ef ective, and 29 cases (27.4%) ef ective. Total ef icient rate was 83.0%. The average quantities of morphine consumption before and after treatment in the patients with grade III pain were 114.9 ± 132.5 mg, 16.8 ± 39.7 mg each person everyday respectively (P<0.01). Conclusion:HIFU can relieve pain suf ered by patients with pancreatic cancer ef ectively. It is a new adjuvant treatment for pancreatic cancer pain.

  19. High-Intensity Focused Ultrasound for Prostate Cancer: Long-Term Followup and Complications Rate

    Directory of Open Access Journals (Sweden)

    Umberto Maestroni

    2012-01-01

    Full Text Available Introduction. As it is well known, High Intensity Focused Ultrasound (HIFU is a minimally invasive procedure for prostate cancer. Many investigators reported their series of patients, demonstrating the effectiveness of the treatment. The most majority of Authors, however, do not report the side effects and the complications of the procedure, which is the aim of our study. The diagnosis and management of complications is discussed, and the oncologic outcome is reported in terms of quality of life. Materials and Methods. We report our experience in 89 patients, low-, intermediate-, and high-risk patients according with D’Amico classification. All data collected along the study were analyzed, including side effects and complications of the procedure. Results. Our series demonstrates the effectiveness of the procedure, in line with larger series reported in literature by other investigators. The most important side effects are sexual function impairment and transient incontinence in a minority of cases. Minor complications are reported as well as rare cases of major complications, which can require surgical treatment.

  20. Feasibility study on photoacoustic guidance for high-intensity focused ultrasound-induced hemostasis

    Science.gov (United States)

    Nguyen, Van Phuc; Kim, Jeehyun; Ha, Kang-lyeol; Oh, Junghwan; Kang, Hyun Wook

    2014-10-01

    The feasibility of photoacoustic imaging (PAI) application was evaluated to map punctured blood vessels thermally treated by high-intensity focused ultrasound (HIFU) for hemostasis. A single-element HIFU transducer with a central frequency of 2.0 MHz, was used to induce thermal hemostasis on the punctured arteries. The HIFU-treated lesion was imaged and localized by high-contrast PAI guidance. The results showed that complete hemostasis was achieved after treatment of the damaged blood vessels within 25 to 52 s at the acoustic intensity of 3600 W/cm2. The coagulation time for the animal artery was ˜20% longer than that of the phantom possibly due to a lower Young's modulus. The reconstructed PA images were able to distinguish the treated area from the surrounding tissue in terms of augmented signal amplitudes (up to three times). Spectroscopic studies demonstrated that the optimal imaging wavelength was found to be 700 nm in order to reconstruct high-contrast photoacoustic images on HIFU-treated lesions. The proposed PAI integrated with HIFU treatment can be a feasible application to obtain safe and rapid hemostasis for acute arterial bleeding.

  1. Non-invasive cardiac pacing with image-guided focused ultrasound

    Science.gov (United States)

    Marquet, Fabrice; Bour, Pierre; Vaillant, Fanny; Amraoui, Sana; Dubois, Rémi; Ritter, Philippe; Haïssaguerre, Michel; Hocini, Mélèze; Bernus, Olivier; Quesson, Bruno

    2016-11-01

    Currently, no non-invasive cardiac pacing device acceptable for prolonged use in conscious patients exists. High Intensity Focused Ultrasound (HIFU) can be used to perform remote pacing using reversibility of electromechanical coupling of cardiomyocytes. Here we described an extracorporeal cardiac stimulation device and study its efficacy and safety. We conducted experiments ex vivo and in vivo in a large animal model (pig) to evaluate clinical potential of such a technique. The stimulation threshold was determined in 10 different ex vivo hearts and different clinically relevant electrical effects such as consecutive stimulations of different heart chambers with a single ultrasonic probe, continuous pacing or the inducibility of ventricular tachycardia were shown. Using ultrasonic contrast agent, consistent cardiac stimulation was achievable in vivo for up to 1 hour sessions in 4 different animals. No damage was observed in inversion-recovery MR sequences performed in vivo in the 4 animals. Histological analysis revealed no differences between stimulated and control regions, for all ex vivo and in vivo cases.

  2. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    Science.gov (United States)

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  3. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound.

    Science.gov (United States)

    Khokhlova, Tatiana D; Canney, Michael S; Lee, Donghoon; Marro, Kenneth I; Crum, Lawrence A; Khokhlova, Vera A; Bailey, Michael R

    2009-04-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 degrees C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 degrees C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3 x 0.5 x 2 mm(3)) yielded a maximum of 73 degrees C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems.

  4. Does the phase of menstrual cycle affect MR-guided focused ultrasound surgery of uterine leiomyomas?

    Energy Technology Data Exchange (ETDEWEB)

    So, Minna J. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Fennessy, Fiona M. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Zou, Kelly H. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); McDannold, Nathan [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Hynynen, Kullervo [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Jolesz, Ferenc A. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Stewart, Elizabeth A. [Department of Obstetrics and Gynecology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Rybicki, Frank J. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States); Tempany, Clare M. [Department of Radiology, Brigham and Women' s Hospital/Harvard Medical School, Boston, MA (United States)]. E-mail: ctempanyafdhal@partners.org

    2006-08-15

    Purpose: To determine whether the phase of menstrual cycle at the time of MR-guided focused ultrasound surgery (MRgFUS) treatment for uterine leiomyomas affects treatment outcome. Methods: We enrolled all patients participating in a prospective phase III clinical trial from our center who completed 6 months of clinical and imaging follow-up. Patients with irregular cycles and those on oral contraceptives were excluded. Data prospectively documenting the date of the last menstrual period (LMP) at the time of treatment, length and duration of cycle, and raw symptom severity score (SSS) from the Uterine Fibroid Symptom and Quality of Life questionnaire, at baseline and 6 months were collected. Proliferative phase patients were determined retrospectively as those who were treated within less than 14 days from LMP; secretory phase patients were classified as those who were treated greater than 14 days from LMP. Results: A total of 58 patients were enrolled. There was no significant difference in the mean SSS at baseline and mean SSS at 6 months between patients treated in the proliferative versus secretory phase of the cycle. No significant difference in the SSS change from baseline to 6 months was seen between the two groups. Conclusions: Menstrual cycle phase does not influence MRgFUS treatment outcome. Symptomatic improvement occurs with treatment during either phase of the menstrual cycle. Thus, the scheduling of MRgFUS treatment need not be based upon the phase of the menstrual cycle.

  5. MRI Guided Focused Ultrasound Thalamotomy for Moderate-to-Severe Tremor in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ilana Schlesinger

    2015-01-01

    Full Text Available Background. Thalamotomy is effective in alleviating tremor in Parkinson’s disease (PD. Methods. Seven PD patients, mean age 59.4 ± 9.8 years (range, 46–74 with a mean disease duration of 5.4 ± 2.8 years (range, 2–10 suffering from severe refractory tremor, underwent ventral intermediate nucleus thalamotomy using MRI guided focused ultrasound (MRgFUS, an innovative technology that enables noninvasive surgery. Results. Tremor stopped in the contralateral upper extremity in all patients immediately following treatment. Total UPDRS decreased from 37.4 ± 12.2 to 18.8 ± 11.1 (p=0.007 and PDQ-39 decreased from 42.3 ± 16.4 to 21.6 ± 10.8 (p=0.008 following MRgFUS. These effects were sustained (mean follow-up 7.3 months. Adverse events during MRgFUS included headache (n=3, dizziness (n=2, vertigo (n=4, and lip paresthesia (n=1 and following MRgFUS were hypogeusia (n=1, unsteady feeling when walking (n=1, resolved, and disturbance when walking tandem (n=1, resolved. Conclusions. Thalamotomy using MRgFUS is safe and effective in PD patients. Large randomized studies are needed to assess prolonged efficacy and safety.

  6. Role of acoustic interface layer during high intensity focused ultrasound therapeutics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    After interface layer was simulated by the magnetic nano-particles in the egg white phantom, high intensity focused ultrasound (HIFU) at the same dosage was introduced to radiate the phantom in different depths to blow the acoustic interface layer to mimic "point" exposure. The results showed that the volumes of biological focal region (BFR) were enlarged when the acoustic focal region (AFR) is close with interface layer. This meant that the magnetic nano-particles enhanced the therapeutic efficiency of HIFU. When the distance of the AFR from the interface layer was 10 mm, the size and shape of the BFR were similar with those of the control group, but a larger lesion at the interface, which was harmful for treatment, was observed. When the distance of the AFR to the interface layer increased to 30 mm, the size and shape of the BFR were also similar to those of the control group. When the thickness of the interface layer diminished, the utility of enhancement decreased. Continuous increase of the safe area for treatment and decrease of the utility of enhancement were observed along with the abatement of the thickness of the interface layer

  7. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    Science.gov (United States)

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  8. Image-based control of the magnetic resonance imaging-guided focused ultrasound thermotherapy.

    Science.gov (United States)

    Salomir, Rares; Delemazure, Anne-Sophie; Palussière, Jean; Rouvière, Olivier; Cotton, François; Chapelon, Jean-Yves

    2006-06-01

    Magnetic resonance imaging (MRI)-guided focused ultrasound surgery (FUS) is a full noninvasive approach for localized thermal ablation of deep tissues, coupling the following: (1) a versatile, nonionizing physical agent for therapy and (2) a state-of-the art diagnosis and on-line monitoring tool. A commercially available, Food and Drug Administration-approved device using the MRI-guided FUS exists since 2004 for the ablation of benign tumors (uterine fibroids); however, the ultimate goal of the technological, methodological, and medical research in this field is to provide a clinical-routine tool for fighting localized cancer. When addressing cancer applications, the accurate spatial control of the delivered thermal dose is mandatory. Contiguous destruction of the target volume must be achieved in a minimum time, whereas sparing as much as possible the neighboring healthy tissues and especially when some adjacent regions are critical. This paper reviews some significant developments reported in the literature related to the image-based control of the FUS therapy for kidney, breast, prostate, and brain, including the own experience of the authors on the active feedback control of the temperature during FUS ablation. In addition, preliminary results of an original study of MRI-guided FUS ablation of VX2 carcinoma in kidney, under active temperature control, are described here.

  9. Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex

    Science.gov (United States)

    Lee, Wonhye; Kim, Hyungmin; Jung, Yujin; Song, In-Uk; Chung, Yong An; Yoo, Seung-Schik

    2015-03-01

    Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain function.

  10. Keratorefractive Effect of High Intensity Focused Ultrasound Keratoplasty on Rabbit Eyes

    Directory of Open Access Journals (Sweden)

    Zhiyu Du

    2016-01-01

    Full Text Available Purpose. To evaluate high intensity focused ultrasound (HIFU as an innovation and noninvasive technique to correct presbyopia by altering corneal curvature in the rabbit eye. Methods. Eighteen enucleated rabbit eyes were treated with a prototype HIFU keratoplasty. According to the therapy power, these eyes were divided three groups: group 1 (1 W, group 2 (2 W, and group 3 (3 W. The change in corneal power was quantified by a Sirius Scheimpflug camera. Light microscopy (LM and transmission electron microscopy (TEM were performed to determine the effect on the corneal stroma. Results. In the treated eyes, the corneal curvature increases from 49.42 ± 0.30 diopters (D and 48.00 ± 1.95 D before procedure to 51.37 ± 1.11 D and 57.00 ± 1.84 D after HIFU keratoplasty application in groups 1 and 3, respectively. The major axis and minor axis of the focal region got longer when the powers of the HIFU got increased; the difference was statistically significant (p<0.05. LM and TEM showed HIFU-induced shrinkage of corneal stromal collagen with little disturbance to the underlying epithelium. Conclusions. We have preliminarily exploited HIFU to establish a new technique for correcting presbyopia. HIFU keratoplasty will be a good application prospect for treating presbyopia.

  11. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution.

    Science.gov (United States)

    Xu, Shanshan; Zong, Yujin; Feng, Yi; Liu, Runna; Liu, Xiaodong; Hu, Yaxin; Han, Shimin; Wan, Mingxi

    2015-01-01

    In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.

  12. High-Intensity Focused Ultrasound (Hifu) Treatment For Thyroid Nodules: Experimental And First Clinical Studies

    Science.gov (United States)

    Esnault, Olivier; Franc, Brigitte; Leenhardt, Laurence; Rouxel, Agnès; Ménégaux, Fabrice; Lacoste, François

    2007-05-01

    OBJECTIVE: Thyroid nodules are common and can only be removed by surgery. High-intensity focused ultrasound (HIFU) could be a possible minimally invasive alternative treatment. The aim of this study was to assess the feasibility of using HIFU to precisely ablate thyroid nodules without affecting neighbouring structures. METHODS: HIFU was generated by a 3-MHz spherical piezocomposite transducer moved across the target in a stepwise fashion. In a first clinical study 25 patients had their nodules treated with HIFU 2 weeks prior to planned thyroidectomy, using increasing energy. The last patients received a local anesthesia. The lesions were assessed by the pathologist. RESULTS: The histological lesions were clearly visible in most of the fully treated patients, particularly those who received higher energy. Superficial and reversible skin blisters were observed in 7 patients. The design of the treatment head was subsequently modified to eliminate such risk. CONCLUSION: The patient trials confirmed the precision of the targeting and set the energy levels for safe thyroid nodule ablation with HIFU. Further study is needed to assess nodule's changes at longer follow-up.

  13. Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound.

    Science.gov (United States)

    Kobus, Thiele; Vykhodtseva, Natalia; Pilatou, Magdalini; Zhang, Yongzhi; McDannold, Nathan

    2016-02-01

    The purpose of this study was to investigate the effects on the brain of multiple sessions of blood-brain barrier (BBB) disruption using focused ultrasound (FUS) in combination with micro-bubbles over a range of acoustic exposure levels. Six weekly sessions of FUS, using acoustical pressures between 0.66 and 0.80 MPa, were performed under magnetic resonance guidance. The success and degree of BBB disruption was estimated by signal enhancement of post-contrast T1-weighted imaging of the treated area. Histopathological analysis was performed after the last treatment. The consequences of repeated BBB disruption varied from no indications of vascular damage to signs of micro-hemorrhages, macrophage infiltration, micro-scar formations and cystic cavities. The signal enhancement on the contrast-enhanced T1-weighted imaging had limited value for predicting small-vessel damage. T2-weighted imaging corresponded well with the effects on histopathology and could be used to study treatment effects over time. This study demonstrates that repeated BBB disruption by FUS can be performed with no or limited damage to the brain tissue.

  14. Chemotherapy of glioblastoma by targeted liposomal platinum compounds with focused ultrasound.

    Science.gov (United States)

    Yang, Feng-Yi; Horng, Shih-Cheng

    2013-01-01

    Giloblastoma multiforme (GBM) is the most aggressive brain neoplasm, and patients have a poor prognosis after radiation and chemotherapy. The chemotherapy protocols still marginally improve the anti-tumor effect of patients with glioblastoma because the therapeutic dosage of many drugs is impeded by the blood-brain barrier (BBB). The use of liposomal drugs to GBM treatment might benefit from a more crossing of the BBB due to the lipid nature achieving higher doses of drug at the tumor sites. Human GBM-bearing mice were injected intravenously with cisplatin encapsulated in atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes or unconjugated liposome. Moreover, the administration of AP-1 liposomal cisplatin (lipoplatin) followed by focused ultrasound (FUS)-induced BBB disruption. Tumor progression was monitored by biophotonic imaging. The preliminary data demonstrated that the GBM chemotherapy with AP-1 lipoplatin followed by pulsed FUS showed a modest improvement of tumor growth in the brain compared to the group treated with lipoplatin alone. Further investigations are needed to use this new targeted lipoplatin in treatment of malignancies.

  15. A retrospective comparison of microwave ablation and high intensity focused ultrasound for treating symptomatic uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wen-Peng, E-mail: zwp215@163.com; Han, Zhi-Yu, E-mail: hanzhiyu301@hotmail.com; Zhang, Jing, E-mail: zjbch@sina.com; Liang, Ping, E-mail: liangping301@hotmail.com

    2015-03-15

    Highlights: •Both HIFU and PMWA are thermal ablation techniques and they all provide safe and reliable alternative treatment methods for uterine fibroids. •However, whether there are obvious difference between these two kinds of approaches in improving symptom, treatment time, ablation rate, regression rate and adverse events, until now, there are no clinical trials which have been performed to compare the therapeutic effects of HIFU and PMWA. •In this research, we retrospectively compare the results of these two treatment methods. •To our knowledge, our study is the first directly comparing long-term outcome after PMWA and HIFU in patients with uterine fibroids. -- Abstract: Objectives: To retrospectively compare the effectiveness and safety of percutaneous microwave ablation (PMWA) and ultrasound-guided high-intensity focused ultrasound (USgHIFU) for treating symptomatic uterine fibroids. Methods: Seventy-three women with symptomatic uterine fibroids who met the inclusion criteria were enrolled in our study from September 2012 to December 2013. Thirty-one patients with forty uterine fibroids underwent PMWA, and forty-two patients with fifty-one uterine fibroids underwent USgHIFU. A contrast-enhanced MRI was performed before and after treatment, and all patients were followed up for 6 months. Assessment endpoints included symptom severity scores (SSS), treatment time, ablation rate, fibroid regression rate and adverse events. Results: The mean age of the patients in our study was 35.4 ± 6.2 years (range, 21–49 years), and the median volume of uterine fibroids was 95.7 cm{sup 3} (60.3–131.5 cm{sup 3}). The ablation rate of uterine fibroids was 79.8 ± 18.2% and 77.1 ± 14.9% in the PMWA group and the USgHIFU group, respectively, and showed no significant difference between the groups. Changes in SSS after PMWA were similar in the PMWA group (47.7 pre-treatment vs. 29.9 post-treatment) and USgHIFU group (42.1 pre-treatment vs. 24.6 post-treatment). The

  16. Enhanced high intensity focused ultrasound heat deposition for more efficient hemostasis

    Science.gov (United States)

    Labuda, Cecille Pemberton

    High intensity focused ultrasound (HIFU) is currently being developed for hemorrhage control since it provides rapid energy deposition in the form of heat in the HIFU focal region. When the HIFU focus is targeted on soft tissue wounds, the resulting elevation of tissue temperature cauterizes the tissues thus stopping the bleeding. If HIFU is targeted near blood vessels with millimeter-range diameter, the rate of heat deposition is limited by loss of heat to the blood flow. Maximizing the local heat deposition is important for the achievement of HIFU-induced hemorrhage control, or "hemostasis", near large vessels. In this study, the effect of a fiber device on the heat deposition in the HIFU focal region is investigated in tissue-mimicking flow phantoms with liquid albumen as the heat-sensitive denaturing flow fluid. The effect of the embedded fiber on albumen coagulation in the flow phantom is compared to the degree and rate of albumen coagulation when no fiber is present. The effect of the fiber device on the size of lesions formed in a heat-sensitive tissue-mimicking phantom is also investigated. Finally, finite difference time domain simulations are performed to determine the heat deposition in a tissue-mimicking phantom with a nylon disc embedded and a phantom with the nylon disc removed. The results of this study are quite promising for the possibility of increased efficacy of hemostasis for such a device in concert with HIFU in vessel-containing tissue volumes where HIFU alone is not completely effective.

  17. Computational Complexity Reduction of Synthetic-aperture Focus in Ultrasound Imaging Using Frequency-domain Reconstruction.

    Science.gov (United States)

    Moghimirad, Elahe; Mahloojifar, Ali; Mohammadzadeh Asl, Babak

    2016-05-01

    A new frequency-domain implementation of a synthetic aperture focusing technique is presented in the paper. The concept is based on synthetic aperture radar (SAR) and sonar that is a developed version of the convolution model in the frequency domain. Compared with conventional line-by-line imaging, synthetic aperture imaging has a better resolution and contrast at the cost of more computational load. To overcome this problem, point-by-point reconstruction methods have been replaced by block-processing algorithms in radar and sonar; however, these techniques are relatively unknown in medical imaging. In this paper, we extended one of these methods called wavenumber to medical ultrasound imaging using a simple model of synthetic aperture focus. The model, derived here for monostatic mode, can be generalized to multistatic as well. The method consists of 4 steps: a 2D fast Fourier transform of the data, frequency shift of the data to baseband, interpolation to convert polar coordinates to rectangular ones, and returning the data to the spatial-domain using a 2D inverse Fourier transform. We have also used chirp pulse excitation followed by matched filtering and spotlighting algorithm to compensate the effect of differences in parameters between radar and medical imaging. Computational complexities of the two methods, wavenumber and delay-and-sum (DAS), have been calculated. Field II simulated point data have been used to evaluate the results in terms of resolution and contrast. Evaluations with simulated data show that for typical phantoms, reconstruction by the wavenumber algorithm is almost 20 times faster than classical DAS while retaining the resolution. © The Author(s) 2015.

  18. H-mode Accelerating Structures with PMQ Focusing for Low-Beta Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory

    2011-01-01

    We report on results of the project developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of IH-PMQ structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. The H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or in stand-alone applications. Results of the combined 3-D modeling -- electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis -- for a full IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of EM and beamdynamics modeling. Multi-particle simulations withParmela and CST Particle Studio have been used to confirm the design. Measurement results of a cold model of the IH-PMQ tank are presented.

  19. Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression

    Directory of Open Access Journals (Sweden)

    Giampaolo Perna

    2016-01-01

    Full Text Available Anxiety disorders (AnxDs are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed.

  20. Intense focused ultrasound stimulation of the rotator cuff: evaluation of the source of pain in rotator cuff tears and tendinopathy.

    Science.gov (United States)

    Gellhorn, Alfred C; Gillenwater, Cody; Mourad, Pierre D

    2015-09-01

    The objective of this preliminary study was to evaluate the ability of individual 0.1-s long pulses of intense focused ultrasound (iFU) emitted with a carrier frequency of 2 MHz to evoke diagnostic sensations when applied to patients whose shoulders have rotator cuff tears or tendinopathy. Patients were adults with painful shoulders and clinical and imaging findings consistent with rotator cuff disease. iFU stimulation of the shoulder was performed using B-mode ultrasound coupled with a focused ultrasound transducer that allowed image-guided delivery of precisely localized pulses of energy to different anatomic areas around the rotator cuff. The main outcome measure was iFU spatial average-temporal average intensity (I_SATA), and location required to elicit sensation. In control patients, iFU produced no sensation throughout the range of stimulation intensities (≤2000 W/cm(2) I_SATA). In patients with rotator cuff disease, iFU was able to induce sensation in the tendons of the rotator cuff, the subacromial bursa, and the subchondral bone in patients with chronic shoulder pain and rotator cuff disease, with an average ± standard deviation intensity equaling 680 ± 281 W/cm(2) I_SATA. This result suggests a primary role for these tissues in the pathogenesis of shoulder pain related to rotator cuff tendinopathy. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles

    Science.gov (United States)

    Chavrier; Chapelon; Gelet; Cathignol

    2000-07-01

    The classical "Bio Heat Transfer Equation (BHTE)" model is adapted to take into account the effects of oscillating microbubbles that occur naturally in the tissue during high-intensity focused ultrasound (HIFU) treatment. First, the Gilmore-Akulichev model is used to quantify the acoustic pressure scattered by microbubbles submitted to HIFU. Because this scattered pressure is not monochromatic, the concept of harmonic attenuation is introduced and a global attenuation coefficient is estimated for bubble-filled tissues. The first results show that this global attenuation coefficient varies significantly with respect to several parameters such as the frequency and the density of microbubbles in the medium, but also with respect to the incident acoustic pressure which thus becomes a transcendental function. Under these conditions, a layer-by-layer modeling, in the direction of propagation, is proposed to calculate the ultrasonic beam. Finally, the BHTE is solved and the HIFU-induced lesions are estimated by the calculation of the thermal dose. Using this model, it can be observed first that, when the firing power increases, the lesion develops clearly in the direction of the transducer, with a shape agreeing with in vivo experimentation. Next, it is observed that the lesion can be significantly modified in size and position, if an interface (skin or inner wall) is simulated as a zone with multiple cavitation nuclei. With a firing power increase, it is also shown how a secondary lesion can appear at the interface and how, beyond a certain threshold, this lesion develops at the main lesion expense. Finally, a better in-depth homogeneity of lesions is observed when the acoustic frequency of HIFU is increased.

  2. High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma.

    Science.gov (United States)

    Yu, Wenxi; Tang, Lina; Lin, Feng; Yao, Yang; Shen, Zan; Zhou, Xiaohui

    2015-03-01

    Local unresectable recurrence of osteosarcoma is one of the most challenging tumors to treat. High-intensity focused ultrasound (HIFU) is a new, noninvasive technique with potential to ablate and inactivate tumors. Treatment of solid tumors with HIFU has been reported. In this study, we assessed safety and efficacy of HIFU in treating local unresectable recurrence of osteosarcoma. We performed a retrospective analysis of 27 patients who had local unresectable recurrence of osteosarcoma from 2006 to 2010. Changes of biochemical markers and pain rating, response rate, disease control rate, local disease progression-free survival, progression-free survival (PFS) and overall survival (OS) were used to evaluate efficacy of HIFU treatment. HIFU resulted in a significant change in alkaline phosphatase and lactic acid dehydrogenase and a remarkably relief in pain rating, without severe side effects. According to MRI examination 4-6 weeks after HIFU treatment, 2 (7.4%) patients had complete response (CR), 12 (44.4%) had partial response (PR), 9 (33.3%) had stable disease (SD) and 4 (14.8%) had progression disease (PD). The response rate was 51.8% and the local disease control rate was 85.2%. The 1-, 2-, and 3-year local disease control rates were 59.2%, 40.7% and 33.1%, respectively. The median local disease progression-free time was 14 months, the median progression-free time was 13 months and the median over-all survival time was 21 months. Patients without pulmonary metastasis had a better local disease control rate at 1-,2-,3-year and a longer local disease progression-free time, progression-free time, over-all survival time than patients with pulmonary metastasis. HIFU is a safe and noninvasive treatment for local unresectable recurrence of osteosarcoma, with good local control and without severe complications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available Central nervous system (CNS diseases are difficult to treat because of the blood-brain barrier (BBB, which prevents most drugs from entering into the brain. Intranasal (i.n. administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n. for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v. drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  4. Training Program for Cardiology Residents to Perform Focused Cardiac Ultrasound Examination with Portable Device.

    Science.gov (United States)

    Siqueira, Vicente N; Mancuso, Frederico J N; Campos, Orlando; De Paola, Angelo A; Carvalho, Antonio C; Moises, Valdir A

    2015-10-01

    Training requirements for general cardiologists without echocardiographic expertise to perform focused cardiac ultrasound (FCU) with portable devices have not yet been defined. The objective of this study was to evaluate a training program to instruct cardiology residents to perform FCU with a hand-carried device (HCD) in different clinical settings. Twelve cardiology residents were subjected to a 50-question test, 4 lectures on basic echocardiography and imaging interpretation, the supervised interpretation of 50 echocardiograms and performance of 30 exams using HCD. After this period, they repeated the written test and were administered a practical test comprising 30 exams each (360 patients) in different clinical settings. They reported on 15 parameters and a final diagnosis; their findings were compared to the HCD exam of a specialist in echocardiography. The proportion of correct answers on the theoretical test was higher after training (86%) than before (51%; P = 0.001). The agreement was substantial among the 15 parameters analyzed (kappa ranging from 0.615 to 0.891; P < 0.001). The percentage of correct interpretation was lower for abnormal (75%) than normal (95%) items, for valve abnormalities (85%) compared to other items (92%) and for graded scale (87%) than for dichotomous (95%) items (P < 0.0001, for all). For the final diagnoses, the kappa value was higher than 0.941 (P < 0.001; 95% CI [0.914, 0.955]). The training proposed enabled residents to perform FCU with HCD, and their findings were in good agreement with those of a cardiologist specialized in echocardiography. © 2015, Wiley Periodicals, Inc.

  5. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    Science.gov (United States)

    Chen, Hong; Chen, Cherry C; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (i.n.) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n.) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v.) drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  6. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    Science.gov (United States)

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.

  7. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral

    Science.gov (United States)

    Ramaekers, P.; de Greef, M.; Berriet, R.; Moonen, C. T. W.; Ries, M.

    2017-06-01

    The purpose of this study was to evaluate a novel phased array transducer design rule for therapeutic focused ultrasound applications. This design rule uses the discretized Fermat’s spiral to determine the positioning of the transducer elements for a given number of elements and f-number. Using this principle, three variations of Fermat’s spiral were generated, aimed at (1) grating lobe minimization, (2) side lobe minimization, and (3) an optimized element packing efficiency. For each spiral, sparse layouts using identical circular elements and fully populated layouts based on additional Voronoi tessellation were evaluated numerically. Evaluation criteria included the element size distribution, beam steering capabilities, focal plane pressure distribution, prefocal pressure distribution, and practical considerations. Finally, one Voronoi-tessellated design with a focal length and aperture diameter of 16 cm and a natural frequency of 1.3 MHz was evaluated experimentally through hydrophone measurements. The numerical evaluation showed that while sparse arrays possess superior beam steering capabilities for a given number of elements, the focal point quality and prefocal pressure distribution is substantially more favorable when using the Voronoi-tessellated designs. Beam steering was shown to be feasible with the tessellated designs for lateral deflections up to 10 mm and axial deflections up to 20 mm. The experimental evaluation showed that such a transducer is capable of inducing 40.00 MPa rarefactional and 237.50 MPa compressional peak pressure levels at 800 W instantaneous acoustic output power under free-field conditions, making the system potentially relevant for thermal ablation therapy, histotripsy applications, and shockwave-enhanced heating.

  8. Effects of oxytocin on high intensity focused ultrasound (HIFU) ablation of adenomysis: A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Zou, Min; Zhang, Cai [Department of Obstetrics and Gynecology, Chongqing Haifu Hospital, Chongqing 401121 (China); He, Jia [Department of Obstetrics and Gynecology, Suining Central Hospital, Sichuan 629000 (China); Mao, Shihua [Department of Obstetrics and Gynecology, Three Gorges Central Hospital, Chongqing 404000 (China); Wu, Qingrong [Department of Obstetrics and Gynecology, Fuling Central Hospital, Chongqing 408099 (China); He, Min [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Department of Obstetrics and Gynecology, Suining Central Hospital, Sichuan 629000 (China); Wang, Jian [Department of Obstetrics and Gynecology, Chongqing Haifu Hospital, Chongqing 401121 (China); Department of Obstetrics and Gynecology, Three Gorges Central Hospital, Chongqing 404000 (China); Zhang, Ruitao [Department of Obstetrics and Gynecology, Chongqing Haifu Hospital, Chongqing 401121 (China); Department of Obstetrics and Gynecology, Fuling Central Hospital, Chongqing 408099 (China); Zhang, Lian, E-mail: lianwzhang@yahoo.com [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Department of Obstetrics and Gynecology, Chongqing Haifu Hospital, Chongqing 401121 (China)

    2014-09-15

    Objective: To investigate the effects of oxytocin on high-intensity focused ultrasound (HIFU) ablation for the treatment of adenomyosis. Materials and methods: Eighty-six patients with adenomyosis from three hospitals were randomly assigned to the oxytocin group or control group for HIFU treatment. During HIFU treatment, 80 units of oxytocin was added in 500 ml of 0.9% normal saline running at the rate of 2 ml/min (0.32 U/min) in the oxytocin group, while 0.9% normal saline was used in the control group. Both patients and HIFU operators were blinded to oxytocin or saline application. Treatment results, adverse effects were compared. Results: When using oxytocin, the non-perfused volume (NPV) ratio was 80.7 ± 11.6%, the energy-efficiency factor (EEF) was 8.1 ± 9.9 J/mm{sup 3}, and the sonication time required to ablate 1 cm{sup 3} was 30.0 ± 36.0 s/cm{sup 3}. When not using oxytocin, the non-perfused volume ratio was 70.8 ± 16.7%, the EEF was 15.8 ± 19.6 J/mm{sup 3}, and the sonication time required to ablate 1 cm{sup 3} was 58.2 ± 72.7 S/cm{sup 3}. Significant difference in the NPV ratio, EEF, and the sonication time required to ablate 1 cm{sup 3} between the two groups was observed. No oxytocin related adverse effects occurred. Conclusion: Oxytocin could significantly decrease the energy for ablating adenomyosis with HIFU, safely enhance the treatment efficiency.

  9. Investigation of cellular and molecular responses to pulsed focused ultrasound in a mouse model.

    Directory of Open Access Journals (Sweden)

    Scott R Burks

    Full Text Available Continuous focused ultrasound (cFUS has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation. pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules. We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α and cell adhesion molecules (e.g., ICAM-1 and VCAM-1 on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology.

  10. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume

    Science.gov (United States)

    Robin, J.; Arnal, B.; Tanter, M.; Pernot, M.

    2017-02-01

    Shock wave ultrasound therapy techniques, increasingly used for non-invasive surgery, require extremely high pressure amplitudes in precise focal spots, and large high-power transducers arranged on a spherical shell are usually used to achieve that. This solution allows limited steering of the beam around the geometrical focus of the device at the cost of a large number of transducer elements, and the treatment of large and moving organs like the heart is challenging or impossible. This paper validates numerically and experimentally the possibility of using a time reversal cavity (TRC) for the same purpose. A 128-element, 1 MHz power transducer combined with different multiple scattering media in a TRC was used. We were able to focus high-power ultrasound pulses over a large volume in a controlled manner, with a limited number of transducer elements. We reached sufficiently high pressure amplitudes to erode an Ultracal® target over a 10 cm2 area.

  11. Electron acceleration by tightly focused radially polarized few-cycle laser pulses

    Institute of Scientific and Technical Information of China (English)

    Liu Jin-Lu; Sheng Zheng-Ming; Zheng Jun

    2012-01-01

    Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure,a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented.The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters.We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.

  12. Light Focusing and Two-Dimensional Imaging Through Scattering Media using the Photoacoustic Transmission-Matrix with an Ultrasound Array

    CERN Document Server

    Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-01-01

    We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  13. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.

    Science.gov (United States)

    Maleke, C; Konofagou, E E

    2008-03-21

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 degrees C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 microm degrees C(-1)(r=0.93, ptissue became irreversibly stiffer, followed by an associated decrease in the HMI displacement (-0.79 microm degrees C(-1), r=-0.92, ptissues during FUS, HIFU or other thermal therapies.

  14. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver

    OpenAIRE

    Petrusca, Lorena; Viallon, Magalie; Breguet, Romain; Terraz, Sylvain; Manasseh, Gibran; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana Maria; Gross, Patrick; Sekins, K. Michael; Becker, Christoph; Salomir, Rares Vincent

    2014-01-01

    Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method fo...

  15. Noninvasive, localized, and transient brain drug delivery using focused ultrasound and microbubbles

    Science.gov (United States)

    Choi, James J.

    In the United States, Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancer caused 72,432, 19,566 and 12,886 deaths in 2006, respectively. Whereas the number of deaths due to major disorders such as heart disease, stroke, and prostate cancer have decreased since 2006, deaths attributed to AD, PD, and brain cancer have not. Treatment options for patients with CNS disorders remain limited despite significant advances in knowledge of CNS disease pathways and development of neurologically potent agents. One of the major obstacles is that the cerebral microvasculature is lined by a specialized and highly regulated blood-brain barrier (BBB) that prevents large agents from entering the brain extracellular space. The purpose of this dissertation is to design a noninvasive, localized, and transient BBB opening system using focused ultrasound (FUS) and determine ultrasound and microbubble conditions that can effectively and safely deliver large pharmacologically-relevant-sized agents to the brain. To meet this end, an in vivo mouse brain drug delivery system using a stereotactic-based targeting method was developed. FUS was applied noninvasively through the intact skin and skull, which allowed for long-term and high-throughput studies. With this system, more than 150 mice were exposed to one of 31 distinct acoustic and microbubble conditions. The feasibility of delivering a large MRI contrast agent was first demonstrated in vivo in both wild-type and transgenic Alzheimer's disease model (APP/PS1) mice. A wide range of acoustic and microbubble conditions were then evaluated for their ability to deliver agents to a target region. Interestingly, the possible design space of parameters was found to be vast and different conditions resulted in distinct spatial distributions and doses delivered. In particular, BBB opening was shown to be dependent on the microbubble diameter, acoustic pressure, pulse repetition frequency (PRF), and pulse length (PL). Each set of

  16. Collection and focusing of laser accelerated ion beams for therapy applications

    Science.gov (United States)

    Hofmann, Ingo; Meyer-Ter-Vehn, Jürgen; Yan, Xueqing; Orzhekhovskaya, Anna; Yaramyshev, Stepan

    2011-03-01

    Experimental results in laser acceleration of protons and ions and theoretical predictions that the currently achieved energies might be raised by factors 5-10 in the next few years have stimulated research exploring this new technology for oncology as a compact alternative to conventional synchrotron based accelerator technology. The emphasis of this paper is on collection and focusing of the laser produced particles by using simulation data from a specific laser acceleration model. We present a scaling law for the “chromatic emittance” of the collector—here assumed as a solenoid lens—and apply it to the particle energy and angular spectra of the simulation output. For a 10 Hz laser system we find that particle collection by a solenoid magnet well satisfies requirements of intensity and beam quality as needed for depth scanning irradiation. This includes a sufficiently large safety margin for intensity, whereas a scheme without collection—by using mere aperture collimation—hardly reaches the needed intensities.

  17. Collection and focusing of laser accelerated ion beams for therapy applications

    Directory of Open Access Journals (Sweden)

    Ingo Hofmann

    2011-03-01

    Full Text Available Experimental results in laser acceleration of protons and ions and theoretical predictions that the currently achieved energies might be raised by factors 5–10 in the next few years have stimulated research exploring this new technology for oncology as a compact alternative to conventional synchrotron based accelerator technology. The emphasis of this paper is on collection and focusing of the laser produced particles by using simulation data from a specific laser acceleration model. We present a scaling law for the “chromatic emittance” of the collector—here assumed as a solenoid lens—and apply it to the particle energy and angular spectra of the simulation output. For a 10 Hz laser system we find that particle collection by a solenoid magnet well satisfies requirements of intensity and beam quality as needed for depth scanning irradiation. This includes a sufficiently large safety margin for intensity, whereas a scheme without collection—by using mere aperture collimation—hardly reaches the needed intensities.

  18. Intercostal high intensity focused ultrasound for liver ablation : The influence of beam shaping on sonication efficacy and near-field risks

    NARCIS (Netherlands)

    de Greef, M.; Schubert, G.; Wijlemans, J. W.; Koskela, J.; Bartels, L. W.; Moonen, C. T. W.; Ries, M.

    2015-01-01

    Purpose: One of the major issues in high intensity focused ultrasound ablation of abdominal lesions is obstruction of the ultrasound beam by the thoracic cage. Beam shaping strategies have been shown by several authors to increase focal point intensity while limiting rib exposure. However, as rib ob

  19. Cryotherapy versus high-intensity focused ultrasound for treating prostate cancer: Oncological and functional results.

    Science.gov (United States)

    Donis Canet, F; Sánchez Gallego, M D; Arias Fúnez, F; Duque Ruíz, G; Laso, I; Brasero Burgos, J; Lorca Álvaro, J; Gómez Dos Santos, V; Rodríguez Patrón, R; Burgos Revilla, F J

    2017-08-14

    The increasingly early diagnosis of prostate cancer requires a search for therapeutic alternatives with good oncological results that in turn facilitate a good long-term quality of life. This review analyses 2 minimally invasive therapies for treating localised prostate cancer in terms of oncological and functional results, as well as the complications resulting from the therapies. A systematic literature review was conducted of the treatment of localised prostate cancer with 2 ablative techniques as the primary therapy: cryosurgery or cryotherapy and high intensity focused ultrasound (HIFU). We included patients who underwent procedures that included the entire gland, with hemiablation or focal therapy, which were indicated for low to intermediate-risk prostate cancer according to the D'Amico criteria. We excluded patients with high-risk prostate cancer and those who underwent any prior treatment for prostate cancer. After conducting the literature search and excluding the studies that did not meet the protocol criteria, we reviewed a total of 14 studies, with a total of 350 patients treated using cryotherapy and 1107 treated with HIFU. All studies were either prospective or retrospective and were not randomised. The patients' mean age was younger than 75 years. Overall, the rate of disease recurrence in the patients treated with cryotherapy varied between 13.2% and 26%, while the rate for those treated with HIFU varied between 7.3% and 67.9%. The overall demonstrated continence at 12 months was 97.6-100% for cryotherapy and 96-100% for HIFU. In terms of sexual potency rates, cryotherapy showed complete potency at 12 months for 86-100% of the patients treated with focal cryotherapy and slightly lower rates for hemiablation (76.9-100%) and total therapy (39%). HIFU showed potency rates of 89%, 52-80% and 33-78% for focal therapy, hemiablation and total therapy, respectively. Both techniques have comparable functional results, although the somewhat poorer

  20. Photoacoustic tomography with a high lateral resolution and a large field of view using a rectangular focused ultrasound transducer

    Science.gov (United States)

    Zhang, Shangyu; Cheng, Renxiang; Tao, Chao; Liu, Xiaojun

    2016-04-01

    The enlargement of the field of view (FOV) of a photoacoustic (PA) tomography (PAT) system and the improvement of its lateral resolution are often two conflicting goals. A rectangular focused transducer is proposed to solve this problem. An asymmetric geometry of the transducer results in its asymmetric characteristics of the ultrasound (US) field. Both simulation and experiments confirm that the rectangular focused transducer can improve the FOV and lateral resolution of PAT systems simultaneously. The US transducer proposed in this study has the potential to improve the performance of a PAT system for practical biomedical applications.

  1. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    Science.gov (United States)

    Fan, Ting-Bo; Liu, Zhen-Bo; Zhang, Zhe; Zhang, Dong; Gong, Xiu-Fen

    2009-08-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.

  2. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging

    Science.gov (United States)

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-01

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×109 MBs ml-1 using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C3F8) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd3+ ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T1-weighted turbo-spin-echo sequence MR imaging. Heavy T2*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T1-, T2- and T2*-weighted MR images. The r1 and r2 relaxivities for Gd-DTPA were 7.69 and 21.35 s-1mM-1, respectively, indicating that the MBs represent a positive contrast agent in T1-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual-modality contrast agent for

  3. Localized delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound.

    Science.gov (United States)

    Mulik, Rohit S; Bing, Chenchen; Ladouceur-Wodzak, Michelle; Munaweera, Imalka; Chopra, Rajiv; Corbin, Ian R

    2016-03-01

    Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2 × more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain.

  4. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Department of Radiology, Konkuk University Medical Center, Seoul 05030 (Korea, Republic of); Lee, Jae Young [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Kim, Hae Ri [Department of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung 25457 (Korea, Republic of); Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Choi, Byung Ihn [Department of Radiology, Chung-Ang University Hospital, Seoul 06973 (Korea, Republic of)

    2016-11-01

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  5. Therapeutic effects of microbubble added to combined high-intensity focused ultrasound and chemotherapy in a pancreatic cancer xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Lee, Jae Young; Kim, Bo Ram; Park, Eun Joo; Kim, Hoe Suk; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hae Ri [Dept. of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung (Korea, Republic of); Choi, Byung Ihn [Dept. of Radiology, Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2016-09-15

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  6. Reflection-mode photoacoustic microscopy using a hollow focused ultrasound transducer for in vivo imaging of blood vessels

    Institute of Scientific and Technical Information of China (English)

    Yuan Yi; Yang Si-Hua

    2012-01-01

    A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the system resolution.The axial and lateral resolutions of the system are measured to be~32 μm and~58 μm,respectively.Ex vivo and in vivo modes are tested to validate the imaging capability of the photoacoustic microscope.The adjacent vein and artery can be seen clearly from the reconstructed photoacoustic images.The results demonstrate that the reflectionmode photoacoustic microscope can be used for high-resolution imaging of micro-blood vessels,which would be of great benefit for monitoring the neovascularization in tumor angiogenesis.

  7. Study on cavitation behavior during high-intensity focused ultrasound exposure by using optical and ultrasonic imaging

    Science.gov (United States)

    Taguchi, Kei; Takagi, Ryo; Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Cavitation bubbles are known to enhance the heating effect of high-intensity focused ultrasound (HIFU). In our previous study, the use of a “triggered HIFU” sequence consisting of a high-intensity pulse and a relatively low-intensity burst was proposed as an effective method to utilize the effect of cavitation bubbles. However, the duration of each component in the sequence has not been optimized. In this study, optical imaging was carried out to observe the behavior of cavitation bubbles in a gel phantom during the triggered HIFU exposure. Ultrasound imaging using the pulse inversion method was also conducted to detect the behavior of the bubbles. The results suggest that the oscillation of cavitation bubbles become inactive as the duration of HIFU burst exposure increases to the order of 10 ms. It was also suggested that ultrasonic imaging has potential use for detecting a change in the oscillation of cavitation bubbles for optimizing a triggered HIFU sequence.

  8. Setting boundary conditions on the Khokhlov-Zabolotskaya equation for modeling ultrasound fields generated by strongly focused transducers

    Science.gov (United States)

    Rosnitskiy, P. B.; Yuldashev, P. V.; Vysokanov, B. A.; Khokhlova, V. A.

    2016-03-01

    An equivalent source model is developed for setting boundary conditions on the parabolic diffraction equation in order to simulate ultrasound fields radiated by strongly focused medical transducers. The equivalent source is defined in a plane; corresponding boundary conditions for pressure amplitude, aperture, and focal distance are chosen so that the axial solution to the parabolic model in the focal region of the beam matches the solution to the full diffraction model (Rayleigh integral) for a spherically curved uniformly vibrating source. It is shown that the proposed approach to transferring the boundary condition from a spherical surface to a plane makes it possible to match the solutions over an interval of several diffraction maxima around the focus even for focused sources with F-numbers less than unity. This method can be used to accurately simulate nonlinear effects in the fields of strongly focused therapeutic transducers using the parabolic Khokhlov-Zabolotskaya equation.

  9. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption.

    Science.gov (United States)

    Kobus, Thiele; Zervantonakis, Ioannis K; Zhang, Yongzhi; McDannold, Nathan J

    2016-09-28

    HER2-targeting antibodies (i.e. trastuzumab and pertuzumab) prolong survival in HER2-positive breast cancer patients with extracranial metastases. However, the response of brain metastases to these drugs is poor, and it is hypothesized that the blood-brain barrier (BBB) limits drug delivery to the brain. We investigated whether we could improve the response by temporary disruption of the BBB using focused ultrasound in combination with microbubbles. To study this, we inoculated 30 nude rats with HER2-positive cells derived from a brain metastasis of a breast cancer patient (MDA-MB-361). The animals were divided into three groups: a control-group that received no treatment; an antibody-only group that received six weekly treatments of trastuzumab and pertuzumab; and an ultrasound+antibody group that received trastuzumab and pertuzumab in combination with six weekly sessions of BBB disruption using focused ultrasound. In two animals, the leakiness of the tumors before disruption was evaluated using contrast-enhanced T1-weighted magnetic resonance imaging and found that the tumors were not leaky. The same technique was used to evaluate the effectiveness of BBB disruption, which was successful in all sessions. The tumor in the control animals grew exponentially with a growth constant of 0.042±0.011mm(3)/day. None of the antibody-only animals responded to the treatment and the growth constant was 0.033±0.009mm(3)/day during the treatment period. Four of the ten animals in the ultrasound+antibody-group showed a response to the treatment with an average growth constant of 0.010±0.007mm(3)/day, compared to a growth constant 0.043±0.013mm(3)/day for the six non-responders. After the treatment period, the tumors in all groups grew at similar rates. As the tumors were not leaky before BBB disruption and there were no responders in the antibody-only group, these results show that at least in some cases disruption of the BBB is necessary for a response to the antibodies in

  10. MIIP: a web-based platform for medical image interpretation training and evaluation focusing on ultrasound

    Science.gov (United States)

    Lindseth, Frank; Nordrik Hallan, Marte; Schiller Tønnessen, Martin; Smistad, Erik; Vâpenstad, Cecilie

    2017-03-01

    Introduction: Medical imaging technology has revolutionized health care over the past 30 years. This is especially true for ultrasound, a modality that an increasing amount of medical personal is starting to use. Purpose: The purpose of this study was to develop and evaluate a platform for improving medical image interpretation skills regardless of time and space and without the need for expensive imaging equipment or a patient to scan. Methods, results and conclusions: A stable web application with the needed functionality for image interpretation training and evaluation has been implemented. The system has been extensively tested internally and used during an international course in ultrasound-guided neurosurgery. The web application was well received and got very good System Usability Scale (SUS) scores.

  11. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  12. Performance of solenoids vs. quadrupoles in focusing and energy selection of laser accelerated protons

    CERN Document Server

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications - for example in particle therapie or short-pulse radiographic diagnostics - requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. The scaling shows that above a few MeV a solenoid needs to be pulsed or super-conducting, whereas the quadrupoles can remain conventional. The transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al.\\cite{yan2009}.

  13. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    Science.gov (United States)

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the

  14. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics

    Science.gov (United States)

    Wang, Shutao; Kugelman, Tara; Buch, Amanda; Herman, Mathieu; Han, Yang; Karakatsani, Maria Eleni; Hussaini, S. Abid; Duff, Karen; Konofagou, Elisa E.

    2017-01-01

    Optogenetics, a widely used technique in neuroscience research, is often limited by its invasive nature of application. Here, we present a noninvasive, ultrasound-based technique to introduce optogenetic channels into the brain by temporarily opening the blood-brain barrier (BBB). We demonstrate the efficiency of the method developed and evaluate the bioactivity of the non-invasively introduced channelrhodopsin channels by performing stimulation in freely behaving mice.

  15. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Odéen, Henrik, E-mail: h.odeen@gmail.com; Diakite, Mahamadou [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84108 and Department of Radiology, University of Utah, Salt Lake City, Utah 84108 (United States); Todd, Nick; Minalga, Emilee; Payne, Allison; Parker, Dennis L. [Department of Radiology, University of Utah, Salt Lake City, Utah 84108 (United States)

    2014-09-15

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes

  16. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  17. Electron acceleration in vacuum by a linearly-polarized ultra-short tightly-focused THz pulse

    Science.gov (United States)

    Salamin, Yousef I.

    2017-09-01

    The analytic expressions for the electric and magnetic fields of an ultra-short, tightly-focused, linearly-polarized laser pulse propagating in vacuum, derived elsewhere (Salamin, 2015) [13] to lowest-order of a truncated power-series expansion from vector and scalar potentials, are employed here for single electron acceleration calculations by THz radiation. It is shown that, while currently available THz peak powers cannot accelerate electrons appreciably, yet they result in substantial energy gradients. The field equations are used to show that an electron can be accelerated, in vacuum, from rest to 4.83 MeV by interaction with a single THz pulse of 1 TW power. Similarly, a 1 GW power pulse focused to sub-wavelength waist radius at focus is shown to accelerate the electron from rest to 5.76 keV.

  18. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field.

    Science.gov (United States)

    Morris, Hugh; Rivens, Ian; Shaw, Adam; Haar, Gail Ter

    2008-09-07

    Accurate temperature measurements in therapeutic ultrasound fields are necessary for understanding damage mechanisms, verification of thermal modelling and calibration of non-invasive clinical thermometry. However, artefactual heating, primarily due to viscous forces which result from motion relative to the surrounding tissue, occurs when metal thermocouples are used in an ultrasound field. The magnitude and time dependence of this artefact has been characterized by comparison with novel thin-film thermocouples (TFTs) at 1-2 cm focal depths in fresh degassed ex vivo bovine liver. High-intensity focused ultrasound exposures (1.7 MHz; free-field spatial-peak temporal-average intensities 40-600 W cm(-2)) were used. Subtraction of the TFT data from that obtained for other thermocouples yielded the time dependence of the viscous heating artefact. This was found to be intensity independent up to 600 W cm(-2) (below the threshold for cavitation and lesion formation) and remained significant at radial distances out to the first side lobe in the focal plane. The contribution of viscous heating to cooling was also found to be significant for at least 5 s after the end of insonation. The ratio of viscous artefact to absorptive heating after 5 s was: 1.76 +/- 0.07 for a fine-wire, 0.45 +/- 0.07 and 1.93 +/- 0.07 for two different sheathed-wires and 0.24 +/- 0.07 for a needle thermocouple.

  19. A Bayesian approach for energy-based estimation of acoustic aberrations in high intensity focused ultrasound treatment

    CERN Document Server

    Hosseini, Bamdad; Pichardo, Samuel; Constanciel, Elodie; Drake, James M; Stockie, John M

    2016-01-01

    High intensity focused ultrasound is a non-invasive method for treatment of diseased tissue that uses a beam of ultrasound in order to generate heat within a small volume. A common challenge in application of this technique is that heterogeneity of the biological medium can defocus the ultrasound beam. In this study, the problem of refocusing the beam is reduced to the Bayesian inverse problem of estimating the acoustic aberration due to the biological tissue from acoustic radiative force imaging data. The solution to this problem is a posterior probability density on the aberration which is sampled using a Metropolis-within-Gibbs algorithm. The framework is tested using both a synthetic and experimental dataset. This new approach has the ability to obtain a good estimate of the aberrations from a small dataset, as little as 32 sonication tests, which can lead to significant speedup in the treatment process. Furthermore, this framework is very flexible and can work with a wide range of sonication tests and so...

  20. Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation.

    Science.gov (United States)

    Hamano, Nobuhito; Negishi, Yoichi; Takatori, Kyohei; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Niidome, Takuro; Aramaki, Yukihiko

    2014-01-01

    Ultrasound (US) is used in the clinical setting not only for diagnosis but also for therapy. As a therapeutic US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical setting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however, microbubbles have room for improvement in size, stability, and targeting ability. To solve these issues, we reported that "Bubble liposomes" (BLs) containing the US imaging gas (perfluoropropane gas) liposomes were suitable for ultrasound imaging and gene delivery. In this study, we examined whether BLs and HIFU could enhance the ablation area of the tumor and the antitumor effect. First, we histologically analyzed the tumor after BLs and HIFU. The ablation area of the treatment of BLs and HIFU was broader than that of HIFU alone. Next, we monitored the temperature of the tumor, and examined the antitumor effect. The temperature increase with BLs and HIFU treatment was faster and higher than that with HIFU alone. Moreover, treatment with BLs and HIFU enhanced the antitumor effect, which was better than with HIFU alone. Thus, the combination of BLs and HIFU could be efficacious for cancer therapy.

  1. Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating.

    Science.gov (United States)

    Phillips, Linsey C; Puett, Connor; Sheeran, Paul S; Wilson Miller, G; Matsunaga, Terry O; Dayton, Paul A

    2013-08-01

    Ultrasound contrast agents are known to enhance high intensity focused ultrasound (HIFU) ablation, but these perfluorocarbon microbubbles are limited to the vasculature, have a short half-life in vivo, and may result in unintended heating away from the target site. Herein, a nano-sized (100-300 nm), dual perfluorocarbon (decafluorobutane/dodecafluoropentane) droplet that is stable, is sufficiently small to extravasate, and is convertible to micron-sized bubbles upon acoustic activation was investigated. Microbubbles and nanodroplets were incorporated into tissue-mimicking acrylamide-albumin phantoms. Microbubbles or nanodroplets at 0.1 × 10(6) per cm(3) resulted in mean lesion volumes of 80.4 ± 33.1 mm(3) and 52.8 ± 14.2 mm(3) (mean ± s.e.), respectively, after 20 s of continuous 1 MHz HIFU at a peak negative pressure of 4 MPa, compared to a lesion volume of 1.0 ± 0.8 mm(3) in agent-free control phantoms. Magnetic resonance thermometry mapping during HIFU confirmed undesired surface heating in phantoms containing microbubbles, whereas heating occurred at the acoustic focus of phantoms containing the nanodroplets. Maximal change in temperature at the target site was enhanced by 16.9% and 37.0% by microbubbles and nanodroplets, respectively. This perfluorocarbon nanodroplet has the potential to reduce the time to ablate tumors by one-third during focused ultrasound surgery while also safely enhancing thermal deposition at the target site.

  2. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin.

    Science.gov (United States)

    Lee, Sugun; Kim, Hee-Jin; Park, Hyun Jun; Kim, Hyoung Moon; Lee, So Hyun; Cho, Sung Bin

    2017-07-01

    Non-focused ultrasound and high-intensity focused ultrasound (HIFU) devices induce lipolysis by generating acoustic cavitation and coagulation necrosis in targeted tissues. We aimed to investigate the morphometric characteristics of immediate tissue reactions induced by 2 MHz, 13-mm focused HIFU via two-dimensional ultrasound images and histologic evaluation of cadaveric skin from the abdomen and thigh. Acoustic fields of a 2 MHz, 38-mm HIFU transducer were characterized by reconstruction of the fields using acoustic intensity measurement. Additionally, abdominal and thigh tissues from a fresh cadaver were treated with a HIFU device for a single, two, and three pulses at the pulse energy of 130 J/cm(2) and a penetration depth of 13 mm. Acoustic intensity measurement revealed characteristic focal zones of significant thermal injury at the depth of 38 mm. In both the abdomen and thigh tissue, round to oval ablative thermal injury zones (TIZs) were visualized in subcutaneous fat layers upon treatment with a single pulse of HIFU treatment. Two to three HIFU pulses generated larger and more remarkable ablative zones throughout subcutaneous fat layers. Finally, experimental treatment in a tumescent infiltration-like setting induced larger HIFU-induced TIZs of an oval or columnar shape, compared to non-tumescent settings. Although neither acoustic intensity measurement nor cadaveric tissue exactly reflects in vivo HIFU-induced reactions in human tissue, we believe that our data will help guide further in vivo studies in investigating the therapeutic efficacy and safety of HIFU-induced lipolysis.

  3. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method.

    Science.gov (United States)

    Rangraz, Parisa; Behnam, Hamid; Sobhebidari, Pooya; Tavakkoli, Jahan

    2014-12-01

    High-intensity focused ultrasound (HIFU) induces thermal lesions by increasing the tissue temperature in a tight focal region. The main ultrasound imaging techniques currently used to monitor HIFU treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation and elastography-based methods. The present study was carried out on ex vivo animal tissue samples, in which backscattered radiofrequency (RF) signals were acquired in real time at time instances before, during and after HIFU treatment. The manifold learning algorithm, a non-linear dimensionality reduction method, was applied to RF signals whichconstruct B-mode images to detect the HIFU-induced changes among the image frames obtained during HIFU treatment. In this approach, the embedded non-linear information in the region of interest of sequential images is represented in a 2-D manifold with the Isomap algorithm, and each image is depicted as a point on the reconstructed manifold. Four distinct regions are chosen in the manifold corresponding to the four phases of HIFU treatment (before HIFU treatment, during HIFU treatment, immediately after HIFU treatment and 10-min after HIFU treatment). It was found that disorganization of the points is achieved by increasing the acoustic power, and if the thermal lesion has been formed, the regions of points related to pre- and post-HIFU significantly differ. Moreover, the manifold embedding was repeated on 2-D moving windows in RF data envelopes related to pre- and post-HIFU exposure data frames. It was concluded that if mean values of the points related to pre- and post-exposure frames in the reconstructed manifold are estimated, and if the Euclidean distance between these two mean values is calculated and the sliding window is moved and this procedure is repeated for the whole image, a new image based on the Euclidean distance can be formed in which the HIFU thermal lesion is detectable.

  4. Flooded Lung Generates a Suitable Acoustic Pathway for Transthoracic Application of High Intensity Focused Ultrasound in Liver

    Science.gov (United States)

    Lesser, Thomas Günther; Boltze, Carsten; Schubert, Harald; Wolfram, Frank

    2016-01-01

    Background: In recent years, high intensity focused ultrasound (HIFU) has gained increasing clinical interest as a non-invasive method for local therapy of liver malignancies. HIFU treatment of tumours and metastases in the liver dome is limited due to the adjacent ultrasound blocking lung. One-lung flooding (OLF) enables complete sonography of lung and adjoining organs including liver. HIFU liver ablation passing through the flooded lung could enable a direct intercostal beam path and thus improve dose deposition in liver. In this study, we evaluate the feasibility of an ultrasound guided transthoracic, transpulmonary HIFU ablation of liver using OLF. Methods: After right-side lung flooding, ultrasound guided HIFU was applied transthoracic- transpulmonary into liver to create thermal lesions in three pigs. The HIFU beam was targeted five times into liver, two times at the liver surface and three times deeper into the tissue. During autopsy examinations of lung, diaphragm and liver located in the HIFU path were performed. The focal liver lesions and lung tissue out of the beam path were examined histologically. Results: Fifteen thermal liver lesions were generated by transpulmonary HIFU sonication in all targeted regions. The lesions appeared well-demarcated in grey color with a cigar-shaped configuration. The mean length and width of the superficial and deeper lesions were 15.8 mm (range: 13-18 mm) and 5.8 mm (range: 5-7 mm), and 10.9 mm (range: 9-13 mm) and 3.3 mm (range: 2-5 mm), respectively. Histopathological, all liver lesions revealed a homogeneous thermal necrosis lacking vitality. There were no signs of damage of the overlying diaphragm and lung tissue. Conclusions: Flooded lung is a suitable pathway for applying HIFU to the liver, thus enabling a transthoracic, transpulmonary approach. The enlarged acoustic window could enhance the ablation speed for targets in the hepatic dome. PMID:27766022

  5. Ultrasound accelerated Claisen-Schmidt condensation: A green route to chalcones

    Energy Technology Data Exchange (ETDEWEB)

    Calvino, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9. E-28040 Madrid (Spain); Picallo, M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9. E-28040 Madrid (Spain); Lopez-Peinado, A.J. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9. E-28040 Madrid (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9. E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es; Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n., 06071 Badajoz (Spain)

    2006-06-30

    Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This 'green' method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.

  6. Feasibility of laser-integrated high intensity focused ultrasound (HIFU) treatment for bladder tumors: in vitro study (Conference Presentation)

    Science.gov (United States)

    Nguyen, Van Phuc; Park, Suhyun; Oh, Junghwan; Kang, Hyun Wook

    2016-02-01

    Previous studies have shown that photothemal therapy combined with high intensity focused ultrasound (HIFU) can provide a promising method to achieve rapid thermal coagulation during surgical procedures. The current study investigated the feasibility of the laser-integrated high intensity focused ultrasound (HIFU) application to treat bladder tumors by enhancing thermal effects and therapeutic depth in vitro. To generate thermal coagulation, a single element HIFU transducer with a central frequency of 2.0 MHz was used to transmit acoustic energy to 15 fresh porcine bladders injected with an artificial tumor (100 µl gelatin and hemoglobin solution) in vitro. Simultaneously, an 80-W 532-nm laser system was also implemented to induce thermal necrosis in the targeted tissue. The intensity of 570 W/cm2 at the focus of HIFU and laser energy of 0.9 W were applied to all the samples for 40 s. The temperature rise increased up to about 1.6 or 3 folds (i.e., ΔT=32±3.8 K for laser-integrated HIFU, ΔT=20±6.5 K for HIFU only, and ΔT=11±5.6 K for laser only). The estimated lesion depth also increased by 1.3 and 2 folds during the dual-thermal treatment, in comparison with the treatment by either HIFU or laser. The results indicated that the laser-integrated HIFU treatment can be an efficient hyperthermic method for tumor coagulation.

  7. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Science.gov (United States)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  8. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Directory of Open Access Journals (Sweden)

    Ingo Hofmann

    2013-04-01

    Full Text Available Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  9. Ultrasound accelerated sulfonylation of amines by p-acetamidobenzenesulfonyl chloride using Mg–Al hydrotalcite as an efficient green base catalyst

    DEFF Research Database (Denmark)

    Truong, Binh Nhat; Le, Luong Huu; Chau, Duy-Khiem Nguyen

    2016-01-01

    , and green solid catalyst, was found to be the most efficient catalyst, when the reaction is carried out in a minimum volume of solvent (acetone). The reaction was found to be accelerated drastically with the support of ultrasound irradiation, affording the sulfonamides in yields better or equivalent...

  10. HIGH-INTENSITY FOCUSED ULTRASOUND ABLATION OF PATIENTS WITH LOCALLY ADVANCED PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    L. V. Shaplygin

    2014-01-01

    Full Text Available In this study the results of retrospective analysis of treatment of 311 patients in Samara Oncology Center in 2008–2011 with locally advanced prostate cancer are presented. According to the received treatment patients were divided into 3 groups: 103 underwent HIFU, 101 patients had a course of EBRT, 107 patients received only hormone therapy (HT. Overall survival in patients with locally advanced prostate cancer after HIFU therapy was 86.2 %, after EBRT and HT – 66.3% and 18.1 %, respectively. These data indicate a high clinical efficacy of ultrasound ablation. 

  11. Accelerated Singular Value-Based Ultrasound Blood Flow Clutter Filtering With Randomized Singular Value Decomposition and Randomized Spatial Downsampling.

    Science.gov (United States)

    Song, Pengfei; Trzasko, Joshua D; Manduca, Armando; Qiang, Bo; Kadirvel, Ramanathan; Kallmes, David F; Chen, Shigao

    2017-04-01

    Singular value decomposition (SVD)-based ultrasound blood flow clutter filters have recently demonstrated substantial improvement in clutter rejection for ultrafast plane wave microvessel imaging, and have become the commonly used clutter filtering method for many novel ultrafast imaging applications such as functional ultrasound and super-resolution imaging. At present, however, the computational burden of SVD remains as a major hurdle for practical implementation and clinical translation of this method. To address this challenge, in the study we present two blood flow clutter filtering methods based on randomized SVD (rSVD) and randomized spatial downsampling to accelerate SVD clutter filtering with minimal compromise to the clutter filter performance. rSVD accelerates SVD computation by approximating the k largest singular values, while random downsampling accelerates both full SVD and rSVD by decomposing the original large data matrix into small matrices that can be processed in parallel. An in vitro blood flow phantom study with the presence of heavy tissue clutter showed significantly improved computational performance using the proposed methods with minimal deterioration to the clutter filter performance (less than 3-dB reduction in blood to clutter ratio, less than 0.2-cm(2)/s(2) increase in flow mean squared error, less than 0.1-cm/s increase in the standard deviation of the vessel blood flow signal, and less than 0.3-cm/s increase in tissue clutter velocity for both full SVD and rSVD when the downsampling factor was less than 20× ). The maximum acceleration was about threefold from randomized spatial downsampling, and approximately another threefold from rSVD. An in vivo rabbit kidney perfusion study showed that rSVD provided comparable performance to full SVD in clutter rejection in vivo (maximum difference of blood to clutter ratio was less than 0.6 dB), and random downsampling provided artifact-free perfusion imaging results when combined with both

  12. Multi-frequency accelerating strategy for the contrast source inversion method of ultrasound waveform tomography using pulse data

    Science.gov (United States)

    Lin, Hongxiang; Azuma, Takashi; Qu, Xiaolei; Takagi, Shu

    2017-03-01

    In this work, we construct a multi-frequency accelerating strategy for the contrast source inversion (CSI) method using pulse data in the time domain. CSI is a frequency-domain inversion method for ultrasound waveform tomography that does not require the forward solver through the process of reconstruction. Several prior researches show that the CSI method has a good performance of convergence and accuracy in the low-center-frequency situation. In contrast, utilizing the high-center-frequency data leads to a high-resolution reconstruction but slow convergence on large numbers of grid. Our objective is to take full advantage of all low frequency components from pulse data with the high-center-frequency data measured by the diagnostic device. First we process the raw data in the frequency domain. Then multi-frequency accelerating strategy helps restart CSI in the current frequency using the last iteration result obtained from the lower frequency component. The merit of multi- frequency accelerating strategy is that computational burden decreases at the first few iterations. Because the low frequency component of dataset computes on the coarse grid with assuming a fixed number of points per wavelength. In the numerical test, the pulse data were generated by the K-wave simulator and have been processed to meet the computation of the CSI method. We investigate the performance of the multi-frequency and single-frequency reconstructions and conclude that the multi-frequency accelerating strategy significantly enhances the quality of the reconstructed image and simultaneously reduces the average computational time for any iteration step.

  13. The damages of high intensity focused ultrasound to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent and superabsorbent polymer.

    Science.gov (United States)

    Liu, Ai-Bo; Cai, Hui; Ye, Bin; Chen, Lu-Lu; Wang, Meng-Ying; Zhang, Jing; Zhao, Yi-Feng

    2013-05-01

    The present study investigates the damages of high intensity focused ultrasound (HIFU) to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent (UCA) and superabsorbent polymer (SAP) alone or in combination. A rabbit model with transplanted hydatid cyst was established by implanting hydatid cyst isolated from infected sheep liver, and HIFU was used to ablate the transplanted cysts with the aid of UCA and SAP alone or in combination. The hydatid cyst with thin wall, good elasticity, approximately spherical, and a diameter of approximately 30 mm was selected for the following experiments. According to our previous studies, a mixture of 0.1 g SAP and 0.5 ml anhydrous ethanol, and the solution of 0.1 ml UCA SonoVue, or both materials were injected into different cyst before HIFU ablation, respectively. The cyst inoculated with the SAP and UCA alone or in combination was immediately implanted into the abdominal cavity of rabbit for HIFU ablation at a dosage of 100 W acoustic powers. The ablation mode was spot scanning at the speed of 3 mm/s. Every target point was scanned three times; every ablating time lasted 3 s. The distance of each ablated layer was 5 mm. The total ablation time depended on the volume of cyst. The comparison of ultrasound image for each layer of hydatid cyst was made before and after HIFU ablation. The protoscolices in ablated cysts were stained by trypan blue exclusion assay, and their structures were observed by light microscopy. To estimate ablation effects of HIFU to the walls of hydatid cysts, the ultrastructure changes of cyst walls were examined by electron microscopy. The pathological changes of rabbits' skins through which ultrasound penetrated were observed to investigate the side effects of HIFU ablation. The results demonstrated that HIFU had some lethal effects to hydatid cysts in vivo, namely, echo enhancements of ultrasound images of cysts, increases in mortality rate of

  14. Full Modelling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney using Realistic Patient Models.

    Science.gov (United States)

    Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin

    2017-07-28

    High-intensity focused ultrasound (HIFU) therapy can be used for non-invasive treatment of kidney (renal) cancer, but the clinical outcomes have been variable. In this study, the efficacy of renal HIFU therapy was studied using nonlinear acoustic and thermal simulations in three patients. The acoustic simulations were conducted with and without refraction in order to investigate its effect on the shape, size and pressure distribution at the focus. The values for the attenuation, sound speed, perfusion and thermal conductivity of the kidney were varied over the reported ranges to determine the effect of variability on heating. Furthermore, the phase aberration was studied in order to quantify the underlying phase shifts using a second order polynomial function. The ultrasound field intensity was found to drop on average 11.1 dB with refraction and 6.4 dB without refraction. Reflection at tissue interfaces was found to result in a loss less than 0.1 dB. Focal point splitting due to refraction significantly reduced the heating efficacy. Of all the tissue parameters, perfusion was found to affect the heating the most. Small changes in temperature were seen with varying attenuation and thermal conductivity, but no visible changes were present with sound speed variations. The aberration study revealed an underlying trend in the spatial distribution of the phase shifts. The results show that the efficacy of HIFU therapy in the kidney could be improved with aberration correction. A method is proposed by which patient specific pre-treatment calculations could be used to overcome the aberration and therefore make ultrasound treatment possible.

  15. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  16. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G., E-mail: L.G.Merckel-2@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Bartels, Lambertus W., E-mail: W.Bartels@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Koehler, Max O., E-mail: max.kohler@philips.com [Philips Healthcare (Finland); Bongard, H. J. G. Desiree van den, E-mail: D.vandenBongard@umcutrecht.nl [University Medical Center Utrecht, Department of Radiotherapy (Netherlands); Deckers, Roel, E-mail: R.Deckers-2@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M., E-mail: W.Mali@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Binkert, Christoph A., E-mail: Christoph.Binkert@ksw.ch [Cantonal Hospital Winterthur, Department of Radiology (Switzerland); Moonen, Chrit T., E-mail: C.Moonen@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Gilhuijs, Kenneth G. A., E-mail: K.G.A.Gilhuijs@umcutrecht.nl; Bosch, Maurice A. A. J. van den, E-mail: mbosch@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2013-04-15

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  17. In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion).

    Science.gov (United States)

    Singh, Mithun Kuniyil Ajith; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2016-08-01

    Reflection artifacts caused by acoustic inhomogeneities are a critical problem in epi-mode biomedical photoacoustic imaging. High light fluence beneath the probe results in photoacoustic transients, which propagate into the tissue and reflect back from echogenic structures. These reflection artifacts cause problems in image interpretation and significantly impact the contrast and imaging depth. We recently proposed a method called PAFUSion (Photoacoustic-guided focused ultrasound) to identify such reflection artifacts in photoacoustic imaging. In its initial version, PAFUSion mimics the inward-travelling wavefield from small blood vessel-like PA sources by applying ultrasound pulses focused towards these sources, and thus provides a way to identify the resulting reflection artifacts. In this work, we demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on human volunteers. In view of the spatially distributed PA sources that are found in clinical applications, we implemented an improved version of PAFUSion where photoacoustic signals are backpropagated to imitate the inward travelling wavefield and thus the reflection artifacts. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can strongly reduce these artifacts to improve deep-tissue photoacoustic imaging.

  18. Noninvasive Focused Ultrasound Stimulation Can Modulate Phase-Amplitude Coupling between Neuronal Oscillations in the Rat Hippocampus

    Science.gov (United States)

    Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli

    2016-01-01

    Noninvasive focused ultrasound stimulation (FUS) can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC) between neuronal oscillations is tightly associated with cognitive processes, including learning, attention, and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9, 9.6, and 19.2 W/cm2). The local field potentials (LFPs) in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4–8 Hz) and gamma (30–80 Hz) bands and between the alpha (9–13 Hz) and ripple (81–200 Hz) bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity. PMID:27499733

  19. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  20. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    Science.gov (United States)

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  1. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  2. Use of high-intensity focused ultrasound in the treatment of both benign and malignant prostatic disease

    Science.gov (United States)

    Kernen, Kenneth M.; Miles, Brian J.

    2000-05-01

    Prostate cancer, the most common malignancy in men in the United States, accounts for more than 29% of all male cancers diagnosed and 13% of all cancer deaths. This translates into approximately 200,000 men diagnosed and 37,000 men who will die from the disease this year in this country. A significant number of patients ultimately choose external beam radiation or interstitial radioactive implants (brachytherapy) combined with external beam radiotherapy as their primary treatment. Approximately 25 - 35% of external beam irradiation patients and 20 - 30% of interstitial implants combined with external beam radiotherapy will fail within 10 years. The treatment options for patients with localized radiorecurrent disease include watchful waiting, endocrine therapy, salvage radiotherapy, and salvage radical prostatectomy, cryotherapy and now high intensity focused ultrasound therapy (HIFU). Although some studies regarding watchful waiting demonstrated comparable results to formal treatment for early prostate cancer, other studies have shown metastatic and mortality rates that are significantly higher, and that radiorecurrent patients would have even greater rates of metastasis and progression to death. Prostate cancer cure by means of endocrine therapy is highly unlikely and its role is still one of palliation with a side effect profile which includes hot flashes, osteoporosis, fatigue, loss of muscle mass, anemia, loss of libido and potency. The role of salvage radiotherapy may offer local control, however long term efficacy has yet to be determined. In a recent series, only 50% of the patients were controlled for a mean of four years with salvage radiotherapy. Salvage prostatectomy has the advantage of providing excellent local control and even a cure if the cancer is confined to the prostate or within the surrounding periprostatic tissue. Historically, salvage prostatectomy is technically demanding and fraught with higher complications. In one large series

  3. Photoacoustic Tomography Imaging of the Adult Zebrafish by Using Unfocused and Focused High-Frequency Ultrasound Transducers

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-11-01

    Full Text Available The zebrafish model provides an essential platform for the study of human diseases or disorders due to the possession of about 87% homologous genes with human. However, it is still very challenging to noninvasively visualize the structure and function of adult zebrafish based on available optical imaging techniques. In this study, photoacoustic tomography (PAT was utilized for high-resolution imaging of adult zebrafish by using focused and unfocused high-frequency (10 MHz ultrasound transducers. We examined and compared the imaging results from the two categories of transducers with in vivo experimental tests, in which we discovered that the unfocused transducer is able to identify the inner organs of adult zebrafish with higher contrast but limited regional resolution, whereas the findings from the focused transducer were with high resolution but limited regional contrast for the recovered inner organs.

  4. Efficiency of drug delivery enhanced by acoustic pressure during blood–brain barrier disruption induced by focused ultrasound

    Directory of Open Access Journals (Sweden)

    Yang FY

    2012-05-01

    Full Text Available Feng-Yi Yang, Pei-Yi LeeDepartment of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, TaiwanPurpose: We evaluated the delivery efficiency of intravenously injected large molecular agents, before and after disruption of the blood–brain barrier (BBB-D, induced by focused ultrasound (FUS using various acoustic parameters.Materials and methods: Male Sprague-Dawley rats were injected intravenously with Evans blue (EB before or after BBB-D induction by pulsed FUS. We used a 1.0 MHz pulsed FUS with four acoustic power settings and an ultrasound contrast agent (UCA at four different doses to induce BBB-D resulting from cavitation. The permeability of the BBB was assessed quantitatively based on the extravasation of EB. Contrast enhanced magnetic resonance imaging (MRI was used to monitor the gadolinium deposition associated with FUS. Histological analysis was performed to examine tissue damage.Results: The accumulation of EB in rat brain was found to be dependent on acoustic power and UCA dosage, regardless of whether EB administration occurred before or after FUS-induced BBB-D. Administration of EB followed by sonication resulted in greater EB extravasation than that for rats subjected to sonication prior to EB injection. To reduce tissue damage, EB extravasation was enhanced by first administering EB by intravenous injection, followed by sonication at reduced acoustic power or UCA dosage. The normalized signal intensity change in rat brains that received the same dose of UCA and sonicated after gadolinium injection was significantly greater than in rats undergoing sonication followed by gadolinium administration. Moreover, contrast enhanced MRI showed a more precise distribution of gadolinium in the brain when gadolinium was administered before sonication.Conclusion: We demonstrated that a compound administered prior to sonication treatment promotes extravasation of the sonicated region. Thus, it is possible to

  5. Treatment of hepatic tumors by thermal versus mechanical effects of pulsed high intensity focused ultrasound in vivo

    Science.gov (United States)

    Peng, Song; Zhou, Ping; He, Wei; Liao, Manqiong; Chen, Lili; Ma, C.-M.

    2016-09-01

    The purpose of this study is to comparatively assess the thermal versus mechanical effects of pulsed high intensity focused ultrasound (HIFU) treatment on hepatic tumors in vivo. Forty-five rabbits with hepatic VX2 tumors were randomly separated into three groups (15 animals per group) before HIFU ablation. The total HIFU energy (in situ) of 1250 J was used for each tumor for three groups. In groups I and II, animals were treated with 1 MHz pulsed ultrasound at 1 Hz pulsed repetition frequency (PRF), 0.5 duty cycle (0.5 s on and 0.5 s off) and10 s duration for one spot sonication. For group II, in addition to HIFU treatment, microbubbles (SonoVue, Bracco, Milan, Italy) were injected via vein before sonication acting as a synergist. In group III, animals were treated with 1 MHz pulsed ultrasound at 10 Hz PRF, 0.1 duty cycle (0.1 s on and 0.9 s off) and 10 s duration for one sonication. The total treatment spots were calculated according to the tumor volume. Tumors were examined with contrast-enhanced computed tomography (CECT) immediately prior to and post HIFU treatment. Histopathologic assessment was performed 3 h after treatment. Our study showed that all animals tolerated the HIFU treatment well. Our data showed that mechanical HIFU could lead to controlled injury in rabbit hepatic tumors with different histological changes in comparison to thermal HIFU with or without microbubbles.

  6. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast.

    Science.gov (United States)

    Minalga, E; Payne, A; Merrill, R; Todd, N; Vijayakumar, S; Kholmovski, E; Parker, D L; Hadley, J R

    2013-01-01

    In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. Copyright © 2012 Wiley Periodicals, Inc.

  7. Ultrasonograpy of VX-2 Liver Tumor in Rabbit Treated by High Intensity Focused Ultrasound Combined with Microbubble Contrast Agent

    Science.gov (United States)

    Xiaojuan, Ji; Jinqing, Li; Zhibiao, Wang; Jianzhong, Zou; Wenzhi, Chen; Jin, Bai

    2007-05-01

    Objective: To assess the value of sonographic appearance and to investigate the sonographic character of VX-2 liver tumor in rabbit treated by high intensity focused ultrasound (HIFU) combined with microbubble contrast agent. Methods: Forty-five rabbits bearing VX-2 tumors were randomly averagely assigned into three groups. In group A irradiation was sustained until the target region became hyperechoic. In group B therapy was stopped as soon as hyperecho occurred, and in group C irradiation time was prolonged to ensure the occurrence of coagulation necrosis. Results: Exposure duration for tumors treated purely with HIFU was the longest, whilst the use of microbubble contrast agent combined with HIFU shortened the exposure duration significantly. The gross examination and ultrasonogram coagulation necrosis area measurements correlated strongly (r=0.986,P<0.05) in the microbubble-enhanced HIFU group. Conclusion: It was feasible to enhance HIFU therapy with microbubble contrast agent. The characteristic change in the ultrasound images made it possible to assess the enhanced HIFU therapeutic efficacy in order to adjust the treatment program.

  8. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound.

    Science.gov (United States)

    Napoli, Alessandro; Anzidei, Michele; Marincola, Beatrice Cavallo; Brachetti, Giulia; Ciolina, Federica; Cartocci, Gaia; Marsecano, Claudia; Zaccagna, Fulvio; Marchetti, Luca; Cortesi, Enrico; Catalano, Carlo

    2013-06-01

    The objectives of this study were to evaluate the efficacy in pain management of magnetic resonance (MR)-guided focused ultrasound for the primary treatment of painful bone metastases and to assess its potential for local control of bone metastases. This was a prospective, single-arm research study with approval from the institutional review board. Eighteen consecutive patients (female, 8; male, 10; mean [SD] age, 62.7 [11.5] years) with painful bone metastases were enrolled. The patients were examined clinically for pain severity and pain interference in accordance with the Brief Pain Inventory-Quality of Life criteria before and at each follow-up visit. Computed tomography and MR imaging were performed before and at 1 and 3 months after the magnetic resonance-guided focused ultrasound treatment. The nonperfused volume (NPV) was calculated to correlate the extension of the ablated pathological tissue in the responder and nonresponder patients. No treatment-related adverse events were recorded during the study. The evaluation of pain palliation revealed a statistically significant difference between baseline and follow-up values for pain severity and pain interference (P = 0.001, both evaluations). In the evaluation of local tumor control, we observed increased bone density with restoration of cortical borders in 5 of the 18 patients (27.7%). In accordance with the MD Anderson criteria, complete and partial responses were obtained in 2 of the 18 patients (11.1%) and 4 of the 18 patients (22.2%), respectively. Nonperfused volume values ranged between 20% and 93%. Mean NPV values remained substantially stable after the treatment (P = 0.08). There was no difference in the NPV values between the responder and nonresponder patients (46.7% [24.2%] [25%-90%] versus 45% [24.9%] [20%-93%]; P = 0.7). Magnetic resonance-guided focused ultrasound can be safely and effectively used as the primary treatment of pain palliation in patients with bone metastases and has a potential

  9. Focused ultrasound treatment of abscesses induced by methicillin resistant Staphylococcus aureus: Feasibility study in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, Birgit [Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B6V4 (Canada); Bates, David; Pichardo, Samuel, E-mail: spichard@lakeheadu.ca, E-mail: lcuriel@lakeheadu.ca; Curiel, Laura, E-mail: spichard@lakeheadu.ca, E-mail: lcuriel@lakeheadu.ca [Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B6V4, Canada and Lakehead University, Thunder Bay, Ontario P7B6V4 (Canada); Zhang, Kunyan [Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Escott, Nicholas [Department of Pathology, Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario P7B 6V4 (Canada); Mougenot, Charles [Philips Healthcare, Ontario L6C 2S3 (Canada)

    2014-06-15

    Purpose: To study the therapeutic effect of focused ultrasound on abscesses induced by methicillin-resistantStaphylococcus aureus (MRSA). MRSA is a major nosocomial pathogen where immunocompromised patients are prone to develop infections that are less and less responsive to regular treatments. Because of its capability to induce a rise of temperature at a very precise location, the use of focused ultrasound represents a considerable opportunity for therapy of localized MRSA-related infections. Methods: 50μl of MRSA strain USA400 bacteria suspension at a concentration of 1.32 ± 0.5 × 10{sup 5} colony forming units (cfu)/μl was injected subcutaneously in the left flank of BALB/c mice. An abscess of 6 ± 2 mm in diameter formed after 48 h. A transducer operating at 3 MHz with a focal length of 50 mm and diameter of 32 mm was used to treat the abscess. The focal point was positioned 2 mm under the skin at the abscess center. Forty-eight hours after injection four ultrasound exposures of 9 s each were applied to each abscess under magnetic resonance imaging guidance. Each exposure was followed by a 1 min pause. These parameters were based on preliminary experiments to ensure repetitive accurate heating of the abscess. Real-time estimation of change of temperature was done using water-proton resonance frequency and a communication toolbox (matMRI) developed inhouse. Three experimental groups of animals each were tested: control, moderate temperature (MT), and high temperature (HT). MT and HT groups reached, respectively, 52.3 ± 5.1 and 63.8 ± 7.5 °C at the end of exposure. Effectiveness of the treatment was assessed by evaluating the bacteria amount of the treated abscess 1 and 4 days after treatment. Myeloperoxidase (MPO) assay evaluating the neutrophil amount was performed to assess the local neutrophil recruitment and the white blood cell count was used to evaluate the systemic inflammatory response after focused ultrasound treatment. Results: Macroscopic

  10. Numerical study of a simple transcranial focused ultrasound system applied to blood-brain barrier opening.

    Science.gov (United States)

    Deffieux, Thomas; Konofagou, Elisa E

    2010-12-01

    In this paper, we investigate the focalization properties of single-element transducers at low frequencies (300 to 1000 kHz) through primate and human skulls. The study addresses the transcranial targeting involved in ultrasound- induced blood-brain barrier (BBB) opening with clinically relevant targets such as the hippocampus and the basal ganglia, which are typically affected by early Alzheimer's and Parkinson's disease, respectively. A finite-difference, timedomain simulation platform is used to solve the 3-D linear acoustic wave equation with CT-based acoustic maps of the skulls. The targeted brain structures were extracted from 3-D brain atlases registered with the skulls and used to virtually position and orient the transducers. The effect of frequency is first investigated and the targeting of the different structures is then tested. The frequency of 500 kHz provided the best tradeoff between phase aberrations and standing wave effects in the human case, whereas the frequency of 800 kHz was most suitable in the case of the primate skull. A fast periodic linear chirp method was developed and found capable of reducing the standing wave effects. Such a simple, affordable, and convenient system is concluded to be feasible for BBB opening in primates and humans and could thus allow for its broader impact and applications.

  11. Numerical simulation of high intensity focused ultrasound temperature distribution for transcranial brain therapy

    Science.gov (United States)

    Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi

    2017-03-01

    To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.

  12. Reduced Order Modeling of Bubble Cloud Dynamics in a Focused Ultrasound Field

    Science.gov (United States)

    Maeda, Kazuki; Colonius, Tim

    2016-11-01

    In order to characterize the cloud cavitation in burst wave lithotripsy, reduced order modeling of the dynamics of a spherical bubble cloud of a radius O (1) mm interacting with traveling ultrasound waves of an amplitude O(1) MPa in water is presented. Bubbles are treated as spherical, radially oscillating cavities dispersed in continuous liquid phase. The volume of Lagrangian point bubbles is mapped with a regularization kernel as void fraction onto three-dimensional Cartesian grids that define the Eulerian liquid phase. The flow field is solved using a WENO-based compressible flow solver. The initial size and number density of the bubbles are critical for their coherent dynamics in the cloud, yet three-dimensional simulations of clouds with various parameters are computationally demanding. For further reduced-order modeling, a new kernel is introduce into the model to regularize bubbles onto two-dimensional, axisymmetric grids. The evolution of the void fraction and the maximum pressure in the cloud simulated using the model agree with results of three-dimensional simulations, while the reduction in computational cost is a factor of O (100) . Finally, the model is applied to a parametric study of the coherent dynamics of bubbles.

  13. Transrectal high-intensity focused ultrasound ablation of prostate cancer: Effective treatment requiring accurate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rouviere, Olivier [Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Pavillon P Radio, Hopital Edouard Herriot, F-69437 Lyon cedex 03 (France); Universite de Lyon, Lyon F-69003 (France); Universite de Lyon 1, Faculte de Medecine Lyon Nord, Lyon F-69003 (France); INSERM, Unit 556, 151 cours Albert Thomas, F-69424 Lyon cedex 03 (France)], E-mail: Olivier.rouviere@netcourrier.com; Souchon, Remi [INSERM, Unit 556, 151 cours Albert Thomas, F-69424 Lyon cedex 03 (France)], E-mail: souchon@lyon.inserm.fr; Salomir, Rares [INSERM, Unit 556, 151 cours Albert Thomas, F-69424 Lyon cedex 03 (France)], E-mail: salomir@lyon.inserm.fr; Gelet, Albert [Hospices Civils de Lyon, Department of Urology, Pavillon P Radio, Hopital Edouard Herriot, F-69437 Lyon cedex 03 (France)], E-mail: Albert.gelet@chu-lyon.fr; Chapelon, Jean-Yves [INSERM, Unit 556, 151 cours Albert Thomas, F-69424 Lyon cedex 03 (France)], E-mail: chapelon@lyon.inserm.fr; Lyonnet, Denis [Hospices Civils de Lyon, Department of Urinary and Vascular Radiology, Pavillon P Radio, Hopital Edouard Herriot, F-69437 Lyon cedex 03 (France); Universite de Lyon, Lyon F-69003 (France); Universite de Lyon 1, Faculte de Medecine Lyon Nord, Lyon F-69003 (France); INSERM, Unit 556, 151 cours Albert Thomas, F-69424 Lyon cedex 03 (France)], E-mail: Denis.lyonnet@chu-lyon.fr

    2007-09-15

    Transrectal HIFU ablation has become a reasonable option for the treatment of localized prostate cancer in non-surgical patients, with 5-year disease-free survival similar to that of radiation therapy. It is also a promising salvage therapy of local recurrence after radiation therapy. These favourable results are partly due to recent improvements in prostate cancer imaging. However, further improvements are needed in patient selection, pre-operative localization of the tumor foci, assessment of the volume treated and early detection of recurrence. A better knowledge of the factors influencing the HIFU-induced tissue destruction and a better pre-operative assessment of them by imaging techniques should improve treatment outcome. Whereas prostate HIFU ablation is currently performed under transrectal ultrasound guidance, MR guidance with real-time operative monitoring of temperature will be available in the near future. If this technique will give better targeting and more uniform tissue destruction, its cost-effectiveness will have to be carefully evaluated. Finally, a recently reported synergistic effect between HIFU ablation and chemotherapy opens possibilities for treatment in high-risk or clinically advanced tumors.

  14. A novel strategy to increase heating efficiency in a split-focus ultrasound phased array.

    Science.gov (United States)

    Liu, Hao-Li; Shih, Tzu-Ching; Chen, Wen-Shiang; Ju, Kuen-Cheng

    2007-07-01

    Focus splitting using sector-based phased arrays increases the necrosed volume in a single sonication and reduces the total treatment time in the treatment of large tumors. However, split-focus sonication results in a lower energy density and worse focal-beam distortion, which limits its usefulness in practical treatments. Here, we propose a new heating strategy involving consecutive strongly focused and split-focus sonications to improve the heating efficiency. Theoretical predictions including linear and thermal-dose-dependent attenuation change were employed to investigate potential factors of this strategy, and ex vivo tissue experiments were conducted to confirm its effectiveness. Results showed that the thermal lesions produced by the proposed strategy could be increased when comparing with the previous reported strategies. The proposed heating strategy also induces a thermal lesion more rapidly, and exhibits higher robustness to various blood perfusion conditions, higher robustness to various power/heating time combinations, and superiority to generate deep-seated lesions through tissues with complex interfaces. Possible mechanisms include the optimization of the thermal conduction created by the strongly focused sonication and the temperature buildup gained from thermally induced tissue attenuation change based on the theoretical analysis. This may represent a useful technique for increasing the applicability of split-focus and multiple-focus sonication techniques, and solve the obstacles encountered when attempting to use these methods to shorten the total clinical treatment time.

  15. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    Science.gov (United States)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  16. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.

    Science.gov (United States)

    Nell, Diane M; Myers, Matthew R

    2010-01-01

    Experiments and computations were performed to study factors affecting thermal safety when high-intensity focused ultrasound (HIFU) beams are normally incident (i.e., beam axis normal to the interface) upon a bone/soft-tissue interface. In particular, the temperature rise and thermal dose were determined as a function of separation between the beam focus and the interface. Under conditions representative of clinical HIFU procedures, it was found that the thermal dose at the bone surface can exceed the threshold for necrosis even when the beam focus is more than 4 cm from the bone. Experiments showed that reflection of the HIFU beam from the bone back into the transducer introduced temperature fluctuations of as much as +/-15% and may be an important consideration for safety analyses at sufficiently high acoustic power. The applicability of linear propagation models in predicting thermal dose near the interface was also addressed. Linear models, while underpredicting thermal dose at the focus, provided a conservative (slight overprediction) estimate of thermal dose at the bone surface. Finally, temperature rise due to absorption of shear waves generated by the HIFU beam in the bone was computed. Modeling shear-wave propagation in the thermal analysis showed that the predicted temperature rise off axis was as much as 30% higher when absorption of shear waves is included, indicating that enhanced heating due to shear-wave absorption is potentially important, even for normally incident HIFU beams.

  17. Comparison between high-intensity focused ultrasound devices for the treatment of patients with localized prostate cancer

    Science.gov (United States)

    Kim, Hakushi; Tomonaga, Tetsuro; Shoji, Sunao; Uchida, Toyoaki

    2017-03-01

    To evaluate the association between long-term clinical outcomes and morbidity of patients with prostate cancer who underwent high-intensity focused ultrasound (HIFU). We included 918 patients with stage T1c-T3N0M0 prostate cancer who were treated with Sonablate™ (SB) devices during 1999-2012 and followed-up for >2 years. Risk stratification and complication rates were compared between the treatment groups. The 10-year overall and cancer-specific survival rates were 89.6% and 97.4%, respectively. The 5-year biochemical disease-free survival (bDFS) rates in the SB200/500, SB500 version 4, and SB500 tissue change monitor groups were 48.3%, 62.3%, and 82.0%, respectively (p biopsy rate was 87.3%. Multivariate analysis showed pre-treatment serum prostate-specific antigen levels, neoadjuvant hormonal therapy, and devices as significant predictors (p technological advancements.

  18. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  19. Successful palliative approach with high-intensity focused ultrasound in a patient with metastatic anaplastic pancreatic carcinoma: a case report

    Science.gov (United States)

    Ungaro, Antonio; Orsi, Franco; Casadio, Chiara; Galdy, Salvatore; Spada, Francesca; Cella, Chiara Alessandra; Tonno, Clementina Di; Bonomo, Guido; Vigna, Paolo Della; Murgioni, Sabina; Frezza, Anna Maria; Fazio, Nicola

    2016-01-01

    We report a case of a 74-year-old man with a metastatic anaplastic pancreatic carcinoma (APC). After an early tumour progression on first-line chemotherapy with cisplatin and gemcitabine, even though it was badly tolerated, he was treated with a combination of systemic modified FOLFIRI and high-intensity focused ultrasound (HIFU) on the pancreatic mass. A tumour showing partial response with a clinical benefit was obtained. HIFU was preferred to radiotherapy because of its shorter course and minimal side effects, in order to improve the patient’s clinical conditions. The patient is currently on chemotherapy, asymptomatic with a good performance status. In referral centres, with specific expertise, HIFU could be safely and successfully combined with systemic chemotherapy for treatment of metastatic pancreatic carcinoma. PMID:27170835

  20. Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment

    Science.gov (United States)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.

  1. Effects of human hair on trans-cranial focused ultrasound efficacy in an ex-vivo cadaver model

    Science.gov (United States)

    Hananel, Arik; Snell, John W.; Kassell, Neal F.; Eames, Matthew D. C.

    2012-11-01

    Current practice before a trans-cranial MR guided Focused ultrasound procedure is shaving the patient head on treatment day. Here we present an initial attempt to evaluate the feasibility of trans-cranial FUS, in an unshaved, ex-vivo cadaver skull. We have sonicated using 220kHz and 710kHz head transducers, a cadaver skull filled with tissue mimicking phantom and covered with a wig made of human hair to evaluate feasibility of acoustic energy transfer in a full size model. Heating at focal point was measured using MR proton resonance shift thermometry. Results showed negligible effect of hair in 220kHz, and an 18% drop in temperature elevation when using 710kHz.

  2. Prospects for an Accelerator Program in Mexico Focused on Photon Science

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez-Garcia, Mauro Napsuciale

    2011-05-01

    Recent interest in developing an accelerator-based light source in Mexico has driven several actions by the Division of Particles and Fields in Mexico, and by the electron accelerator community in the United States. We report on activities over the past two years that are very encouraging and offer a variety of possibilities to start the development of an accelerator program in Mexico. A suggested path towards this goal that would eventually lead to building, commissioning and operating a third or fourth generation light source will also be presented

  3. Prospects for an Accelerator Program in Mexico Focused on Photon Science

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Garcia, C [Jefferson Lab, 12000 Jefferson Ave, Suite 19, Newport News, VA 23606 (United States); Napsuciale, M, E-mail: chgarcia@jlab.org [Departamento de Fisica, Universidad de Guanajuato Campus Leon, Lomas del Bosque 103, Fraccionamiento Lomas del Campestre, 37150, Leon, Guanajuato (Mexico)

    2011-04-01

    Recent interest in developing Mexican expertise in Accelerator Science and Technology has resulted in several actions by the Division of Particles and Fields in Mexico, and by the electron accelerator community in the United States. We report on the very encouraging activities over the past two years which were aimed at developing a light source as the most effective starting point. We present a number of possibilities to initiate and grow an accelerator science program and present a path that would lead to building, commissioning and operating a third or fourth generation light source in Mexico.

  4. Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom

    Directory of Open Access Journals (Sweden)

    J. Saturnino-Oliveira

    2012-06-01

    Full Text Available We studied the effect of pulsed ultrasound therapy (UST and antibothropic polyvalent antivenom (PAV on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group received a perimuscular injection of venom (1 mg/kg and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode. Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively. Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively. The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.

  5. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, N [Johns Hopkins University, Baltimore, Maryland (United States); Partanen, A [Philips Healthcare, Andover, Massachusetts (United States); Ghoshal, G; Burdette, E [Acoustic MedSystems Inc., Savoy, IL (United States); Farahani, K [National Cancer Institute, Bethesda, MD (United States)

    2015-06-15

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360° of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1] Diederich et al

  6. Osteoid osteoma: Magnetic resonance guided high intensity focused ultrasound for entirely non-invasive treatment. A prospective developmental study

    Science.gov (United States)

    Napoli, A.; de Soccio, V.; Cartocci, G.; Boni, F.; Anzidei, M.; Catalano, C.

    2017-03-01

    To determine the effect of acoustic energy delivered during MR guided Focused Ultrasound (MRgFUS) treatment of symptomatic osteoid osteomas. This prospective, IRB approved study involved 15 consecutive patients (11 m; 4f; mean age, 21) with clinical and imaging diagnosis of Osteoid Osteoma; all patients underwent MRgFUS ablation (ExAblate, InSightec; Discovery 750 MR unit, GE). Lesions located in the vertebral body were excluded, while lesions in proximity to joints or neurovascular bundles were included. Treatment success was determined at clinical and imaging follow-up at 1, 6 and 12 months post-treatment. A visual Analog Pain Score (VAS) was used to assess changes in symptoms. Bone changes at nidus site were evaluated on the basis of CT and dynamic ce-MR imaging (Gd-Bopta; Bracco) pre- and post-treatment. Treatment was carried out using a variable number of sonications (mean 4±1.8) with a mean energy deposition of 866±211 J. There were no treatment- or anesthesia-related complications. A statistically significant (p=0.001) difference was noted between the overall pre- and post-treatment mean VAS scores (8.3±1.6 and 0.6±1.5, respectively). Two treatments were conducted in patients with prior CTgRFA failure and needed two different session for achieving complete clinical successful. At imaging, edema and hyperemia associated with typical osteoid osteoma, gradually disappeared in all lesions. No apparent relationship between nidus vascular extinction and successful outcome was found. Variable reabsorption degree of sclerotic reaction was observed with nidus disappearance in 4 cases (27%). Treatment of osteoid osteoma using MR guided Focused Ultrasound can be performed safely with a high rate of success and without treatment related morbidity; our results indicated also a positive trend to bone rearrangement after treatment.

  7. Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound.

    Science.gov (United States)

    Wang, Yak-Nam; Khokhlova, Tatiana; Bailey, Michael; Hwang, Joo Ha; Khokhlova, Vera

    2013-03-01

    Recent studies have shown that shockwave heating and millisecond boiling in high-intensity focused ultrasound fields can result in mechanical fractionation or emulsification of tissue, termed boiling histotripsy. Visual observations of the change in color and contents indicated that the degree of thermal damage in the emulsified lesions can be controlled by varying the parameters of the exposure. The goal of this work was to examine thermal and mechanical effects in boiling histotripsy lesions using histologic and biochemical analysis. The lesions were induced in ex vivo bovine heart and liver using a 2-MHz single-element transducer operating at duty factors of 0.005-0.01, pulse durations of 5-500 ms and in situ shock amplitude of 73 MPa. Mechanical and thermal damage to tissue was evaluated histologically using conventional staining techniques (hematoxylin and eosin, and nicotinamide adenine dinucleotide-diaphorase). Thermal effects were quantified by measuring denaturation of salt soluble proteins in the treated region. According to histologic analysis, the lesions that visually appeared as a liquid contained no cellular structures larger than a cell nucleus and had a sharp border of one to two cells. Both histologic and protein analysis showed that lesions obtained with short pulses (thermal damage. Increasing the pulse duration resulted in an increase in thermal damage. However, both protein analysis and nicotinamide adenine dinucleotide-diaphorase staining showed less denaturation than visually observed as whitening of tissue. The number of high-intensity focused ultrasound pulses delivered per exposure did not change the lesion shape or the degree of thermal denaturation, whereas the size of the lesion showed a saturating behavior suggesting optimal exposure duration. This study confirmed that boiling histotripsy offers an effective, predictable way to non-invasively fractionate tissue into sub-cellular fragments with or without inducing thermal damage.

  8. Inverse effects of flowing phase-shift nanodroplets and lipid-shelled microbubbles on subsequent cavitation during focused ultrasound exposures.

    Science.gov (United States)

    Zhang, Siyuan; Cui, Zhiwei; Xu, Tianqi; Liu, Pan; Li, Dapeng; Shang, Shaoqiang; Xu, Ranxiang; Zong, Yujin; Niu, Gang; Wang, Supin; He, Xijing; Wan, Mingxi

    2017-01-01

    This paper compared the effects of flowing phase-shift nanodroplets (NDs) and lipid-shelled microbubbles (MBs) on subsequent cavitation during focused ultrasound (FUS) exposures. The cavitation activity was monitored using a passive cavitation detection method as solutions of either phase-shift NDs or lipid-shelled MBs flowed at varying velocities through a 5-mm diameter wall-less vessel in a transparent tissue-mimicking phantom when exposed to FUS. The intensity of cavitation for the phase-shift NDs showed an upward trend with time and cavitation for the lipid-shelled MBs grew to a maximum at the outset of the FUS exposure followed by a trend of decreases when they were static in the vessel. Meanwhile, the increase of cavitation for the phase-shift NDs and decrease of cavitation for the lipid-shelled MBs had slowed down when they flowed through the vessel. During two discrete identical FUS exposures, while the normalized inertial cavitation dose (ICD) value for the lipid-shelled MB solution was higher than that for the saline in the first exposure (p-value 0.95). Meanwhile, the normalized ICD value for the phase-shift NDs was 0.182 at a flow velocity of 5cm/s and increased to 0.188 at a flow velocity of 15cm/s. As the flow velocity increased to 20cm/s, the normalized ICD was 0.185 and decreased to 0.178 at a flow velocity of 30cm/s. At high acoustic power, the normalized ICD values for both the lipid-shelled MBs and the phase-shift NDs increased with increasing flow velocities from 5 to 30cm/s (r>0.95). The effects of the flowing phase-shift NDs vaporized into gas bubbles as cavitation nuclei on the subsequent cavitation were inverse to those of the flowing lipid-shelled MBs destroyed after focused ultrasound exposures.

  9. Time-resolved quantitative multiphase interferometric imaging of a highly focused ultrasound pulse

    CERN Document Server

    Souris, Fabien; Jacquier, Philippe; Dupont-Roc, Jacques; Arvengas, Arnaud; Caupin, Frédéric; 10.1364/AO.49.006127

    2010-01-01

    Interferometric imaging is a well established method to image phase objects by mixing the image wavefront with a reference one on a CCD camera. It has also been applied to fast transient phenomena, mostly through the analysis of single interferograms. It is shown that for repetitive phenomena multiphase acquisition brings significant advantages. A 1 MHz focused sound field emitted by a hemispherical piezotransducer in water is imaged as an example. Quantitative image analysis provides high resolution sound field profiles. Pressure at focus determined by this method agrees with measurements from a fiber-optic probe hydrophone. This confirms that multiphase interferometric imaging can indeed provide quantitative measurements.

  10. Feasibility of real-time treatment feedback using novel filter for eliminating therapeutic ultrasound noise with high-speed ultrasonic imaging in ultrasound-guided high-intensity focused ultrasound treatment

    Science.gov (United States)

    Takagi, Ryo; Jimbo, Hayato; Iwasaki, Ryosuke; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    In the conventional ultrasonic monitoring of high-intensity focused ultrasound (HIFU) treatment, a significant interval between HIFU shots is required when monitoring target tissue to avoid interference between HIFU noise and RF echo signals. In our previous study, a new filtering method to eliminate only HIFU noise while maintaining tissue signals intact was proposed, and it was shown that the thermal coagulation could be detected during simultaneous HIFU irradiation through off-line processing. In this study, the filtering method and a real-time coagulation detection algorithm were implemented in an ultrasound imaging system, whose use for sequential exposure with multiple foci was demonstrated similarly to a commercial HIFU ablation system. The coagulation was automatically detected by the proposed method during real-time simultaneous HIFU irradiation, and the HIFU exposure time was controlled according to the changes in the tissue. The results imply that ultrasonic monitoring with the filtering and detection methods is useful for true real-time detection of changes in the tissue due to thermal coagulation during HIFU exposure.

  11. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  12. The contemporary role of ablative treatment approaches in the management of renal cell carcinoma (RCC): focus on radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), and cryoablation.

    Science.gov (United States)

    Klatte, Tobias; Kroeger, Nils; Zimmermann, Uwe; Burchardt, Martin; Belldegrun, Arie S; Pantuck, Allan J

    2014-06-01

    Currently, most of renal tumors are small, low grade, with a slow growth rate, a low metastatic potential, and with up to 30 % of these tumors being benign on the final pathology. Moreover, they are often diagnosed in elderly patients with preexisting medical comorbidities in whom the underlying medical conditions may pose a greater risk of death than the small renal mass. Concerns regarding overdiagnosis and overtreatment of patients with indolent small renal tumors have led to an increasing interest in minimally invasive, ablative as an alternative to extirpative interventions for selected patients. To provide an overview about the state of the art in radiofrequency ablation (RFA), high-intensity focused ultrasound, and cryoablation in the clinical management of renal cell carcinoma. A PubMed wide the literature search of was conducted. International consensus panels recommend ablative techniques in patients who are unfit for surgery, who are not considered candidates for or elect against elective surveillance, and who have small renal masses. The most often used techniques are cryoablation and RFA. These ablative techniques offer potentially curative outcomes while conferring several advantages over extirpative surgery, including improved patient procedural tolerance, faster recovery, preservation of renal function, and reduction in the risk of intraoperative and postsurgical complications. While it is likely that outcomes associated with ablative modalities will improve with further advances in technology, their application will expand to more elective indications as longer-term efficacy data become available. Ablative techniques pose a valid treatment option in selected patients.

  13. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels.

    Science.gov (United States)

    Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani

    2015-11-15

    Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts.

  14. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.

    Science.gov (United States)

    Thévenot, Emmanuel; Jordão, Jessica F; O'Reilly, Meaghan A; Markham, Kelly; Weng, Ying-Qi; Foust, Kevin D; Kaspar, Brian K; Hynynen, Kullervo; Aubert, Isabelle

    2012-11-01

    Noninvasive drug delivery to the brain remains a major challenge for the treatment of neurological disorders. Transcranial focused ultrasound combined with lipid-coated gas microspheres injected into the bloodstream has been shown to increase the permeability of the blood-brain barrier locally and transiently. Coupled with magnetic resonance imaging, ultrasound can be guided to allow therapeutics administered in the blood to reach brain regions of interest. Using this approach, we perform gene transfer from the blood to specific regions of the mouse brain. Focused ultrasound was targeted to the right hemisphere, at multiple foci, or restricted to one focal point of the hippocampus or the striatum. Doses from 5 × 10(8) to 1.25 × 10(10) vector genomes per gram (VG/g) of self-complementary adeno-associated virus serotype 9 carrying the green fluorescent protein were injected into the tail vein. A dose of 2.5 × 10(9) VG/g was optimal to express the transgene, 12 days later, in neurons, astrocytes, and oligodendrocytes in brain regions targeted with ultrasound, while minimizing the infection of peripheral organs. In the hippocampus and striatum, predominantly neurons and astrocytes were infected, respectively. Transcranial focused ultrasound applications could fulfill a long-term goal of gene therapy: delivering vectors to diseased brain areas directly from the circulation, in a noninvasive manner.

  15. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  16. Focused Cardiac Ultrasound Using a Pocket-Size Device in the Emergency Room

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Frederico José Neves, E-mail: frederico.mancuso@grupofleury.com.br [Disciplina de Cardiologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil); Disciplina de Medicina de Urgência - Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil); Siqueira, Vicente Nicoliello; Moisés, Valdir Ambrósio [Disciplina de Cardiologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil); Gois, Aécio Flavio Teixeira [Disciplina de Medicina de Urgência - Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil); Paola, Angelo Amato Vincenzo de; Carvalho, Antonio Carlos Camargo; Campos, Orlando [Disciplina de Cardiologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil)

    2014-12-15

    Cardiovascular urgencies are frequent reasons for seeking medical care. Prompt and accurate medical diagnosis is critical to reduce the morbidity and mortality of these conditions. To evaluate the use of a pocket-size echocardiography in addition to clinical history and physical exam in a tertiary medical emergency care. One hundred adult patients without known cardiac or lung diseases who sought emergency care with cardiac complaints were included. Patients with ischemic changes in the electrocardiography or fever were excluded. A focused echocardiography with GE Vscan equipment was performed after the initial evaluation in the emergency room. Cardiac chambers dimensions, left and right ventricular systolic function, intracardiac flows with color, pericardium, and aorta were evaluated. The mean age was 61 ± 17 years old. The patient complaint was chest pain in 51 patients, dyspnea in 32 patients, arrhythmia to evaluate the left ventricular function in ten patients, hypotension/dizziness in five patients and edema in one patient. In 28 patients, the focused echocardiography allowed to confirm the initial diagnosis: 19 patients with heart failure, five with acute coronary syndrome, two with pulmonary embolism and two patients with cardiac tamponade. In 17 patients, the echocardiography changed the diagnosis: ten with suspicious of heart failure, two with pulmonary embolism suspicious, two with hypotension without cause, one suspicious of acute coronary syndrome, one of cardiac tamponade and one of aortic dissection. The focused echocardiography with pocket-size equipment in the emergency care may allow a prompt diagnosis and, consequently, an earlier initiation of the therapy.

  17. Radiation force on absorbing targets and power measurements of a high intensity focused ultrasound (HIFU) source

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al.,an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived.A general relation between acoustic power P and normal radiation force Fn is obtained under the condition of kr 1.Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets.The results show that,for a given source,there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected.The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W).It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source,the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.

  18. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas; Pulkkinen, Aki; Song Junho; Hynynen, Kullervo, E-mail: nicholas.ellens@utoronto.ca [Department of Imaging Research, Sunnybrook Research Institute, Toronto (Canada)

    2011-08-07

    Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 deg. C were induced in sonication times of 5-20 s, at foci spanning depths of 50-150 mm and radii of 0-60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose {>=} 240 equivalent minutes at 43 deg. C (T{sub 43})) and 'transition' and 'unsafe' regions (both defined as 5 min < T{sub 43} < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

  19. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    Science.gov (United States)

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning.

  20. The use of two-photon microscopy to study the biological effects of focused ultrasound on the brain

    Science.gov (United States)

    Burgess, Alison; Cho, Eunice E.; Shaffaf, Leila; Nhan, Tam; Poon, Charissa; Hynynen, Kullervo

    2012-03-01

    Focused ultrasound (FUS) has been used to successfully disrupt the blood-brain barrier (BBB), aiding in the delivery of therapeutic agents to the brain and leading to improvements in disease pathology. Although significant progress has been made in the development of FUS technology, there is still a lack of understanding of the biophysical mechanisms of the BBB disruption and the microscopic effects of this disruption on brain cells. In this study, we combine a custom built ultrasound transducer with two-photon microscopy to conduct real time monitoring of BBB disruption in vivo. We have manufactured and tested a single element piezoelectric transducer with frequencies ranging from 1.15 to 1.30 MHz. Sonications were performed using 0.07-0.25 MPa estimated in situ pressure, 10 ms pulses, 1 Hz pulse repetition frequency for a total duration of 120 s in the presence of microbubbles. BBB disruption was observed through a cranial window created in the rat skull after intravenous injection of dextran conjugated- Texas Red (MW: 10,000 - 70,000 Da). Using this experimental setup, we have observed and characterized 3 different leakage patterns following BBB disruption. Our results indicate that varying the acoustic power leading to in situ pressure changes, may allow us to control the mechanism of BBB disruption. Furthermore, we have labelled astrocytes in vivo in order to visualize the effects of FUS on this cell population. Combination of our custom transducers with two-photon microscopy will allow significant advancement in allow significant advancement in the understanding of the mechanisms and cellular effects of FUS-induced BBB disruption.

  1. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound.

    Science.gov (United States)

    Canney, Michael S; Khokhlova, Vera A; Bessonova, Olga V; Bailey, Michael R; Crum, Lawrence A

    2010-02-01

    Nonlinear propagation causes high-intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have been investigated previously and found to not significantly alter high-intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm(2) was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared with calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating as a result of shock waves is therefore important to HIFU, and clinicians should be aware of the potential for very rapid boiling because it alters treatments.

  2. Effect of low-intensity focused ultrasound on endothelin-1, nitrogen monoxide and oxytocin receptor in the uterine tissues of Sprague-Dawley rats following abortion.

    Science.gov (United States)

    Zhang, Yanxia; Guo, Jufang; Lin, Chuan; Lu, L U; Li, Chengzhi

    2016-03-01

    The aim of the present study was to investigate the effect of low-intensity focused ultrasound on endothelin-1 (ET-1), nitrogen monoxide (NO) and oxytocin receptor (OXTR) levels in the uterine tissues of Sprague-Dawley (SD) rats following abortion. A total of 30 SD rats undergoing complete abortion were randomly divided into ultrasound irradiation and sham irradiation groups (15 rats per group). The rats in the ultrasound irradiation group were treated with low-intensity ultrasound (sound intensity, 2 W/cm(2); frequency, 0.8 MHz) for 30 min daily for 5 consecutive days, and those in the sham irradiation group received sham treatment. The uterine tissue was removed to measure the levels of ET-1, NO and OXTR using the enzyme-linked immunosorbent assay and immunohistochemistry, respectively. The ET-1 level in the uterine tissues was significantly higher in the ultrasound irradiation group compared to the sham irradiation group (P0.05). In the uterine myometrium and endometrium, the strong positive expression of OXTR was observed in the ultrasound irradiation group, which was significantly higher compared to the sham irradiation group (Pultrasound could promote uterine involution by increasing ET-1 levels, modifying the balance of ET-1 and NO, and enhancing the expression of OXTR in the uterine myometrium and endometrium.

  3. Focused Cardiac Ultrasound Using a Pocket-Size Device in the Emergency Room

    Directory of Open Access Journals (Sweden)

    Frederico José Neves Mancuso

    2014-12-01

    Full Text Available Background: Cardiovascular urgencies are frequent reasons for seeking medical care. Prompt and accurate medical diagnosis is critical to reduce the morbidity and mortality of these conditions. Objective: To evaluate the use of a pocket-size echocardiography in addition to clinical history and physical exam in a tertiary medical emergency care. Methods: One hundred adult patients without known cardiac or lung diseases who sought emergency care with cardiac complaints were included. Patients with ischemic changes in the electrocardiography or fever were excluded. A focused echocardiography with GE Vscan equipment was performed after the initial evaluation in the emergency room. Cardiac chambers dimensions, left and right ventricular systolic function, intracardiac flows with color, pericardium, and aorta were evaluated. Results: The mean age was 61 ± 17 years old. The patient complaint was chest pain in 51 patients, dyspnea in 32 patients, arrhythmia to evaluate the left ventricular function in ten patients, hypotension/dizziness in five patients and edema in one patient. In 28 patients, the focused echocardiography allowed to confirm the initial diagnosis: 19 patients with heart failure, five with acute coronary syndrome, two with pulmonary embolism and two patients with cardiac tamponade. In 17 patients, the echocardiography changed the diagnosis: ten with suspicious of heart failure, two with pulmonary embolism suspicious, two with hypotension without cause, one suspicious of acute coronary syndrome, one of cardiac tamponade and one of aortic dissection. Conclusion: The focused echocardiography with pocket-size equipment in the emergency care may allow a prompt diagnosis and, consequently, an earlier initiation of the therapy.

  4. Focused Ultrasound Lipolysis in the Treatment of Abdominal Cellulite: An Open-Label Study.

    Science.gov (United States)

    Moravvej, Hamideh; Akbari, Zahra; Mohammadian, Shahrzad; Razzaghi, Zahra

    2015-01-01

    Despite a growing popularity of noninvasive ultrasonic lipolysis procedure, there is a lack of evidence about the efficacy of this method. This study was performed to evaluate the efficacy of focused ultrasonic lipolysis on abdominal cellulite treatment. Twenty-eight consecutive subjects (age: 37.8 ± 8 years) underwent weekly transdermal focused ultrasonic lipolysis (Med Contour, General Project Ltd., Florence, Italy) and vacuum drainage for a maximum of eight sessions. Largest abdominal girth and 2 lines at 4 cm to 7 cm distance above and under it were located as fixed points of measurements. The mean value of the three fixed lines was considered as the abdominal circumference. Subjects were evaluated using measurements of circumference, immediately after and 3 weeks after the final treatment and compared using paired t test. One hundred ninety-four ultrasonic lipolysis procedures were performed on 28 subjects. A statistically significant (P cellulite, although some amount of circumference reduction reversal may be observed in long term follow-up visit.

  5. Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening

    Science.gov (United States)

    Marquet, Fabrice; Tung, Yao-Sheng; Teichert, Tobias; Ferrera, Vincent P.; Konofagou, Elisa E.

    2012-10-01

    The blood-brain barrier (BBB) is a specialized vascular system that impedes entry of all large and the vast majority of small molecules including the most potent CNS disease therapeutic agents from entering from the lumen into the brain parenchyma. Microbubble-enhanced, focused ultrasound (ME-FUS) has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. The study addresses the focusing properties of single-element transducers at intermediate frequencies (500 kHz) through primate and human skulls, targeting clinically relevant targets extracted from 3D brain atlases such as the hippocampus and the basal ganglia, which are typically affected by early Alzheimer's and Parkinson's disease, respectively. A preliminary in vivo study was performed to study the frequency dependence of BBB opening parameters in mice. Then, feasibility of transcranial ME-FUS BBB opening in non-human primates was demonstrated with subsequent BBB recovery. Sonications were combined with two different types of microbubbles (custom made 4-5 μm and Definity®). 3T MRI was used to confirm the BBB disruption and to assess brain damage.

  6. A novel approach to identify non-palpable breast lesions combining fluorescent liposomes and magnetic resonance-guided high intensity focused ultrasound-triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Nijsen, Frank; van Amersfoort, Miranda; van Bloois, Louis; Heijman, Edwin; Luijten, Peter; Mali, Willem; Storm, Gert

    2011-01-01

    The combination of fluorescein-containing liposomes (FCL) and magnetic resonance-guided high intensity focused ultrasound (MR-HIFU)-triggered release is a promising approach for lesion demarcation and more efficient removal of non-palpable breast lesions. Exposure of FCL to ablation temperatures (60

  7. Single session of high-intensity focused ultrasound therapy for the management of organ-confined prostate cancer: A single-institute experience

    Directory of Open Access Journals (Sweden)

    Yu-Cing Juho

    2016-12-01

    Conclusion: High-intensity focused ultrasound is an alternative therapy for patients with localized prostate cancer. In combination with preceding transurethral resection of the prostate, this treatment shows promise in disease control with a low complication rate in short-term follow-up.

  8. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    Science.gov (United States)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  9. Ultrasound-assisted focused open necrosectomy in the treatment of necrotizing pancreatitis.

    Science.gov (United States)

    Pupelis, Guntars; Fokin, Vladimir; Zeiza, Kaspars; Kazaka, Ita; Pereca, Jelizaveta; Skuja, Vita; Boka, Viesturs

    2015-03-20

    The surgical treatment of necrotizing pancreatitis includes percutaneous drainage of acute necrotic collections and sequestrectomy in the late phase of the disease. The aim of the study was to compare the conventional open necrosectomy (CON) approach with the alternative focused open necrosectomy (FON) approach in patients with infected necrosis and progression of sepsis. Patients with acute necrotizing pancreatitis were included in the study prospectively from January 2004 to July 2014. All patients had been admitted with the first or a new episode of disease. Symptomatic large fluid collections were drained percutaneously. The step-up approach was used in patients with several distant localizations of infected necrosis. The methods were analysed by comparing the individual severity according to the ASA, APACHE II and SOFA scores, infection rate, postoperative complication rate and mortality. A total of 31 patients were included in the FON group and 39 in the CON group. The incidence of infection was similar in groups. More ASA III comorbid conditions, a higher APACHE II score, a more frequent need for renal replacement therapy was observed in the CON group. The postoperative complication rate was in the range of 32% to 44%; mortality reached 6.5% in the FON group and 12.8% in the CON group. Comorbid conditions, organ failure, and infection are the main risk factors in patients with necrotizing pancreatitis. The step-up approach and perioperative ultrasonography navigation improves the clinical outcome and reduces the extent of invasive surgical intervention in patients unsuited to other minimally invasive procedures.

  10. Optimally enhanced heating for focused ultrasound surgery with split foci, dual-frequency, or multi foci

    Science.gov (United States)

    Lu, Mingzhu; Guan, Yubo; Dong, Tengju; Liu, Fenfen; Wan, Mingxi

    2017-03-01

    To substantially enhance heating in HIFU treatment, several methods such as split foci, multi foci, and dual-frequency modes are used. The enhanced-cavitation heating protocols are implemented experimentally in BSA gel-phantom using four-element split-focus array. Using dual frequency of 1.2 and 2.4 MHz, the superimposing of two frequency pressures at confocal region can enhance nucleation cavitation and inertial cavitation activity. When using 135° phase shift combined with dual frequency of 1.2 and 2.4 MHz, the peak negative pressure reach maximum due to peak-negative pressures of two frequencies occur at same time, resulting strong cavitation activities. When using dual frequency of 1.2 and 2.4 MHz, 25-Hz pulse-repetition frequency (PRF), both 135° and 180° phase shift protocols, the experiment results show the largest lesion size of 10.5 × 10.5 × 11 mm3, quickest lesion inception time of less than 0.2 s, therefore, both 135° and 180° phase shift protocols are most efficient in enhanced-cavitation heating. The filtered-PCD mean square waveforms reveal that the strong inertial-cavitation activities involve in those two treatments. The lesion size of four foci of 180° phase shift, single frequency, 25 Hz PRF, is 2 times that of 0° phase shift, single frequency even if the peak intensity of 180° case is half less than that of 0° phase shift case. When arrange multi foci using phased array in a style of a wavelength distance between neighbor foci in focal plane, the result is the same as that using split foci of 180° phase shift and single frequency.

  11. Focused Cardiac Ultrasound Using a Pocket-Size Device in the Emergency Room.

    Science.gov (United States)

    Mancuso, Frederico José Neves; Siqueira, Vicente Nicoliello; Moisés, Valdir Ambrósio; Gois, Aécio Flavio Teixeira; Paola, Angelo Amato Vincenzo de; Carvalho, Antonio Carlos Camargo; Campos, Orlando

    2014-10-28

    Background: Cardiovascular urgencies are frequent reasons for seeking medical care. Prompt and accurate medical diagnosis is critical to reduce the morbidity and mortality of these conditions. Objective: To evaluate the use of a pocket-size echocardiography in addition to clinical history and physical exam in a tertiary medical emergency care. Methods: One hundred adult patients without known cardiac or lung diseases who sought emergency care with cardiac complaints were included. Patients with ischemic changes in the electrocardiography or fever were excluded. A focused echocardiography with GE Vscan equipment was performed after the initial evaluation in the emergency room. Cardiac chambers dimensions, left and right ventricular systolic function, intracardiac flows with color, pericardium, and aorta were evaluated. Results: The mean age was 61 ± 17 years old. The patient complaint was chest pain in 51 patients, dyspnea in 32 patients, arrhythmia to evaluate the left ventricular function in ten patients, hypotension/dizziness in five patients and edema in one patient. In 28 patients, the focused echocardiography allowed to confirm the initial diagnosis: 19 patients with heart failure, five with acute coronary syndrome, two with pulmonary embolism and two patients with cardiac tamponade. In 17 patients, the echocardiography changed the diagnosis: ten with suspicious of heart failure, two with pulmonary embolism suspicious, two with hypotension without cause, one suspicious of acute coronary syndrome, one of cardiac tamponade and one of aortic dissection. Conclusion: The focused echocardiography with pocket-size equipment in the emergency care may allow a prompt diagnosis and, consequently, an earlier initiation of the therapy.Fundamento: As urgências cardiovasculares são causas importantes de procura por atendimento médico, sendo fundamentais a rapidez e a precisão no diagnóstico para diminuir sua morbimortalidade. Objetivo: Avaliar o uso da ecocardiografia

  12. Shadow effects in simulated ultrasound images derived from computed tomography images using a focused beam tracing model

    DEFF Research Database (Denmark)

    Pham, An Hoai; Lundgren, Bo; Stage, Bjarne

    2012-01-01

    Simulation of ultrasound images based on computed tomography (CT) data has previously been performed with different approaches. Shadow effects are normally pronounced in ultrasound images, so they should be included in the simulation. In this study, a method to capture the shadow effects has been...

  13. High Intensity Focused Ultrasound versus Brachytherapy for the Treatment of Localized Prostate Cancer: A Matched-Pair Analysis

    Directory of Open Access Journals (Sweden)

    Fouad Aoun

    2015-01-01

    Full Text Available Purpose. To evaluate postoperative morbidity and long term oncologic and functional outcomes of high intensity focused ultrasound (HIFU compared to brachytherapy for the treatment of localized prostate cancer. Material and Methods. Patients treated by brachytherapy were matched 1 : 1 with patients who underwent HIFU. Differences in postoperative complications across the two groups were assessed using Wilcoxon’s rank-sum or χ2 test. Kaplan-Meier curves, log-rank tests, and Cox regression models were constructed to assess differences in survival rates between the two groups. Results. Brachytherapy was significantly associated with lower voiding LUTS and less frequent acute urinary retention (p<0.05. Median oncologic follow-up was 83 months (13–123 months in the HIFU cohort and 44 months (13–89 months in the brachytherapy cohort. Median time to achieve PSA nadir was statistically shorter in the HIFU. Biochemical recurrence-free survival rate was significantly higher in the brachytherapy cohort compared to HIFU cohort (68.5% versus 53%, p<0.05. No statistically significant difference in metastasis-free, cancer specific, and overall survivals was observed between the two groups. Conclusion. HIFU and brachytherapy are safe with no significant difference in cancer specific survival on long term oncologic follow-up. Nonetheless, a randomized controlled trial is needed to confirm these results.

  14. Focused ultrasound enhanced molecular imaging and gene therapy for multifusion reporter gene in glioma-bearing rat model.

    Science.gov (United States)

    Yang, Feng-Yi; Chang, Wen-Yuan; Lin, Wei-Ting; Hwang, Jeng-Jong; Chien, Yi-Chun; Wang, Hsin-Ell; Tsai, Min-Lan

    2015-11-03

    The ability to monitor the responses of and inhibit the growth of brain tumors during gene therapy has been severely limited due to the blood-brain barrier (BBB). A previous study has demonstrated the feasibility of noninvasive in vivo imaging with 123I-2'-fluoro-2'-deoxy-5-iodo-1-β-D-arabinofuranosyluracil (123I-FIAU) for monitoring herpes simplex virus type 1 thymidine kinase (HSV1-tk) cancer gene expression in an experimental animal model. Here, we tested the enhancement of SPECT with 123I-FIAU and ganciclovir (GCV) treatment in brain tumors after BBB disruption induced by focused ultrasound (FUS) in the presence of microbubbles. We established an orthotopic F98 glioma-bearing rat model with trifusion reporter genes. The results of this study showed that the rat model of HSV1-tk-expressing glioma cells could be successfully detected by SPECT imaging after FUS-induced BBB disruption on day 10 after implantation. Compared to the control group, animals receiving the GCV with or without sonication exhibited a significant antitumor activity (P therapy in brain diseases.

  15. Synergistic ablation of liver tissue and liver cancer cells with high-intensity focused ultrasound and ethanol.

    Science.gov (United States)

    Hoang, Nguyen H; Murad, Hakm Y; Ratnayaka, Sithira H; Chen, Chong; Khismatullin, Damir B

    2014-08-01

    We investigated the combined effect of ethanol and high-intensity focused ultrasound (HIFU), first, on heating and cavitation bubble activity in tissue-mimicking phantoms and porcine liver tissues and, second, on the viability of HepG2 liver cancer cells. Phantoms or porcine tissues were injected with ethanol and then subjected to HIFU at acoustic power ranging from 1.2 to 20.5 W (HIFU levels 1-7). Cavitation events and the temperature around the focal zone were measured with a passive cavitation detector and embedded type K thermocouples, respectively. HepG2 cells were subjected to 4% ethanol solution in growth medium (v/v) just before the cells were exposed to HIFU at 2.7, 8.7 or 12.0 W for 30 s. Cell viability was measured 2, 24 and 72 h post-treatment. The results indicate that ethanol and HIFU have a synergistic effect on liver cancer ablation as manifested by greater temperature rise and lesion volume in liver tissues and reduced viability of liver cancer cells. This effect is likely caused by reduction of the cavitation threshold in the presence of ethanol and the increased rate of ethanol diffusion through the cell membrane caused by HIFU-induced streaming, sonoporation and heating.

  16. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound.

    Science.gov (United States)

    Liu, Runna; Xu, Shanshan; Hu, Hong; Huo, Rui; Wang, Supin; Wan, Mingxi

    2016-08-01

    Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.

  17. Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study.

    Science.gov (United States)

    Sun, Yao; O'Neill, Brian

    2013-03-10

    We present an ex vivo study for the first time, to the best of our knowledge, in multispectral photoacoustic imaging (PAI) of tissue denaturation induced by high-intensity focused ultrasound (HIFU) in this paper. Tissue of bovine muscle was thermally treated in a heated water bath and by HIFU, and then was imaged using a multispectral photoacoustic approach. Light at multiple optical wavelengths between 700 and 900 nm was delivered to the treated bovine muscle tissue to excite the photoacoustic signal. Apparent tissue denaturation has been observed in multispectral photoacoustic images after being treated in a water bath and by HIFU. It is interesting that the denaturation is more striking at shorter optical wavelength photoacoustic images than at longer optical wavelength photoacoustic images. Multispectral photoacoustic images of the tissue denaturation were further analyzed and the photoacoustic spectrums of the denaturized tissue were calculated in this paper. This study suggests that a multispectral PAI approach might be a promising tool to evaluate tissue denaturation induced by HIFU treatment.

  18. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    Science.gov (United States)

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-11-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications.

  19. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles

    Science.gov (United States)

    Downs, Matthew E.; Buch, Amanda; Karakatsani, Maria Eleni; Konofagou, Elisa E.; Ferrera, Vincent P.

    2015-10-01

    Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.

  20. MR-guided focused ultrasound. Current and future applications; MR-gesteuerter fokussierter Ultraschall. Aktuelle und potenzielle Indikationen

    Energy Technology Data Exchange (ETDEWEB)

    Trumm, C.G.; Peller, M.; Clevert, D.A.; Stahl, R.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen-Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Napoli, A. [Sapienza Universitaet Rom, Abteilung fuer Radiologie (Department of Radiological Sciences), MRgFUS and Cardiovascular Imaging Unit, Rom (Italy); Matzko, M. [Klinikum Dachau, Abteilung fuer diagnostische und interventionelle Radiologie, Dachau (Germany)

    2013-03-15

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier. (orig.) [German] MRT-gesteuerter hochintensiver fokussierter Ultraschall (MRgFUS bzw. MR-HIFU) ist ein nichtinvasives Verfahren zur praezisen Thermoablation eines Zielgewebes. Bei dieser Methode werden benachbarte Gewebe und Organe geschont. Die Kombination des fokussierten Ultraschalls (FUS) mit der MRT zwecks Planung und Monitoring (nahezu) in Echtzeit sowie zur Erfolgskontrolle von Behandlungen traegt wesentlich zur Sicherheit dieser Methode bei. MRgFUS ist klinisch v. a. zur Behandlung von symptomatischen Uterusmyomen etabliert, gefolgt von der palliativen Ablation von Knochenmetastasen. Weitere vielversprechende Anwendungsgebiete des MRgFUS sind die Adenomyose des Uterus, die Behandlung von Prostata-, Mamma- und Lebertumoren sowie der intrakranielle Einsatz. (orig.)

  1. MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: Current status and future needs.

    Science.gov (United States)

    Hectors, Stefanie J C G; Jacobs, Igor; Moonen, Chrit T W; Strijkers, Gustav J; Nicolay, Klaas

    2016-01-01

    Thermal ablation with high intensity focused ultrasound (HIFU) is an emerging noninvasive technique for the treatment of solid tumors. HIFU treatment of malignant tumors requires accurate treatment planning, monitoring and evaluation, which can be facilitated by performing the procedure in an MR-guided HIFU system. The MR-based evaluation of HIFU treatment is most often restricted to contrast-enhanced T1 -weighted imaging, while it has been shown that the non-perfused volume may not reflect the extent of nonviable tumor tissue after HIFU treatment. There are multiple studies in which more advanced MRI methods were assessed for their suitability for the evaluation of HIFU treatment. While several of these methods seem promising regarding their sensitivity to HIFU-induced tissue changes, there is still ample room for improvement of MRI protocols for HIFU treatment evaluation. In this review article, we describe the major acute and delayed effects of HIFU treatment. For each effect, the MRI methods that have been-or could be-used to detect the associated tissue changes are described. In addition, the potential value of multiparametric MRI for the evaluation of HIFU treatment is discussed. The review ends with a discussion on future directions for the MRI-based evaluation of HIFU treatment.

  2. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G.; Knuttel, Floor M.; Peters, Nicky H.G.M.; Mali, Willem P.T.M.; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E 01.132, Utrecht (Netherlands); Deckers, Roel; Moonen, Chrit T.W.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Dalen, Thijs van [Diakonessenhuis Utrecht, Department of Surgery, Utrecht (Netherlands); Schubert, Gerald [Philips Healthcare, Best (Netherlands); Weits, Teun [Diakonessenhuis Utrecht, Department of Radiology, Utrecht (Netherlands); Diest, Paul J. van [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Vaessen, Paul H.H.B. [University Medical Center Utrecht, Department of Anesthesiology, Utrecht (Netherlands); Gorp, Joost M.H.H. van [Diakonessenhuis Utrecht, Department of Pathology, Utrecht (Netherlands)

    2016-11-15

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. (orig.)

  3. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    Science.gov (United States)

    Nhan, Tam; Burgess, Alison; Lilge, Lothar; Hynynen, Kullervo

    2014-10-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min-1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.

  4. Effect of low-intensity focused ultrasound on the middle ear in a mouse model of acute otitis media.

    Science.gov (United States)

    Noda, Kanako; Hirano, Takashi; Noda, Kenji; Kodama, Satoru; Ichimiya, Issei; Suzuki, Masashi

    2013-03-01

    We hypothesized that low-intensity focused ultrasound (LIFU) increases vessel permeability and antibacterial drug activity in the mouse middle ear. We determined appropriate settings by applying LIFU to mouse ears with the external auditory canal filled with normal saline and performed histologic and immunohistologic examination. Acute otitis media was induced in mice with nontypable Haemophilus influenzae, and they were given ampicillin (50, 10, or 2 mg/kg) intraperitoneally once daily for 3 days with or without LIFU (1.0 W/cm(2), 20% duty cycle, 30 s). In the LIFU(+) groups receiving the 2- and 10-mg/kg doses, viable bacteria counts, number of inflammatory cells and IL-1β and TNF-α levels in middle ear effusion were significantly lower than in the LIFU(-) groups on the same doses. Severity of AOM also tended to be reduced more in the LIFU(+) groups than in the LIFU(-) groups. LIFU application with antibiotics may be effective for middle ear infection.

  5. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model.

    Science.gov (United States)

    Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D; Hutchens, Shelby B; Freund, Jonathan B

    2016-08-01

    A generalized Rayleigh-Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity.

  6. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Wei

    Full Text Available The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI-monitored focused ultrasound (FUS-induced blood-brain barrier (BBB disruption to enhance Temozolomide (TMZ delivery for improving Glioblastoma Multiforme (GBM treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI, animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.

  7. Single High Intensity Focused Ultrasound Session as a Whole Gland Primary Treatment for Clinically Localized Prostate Cancer: 10-Year Outcomes

    Directory of Open Access Journals (Sweden)

    Ksenija Limani

    2014-01-01

    Full Text Available Objectives. To assess the treatment outcomes of a single session of whole gland high intensity focused ultrasound (HIFU for patients with localized prostate cancer (PCa. Methods. Response rates were defined using the Stuttgart and Phoenix criteria. Complications were graded according to the Clavien score. Results. At a median follow-up of 94months, 48 (44.4% and 50 (46.3% patients experienced biochemical recurrence for Phoenix and Stuttgart definition, respectively. The 5- and 10-year actuarial biochemical recurrence free survival rates were 57% and 40%, respectively. The 10-year overall survival rate, cancer specific survival rate, and metastasis free survival rate were 72%, 90%, and 70%, respectively. Preoperative high risk category, Gleason score, preoperative PSA, and postoperative nadir PSA were independent predictors of oncological failure. 24.5% of patients had self-resolving LUTS, 18.2% had urinary tract infection, and 18.2% had acute urinary retention. A grade 3b complication occurred in 27 patients. Pad-free continence rate was 87.9% and the erectile dysfunction rate was 30.8%. Conclusion. Single session HIFU can be alternative therapy for patients with low risk PCa. Patients with intermediate risk should be informed about the need of multiple sessions of HIFU and/or adjuvant treatments and HIFU performed very poorly in high risk patients.

  8. High-Intensity Focused Ultrasound in the Treatment of Hepatic Metastases from Colorectal Cancer of 18 Patients

    Institute of Scientific and Technical Information of China (English)

    HuiZhu; WenzhiChen; FengWu; KequanLi; JianzhongZou; ZhibiaoWang

    2004-01-01

    OBJECTIVE To evaluate the safety and effectiveness of treatment of hepatic metastases from colorectal cancer using high-intensity focused ultrasound (HIFU). METHODS Thirty-one lesions in 18 patients with hepatic metastases from colorectal cancer after colectomy were treated with HIFU therapy. The vital signs, function of the vital organs, complications and pathological outcome were studied using imaging examinations such as CT or MRI. RESULTS The vital signs of all patients remained stable and their liver and kidney functions normal. Two of the 18 patients were not followed-up. After a mean follow-up of 16.1 months (6-38 months), 13 survived. The survival rates at the 12th and 18th months were 83.3% and 66.7%, respectively. The median survival rate was 16 months. Among the 25 lesions followed-up, 17 shrank over 50%, 5 grew new metastases and superficial degree II skin injury occurred in 8. CONCLUSION HIFU is a safe, effective and non-invasive option for the treatment of hepatic metastases from colorectal cancer.

  9. Ultrasound-Accelerated Synthesis of Asymmetrical Thiosulfonate S-Esters by Base-Promoted Reaction of Sulfonyl Chlorides with Thiols

    DEFF Research Database (Denmark)

    Pham, Hien Thi; Nguyen, Ngoc-Lan Thi; Duus, Fritz

    2015-01-01

    or with a minimum amount of solvent assisted by magnetic stirring, ultrasound irradiation and microwave irradiation. Ultrasound irradiation has good effects on the synthesis of sterically hindered thiosulfonate S-esters in solvent-free media as well as in a minimum amount of anhydrous diethyl ether....

  10. Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound.

    Directory of Open Access Journals (Sweden)

    Tamara Kujawska

    Full Text Available A tissue thermal conductivity (Ks is an important parameter which knowledge is essential whenever thermal fields induced in selected organs are predicted. The main objective of this study was to develop an alternative ultrasonic method for determining Ks of tissues in vitro suitable for living tissues. First, the method involves measuring of temperature-time T(t rises induced in a tested tissue sample by a pulsed focused ultrasound with measured acoustic properties using thermocouples located on the acoustic beam axis. Measurements were performed for 20-cycle tone bursts with a 2 MHz frequency, 0.2 duty-cycle and 3 different initial pressures corresponding to average acoustic powers equal to 0.7 W, 1.4 W and 2.1 W generated from a circular focused transducer with a diameter of 15 mm and f-number of 1.7 in a two-layer system of media: water/beef liver. Measurement results allowed to determine position of maximum heating located inside the beef liver. It was found that this position is at the same axial distance from the source as the maximum peak-peak pressure calculated for each nonlinear beam produced in the two-layer system of media. Then, the method involves modeling of T(t at the point of maximum heating and fitting it to the experimental data by adjusting Ks. The averaged value of Ks determined by the proposed method was found to be 0.5±0.02 W/(m·°C being in good agreement with values determined by other methods. The proposed method is suitable for determining Ks of some animal tissues in vivo (for example a rat liver.

  11. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  12. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  13. Interstellar Pickup Ion Acceleration in the Turbulent Magnetic Field at the Solar Wind Termination Shock Using a Focused Transport Approach

    Science.gov (United States)

    Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  14. Concurrent Chemotherapy and Pulsed High-Intensity Focused Ultrasound Therapy for the Treatment of Unresectable Pancreatic Cancer: Initial Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Choi, Byung Ihn; Ryu, Ji Kon; Kim, Yong Tae; Kim, Se Hyung; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of); Hwang, Joo Ha [University of Washington Medical Center, Seattle (United States)

    2011-04-15

    This study was performed to evaluate the potential clinical value of concurrent chemotherapy and pulsed high intensity focused ultrasound (HIFU) therapy (CCHT), as well as the safety of pulsed HIFU, for the treatment of unresectable pancreatic cancer. Twelve patients were treated with HIFU from October 2008 to May 2010, and three of them underwent CCHT as the main treatment (the CCHT group). The overall survival (OS), the time to tumor progression (TTP), the complications and the current performance status in the CCHT and non-CCHT groups were analyzed. Nine patients in the non-CCHT group were evaluated to determine why CCHT could not be performed more than twice. The OS of the three patients in the CCHT group was 26.0, 21.6 and 10.8 months, respectively, from the time of diagnosis. Two of them were alive at the time of preparing this manuscript with an excellent performance status, and one of them underwent a surgical resection one year after the initiation of CCHT. The TTP of the three patients in the CCHT group was 13.4, 11.5 and 9.9 months, respectively. The median OS and TTP of the non-CCHT group were 10.3 months and 4.4 months, respectively. The main reasons why the nine patients of the non-CCHT group failed to undergo CCHT more than twice were as follows: pancreatitis (n = 1), intolerance of the pain during treatment (n = 4), palliative use of HIFU for pain relief (n = 1) and a poor physical condition due to disease progression (n = 3). No major complications were encountered except one case of pancreatitis. This study shows that CCHT is a potentially effective and safe modality for the treatment of unresectable pancreatic cancer

  15. Short training in focused cardiac ultrasound in an Internal Medicine department: what realistic skill targets could be achieved?

    Science.gov (United States)

    Mozzini, Chiara; Garbin, Ulisse; Fratta Pasini, Anna Maria; Cominacini, Luciano

    2015-02-01

    The importance of focused cardiac ultrasound (FCU) in Internal Medicine care has been recognized by the American Society of Echocardiography. The aim of this study was to test what realistic skill targets could be achieved in FCU, with a relatively short training (theoretical and practical) of 9 h offered to Internal Medicine certification board attending students, and if the addition of further 9 h of training could significantly improve the level of competence. Kappa statistic was used to calculate the inter-observer agreement (trainees/tutor). The agreement between the trainees (who completed the entire training) and the tutor was, respectively, "substantial" (k = 0.71) for the identification of pericardial effusion, "moderate" (k = 0.56-0.54) for the identification of marked right ventricular and left ventricular enlargement, "substantial" (k = 0.77) for the assessment of global cardiac systolic function by visual inspection and "fair" (k = 0.35) for the assessment of size and respiratory change in the diameter of the inferior cave vein (IVC). 18 h training in FCU provided proficiency in obtaining adequate images from the parasternal window without providing the ability to correctly master the apical and subcostal windows. As concerns the interpretative skills, only pericardial effusion and visual estimation of global systolic function could be correctly identified, while ventricular enlargement and IVC prove to be more difficult to evaluate. This study supports incorporating FCU into Internal Medicine fellowship training programs, and should facilitate the design of other similar training courses.

  16. Mechanic effect of pulsed focused ultrasound in tumor and muscle tissue evaluated by MRI, histology, and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Walter, E-mail: walter.hundt@web.de [Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305-5488 (United States); Department of Radiology, Philipps University Marburg (Germany); Yuh, Esther L. [Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305-5488 (United States); Steinbach, Silke [Department of Otolaryngology Head and Neck Surgery, Technical University of Dresden (Germany); Bednarski, Mark D.; Guccione, Samira [Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305-5488 (United States)

    2010-11-15

    The purpose of this study was to investigate the effect of pulsed high-intensity focused ultrasound (HIFU) to tumor and muscle tissue. Pulsed HIFU was applied to tumor and muscle tissue in C3H/Km mice. Three hours after HIFU treatment pre- and post-contrast T1-wt, T2-wt images and a diffusion-wt STEAM-sequence were obtained. After MR imaging, the animals were euthenized and the treated tumor and muscle was taken out for histology and functional genomic analysis. In the tumor tissue a slight increase of the diffusion coefficient could be found. In the muscle tissue T2 images showed increased signal intensity and post-contrast T1 showed a decreased contrast uptake in the center and a severe contrast uptake in the surrounding muscle tissue. A significant increase of the diffusion coefficient was found. Gene expression analysis revealed profound changes in the expression levels of 29 genes being up-regulated and 3 genes being down-regulated in the muscle tissue and 31 genes being up-regulated and 15 genes being down-regulated in the SCCVII tumor tissue. Seven genes were up-regulated in both tissue types. The highest up-regulated gene in the tumor and muscle tissue encoded for Mouse histone H2A.1 gene (FC = 13.2 {+-} 20.6) and Apolipoprotein E (FC = 12.8 {+-} 27.4) respectively MHC class III (FC = 83.7 {+-} 67.4) and hsp70 (FC = 75.3 {+-} 85.0). Immunoblot confirmed the presence of HSP70 protein in the muscle tissue. Pulsed HIFU treatment on tumor and muscle tissue results in dramatic changes in gene expression, indicating that the effect of pulsed HIFU is in some regard dependent and also independent of the tissue type.

  17. Midterm Results after Uterine Artery Embolization Versus MR-Guided High-Intensity Focused Ultrasound Treatment for Symptomatic Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Froeling, V., E-mail: vera.froeling@charite.de; Meckelburg, K., E-mail: katrin.meckelburg@charite.de; Scheurig-Muenkler, C., E-mail: christian.scheurig-muenkler@charite.de; Schreiter, N. F., E-mail: nils.schreiter@charite.de; Kamp, J., E-mail: julia.kamp@charite.de; Maurer, M. H., E-mail: martin.maurer@charite.de; Beck, A., E-mail: alexander.beck@charite.de; Hamm, B., E-mail: bernd.hamm@charite.de; Kroencke, T. J., E-mail: Thomas.kroencke@charite.de [Charite-Universitaetsmedizin Berlin, Department of Radiology (Germany)

    2013-12-15

    Purpose: To compare the rate of reintervention and midterm changes in symptom severity (SS) and Total health-related quality of life (HRQoL) scores after uterine artery embolization (UAE) and magnetic resonance-guided high-intensity focused ultrasound (MR-g HIFU) for symptomatic uterine fibroids. Methods: Eighty women (median age 38.3 years), equally eligible for MR-g HIFU and UAE who underwent one of both treatments between 2002 and 2009 at our institution, were included. The primary end point of the study was defined as the rate of reintervention after both therapies. The secondary outcome was defined as changes in SS and Total HRQoL scores after treatment. SS and Total HRQoL scores before treatment and at midterm follow-up (median 13.3 months) were assessed by the uterine fibroid symptom and quality-of-life questionnaire (UFS-QoL) and compared. Results: The rate of reintervention was significantly lower after UAE than after MR-g HIFU (p = 0.002). After both treatments, SS and Total HRQoL scores improved significantly from baseline to follow-up (UAE: p < 0.001, p < 0.001; MR-g HIFU: p = 0.002, p < 0.001). Total HRQoL scores were significantly higher after UAE than after MR-g HIFU (p = 0.032). Changes in the SS scores did not differ significantly for both treatments (p = 0.061). Conclusion: UAE and MR-g HIFU significantly improved the health-related quality of life of women with symptomatic uterine fibroids. After UAE, the change in Total HRQoL score improvement was significantly better, and a significantly lower rate of reintervention was observed.

  18. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L; Chen, X; Cvetkovic, D; Gupta, R; Yang, D; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.

  19. SU-E-J-162: Quality Assurance Procedures for MR Guided Focused Ultrasound Treatment of Bone Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L; Chen, X; Wang, B; Gupta, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: The purpose of this work is to develop and verify our quality assurance (QA) procedures to ensure the safety and efficacy of MR-guided focused ultrasound (MRgFUS) treatment of bone metastases. Methods: A practical QA program was developed. Monthly and daily QA (DQA) procedures were performed. The major QA items included the checks of the machine hardware, software and patient safety features. Briefly, these checks/tests include: 1) the cooling system reservoir and treatment table; 2) power to the treatment table; 3) the MR coil; 4) the transducer position with MRI; 5) image display on the treatment work station; 6) the effective focal spot in 3 directions using MR thermometry; and 7) all the safety devices including a sonication lamp, and the emergency stop-sonication switches. In order to avoid patient skin burn, it is important to remove gas bubbles in the interfaces between the treatment table and the gel pad, and the gel pad and patients skin during the patient setup. Our QA procedures have been verified and evaluated through patient treatments. Seven patients with scapula, humeral head, sacrum, ilium, pubic ramus and acetabular bone metastases were treated using MRgFUS. Results: Our study showed that all seven patients tolerated the MRgFUS treatment well. No skin toxicity or other complications were observed. The pain score (0–10) using the visual analog scale (VAS) was significantly reduced from 8.0 ± 1.1 before treatment to 4.7 ± 3.0, 3.0 ± 1.5, 3.2 ± 2.8 and 3.4 ± 1.5 at one day, one month, two months and three months after the MRgFUS treatment, respectively. Conclusion: We demonstrated that with the appropriate QA procedures, MRgFUS is a safe, effective and noninvasive treatment modality for palliation of bone metastases.

  20. PROMISe trial: a pilot, randomized, placebo-controlled trial of magnetic resonance guided focused ultrasound for uterine fibroids.

    Science.gov (United States)

    Jacoby, Vanessa L; Kohi, Maureen P; Poder, Liina; Jacoby, Alison; Lager, Jeanette; Schembri, Michael; Rieke, Viola; Grady, Deborah; Vittinghoff, Eric; Coakley, Fergus V

    2016-03-01

    To evaluate the feasibility of a full-scale placebo-controlled trial of magnetic resonance-guided focused ultrasound for fibroids (MRgFUS) and obtain estimates of safety and efficacy. Pilot, randomized, placebo-controlled trial. University medical center. Premenopausal women with symptomatic uterine fibroids. Participants randomized in a 2:1 ratio to receive MRgFUS or placebo procedure. change in fibroid symptoms from baseline to 4 and 12 weeks after treatment assessed by the Uterine Fibroid Symptom Quality of Life Questionnaire (UFS-QOL); secondary outcome: incidence of surgery or procedures for recurrent symptoms at 12 and 24 months. Twenty women with a mean age of 44 years (±standard deviation 5.4 years) were enrolled, and 13 were randomly assigned to MRgFUS and 7 to placebo. Four weeks after treatment, all participants reported improvement in the UFS-QOL: a mean of 10 points in the MRgFUS group and 9 points in the placebo group (for difference in change between groups). By 12 weeks, the MRgFUS group had improved more than the placebo group (mean 31 points and 13 points, respectively). The mean fibroid volume decreased 18% in the MRgFUS group with no decrease in the placebo group at 12 weeks. Two years after MRgFUS, 4 of 12 women who had a follow-up evaluation (30%) had undergone another fibroid surgery or procedure. Women with fibroids were willing to enroll in a randomized, placebo-controlled trial of MRgFUS. A placebo effect may explain some of the improvement in fibroid-related symptoms observed in the first 12 weeks after MRgFUS. NCT01377519. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery.

    Directory of Open Access Journals (Sweden)

    Ching-Hsiang Fan

    Full Text Available The use of focused ultrasound (FUS with microbubbles has been proven to induce transient blood-brain barrier opening (BBB-opening. However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and thereby eliminate erythrocyte extravasations in a rat brain model. FUS was delivered with acoustic pressures of 0.1-4.5 MPa using either in-house manufactured submicron bubbles or standard SonoVue microbubbles. Wideband and subharmonic emissions from bubbles were used to quantify inertial and stable cavitation, respectively. Erythrocyte extravasations were evaluated by in vivo post-treatment magnetic resonance susceptibility-weighted imaging, and finally by histological confirmation. We found that excitation of submicron bubbles with resonant frequency-matched FUS (10 MHz can greatly limit inertial cavitation while enhancing stable cavitation. The BBB-opening was mainly caused by stable cavitation, whereas the erythrocyte extravasation was closely correlated with inertial cavitation. Our technique allows extensive reduction of inertial cavitation to induce safe BBB-opening. Furthermore, the safety issue of BBB-opening was not compromised by prolonging FUS exposure time, and the local drug concentrations in the brain tissues were significantly improved to 60 times (BCNU; 18.6 µg versus 0.3 µg by using chemotherapeutic agent-loaded submicron bubbles with FUS. This study provides important information towards the goal of successfully translating FUS brain drug delivery into clinical use.

  2. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.

    Science.gov (United States)

    Xia, Rongmin; Thittai, Arun K

    2014-03-01

    Axial strain elastograms (ASEs) have been found to help visualize sonographically invisible thermal lesions. However, in most studies involving high-intensity focused ultrasound (HIFU)-induced thermal lesions, elastography imaging was performed separately later, after the lesion was formed. In this article, the feasibility of monitoring, in real time, tissue elasticity variation during HIFU treatment and immediately thereafter is explored using quasi-static elastography. Further, in addition to ASEs, we also explore the use of simultaneously acquired axial-shear strain elastograms (ASSEs) for HIFU lesion visualization. Experiments were performed on commercial porcine liver samples in vitro. The HIFU experiments were conducted at two applied acoustic power settings, 35 and 20 W. The experimental setup allowed us to interrupt the HIFU pulse momentarily several different times during treatment to perform elastographic compression and data acquisition. At the end of the experiments, the samples were cut along the imaging plane and photographed to compare size and location of the formed lesion with those visualized on ASEs and ASSEs. Single-lesion and multiple-lesion experiments were performed to assess the contribution of ASEs and ASSEs to lesion visualization and treatment monitoring tasks. At both power settings, ASEs and ASSEs provided accurate location information during HIFU treatment. At the low-power setting case, ASEs and ASSEs provide accurate lesion size in real-time monitoring. Lesion appearance in ASEs and ASSEs was affected by the cavitation bubbles produced at the high-power setting. The results further indicate that the cavitation bubbles influence lesion appearance more in ASEs than in ASSEs. Both ASEs and ASSEs provided accurate size information after a waiting period that allowed the cavitation bubbles to disappear. The results indicate that ASSEs not only improve lesion visualization and size measurement of a single lesion, but, under certain

  3. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  4. Preliminary safety and efficacy results with robotic high-intensity focused ultrasound : A single center Indian experience

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Background : There are no Indian data of high-intensity focused ultrasound (HIFU. Being an alternative, still experimental modality, reporting short-term safety outcome is paramount. Aims : This study was aimed at to assess the safety and short-term outcome in patients with prostate cancer treated by HIFU. Settings and Design : A retrospective study of case records of 30 patients undergoing HIFU between January 2008 to September 2010 was designed and conducted. Materials and Methods : The procedural safety was analyzed at 3 months. Follow-up consisted of 3 monthly prostate-specific antigen (PSA levels and transrectal biopsy if indicated. All the patients had a minimum follow-up of 6 months. Results : A mean prostate volume of 26.9 ± 8.5 cm 3 was treated in a mean time of 115 ± 37.4 min. There was no intraoperative complication. The postoperative pain visual analogue score at day 0 was 2.1 ± 1.9 and at day 1 was 0.4 ± 0.8 on a scale of 1-10. Mean duration of perurethral catheter removal was 3.9 days. The complications after treatment were: LUTS in seven patients, stress incontinence in two, stricture in two, and symptomatic urinary tract infection in five. Average follow-up duration was 10.4 months (range, 6-20 months. Mean time to obtain PSA nadir was 6 ± 3 months with a median PSA nadir value of 0.3 ng/ml. Two patients had positive prostatic biopsy in the localized (high risk group. Conclusions : HIFU was safe in carcinoma prostate patients. The short-term results were efficacious in localized disease. The low complication rates and favorable functional outcome support the planning of further larger studies.

  5. Accelerating Neuronal Aging in In Vitro Model Brain Disorders: a Focus on Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Priscila Britto Campos

    2014-10-01

    Full Text Available In this review, we discuss insights gained through the use of stem cell preparations regarding the modeling of neurological diseases, the need for aging neurons derived from pluripotent stem cells to further advance the study of late-onset adult neurological diseases, and the extent to which mechanisms linked to the mismanagement of ROS. The context of these issues can be revealed using the three disease states of Parkinson’s (PD, Alzheimer’s (AD, and schizophrenia, as considerable insights have been gained into these conditions through the use of stem cells in terms of disease etiologies and the role of oxidative stress. The latter subject is a primary area of interest of our group. After discussing the molecular models of accelerated aging, we highlight the role of ROS for the three diseases explored here. Importantly, we do not seek to provide an extensive account of all genetic mutations for each of the three disorders discussed in this review, but we aim instead to provide a conceptual framework that could maximize the gains from merging the approaches of stem cell microsystems and the study of oxidative stress in disease in order to optimize therapeutics and determine new molecular targets against oxidative stress that spare stem cell proliferation and development.

  6. Damage effect of focused ultrasound on sheep liver and spleen%聚焦超声对羊肝脾组织的损伤效应

    Institute of Scientific and Technical Information of China (English)

    韩艳艳; 王刚; 李芳; 谢军

    2012-01-01

    BACKGROUND: High-intensity focused ultrasound can induce tissue damages.OBJECTIVE: To study the damage effect of focused ultrasound on the tissues of sheep liver and spleen.METHODS: Focused ultrasounds with different intensities and different methods were used to radiate the livers in vivo, livers andspleens in vitro of five sheep. Visual and pathological changes were observed after radiation.RESULTS AND CONCLUSION: The immediate damage of tissues of livers in vitro with focused ultrasound was more severethan the livers in vivo after 1 week of radiation therapy; in therapies with different intensities, the tissue damage of "#" method wasmore severe than "=" method in both in vivo and in vitro sheep livers; no significant damage was observed in sheep spleens invitro with radiation therapies with different intensities and methods; focused ultrasound radiation of III file and "#" method resultedin a great number of hepatic cells with focal degeneration and coagulative necrosis; focused ultrasound radiation of IV file and "#"method on in vivo sheep liver tissues resulted in inflammatory fibrous granulomatous nodules under envelope and coagulativenecrosis in large central areas; focused ultrasound radiation of IV file and "#" method on sheep liver tissues in vitro resulted inscattered hepatic lobule structures in most regions under envelope, significantly expanded hepatic sinus and significantlynarrower hepatic cords, messy and unclear. Focused ultrasound with III file and "#" methods can damage sheep hepatic cellsselectively according to design requirements, and provided experimental basis of treatment of allergic rhinitis.%背景:高强度聚焦超声可引起组织损伤.目的:研究聚焦超声对羊肝脏和羊脾脏组织的损伤效应.方法:用不同强度和不同方法的聚焦超声波辐照5 只羊的体内肝脏、体外肝脏及体外脾脏,观察其辐照后大体及病理学改变.结果与结论:聚焦超声辐照体外羊肝的即刻组

  7. Echocardiography practice, training and accreditation in the intensive care: document for the World Interactive Network Focused on Critical Ultrasound (WINFOCUS

    Directory of Open Access Journals (Sweden)

    Catena Emanuele

    2008-10-01

    Full Text Available Abstract Echocardiography is increasingly used in the management of the critically ill patient as a non-invasive diagnostic and monitoring tool. Whilst in few countries specialized national training schemes for intensive care unit (ICU echocardiography have been developed, specific guidelines for ICU physicians wishing to incorporate echocardiography into their clinical practice are lacking. Further, existing echocardiography accreditation does not reflect the requirements of the ICU practitioner. The WINFOCUS (World Interactive Network Focused On Critical UltraSound ECHO-ICU Group drew up a document aimed at providing guidance to individual physicians, trainers and the relevant societies of the requirements for the development of skills in echocardiography in the ICU setting. The document is based on recommendations published by the Royal College of Radiologists, British Society of Echocardiography, European Association of Echocardiography and American Society of Echocardiography, together with international input from established practitioners of ICU echocardiography. The recommendations contained in this document are concerned with theoretical basis of ultrasonography, the practical aspects of building an ICU-based echocardiography service as well as the key components of standard adult TTE and TEE studies to be performed on the ICU. Specific issues regarding echocardiography in different ICU clinical scenarios are then described. Obtaining competence in ICU echocardiography may be achieved in different ways – either through completion of an appropriate fellowship/training scheme, or, where not available, via a staged approach designed to train the practitioner to a level at which they can achieve accreditation. Here, peri-resuscitation focused echocardiography represents the entry level – obtainable through established courses followed by mentored practice. Next, a competence-based modular training programme is proposed: theoretical

  8. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Ma, Ming; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zhang, Kun; Wang, Qi; Zheng, Shuguang; Wu, Rong; Yao, Minghua; Cai, Xiaojun; Li, Faqi; Shi, Jianlin

    2014-11-19

    The synergistic effect of chemotherapy and ablation using high-intensity focused ultrasound (HIFU) is realized with a newly developed drug-delivery system. The system comprises an ultrathin silica shell surrounding a poly(lactic-co-glycolic acid) nanoemulsion core containing the drug (CPT) and a perfluorocarbon (PFOB). This nanosystem presents many advantages in drug delivery, such as excellent structural stability, high drug-loading capacity, and rapid HIFU-mediated drug release.

  9. Efficacy of focused low-intensity pulsed ultrasound therapy for the management of knee osteoarthritis: a randomized, double blind, placebo-controlled trial

    OpenAIRE

    2016-01-01

    The aim of this study was to investigate the effects of focused low-intensity pulsed ultrasound (FLIPUS) therapy on the functional and health status of patients with knee osteoarthritis (KOA). A total of 106 subjects with bilateral KOA were randomized sequentially into two groups. Group I received FLIPUS + diclofenac sodium, and group II received sham FLIPUS + diclofenac sodium. The therapeutic effects of the interventions were evaluated by measuring changes in VAS pain, the WOMAC scores, and...

  10. Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI

    OpenAIRE

    Vlachos, Fotios; TUNG, YAO-SHENG; Konofagou, Elisa

    2011-01-01

    Blood-brain barrier (BBB) opening using focused ultrasound (FUS) and microbubbles has been experimentally established as a non-invasive and localized brain drug delivery technique. In this study, the permeability of the opening is assessed in the murine hippocampus after the application of FUS at three different acoustic pressures and microbubble sizes. Using DCE-MRI, the transfer rates were estimated, yielding permeability maps and quantitative Ktrans values for a predefined region of intere...

  11. Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI.

    Science.gov (United States)

    Vlachos, Fotios; Tung, Yao-Sheng; Konofagou, Elisa

    2011-09-01

    Blood-brain barrier opening using focused ultrasound and microbubbles has been experimentally established as a noninvasive and localized brain drug delivery technique. In this study, the permeability of the opening is assessed in the murine hippocampus after the application of focused ultrasound at three different acoustic pressures and microbubble sizes. Using dynamic contrast-enhanced MRI, the transfer rates were estimated, yielding permeability maps and quantitative K(trans) values for a predefined region of interest. The volume of blood-brain barrier opening according to the K(trans) maps was proportional to both the pressure and the microbubble diameter. A K(trans) plateau of ∼0.05 min(-1) was reached at higher pressures (0.45 and 0.60 MPa) for the larger sized bubbles (4-5 and 6-8 μm), which was on the same order as the K(trans) of the epicranial muscle (no barrier). Smaller bubbles (1-2 μm) yielded significantly lower permeability values. A small percentage (7.5%) of mice showed signs of damage under histological examination, but no correlation with permeability was established. The assessment of the blood-brain barrier permeability properties and their dependence on both the pressure and the microbubble diameter suggests that K(trans) maps may constitute an in vivo tool for the quantification of the efficacy of the focused ultrasound-induced blood-brain barrier opening.

  12. Tandem focused ultrasound (TFU) combined with fast furnace analysis as an improved methodology for total mercury determination in human urine by electrothermal-atomic absorption spectrometry.

    Science.gov (United States)

    Capelo, J L; Dos Reis, C D; Maduro, C; Mota, A

    2004-09-01

    A new sample preparation procedure based on tandem (that is, different diameter probe sonicators used in the same sample treatment) focused ultrasound (TFU) for mercury separation, preconcentration and back-extraction in aqueous solution from human urine has been developed. The urine is first oxidized with KMnO(4)/HCl/focused ultrasound (6mm probe). Secondly, the mercury is extracted and preconcentrated with dithizone and cyclohexane. Finally, the mercury is back-extracted and preconcentrated again with the aid of focused ultrasound (3mm probe). The procedure allows determining mercury by electrothermal atomic absorption spectrometry with fast furnace analysis and calibration against aqueous standards. Matrix modification is provided by the chemicals used in the sample treatment. The procedure is accomplished with low sample volume (8.5ml). Low volume and low concentration reagents are used. The sample treatment is rapid (less than 3min per sample) and avoids the use of organic phase in the graphite furnace. The preconcentration factor used in this work was 14. The limit of detection and the limit of quantification in urine were, respectively, 0.27 and 0.9mugl(-1). The relative standard deviation of aqueous standards (n=10) was 4% for a concentration of 100mugl(-1) and 5% for a concentration of 400mugl(-1). Recoveries from spiked urine with inorganic mercury, methyl-mercury, phenyl-mercury and diphenyl-mercury ranged from 86 to 98%.

  13. Targeting accuracy and closing timeline of the microbubble-enhanced focused ultrasound blood-brain barrier opening in non-human primates

    Science.gov (United States)

    Marquet, Fabrice; Tung, Yao-Sheng; Teichert, Tobias; Wu, Shih-Ying; Wang, Shutao; Downs, Matthew; Ferrera, Vincent P.; Konofagou, Elisa E.

    2012-11-01

    The delivery of drugs to specific neural targets faces two fundamental problems: Most drugs do not cross the blood-brain barrier and those that do spread to all parts of the brain. To date there exists only one non-invasive methodology with the potential to solve these problems: selective blood-brain barrier disruption using micro-bubble enhanced focused ultrasound. We have recently developed a single-element 500 kHz spherical transducer ultrasound setup for use in the non-human primate. Using this system for selective blood-brain barrier disruption is technically no more challenging than positioning a TMS coil, and does not rely on MRI-guided targeting or expensive phased array ultrasound systems. So far, however, the targeting accuracy that can be achieved with this system has not been quantified systematically. Here we tested the accuracy of the system by targeting the caudate nucleus of the basal ganglia in two macaque monkeys. Our results show that average in-plane error of the system is on the order of 2 mm and targeting error in depth, i.e., along the ultrasound path, is even smaller and averaged 1.2 mm. In summary, targeting accuracy of our system is good enough to enable the selective delivery of drugs to specific sub-structures of the basal ganglia.

  14. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer.

    Science.gov (United States)

    Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E

    2015-09-01

    Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.

  15. Duplex ultrasound

    Science.gov (United States)

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  16. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment

    Institute of Scientific and Technical Information of China (English)

    Maythem Saeed; Roland Krug; Loi Do; Steven W Hetts; Mark W Wilson

    2016-01-01

    AIM: To use magnetic resonance-guided high intensity focused ultrasound(MRg-HIFU), magnetic resonance imaging(MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. METHODS: Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication(n = 24) using a 3T-MRg-HIFU(1.1 MHz frequency and 3000J-4400 J energies). T2-weighted fast spin echo(T2-W), perfusion saturation recovery gradient echo and contrast enhanced(CE) T1-weighted(T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student’s t-test was used and a P-value < 0.05 was considered statistically significant.RESULTS: Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or nonCE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images invivo(0.12-0.36 cm3 for single sonication 3000 J, 0.50-0.84 cm3, for double 3000 J, 0.75-0.78 cm3 for single 4400 J and 0.12-2.65 cm3 for double 4400J) and at postmortem(0.23-0.52 cm3, 0.25-0.82 cm3, 0.45-0.68 cm3 and 0.29-1.80 cm3, respectively) were comparable. The ablated volumes on 3000 J and 4400 J double sonication were significantly larger than single(P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively.CONCLUSION: Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  17. Preclinical evaluation of a low-frequency transcranial MRI-guided focused ultrasound system in a primate model

    Science.gov (United States)

    McDannold, Nathan; Livingstone, Margaret; Barış Top, Can; Sutton, Jonathan; Todd, Nick; Vykhodtseva, Natalia

    2016-11-01

    This study investigated thermal ablation and skull-induced heating with a 230 kHz transcranial MRI-guided focused ultrasound (TcMRgFUS) system in nonhuman primates. We evaluated real-time acoustic feedback and aimed to understand whether cavitation contributed to the heating and the lesion formation. In four macaques, we sonicated thalamic targets at acoustic powers of 34-560 W (896-7590 J). Tissue effects evaluated with MRI and histology were compared to MRI-based temperature and thermal dose measurements, acoustic emissions recorded during the experiments, and acoustic and thermal simulations. Peak temperatures ranged from 46 to 57 °C, and lesions were produced in 5/8 sonicated targets. A linear relationship was observed between the applied acoustic energy and both the focal and brain surface heating. Thermal dose thresholds were 15-50 cumulative equivalent minutes at 43 °C, similar to prior studies at higher frequencies. Histology was also consistent with earlier studies of thermal effects in the brain. The system successfully controlled the power level and maintained a low level of cavitation activity. Increased acoustic emissions observed in 3/4 animals occurred when the focal temperature rise exceeded approximately 16 °C. Thresholds for thermally-significant subharmonic and wideband emissions were 129 and 140 W, respectively, corresponding to estimated pressure amplitudes of 2.1 and 2.2 MPa. Simulated focal heating was consistent with the measurements for sonications without thermally-significant acoustic emissions; otherwise it was consistently lower than the measurements. Overall, these results suggest that the lesions were produced by thermal mechanisms. The detected acoustic emissions, however, and their association with heating suggest that cavitation might have contributed to the focal heating. Compared to earlier work with a 670 kHz TcMRgFUS system, the brain surface heating was substantially reduced and the focal heating was higher with this

  18. Enhancing tissue permeability with MRI guided preclinical focused ultrasound system in rabbit muscle: From normal tissue to VX2 tumor.

    Science.gov (United States)

    Sun, Yao; Xiong, Xiaobing; Pandya, Darpan; Jung, Youngkyoo; Mintz, Akiva; Hayasaka, Satoru; Wadas, Thaddeus J; Li, King C P

    2017-06-28

    High Intensity Focused Ultrasound (HIFU) is an emerging noninvasive, nonionizing physical energy based modality to ablate solid tumors with high power, or increase local permeability in tissues/tumors in pulsed mode with relatively low power. Compared with traditional ablative HIFU, nondestructive pulsed HIFU (pHIFU) is present in the majority of novel applications recently developed for enhancing the delivery of drugs and genes. Previous studies have demonstrated the capability of pHIFU to change tissue local permeability for enhanced drug delivery in both mouse tumors and mouse muscle. Further study based on bulk tissues in large animals and clinical HIFU system revealed correlation between therapeutic effect and thermal parameters, which was absent in the previous mouse studies. In this study, we further investigated the relation between the therapeutic effect of pHIFU and thermal parameters in bulky normal muscle tissues based on a rabbit model and a preclinical HIFU system. Correlation between therapeutic effect and thermal parameters was confirmed in our study on the same bulk tissues although different HIFU systems were used. Following the study in bulky normal muscle tissues, we further created bulky tumor model with VX2 tumors implanted on both hind limbs of rabbits and investigated the feasibility to enhance tumor permeability in bulky VX2 tumors in a rabbit model using pHIFU technique. A radiolabeled peptidomimetic integrin antagonist, (111)In-DOTA-IA, was used following pHIFU treatment in our study to target VX2 tumor and serve as the radiotracer for follow-up single-photon emission computed tomography (SPECT) scanning. The results have shown significantly elevated uptake of (111)In-DOTA-IA in the area of VX2 tumors pretreated by pHIFU compared with the control VX2 tumors not being pretreated by pHIFU, and statistical analysis revealed averaged 34.5% enhancement 24h after systematic delivery of (111)In-DOTA-IA in VX2 tumors pretreated by pHIFU compared

  19. An Experimental Study of High Intensity Focused Ultrasound on Pig's Pancreas and the Early Clinical Experience on Pancreatic Cancer

    Science.gov (United States)

    Xiong, LiuLin; Huang, XiaoBo; Yao, SongSen; Yu, JinSheng; Hwang, JooHa; Fei, XingBo; Yu, QiuHong; Xue, WeiCheng; Zheng, ZhuYing; Wang, XiaoFeng

    2007-05-01

    Objective: To investigate the feasibility and safety of high intensity focused ultrasound (HIFU) treatment of in vivo pig pancreases, and to evaluate the safety and efficacy of HIFU in the clinical treatment of pancreatic cancer in humans. Methods: HIFU was performed in 12 domestic pig pancreases in vivo with varying acoustic energies. The safety of HIFU treatments was assessed by necropsy. The pathology and microstructure of the treated pancreases were evaluated using standard histology and transmission electron microscopy. Following the animal studies 62 patients with advanced pancreas cancer were treated with 250 - 420 W of acoustic power. There were 3 patients with stage II, 23 patients with stage III, and 36 patients with stage IV disease. Results: In animal studies, precise regions of coagulation necrosis were identified on pathology in 8 specimens that were treated with 420 W or 645 W acoustic power. Treatment effects were unable to be identified in 4 specimens treated with 300˜340 W acoustic power; however, damages to the cells microstructure and apoptosis were identified on electron microscopy. Damage to the stomach and colon were seen in some animals treated with 645 W. In the clinical treatments in humans the following were seen: local tumor control: complete response (CR) 0%, partial response (PR) 17.7%, no change (NC) 54.8%, progressive disease (PD) 27.5%. Pain relief was achieved in 87.1% of patients. The median survival for stage II and III patients was 11.2 months and median survival for stage IV patients was 5.6 months. The total median survival was 8.6 months. The survival rate at 1 year was as follows: stage II and III 42.3%, stage IV 5.6%. The survival rate at 2 years was as follows: stage II and III 15.4%, stage IV 0%. There were no severe complications or adverse events related to HIFU therapy seen in any of the patients treated. Conclusions: This study supports the feasibility of HIFU in the treatment of pancreatic cancer. The clinical

  20. Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver.

    Science.gov (United States)

    Kim, Young-Sun; Park, Min Jung; Rhim, Hyunchul; Lee, Min Woo; Lim, Hyo Keun

    2014-07-01

    The purposes of this study were to assess the widths of the intercostal spaces of the right inferior human rib cage through which high-intensity focused ultrasound therapy would be applied for treating liver cancer and to elucidate the demographic factors associated with intercostal space width. From March 2013 to June 2013, the widths of the intercostal spaces and the ribs at six areas of the right inferior rib cage (area 1, lowest intercostal space on anterior axillary line and the adjacent upper rib; area 2, second-lowest intercostal space on anterior axillary line and the adjacent upper rib; areas 3 and 4, lowest and second-lowest spaces on midaxillary line; areas 5 and 6, lowest and second-lowest spaces on posterior axillary line) were sonographically measured in 466 patients (214 men, 252 women; mean age, 53.0 years) after an abdominal sonographic examination. Demographic factors and the presence or absence of chronic liver disease were evaluated by multivariate analysis to investigate which factors influence intercostal width. The width of the intercostal space was 19.7 ± 3.7 mm (range, 9-33 mm) at area 1, 18.3 ± 3.4 mm (range, 9-33 mm) at area 2, 17.4 ± 4.0 mm (range, 7-33 mm) at area 3, 15.4 ± 3.5 mm (range, 5-26 mm) at area 4, 17.2 ± 3.7 mm (range, 7-28 mm) at area 5, and 14.5 ± 3.6 mm (range, 4-26 mm) at area 6. The corresponding widths of the ribs were 15.2 ± 2.3 mm (range, 8-22 mm), 14.5 ± 2.3 mm (range, 9-22 mm), 13.2 ± 2.0 mm (range, 9-20), 14.3 ± 2.2 mm (range, 9-20 mm), 15.0 ± 2.2 mm (range, 10-22 mm), and 15.1 ± 2.3 mm (range, 8-21 mm). Only female sex was significantly associated with the narrower intercostal width at areas 1, 2, 3, and 5 (regression coefficient, 1.124-1.885; p = 0.01-0.04). There was substantial variation in the widths of the intercostal spaces of the right inferior rib cage such that the anterior and inferior aspects of the intercostal space were relatively wider. Women had significantly narrower intercostal spaces

  1. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    Science.gov (United States)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  2. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    Science.gov (United States)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  3. Accelerate!

    Science.gov (United States)

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  4. The 2nd Order Focusing by Energy for TOF Sector Field Mass Analyzer with an Orthogonal Acceleration: Theory, Modeling, Experiment

    Science.gov (United States)

    Poteshin, S. S.; Chernyshev, D. M.; Sysoev, Alexey A.; Sysoev, Alexander A.

    Currently axially symmetric type of analyzer with an electrostatic sector fields (AESF) is rarely used to construct time-of-flight mass spectrometers. The main drawback, hindering the wider use of the analyzers of this type, is the lack of chromatic second-order focusing by energy. However, the configuration of AESF in combination with orthogonal accelerator (OA) allows to achieved it through compensation of energy aberrations of the analyzer in the system of orthogonal input of the ion beam. In the presented work the results of theoretical calculation, simulation and experimentally obtained data are compared. Characteristics of the analyzer with OA in a large extent depend on the parameters of the incoming ion beam. Data of modeling the 2nd stage of gas-dynamic interface, which have the greatest influence on the parameters of the ion beam, is provided.

  5. Laser energized traveling wave accelerator - a novel scheme for simultaneous focusing, energy selection and post-acceleration of laser-driven ions

    Science.gov (United States)

    Kar, Satyabrata

    2015-11-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  6. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  7. Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain

    Science.gov (United States)

    Aryal, Muna

    The physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8+/-0.5 microg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 microl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly

  8. Evaluation of three-dimensional temperature distributions produced by a low-frequency transcranial focused ultrasound system within ex vivo human skulls.

    Science.gov (United States)

    McDannold, Nathan; Park, Eun-Joo; Mei, Chang-Sheng; Zadicario, Eyal; Jolesz, Ferenc

    2010-09-01

    Transcranial MR-guided focused ultrasound (TcMRgFUS) provides a potential noninvasive alternative to surgical resection and for other treatments for brain disorders. Use of low-frequency ultrasound provides several advantages for TcMRgFUS, but is potentially limited by reflection and standing wave effects that may cause secondary hotspots within the skull cavity. The purpose of this work was to use volumetric magnetic resonance temperature imaging (MRTI) and ex vivo human skulls filled with tissue-mimicking phantom material to search for heating distant from the focal point that may occur during sonication with a TcMRgFUS system as a result of reflections or standing wave effects. Heating during 120-s sonications was monitored within the entire skull volume for 12 different locations in two different skulls. The setup used a hemispheric array operating at 220 kHz. Multiple sonications were delivered at each location while varying the MRTI slice positions to provide full coverage of the skull cavity. An automated routine was used evaluate the MRTI to detect voxel regions that appeared to be heated by ultrasound. No secondary hotspots with a temperature rise of 15% or more of the focal heating were found. The MRTI noise level prevented the identification of possible hotspots with a lower temperature rise. These results suggest that significant secondary heating by this TcMRgFUS system at points distant from the focal point are not common.

  9. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    Science.gov (United States)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  10. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach

    Science.gov (United States)

    Singh, Mithun Kuniyil Ajith; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2017-01-01

    Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts. These artifacts cause difficulties in the interpretation of images and reduce contrast and imaging depth. We recently developed a method called PAFUSion (photoacoustic-guided focused ultrasound) to circumvent the problem of reflection artifacts in photoacoustic imaging. We already demonstrated that the photoacoustic signals can be backpropagated using synthetic aperture pulse-echo data for identifying and reducing reflection artifacts in vivo. In this work, we propose an alternative variant of PAFUSion in which synthetic backpropagation of photoacoustic signals is based on multi-angled plane-wave ultrasound measurements. We implemented plane-wave and synthetic aperture PAFUSion in a handheld ultrasound/photoacoustic imaging system and demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on a human finger using both approaches. Our results suggest that, while both approaches are equivalent in terms of artifact reduction efficiency, plane-wave PAFUSion requires less pulse echo acquisitions when the skin absorption is the main cause of reflection artifacts. PMID:28736669

  11. A novel sound-blocking structure based on the muffler principle for rib-sparing transcostal high-intensity focused ultrasound treatment.

    Science.gov (United States)

    Chao, Yu-Tin; Hsu, Che-Jung; Yu, Ya-Lin; Yen, Jia-Yush; Ho, Ming-Chih; Chen, Yung-Yaw; Chang, Hung-Cheng; Lian, Feng-Li

    2015-01-01

    The main challenge in transcostal high-intensity focused ultrasound therapy is minimising heat deposition in the ribs while ensuring that a sufficient dose is delivered to the target region. Current approaches rely on expensive multichannel phased-array systems to turn the individual transducer on and off according to either geometrical arrangements or complicated wave calculations. To protect the ribs from heating, the ultrasound energy must not only not reach the ribs, but must also not accumulate in front of the ribs. The research in this paper proposes a different approach, of attaching a sound-blocking structure in front of the rib cage with similar effects to those of an engine exhaust muffler. The sound-blocking structure is based on the muffler principle to prevent ultrasound energy from reaching the ribs and reduce the amount of energy reflected back to the applicator. Finite element simulations with a 0.5-MHz transducer of the overall sound fields and temperature distribution showed that the ultrasound pressure and energy level would decrease behind the novel sound-blocking structures, thereby resulting in a lower temperature at the ribs than at the tumour. Without the protecting structure, the rib temperature reached 104.19 °C whereas with the structure it reached only 37.86 °C. An experimental set-up using porcine ribs with a phantom was also developed to validate the concept, which showed that the rib temperature reached 73 °C without protection within 1 min of ablation time whereas it reached 36.5 °C with the device. The tumour region in the tests reached 51 °C and 49 °C with and without protection, respectively.

  12. Influence of Accelerated Solvent Extraction and Ultrasound-Assisted Extraction on the Anthocyanin Profile of Different Vaccinium Species in the Context of Statistical Models for Authentication.

    Science.gov (United States)

    Heffels, Peter; Weber, Fabian; Schieber, Andreas

    2015-09-02

    Anthocyanins are frequently discussed as marker compounds for fruit product authenticity. Proper analysis including sample preparation for the determination of anthocyanin concentrations is crucial for the comparability of authenticity data. The present study determined the influence of accelerated solvent extraction (ASE) and ultrasound-assisted extraction (UAE), using two different solvent compositions on the anthocyanin profile of bilberries (Vaccinium myrtillus L.), lowbush blueberries (Vaccinium angustifolium Ait.), and American cranberries (Vaccinium macrocarpon Ait.). Besides differences in total anthocyanin concentrations in the extracts, significant deviations (p ≤ 0.05) in the individual anthocyanin concentration were observed, resulting in differing anthocyanin proportions. Linear discriminant analysis comparing the differences caused by the extraction method to the natural differences within a set of 26 bilberry and lowbush blueberry samples of different origins was conducted. It revealed that profile variations induced by the extraction methods are in a similar scale to profile variations as a result of geographic and climatic differences.

  13. Pondermotive acceleration of electrons to GeV energies by a tightly focused ultra-short ultra-intense laser pulse

    Science.gov (United States)

    Tian, Youwei; Yu, Wei; Lu, Peixiang; He, Feng; Xu, Han

    2005-12-01

    Laser-driven pondermotive acceleration of electrons in vacuum has been considered using computer simulations. It is demonstrated that a low-energy free electron can be violently accelerated to final kinetic energy of GeV by a tightly focused ultra-short ultra-intense laser pulse. Suitable conditions that are crucial for this phenomenon to occur have been investigated. It is shown that selection of appropriate initial conditions like relative time delay between electron and the laser pulse, electron's incident angle and momentum, laser pulse duration and its focal spot size play important roles in the efficient acceleration scheme.

  14. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo

    Science.gov (United States)

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-04-01

    The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2  =  0.81, slope  =  0.90), width (r 2  =  0.85, slope  =  1.12) and area (r 2  =  0.58, slope  =  0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  16. Feedback control of temperature evolution in rabbit kidney in vivo using MRI guided focused ultrasound. Application to renal VX2 carcinoma ablation

    Science.gov (United States)

    Delemazure, A. S.; Salomir, R.; Grenier, N.; Palussière, J.; Deminière, C.; Mougenot, C.; Moonen, C. W.

    2005-03-01

    A significant number of patients with small renal tumours may get benefit from in situ thermo-ablation techniques. Focused ultrasound is a non-invasive approach which offers excellent flexibility. On the other hand, real time MR thermometry is a valuable tool for monitoring and controlling therapy. In this study, coupling of focused ultrasound with PRF-based, respiratory-gated MR thermometry was used to provide temperature feedback control for local hyperthermia in the rabbit kidney. Two heating protocols were initially used in healthy kidneys (medulla and cortex): 1. fixed focal point heating; 2. spiral trajectories of the focal point. Further, five VX2 renal carcinomas were treated with multiple focal point heating in each tumour. Post-treatment MRI follow up and post mortem histology were performed. The shape and size of the lesions (MRI, histology) were compared to the calculated thermal dose map. The standard deviation of the MR thermometry ranged from 0.5°C to 1°C. The temperature controller matched the objective curve with approximately 1°C precision (fixed focal point mode). Several technical and physiological difficulties for spiral heating could not be overcome with the available setup. Thermal ablation with temperature feedback control in healthy and tumour bearing kidney was demonstrated to be feasible and effective, despite specific challenges (deep seated organ, respiratory motion, high blood perfusion).

  17. Optimisation and characterisation of marihuana extracts obtained by supercritical fluid extraction and focused ultrasound extraction and retention time locking GC-MS.

    Science.gov (United States)

    Omar, Jone; Olivares, Maitane; Alzaga, Mikel; Etxebarria, Nestor

    2013-04-01

    The optimisation of focused ultrasound extraction and supercritical fluid extraction of volatile oils and cannabinoids from marihuana has been accomplished by experimental design approach. On the one hand, the focused ultrasound extraction method of volatile compounds and cannabinoids was studied based on the optimisation of cyclohexane and isopropanol solvent mixtures, and the instrumental variables. The optimal working conditions were finally fixed at isopropanol/cyclohexane 1:1 mixture, cycles (3 s(-1)), amplitude (80%) and sonication time (5 min). On the other hand, the supercritical fluid extraction method was optimised in order to obtain a deterpenation of the plant and a subsequent cannabinoid extraction. For this purpose, pressure, temperature, flow and co-solvent percentage were optimised and the optimal working conditions were set at 100 bar, 35°C, 1 mL/min, no co-solvent for the terpenes and 20% of ethanol for the cannabinoids. Based on the retention time locking GC-MS analysis of the supercritical fluid extracts the classification of the samples according to the type of plant, the growing area and season was attained. Finally, three monoterpenes and three cannabinoids were quantified in the ranges of 0.006-6.2 μg/g and 0.96-324 mg/g, respectively.

  18. Comparative study of temperature measurements in ex vivo swine muscle and a tissue-mimicking material during high intensity focused ultrasound exposures

    Science.gov (United States)

    Maruvada, S.; Liu, Y.; Pritchard, W. F.; Herman, B. A.; Harris, G. R.

    2012-01-01

    Tissue-mimicking materials (TMMs) can provide a convenient, stable, and reproducible means for testing high intensity focused ultrasound (HIFU) devices. When TMMs containing thermal sensors are used to measure ultrasound-induced temperature rise, it is important that measurement results reasonably represent those that occur in biological tissue. Therefore the aim of this paper is to compare the thermal behavior of the TMM under HIFU exposure to that of ex vivo tissue. This was accomplished using both a previously developed TMM and fresh ex vivo swine muscle that were instrumented with bare 50 µm thin wire thermocouples. HIFU at 825 kHz was focused at the thermocouple junction. 30 s exposures of increasing peak negative pressure (1 to 5 MPa) were applied and the temperature profile during and after sonication was recorded. B-mode imaging was used to monitor bubble activity during sonication. If bubble formation was noted during the sonication, the sonication was repeated at the same pressure levels two more times at 20 min intervals. Temperature traces obtained at various pressure levels demonstrated similar types of heating profiles in both the tissue and TMM, the exact nature of which depended on whether bubbles formed during the HIFU exposure. The onset of bubble activity occurred at lower ultrasonic pressures in the TMM, but the basic temperature rise features due to HIFU exposure were essentially the same for both materials.

  19. Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating.

    Science.gov (United States)

    Ta, Terence; Bartolak-Suki, Elizabeth; Park, Eun-Joo; Karrobi, Kavon; McDannold, Nathan J; Porter, Tyrone M

    2014-11-28

    Thermosensitive liposomes have emerged as a viable strategy for localized delivery and triggered release of chemotherapy. MR-guided focused ultrasound (MRgFUS) has the capability of heating tumors in a controlled manner, and when combined with thermosensitive liposomes can potentially reduce tumor burden in vivo. However, the impact of this drug delivery strategy has rarely been investigated. We have developed a unique liposome formulation modified with p(NIPAAm-co-PAA), a polymer that confers sensitivity to both temperature and pH. These polymer-modified thermosensitive liposomes (PTSL) demonstrated sensitivity to focused ultrasound, and required lower thermal doses and were more cytotoxic than traditional formulations in vitro. A set of acoustic parameters characterizing optimal release from PTSL in vitro was applied in the design of a combined MRgFUS/PTSL delivery platform. This platform more effectively reduced tumor burden in vivo when compared to free drug and traditional formulations. Histological analysis indicated greater tumor penetration, more extensive ECM remodeling, and greater cell destruction in tumors administered PTSL, correlating with improved response to the therapy.

  20. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lian; Chen Wenzhi [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Liu Yinjiang; Hu Xiao [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Zhou Kun [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Chen Li [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Peng Song; Zhu Hui [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Zou Huiling [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Bai Jin [Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China); Wang Zhibiao [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China)], E-mail: wangzhibiao@haifu.com.cn

    2010-02-15

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 {+-} 6.9 (20-49) years, with fibroids average measuring 6.0 {+-} 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 {+-} 78.3 (range, 12.7-318.3) cm{sup 3}. According to the treatment plan, an average 75.0 {+-} 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 {+-} 93.1 (range, 11.9-389.6) cm{sup 3}, slightly enlarged because of edema. The average non-perfused volume was 83.3 {+-} 71.7 (range, 7.7-282.9) cm{sup 3}, the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 {+-} 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 {+-} 29.3% (range, -1.9 to 60

  1. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  2. Magnetic resonance guided focused ultrasound surgery of uterine fibroids-The tissue effects of GnRH agonist pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smart, O.C. [Department of Academic Obstetrics and Gynaecology, St. Mary' s Hospital and Imperial College School of Medicine, Praed Street, London W2 1NY (United Kingdom); Department of Magnetic Resonance Imaging, St. Mary' s Hospital and Imperial College School of Medicine, Praed Street, London W2 1NY (United Kingdom); Hindley, J.T. [Department of Academic Obstetrics and Gynaecology, St. Mary' s Hospital and Imperial College School of Medicine, Praed Street, London W2 1NY (United Kingdom); Regan, L. [Department of Academic Obstetrics and Gynaecology, St. Mary' s Hospital and Imperial College School of Medicine, Praed Street, London W2 1NY (United Kingdom); Gedroyc, W.M.W. [Department of Magnetic Resonance Imaging, St. Mary' s Hospital and Imperial College School of Medicine, Praed Street, London W2 1NY (United Kingdom)]. E-mail: w.gedroyc@imperial.ac.uk

    2006-08-15

    Objective: The purpose of this study was to determine the ablative effect of magnetic resonance guided focused ultrasound (MRgFUS) on fibroid tissue following the administration of gonadotrophin releasing hormone (GnRH) agonist. Study design: Fifty women with clinically symptomatic uterine fibroids were treated. Those with uterine diameter of 10 cm or greater were given 3 months pre-treatment with GnRH agonists. Data regarding number of ultrasound sonications, Joules of energy delivered and volume of thermal destruction was recorded. Results: Twenty-seven subjects were given GnRH agonist therapy before MRgFUS and 23 women underwent MRgFUS without pre-treatment. All patients in both study groups completed MR guided FUS as an outpatient procedure with no device related adverse events reported. In the group of women who received GnRH agonists, the volume of ablation was significantly larger than that in the control group (0.06 cm{sup 3} versus 0.03 cm{sup 3}, P < 0.05), per Joule of energy applied. Conclusion: The use of GnRH agonists potentiates the thermal effects of MRgFUS in women undergoing treatment of uterine fibroids.

  3. Modulation of the interstitial fluid pressure by high intensity focused ultrasound as a way to alter local fluid and solute movement: insights from a mathematical model.

    Science.gov (United States)

    Sassaroli, E; O'Neill, B E

    2014-11-21

    High intensity focused ultrasound (HIFU) operated in thermal mode has been reported to reduce interstitial fluid pressure and improve the penetration of large macromolecules and nanoparticles in tumor and normal tissue. Little is understood about how the interstitial fluid pressure and velocity as well as the interstitial macromolecule transport are affected by HIFU exposure. A mathematical model is presented here which sheds light on the initial biophysical changes brought about HIFU. Our continuum model treats tissue as an effective poro-elastic material that reacts to elevated temperatures with a rapid drop in interstitial elastic modulus. Using parameters from the literature, the model is extrapolated to derive information on the effect in tumors, and to predict its impact on the convective and diffusive transport of macromolecular drugs. The model is first solved using an analytical approximation with step-wise changes at each boundary, and then solved numerically starting from a Gaussian beam approximation of the ultrasound treatment. Our results indicate that HIFU causes a rapid drop in interstitial fluid pressure that may be exploited to facilitate convection of macromolecules from vasculature to the exposed region. However, following a short recovery period in which the interstitial fluid pressure is normalized, transport returns to normal and the advantages disappear over time. The results indicate that this effect is strongest for the delivery of large molecules and nanoparticles that are in the circulation at the time of treatment. The model may be easily applied to more complex situations involving effects on vascular permeability and diffusion.

  4. Combination of high-intensity focused ultrasound irradiation and hydroxyapatite nanoparticle injection to injure normal goat liver tissue in vivo without costal bone incision.

    Science.gov (United States)

    Liu, L; Xiao, Z; Xiao, Y; Wang, Z; Li, F; Li, M; Peng, X

    2014-10-20

    The aims of this study were to evaluate the in vivo safety of intravenous nano-hydroxyapatite (nano-HA), to explore how nano-HA might influence the effects of high-intensity focused ultrasound (HIFU) on normal liver tissue, and to investigate whether intravenous nano-HA could enhance HIFU for hepatocellular carcinoma ablation in a goat model. The present study, for the first time, indicated that the delivery of abundant nano-HA into the body over short periods of time could be assembled by the hepatic reticuloendothelial system, subsequently leading to a rapid rise of ultrasound-induced overheating, and ultimately resulting in enlargement of the coagulation necrotic area for ablated hepatocellular carcinoma in goats both in vivo and ex vivo. On the other hand, therapeutic doses of nano-HA were much lower than the lethal dose, and consequently presented transient and mild abnormalities of hepatic enzymes and renal function during the first 24 h after nano-HA injection. These results suggested that the combined application of nano-HA and HIFU is potentially a more effective alternative option compared to surgery for hepatocellular carcinoma local ablation in a safe and feasible manner.

  5. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery.

    Science.gov (United States)

    Fan, Ching-Hsiang; Ting, Chien-Yu; Chang, Yuan-Chih; Wei, Kuo-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2015-03-01

    Focused ultrasound (FUS) with microbubbles has been used to achieve local blood-brain barrier opening (BBB opening) and increase the penetration of therapeutic drugs into brain tumors. However, inertial cavitation of microbubbles during FUS-induced BBB opening causes intracerebral hemorrhaging (ICH), leading to acute and chronic brain injury and limiting the efficiency of drug delivery. Here we investigated whether induction of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded bubbles (BCNU bubbles) to oscillate at their resonant frequency would reduce inertial cavitation during BBB opening, thereby eliminating ICH and enhancing drug delivery in a rat brain model. FUS was tested at 1 and 10 MHz, over a wide range of pressure (mechanical index ranging from 0.16 to 1.42) in the presence of BCNU bubbles. Excitation of BCNU bubbles by resonance frequency-matched FUS (10 MHz) resulted in predominantly stable cavitation and significantly reduced the occurrence of potential hazards of exposure to biological tissues during the BBB opening process. In addition, the drug release process could be monitored by acoustic emission obtained from ultrasound imaging. In tumor-bearing animals, BCNU bubbles with FUS showed significant control of tumor progression and improved maximum survival from 26 to 35 days. This study provides useful advancements toward the goal of successfully translating FUS theranostic bubble-enhanced brain drug delivery into clinical use.

  6. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  7. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  8. Obstetrical Ultrasound

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures ... limitations of Obstetrical Ultrasound Imaging? What is Obstetrical Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  9. Prostate Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves ... the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and ...

  10. Musculoskeletal Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Musculoskeletal Ultrasound imaging uses sound waves to produce ... Ultrasound Imaging of the Musculoskeletal System? What is Ultrasound Imaging of the Musculoskeletal System? Ultrasound is safe ...

  11. Ultrasound - Scrotum

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Scrotum Ultrasound imaging of the scrotum uses sound ... of Ultrasound Imaging of the Scrotum? What is Ultrasound Imaging of the Scrotum? Ultrasound imaging of the ...

  12. Ultrasound -- Vascular

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate ... the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces pictures ...

  13. Hip Ultrasound

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures ... of Ultrasound Imaging of the Hip? What is Ultrasound Imaging of the Hip? Ultrasound images of the ...

  14. Ultrasound -- Vascular

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate the ... are the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces ...

  15. High-Intensity Focused Ultrasound (HIFU) Using Sonablate® Devices for the Treatment of Benign Prostatic Hyperplasia and Localized Prostate Cancer: 18-year experience

    Science.gov (United States)

    Uchida, Toyoaki

    2011-09-01

    From 1993 to 2010, we have treated 156 patients benign prostatic hyperplasia (BPH) and 1,052 patients localized prostate cancer high-intensity focused ultrasound (HIFU). Four different HIFU devices, SonablateR-200, SonablateR-500, SonablateR-500 version 4 and Sonablate® TCM, have been used for this study. Clinical outcome of HIFU for BPH did not show any superior effects to transurethral resection of the prostate, laser surgery or transurethral vapolization of the prostate. However, HIFU appears to be a safe and minimally invasive therapy for patients with localized prostate cancer, especially low- and intermediate-risk patients. The rate of clinical outcome has significantly improved over the years due to technical improvements in the device.

  16. In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monit