WorldWideScience

Sample records for absorption model analysis

  1. and three-dimensional models for analysis of optical absorption in ...

    Indian Academy of Sciences (India)

    Unknown

    The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near ... Optical band gap; two- and three-dimensional; optical absorption. 1. ..... ssion, New Delhi, in the form of a research project is.

  2. A model for analysis and design of H2O-LiBr absorption heat pumps

    International Nuclear Information System (INIS)

    Bakhtiari, Bahador; Fradette, Louis; Legros, Robert; Paris, Jean

    2011-01-01

    An experimental and simulation analysis of a laboratory single-stage H 2 O-LiBr absorption heat pump with a cooling capacity of 14 kW has been performed. Design characteristics of the machine are given and experimental results obtained from the variation of the five most influential parameters are presented. The machine performance, as described by the coefficient of performance (COP) and cooling capacity was then measured at different flow rates and temperatures of the external cool and hot water loops and for different temperatures of produced chilled water. A design and dimensioning model of H 2 O-LiBr absorption heat pumps was developed. First, the steady-state simulation results of the model were compared with experimental measurements. Close agreement between experimental and simulation results was found. Results also show that the heat pump can adequately operate over a wide range of generator input energy and chilled water temperature; the cooling water flow rate and temperature significantly affect the performance of the machine. Finally, the capability of the model is illustrated by dimensioning an absorption heat pump implemented in a Kraft process.

  3. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    Science.gov (United States)

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-06

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  4. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  5. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  6. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  7. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  8. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  9. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Chakraborty, Anutosh; Chun, Wongee; Ng, K. C.

    2011-01-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  10. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung

    2011-10-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  11. Three-dimensional modelling of sound absorption in porous asphalt pavement for oblique incident waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Glorieux, C.

    2015-01-01

    Sound absorption of porous asphalt pavements is an important property when reducing tyre-road noise. A hybrid model has been developed to predict the sound absorption of porous roads. This model is a combination of an analytical analysis of the sound eld and a numerical approach, including both the

  12. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  13. Modelling the effect of absorption from the interstellar medium on transient black hole X-ray binaries

    Science.gov (United States)

    Eckersall, A. J.; Vaughan, S.; Wynn, G. A.

    2017-10-01

    All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.

  14. Dynamic model of an autonomous solar absorption refrigerator

    International Nuclear Information System (INIS)

    Ali Fellah; Tahar Khir; Ammar Ben Brahim

    2009-01-01

    The performance analysis of a solar absorption refrigerator operating in an autonomous way is investigated. The water/LiBr machine satisfies the air-conditioning needs along the day. The refrigerator performances were simulated regarding a dynamic model. For the solar driven absorption machines, two applications could be distinguished. The sun provides the thermal part of the useful energy. In this case, it is necessary to use additional energy as the electric one to activate the pumps, the fans and the control system. On the other hand, the sun provides all the necessary energy. Here, both photovoltaic cells and thermal concentrators should be used. The simulation in dynamic regime of the cycle requires the knowledge of the geometric characteristics of every component as the exchange areas and the internal volumes. Real characteristics of a refrigerator available at the applied thermodynamic research unit (ATRU) at the engineers' national school of Gabes are notified. The development of the thermal and matter balances in every component of the cycle has permitted to simulate in dynamic regime the performances of a solar absorption refrigerator operating with the water/LiBr couple for air-conditioning needs. The developed model could be used to perform intermittent refrigeration cycle autonomously driven. (author)

  15. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  16. An in silico skin absorption model for fragrance materials.

    Science.gov (United States)

    Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha

    2014-12-01

    Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Water analysis. Determination of elements by atomic absorption

    International Nuclear Information System (INIS)

    Anon.

    Analysis of homogeneous water solutions (plain water, polluted waters, effluents...) by atomic absorption spectrometry with correction for non specific absorption. The quantity ratio is determined by comparison with standard solutions, correction tables are given [fr

  18. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  19. Measurements of the Absorption by Auditorium SEATING—A Model Study

    Science.gov (United States)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  20. Cheminformatics Modeling of Amine Solutions for Assessing their CO2 Absorption Properties.

    Science.gov (United States)

    Kuenemann, Melaine A; Fourches, Denis

    2017-07-01

    As stricter regulations on CO 2 emissions are adopted worldwide, identifying efficient chemical processes to capture and recycle CO 2 is of critical importance for industry. The most common process known as amine scrubbing suffers from the lack of available amine solutions capable of capturing CO 2 efficiently. Tertiary amines characterized by low heats of reaction are considered good candidates but their absorption properties can significantly differ from one analogue to another despite high structural similarity. Herein, after collecting and curating experimental data from the literature, we have built a modeling set of 41 amine structures with their absorption properties. Then we analyzed their chemical composition using molecular descriptors and non-supervised clustering. Furthermore, we developed a series of quantitative structure-property relationships (QSPR) to assess amines' CO 2 absorption properties from their structural characteristics. These models afforded reasonable prediction performances (e. g., Q 2 LOO =0.63 for CO 2 absorption amount) even though they are solely based on 2D chemical descriptors and individual machine learning techniques (random forest and neural network). Overall, we believe the chemical analysis and the series of QSPR models presented in this proof-of-concept study represent new knowledge and innovative tools that could be very useful for screening and prioritizing hypothetical amines to be synthesized and tested experimentally for their CO 2 absorption properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Hadert Nicole

    2016-09-01

    Full Text Available Metallic implants in magnetic resonance imaging (MRI are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1], [2]. Increased SAR values are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.

  2. The application of atomic absorption spectrometry to chemical analysis

    International Nuclear Information System (INIS)

    Walsh, A.

    1980-01-01

    YhThe history of the development of atomic absorption methods of elemental analysis is outlined. The theoretical basis of atomic absorption methods is discussed and the principle of modern methods of atomic absorption measurements is described. The advantages, scope and limations of these methods are discussed. Related methods based on the measurement of atomic fluorescence are also described

  3. Two models for absorption by coloured dissolved organic matter (CDOM

    Directory of Open Access Journals (Sweden)

    Jill N. Schwarz

    2002-06-01

    Full Text Available The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (ag440 ranged between close to zero and 10 m-1, and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440 ranged between < 0.01 and 0.04 nm-1. No relationship was found between ag440 or s440 and salinity. Except in the southern Baltic, s440 was found to have a broad distribution (0.0165 ± 0.0035, suggesting that it should be introduced as an additional variable in bio-optical models when ag440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland. This model assumes that the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all bands was higher in early summer (E~7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. s440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.

  4. Red gold analysis by using gamma absorption tchnique

    International Nuclear Information System (INIS)

    Kurtoglu, A.; Tugrul, A.B.

    2001-01-01

    Gold is a valuable metal and also preferable materials for antique artefacts and some advanced technology products. It can be offered for the analysis of the gold as namely; neutron activation analysis, X-ray florescence technique, Auger spectroscopy, atomic absorption and wet chemistry. Some limitations exist in practice for these techniques, especially in the points of financial and applicability concepts. An advanced a practical technique is gamma absorption technique for the gold alloys. This technique is based on discontinuities in the absorption coefficient for gamma rays at corresponding to the electronic binding energies of the absorber. If irradiation is occurred at gamma absorption energy for gold, absorption rates of the red gold changes via the gold amounts in the alloy. Red gold is a basic and generally preferable alloy that has copper and silver additional of the gold in it. The gold amount defines as carat of the gold. Experimental studies were observed for four different carats of red gold; these are 8, 14, 18 and 22 carats. K-edge energy level of the gold is on 80 keV energy. So, Ba-133 radioisotope is preferred as the gamma source because of it has gamma energy peak in that energy. Experiments observed in the same geometry for all samples. NaI(Tl) detector and multichannel analyser were used for measurements. As a result of the experiments, the calibration curves could be drawn for red gold. For examine this curve, unknown samples are measured in experimental set and it can be determined the carat of it with the acceptability. So the red gold analysis can be observed non-destructively, easily and quickly by using the gamma absorption technique

  5. An Empirical Investigation into a Subsidiary Absorptive Capacity Process Model

    DEFF Research Database (Denmark)

    Schleimer, Stephanie; Pedersen, Torben

    2011-01-01

    and empirically test a process model of absorptive capacity. The setting of our empirical study is 213 subsidiaries of multinational enterprises and the focus is on the capacity of these subsidiaries to successfully absorb best practices in marketing strategy from their headquarters. This setting allows us...... to explore the process model in its entirety, including different drivers of subsidiary absorptive capacity (organizational mechanisms and contextual drivers), the three original dimensions of absorptive capacity (recognition, assimilation, application), and related outcomes (implementation...... and internalization of the best practice). The study’s findings reveal that managers have discretion in promoting absorptive capacity through the application of specific organizational mechanism and that the impact of contextual drivers on subsidiary absorptive capacity is not direct, but mediated...

  6. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O; Feidt, M; Benelmir, R [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1998-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  7. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Feidt, M.; Benelmir, R. [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1997-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  8. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    Science.gov (United States)

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it

  9. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  10. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an act......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  11. High-resolution numerical model of the middle and inner ear for a detailed analysis of radio frequency absorption

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Jappel, Alexandra; Baumgartner, Wolf-Dieter; Tschabitscher, Manfred; Mazal, Peter R

    2007-01-01

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human middle and inner ear organs, a numerical model of these organs was developed at a spatial resolution of 0.1 mm, based on a real human tissue sample. The dielectric properties of the liquids (perilymph and endolymph) inside the bony labyrinth were measured on samples of ten freshly deceased humans. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-3700 MHz were carried out. For typical output power values of real handheld mobile communication devices the obtained results showed only very small amounts of absorbed RF power in the middle and inner ear organs. Highest absorption in the middle and inner ear was found for the 400 MHz irradiation. In this case, the RF power absorbed inside the labyrinth and the vestibulocochlear nerve was as low as 166 μW and 12 μW, respectively, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power were found to be more than one order of magnitude lower than the values given above. These results indicate that temperature-related biologically relevant effects on the middle and inner ear, induced by the RF emissions of typical handheld mobile communication devices, are unlikely

  12. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  13. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    Science.gov (United States)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  14. In vivo analysis of supersaturation/precipitation/absorption behavior after oral administration of pioglitazone hydrochloride salt; determinant site of oral absorption.

    Science.gov (United States)

    Tanaka, Yusuke; Sugihara, Masahisa; Kawakami, Ayaka; Imai, So; Itou, Takafumi; Murase, Hirokazu; Saiki, Kazunori; Kasaoka, Satoshi; Yoshikawa, Hiroshi

    2017-08-30

    The purpose of this study was to evaluate in vivo supersaturation/precipitation/absorption behavior in the gastrointestinal (GI) tract based on the luminal concentration-time profiles after oral administration of pioglitazone (PG, a highly permeable lipophilic base) and its hydrochloride salt (PG-HCl) to rats. In the in vitro precipitation experiment in the classic closed system, while the supersaturation was stable in the simulated gastric condition, PG drastically precipitated in the simulated intestinal condition, particularly at a higher initial degree of supersaturation. Nonetheless, a drastic and moderate improvement in absorption was observed in vivo at a low and high dose of PG-HCl, respectively. Analysis based on the luminal concentration of PG after oral administration of PG-HCl at a low dose revealed that most of the dissolved PG emptied from the stomach was rapidly absorbed before its precipitation in the duodenum. At a high dose of PG-HCl, PG partly precipitated in the duodenum but was absorbed to some extent. Therefore, the extent of the absorption was mainly dependent on the duodenal precipitation behavior. Furthermore, a higher-than expected absorption after oral administration of PG-HCl from in vitro precipitation study may be due to the absorption process in the small intestine, which suppresses the precipitation by removal of the drug. This study successfully clarify the impact of the absorption process on the supersaturation/precipitation/absorption behavior and key absorption site for a salt formulation of a highly permeable lipophilic base based on the direct observation of in vivo luminal concentration. Our findings may be beneficial in developing an ideal physiologically based pharmacokinetic model and in vitro predictive dissolution tools and/or translating the in silico and in vitro data to the in vivo outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling the thermal absorption factor of photovoltaic/thermal combi-panels

    International Nuclear Information System (INIS)

    Santbergen, R.; Zolingen, R.J.Ch. van

    2006-01-01

    In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the semiconductor material in standard solar cells. A computer model was developed to determine the thermal absorption factor of crystalline silicon solar cells. It was found that for a standard untextured solar cell with a silver back contact a relatively large amount of long wavelength irradiance is lost by reflection resulting in an absorption factor of only 74%. The model was then used to investigate ways to increase this absorption factor. One way is absorbing long wavelength irradiance in a second absorber behind a semi-transparent solar cell. According to the model this will increase the total absorption factor to 87%. The second way is to absorb irradiance in the back contact of the solar cell by using rough interfaces in combination with a non-standard metal as back contact. Theoretically the absorption factor can then be increased to 85%

  16. Simulation Model for Dynamic Operation of Double-Effect Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Ahmed Mojahid Sid Ahmed Mohammed Salih

    2014-07-01

    Full Text Available The development in the field of refrigeration and air conditioning systems driven by absorption cycles acquired a considerable importance recently. For commercial absorption chillers, an essential challenge for creating chiller model certainly is the shortage of components technical specifications. These kinds of specifications are usually proprietary for chillers producers. In this paper, a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations is presented. The chiller studied is Lithium bromide-water with capacity of 1250 RT (Refrigeration Tons. The governing equations of the dynamic operation of the chiller are developed. From available design information, the values of the overall heat transfer coefficients multiplied by the surface area are computed. The dynamic operation of the absorption chiller is simulated to study the performance of the system. The model is able to provide essential details of the temperature, concentration, and flow rate at each state point in the chiller.

  17. Iota-dependent resonance absorption in the optical model description of alpha particle elastic scattering

    International Nuclear Information System (INIS)

    Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.

    1976-01-01

    Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)

  18. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  19. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    Science.gov (United States)

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  20. Different methods for modeling absorption heat transformer powered by solar pond

    International Nuclear Information System (INIS)

    Sencan, Arzu; Kizilkan, Onder; Bezir, Nalan C.; Kalogirou, Soteris A.

    2007-01-01

    Solar ponds are a type of solar collector used for storing solar energy at temperature below 90 o C. Absorption heat transformers (AHTs) are devices used to increase the temperature of moderately warm fluid to a more useful temperature level. In this study, a theoretical modelling of an absorption heat transformer for the temperature range obtained from an experimental solar pond with dimensions 3.5 x 3.5 x 2 m is presented. The working fluid pair in the absorption heat transformer is aqueous ternary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5' rules, decision table and back propagation neural network (BPNN) are used for modelling the absorption heat transformer. The best results were obtained by the back propagation neural network model. A new formulation based on the BPNN is presented to determine the flow ratio (FR) and the coefficient of performance (COP) of the absorption heat transformer. The BPNN procedure is more accurate and requires significantly less computation time than the other methods

  1. Analytic descriptions of ion cyclotron absorption

    International Nuclear Information System (INIS)

    Bers, A.; Francis, G.; Fuchs, V.; Lashmore-Davies, C.N.; Ram, A.K.

    1987-05-01

    Analysis of energy propagation and absorption in ion-cyclotron heating of tokamak plasmas has relied on numerical solutions of fourth (and sixth) order differential equations for slab models of the plasma (poloidal) cross section. Realistic two-dimensional and fully toroidal geometry analyses would become quite unwieldy. It is shown here that the analysis of the slab model can be simplified considerably. A first-order differential equation is shown to describe the transmission coefficient for the fast wave, and it is solved analytically. A second order differential equation is shown to adequately describe both transmission and reflection. Conditions for ion absorption or mode conversion are derived. Including toroidal effects in propagation, conditions for electron absorption on the mode-converted ion-Bernstein waves are also described analytically

  2. Experimental investigation and exergy analysis of a triple fluid vapor absorption refrigerator

    International Nuclear Information System (INIS)

    Jemaa, Radhouane Ben; Mansouri, Rami; Boukholda, Ismail; Bellagi, Ahmed

    2016-01-01

    Highlights: • Experimental study on a commercial triple fluid vapor absorption refrigerator performed. • An Aspen-hysys model developed and validated with experimental measurements. • Exergy analysis of the unit performed and discussed. • Absorber identified as largest source of irreversibility, followed by solution heat exchanger. - Abstract: This paper presents an energy and exergy analyses of a triple fluid vapor absorption refrigerator working with ammonia as refrigerant, water as absorbent and hydrogen as auxiliary gas. The experimental setup is constituted of a commercial unit equipped with the appropriate metrology. The temperature at the inlet and outlet of every component of the machine, as well as the cabinet and ambient temperature are continuously measured and monitored. A simulation model of the machine is developed using the process simulator Aspen-Hysys. The thermodynamic analysis includes energy and exergy efficiency calculations, destroyed exergy evaluation and degradation of the coefficient of performance (COP) in each component of the refrigerator. The results indicate that the absorber exhibits the largest source of irreversibility followed by the solution heat exchanger. These two components alone are at the origin of 63% of the total degradation of COP.

  3. Errors in instumental neutron activation analysis caused by matrix absorption

    International Nuclear Information System (INIS)

    Croudace, I.W.

    1979-01-01

    Instrumental neutron activation analysis of the geochemically important rare earth elements, together with Ta, Hf and U involves energies below 150 keV where absorption of radiation by the sample becomes inceasingly important. Determinations of the total mass absorption coefficients have been made. (C.F.)

  4. Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Taieb, Ahmed; Mejbri, Khalifa; Bellagi, Ahmed

    2016-01-01

    This paper proposes an advanced simulation model for a Diffusion-Absorption Refrigerator DAR using ammonia/water/hydrogen as working fluids, and developed to describe and predict the behavior of the device under different operating conditions. The system is supposed to be cooled with ambient air and actuated with solar hot water available at 200 °C. The DAR is first simulated for a set of basic data; a COP of 0.126 associated to a cooling capacity of 22.3 W are found. Basing on the obtained results an exergetic analysis of the system is performed which shows that the rectifier contribution to the exergy destruction is the most important with 34%. In a second step, the thermal capacities of all heat exchangers of the DAR are evaluated and the mathematical model so modified that the calculated capacities are now used as input data. A parametric study of the cycle is then carried out. The COP is found to exhibit a maximum when the heat supplied to the boiler or to the bubble pump is varied. Similar behavior is observed for variable submergence ratio. It is further noted that the COP is very sensitive to the ambient air temperature and to the absorber efficiency. - Highlights: • A detailed model of a Diffusion Absorption is developed and simulated. • Irreversibility of each component of the cycle is examined. • A modified model based on thermal capacity of components of the DAR is elaborated. • System performance is calculated over a series of practical operating conditions.

  5. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  6. Modeling of absorption data complicated by Fabry endash Perot interference in germanosilicate thin-film waveguides

    International Nuclear Information System (INIS)

    Simmons-Potter, K.; Simmons, J.H.

    1996-01-01

    Complex absorption spectra obtained from thin films at normal incidence can be difficult to interpret owing to the appearance of Fabry endash Perot interference fringes in the data. We describe a technique for modeling such spectra so that true absorption features can be identified and evaluated separately from the overlying fringes. The technique is used to interpret data obtained from photosensitive germanosilicate solgel films on fused-silica substrates but may be easily extended to analysis in other material systems. copyright 1996 Optical Society of America

  7. Model systems for understanding absorption tuning by opsin proteins

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brøndsted

    2009-01-01

    This tutorial review reports on model systems that have been synthesised and investigated for elucidating how opsin proteins tune the absorption of the protonated retinal Schiff base chromophore. In particular, the importance of the counteranion is highlighted. In addition, the review advocates...... is avoided, and it becomes clear that opsin proteins induce blueshifts in the chromophore absorption rather than redshifts....

  8. Statistical modelling coupled with LC-MS analysis to predict human upper intestinal absorption of phytochemical mixtures.

    Science.gov (United States)

    Selby-Pham, Sophie N B; Howell, Kate S; Dunshea, Frank R; Ludbey, Joel; Lutz, Adrian; Bennett, Louise

    2018-04-15

    A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (T max ) should be synchronised with the time of increased OSI. A statistical model has been reported to predict T max of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank

    Directory of Open Access Journals (Sweden)

    Adria Moreno Miquel

    2018-06-01

    Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for

  10. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis

    International Nuclear Information System (INIS)

    Gaudio, P; Malizia, A; Gelfusa, M; Poggi, L.A.; Martinelli, E.; Di Natale, C.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis. (paper)

  11. Application of Peleg\\'s Equation to Model Water Absorption in ...

    African Journals Online (AJOL)

    Sorghum and millet water absorption characteristics at temperature range 20 to 500C were investigated using the Peleg\\'s model or equation. Two sorghum varieties and one pearl millet variety were used in this investigation. Water absorption characteristics of the grain were investigated by soaking samples of the grain in ...

  12. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  13. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    Science.gov (United States)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  14. Models for predicting compressive strength and water absorption of ...

    African Journals Online (AJOL)

    This work presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using augmented Scheffe's simplex lattice design. The statistical models developed can predict the mix proportion that will yield the desired property. The models were tested for lack of ...

  15. Improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers

    Science.gov (United States)

    Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao

    2018-05-01

    Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.

  16. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  17. Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation

    Science.gov (United States)

    Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R. P.

    2018-05-01

    Power absorption by electrons from the space- and time-dependent electric field represents the basic sustaining mechanism of all radio-frequency driven plasmas. This complex phenomenon has attracted significant attention. However, most theories and models are, so far, only able to account for part of the relevant mechanisms. The aim of this work is to present an in-depth analysis of the power absorption by electrons, via the use of a moment analysis of the Boltzmann equation without any ad-hoc assumptions. This analysis, for which the input quantities are taken from kinetic, particle based simulations, allows the identification of all physical mechanisms involved and an accurate quantification of their contributions. The perfect agreement between the sum of these contributions and the simulation results verifies the completeness of the model. We study the relative importance of these mechanisms as a function of pressure, with high spatial and temporal resolution, in an electropositive argon discharge. In contrast to some widely accepted previous models we find that high space- and time-dependent ambipolar electric fields outside the sheaths play a key role for electron power absorption. This ambipolar field is time-dependent within the RF period and temporally asymmetric, i.e., the sheath expansion is not a ‘mirror image’ of the sheath collapse. We demonstrate that this time-dependence is mainly caused by a time modulation of the electron temperature resulting from the energy transfer to electrons by the ambipolar field itself during sheath expansion. We provide a theoretical proof that this ambipolar electron power absorption would vanish completely, if the electron temperature was constant in time. This mechanism of electron power absorption is based on a time modulated electron temperature, markedly different from the Hard Wall Model, of key importance for energy transfer to electrons on time average and, thus, essential for the generation of capacitively

  18. Modeling moisture absorption kinetics of barley grain using viscoelastic model and neural networks

    Directory of Open Access Journals (Sweden)

    M Kamali

    2015-09-01

    Full Text Available Introduction: Barley is one of the most important grains with high digestible starch making it a main source of energy in human nutrition as well as in livestock rations formulation and feeding. Starch is the main part of barley grain and it has an inverse relation with its protein. It has a digestible foodstuff of 80 to 84 percent of its dry matter content. Barley as livestock foodstuff should be processed and it is done in several ways. A customary method for processing barley in dairy farms is its size reduction by milling (Hunt, 1996. An alternative method of barley processing is steam rolling. However, because of the high cost of steam generators a method of soaking with heating has been considered as an alternative method for steam rolling (Yang et al., 2000. The rate of moisture absorption by grains during the soaking process varies considerably and depends on the size of the grain, water temperature and the length of soaking. High temperature water soaking is an ordinary way to reduce the time duration for reaching a high rate of moisture absorption during the soaking process (Kashaninejad et al., 2009. Various studies have shown that these models have adequate accuracy in analyzing drying and moisture absorption processes for most agricultural products (Abu-Ghannam and McKenna, 1997. Some researchers have modeled beans moisture absorption behavior using 14 mathematical models and found that the Weibull model had the most conformity with variations in experimental data (Shafaei and Masoumi, 2014c. Observations made by researchers indicate that the moisture absorption process in various materials encompasses a primary phase with a fast rate and a second phase with a lower rate. The second phase in moisture absorption is called the relaxation phase. The main problem with all the mathematical and experimental models is the lack of the model’s ability to evaluate the rate of moisture absorption in the secondary phase. Artificial Neural

  19. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using ... building and construction of new infrastructure and .... In (6), R is a vector containing the real ratios of the.

  20. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  1. FDTD modeling of solar energy absorption in silicon branched nanowires.

    Science.gov (United States)

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  2. Absorption band Q model for the earth

    International Nuclear Information System (INIS)

    Anderson, D.L.; Given, J.W.

    1982-01-01

    Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463

  3. Second law analysis of double effect vapour absorption cooler system

    International Nuclear Information System (INIS)

    Gomri, Rabah; Hakimi, Riad

    2008-01-01

    In this paper, exergy analysis of double effect lithium bromide/water absorption refrigeration system is presented. The system consists of a second effect generator between the generator and condenser of the single effect absorption refrigeration system, including two solution heat exchangers between the absorber and the two generators. In order to simulate the refrigeration system by using a computer, a new set of computationally efficient formulations of thermodynamic properties of lithium bromide/water solution developed is used. The exergy analysis is carried out for each component of the system. All exergy losses that exist in double effect lithium bromide/water absorption system are calculated. In addition to the coefficient of performance and the exergetic efficiency of the system, the number of exergy of each component of the system is also estimated. This study suggests the component of the absorption refrigeration system that should be developed. The results show that the performance of the system increases with increasing low pressure generator (LPG) temperature, but decreases with increasing high pressure generator (HPG) temperature. The highest exergy loss occurs in the absorber and in the HPG, which therefore makes the absorber and HPG the most important components of the double effect refrigeration system

  4. Modeling and optimization of CO2 capture processes by chemical absorption

    International Nuclear Information System (INIS)

    Neveux, Thibaut

    2013-01-01

    CO 2 capture processes by chemical absorption lead to a large energy penalty on efficiency of coal-fired power plants, establishing one of the main bottleneck to its industrial deployment. The objective of this thesis is the development and validation of a global methodology, allowing the precise evaluation of the potential of a given amine capture process. Characteristic phenomena of chemical absorption have been thoroughly studied and represented with state-of-the-art models. The e-UNIQUAC model has been used to describe vapor-liquid and chemical equilibria of electrolyte solutions and the model parameters have been identified for four solvents. A rate-based formulation has been adopted for the representation of chemically enhanced heat and mass transfer in columns. The absorption and stripping models have been successfully validated against experimental data from an industrial and a laboratory pilot plants. The influence of the numerous phenomena has been investigated in order to highlight the most limiting ones. A methodology has been proposed to evaluate the total energy penalty resulting from the implementation of a capture process on an advanced supercritical coal-fired power plant, including thermal and electric consumptions. Then, the simulation and process evaluation environments have been coupled with a non-linear optimization algorithm in order to find optimal operating and design parameters with respect to energetic and economic performances. This methodology has been applied to optimize five process flow schemes operating with an monoethanolamine aqueous solution at 30% by weight: the conventional flow scheme and four process modifications. The performance comparison showed that process modifications using a heat pump effect give the best gains. The use of technical-economic analysis as an evaluation criterion of a process performance, coupled with a optimization algorithm, has proved its capability to find values for the numerous operating and design

  5. Ground and excited state absorption of Ni{sup 2+} ions in MgAl{sub 2}O{sub 4}: Crystal field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G. [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103 (Japan) and Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)]. E-mail: brik@fukui.kyoto-u.ac.jp; Avram, N.M. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Avram, C.N. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Rudowicz, C. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland); Yeung, Y.Y. [Department of Mathematics, Science, Social Sciences and Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories (Hong Kong); Gnutek, P. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland)

    2007-04-25

    The exchange charge model (ECM) of crystal field is utilized to provide the theoretical explanation of the ground state absorption and the excited state absorption observed for the octahedrally coordinated Ni{sup 2+} ions in the spinel MgAl{sub 2}O{sub 4}. The ECM enables modeling of the crystal field parameters (CFPs) for the impurity ions based on the crystal structure data of the host lattice. To ensure the reliability of the CFPs, the convergence of the CFP values with the increasing number of the coordination spheres taken into account in the ECM calculations is considered. The trigonal CFPs B{sub 2}{sup 0},B{sub 4}{sup 0}andB{sub 4}{sup -3} determined by the ECM, together with the appropriate Racah parameters B and C, serve as input to two crystal field analysis computer packages, which compute the energy level schemes within the whole 3d{sup 8} configuration. The cubic approximation utilizing only one CFP Dq is also discussed. Basic features of the ground and excited state absorption spectra observed for MgAl{sub 2}O{sub 4}:Ni{sup 2+} are satisfactorily explained by our crystal field analysis. In order to model the pressure dependence of the CFPs (and thus of the absorption spectra when relevant experimental data become available), the variation of the CFPs induced by possible distortions of the lattice due to, e.g. overall relaxation of the ions or accommodation of the impurity ions in the lattice, is studied. Analysis of the experimental absorption spectra enables us to evaluate also the Huang-Rhys parameter, the effective phonon energy, and the zero-phonon line position.

  6. Modelling knee flexion effects on joint power absorption and adduction moment.

    Science.gov (United States)

    Nagano, Hanatsu; Tatsumi, Ichiroh; Sarashina, Eri; Sparrow, W A; Begg, Rezaul K

    2015-12-01

    Knee osteoarthritis is commonly associated with ageing and long-term walking. In this study the effects of flexing motions on knee kinetics during stance were simulated. Extended knees do not facilitate efficient loading. It was therefore, hypothesised that knee flexion would promote power absorption and negative work, while possibly reducing knee adduction moment. Three-dimensional (3D) position and ground reaction forces were collected from the right lower limb stance phase of one healthy young male subject. 3D position was sampled at 100 Hz using three Optotrak Certus (Northern Digital Inc.) motion analysis camera units, set up around an eight metre walkway. Force plates (AMTI) recorded ground reaction forces for inverse dynamics calculations. The Visual 3D (C-motion) 'Landmark' function was used to change knee joint positions to simulate three knee flexion angles during static standing. Effects of the flexion angles on joint kinetics during the stance phase were then modelled. The static modelling showed that each 2.7° increment in knee flexion angle produced 2.74°-2.76° increments in knee flexion during stance. Increased peak extension moment was 6.61 Nm per 2.7° of increased knee flexion. Knee flexion enhanced peak power absorption and negative work, while decreasing adduction moment. Excessive knee extension impairs quadriceps' power absorption and reduces eccentric muscle activity, potentially leading to knee osteoarthritis. A more flexed knee is accompanied by reduced adduction moment. Research is required to determine the optimum knee flexion to prevent further damage to knee-joint structures affected by osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Analysis of Decentralized Control for Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Email Print Request Permissions This paper investigates decentralized control structures for absorption cycle heat pumps and a dynamic nonlinear model of a single-effect LiBr-water absorption system is used as case study. The model has four controllable inputs, which can be used to stabilize...... the operation of the heat pump under different load conditions. Different feasible input-output pairings are analyzed by computation of relative gain array matrices and scaled condition numbers, which indicate the best pairing choice and the potential of each input-output set. Further, it is possible...... to minimize the effect of cross couplings and improve stability with the right pairing of input and output. Simulation of selected candidate input-output pairings demonstrate that decentralized control can provide stable operation of the heat pump....

  8. EVALUATION OF THE STRUCTURAL FUNDS ABSORPTION RATE BY MEANS OF THE HERMIN MODEL

    Directory of Open Access Journals (Sweden)

    Opritescu Elena Madalina

    2012-07-01

    Full Text Available The main objective of this article is to highlight the main method that could quantify the impact of the structural funds on the Gross Domestic Product. I also presented the regional disparities situation and the European funds absorption rate. The HERMIN model has been designed considering the evolution of macro-variables throughout transition and pre-accession process, as well as out of the need to analyze the gradual alignment of Romania’s economic policies to those of EU. The fact that, initially, the HERMIN model was designed for the European Union’s less developed economies represented the cornerstone in choosing it, as it was the case for Romania, too. However, the quantitative evaluation must always be accompanied by a qualitative evaluation, in order to comprise factors which cannot be measured by the econometrical modeling. For this purpose, when the results of econometrical model based evaluation are used, it is important to be aware of the fact that models simplify reality, no matter the impressive mathematical calculations they employ. Also, we must not omit the fact that Romania’s major development needs and the current economic context imperatively demand a high as possible level of structural funds absorption, as well as their efficient use, meant to generate a significant impact at a national, regional and local level. One of the main instruments employed to sustain economic growth, while also reducing disparities between regions is represented by the structural funds. These funds, consisting in financial contributions of the member states, according to their level of development, are redistributed in compliance with an extremely complex regulating and procedural frame, to those EU states of regions which are fallen behind from a social and economical development perspective Nevertheless, when absorption capacity of a member state is evaluated, the used percentage from the allocated funds is not the only

  9. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes a new thermal compressor model with boost pressure ratio. • The proposed model is an effective way to optimize the absorption-generation process. • Boost pressure ratio is a key parameter in the proposed thermal compressor model. • The optimum boost pressure ratios for two typical refrigeration systems are obtained. - Abstract: The absorption refrigeration cycle is a basic cycle that establishes the systems for utilizing mid-low temperature heat sources. A new thermal compressor model with a key parameter of boost pressure ratio is proposed to optimize the absorption-generation process. The ultimate generation pressure and boost pressure ratio are used to represent the potential and operating conditions of the thermal compressor, respectively. Using the proposed thermal compressor model, the operation mechanism and requirements of the absorption refrigeration system and absorption-compression refrigeration system are elucidated. Furthermore, the two typical heat conversion systems are optimized based on the thermal compressor model. The optimum boost pressure ratios of the absorption refrigeration system and the absorption-compression refrigeration system are 0.5 and 0.75, respectively. For the absorption refrigeration system, the optimum generation temperature is 125.31 °C at the cooling water temperature of 30 °C, which is obtained by simple thermodynamic calculation. The optimized thermodynamic performance of the absorption-compression refrigeration system is 16.7% higher than that of the conventional absorption refrigeration system when the generation temperature is 100 °C. The thermal compressor model proposed in this paper is an effective method for simplifying the optimization of the thermodynamic systems involving an absorption-generation process.

  10. Conscious and anaesthetised Göttingen mini-pigs as an in-vivo model for buccal absorption - pH-dependent absorption of metoprolol from bioadhesive tablets.

    Science.gov (United States)

    Meng-Lund, Emil; Jacobsen, Jette; Andersen, Morten B; Jespersen, Mads L; Karlsson, Jens-Jacob; Garmer, Mats; Jørgensen, Erling B; Holm, René

    2014-05-01

    The potential of buccal mucosa as a site for systemic absorption has attracted increased attention in recent years creating a need for new predictive in-vivo models. The aim of this study was to evaluate anaesthetised and conscious Göttingen mini-pigs as a model for buccal drug absorption by testing pH-dependent absorption of metoprolol from a solid dosage form. Buccal tablets buffered to pH 6.2 and pH 8.9, oral liquid and intravenous injection were tested in four conscious and anaesthetised Göttingen mini-pigs in a non-randomised cross-over study. Blood samples were collected and processed before analysis by ultra-performance liquid chromatography with tandem mass spectrometry detection. An ex-vivo flow retention model was applied to study release and retention of the bioadhesive buccal tablets. The Tmax obtained from the two buccal conscious groups (55 ± 5 and 35 ± 5 min) were significantly different to the buccal anaesthetised groups (120 ± 0 and 165 ± 15 min) for buccal tablet pH 6.2 and pH 8.9, respectively. Also, the absolute bioavailability from the anaesthetised buccal tablet pH 8.9 (20.7 ± 4.0%) had a significant increase compared to all other buccal tablet groups. In conclusion, this study showed a pH-dependent absolute bioavailability of metoprolol when administrated as bioadhesive buccal tablets to anaesthetised mini-pigs. The anaesthesia was found to delay the time to reach maximal plasma concentration of metoprolol as compared to the conscious pig model when administrated as buccal tablets.

  11. Thermodynamic modelling and kinetics of hydrogen absorption associated with phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    The intermetallic are used for hydrogen pressure containers in order to avoid leaks in the case of an hybrid container. The hydrogen atoms are absorbed by the intermetallic which act as a hydrogen sponge. This hydrogen absorption must be modelled for the container design. The Pressure-composition isotherms describe the equilibrium. Out of this equilibrium the kinetics are controlled by different processes, without taking into account the phase transformations. The author presents a new model of the p-c isotherms with the hydrogen absorption kinetics. (A.L.B.)

  12. Modelling of infrared multiphoton absorption and dissociation for design of reactors for isotope separation by lasers

    International Nuclear Information System (INIS)

    Takeuchi, Kazuo; Nakane, Ryohei; Inoue, Cihiro

    1981-01-01

    A series of experiments were performed on infrared laser beam absorption (multiphoton absorption) and subsequent dissociation (multiphoton dissociation) of CF 3 Cl to propose models for the design of reactors for isotope separation by lasers. A parallel beam geometry was utilized in batch irradiation experiments to make direct compilation of lumped-parameter data possible. Multiphoton absorption is found to be expressed by a power-law extension of the law of Lambert and by an addition of a new term for buffer gas effect to the law of Beer. For reaction analysis, a method to evaluate the effect of incomplete mixing on apparent reaction rates is first presented. Secondly, multiphoton dissociation of Cf 3 Cl is found to occur in pseudo-first order fashion and the specific reaction rates for different beam fluence are shown to be correlated to the absorbed energy. (author)

  13. Absorption and enhancement corrections using XRF analysis of some chemical samples

    International Nuclear Information System (INIS)

    Falih, Arwa Gaddal

    1996-06-01

    In this work samples containing Cr, Fe and Ni salts invarying ratios were prepared so as to represent approximately the concentrations of these elements in naturally occurring ore samples. These samples were then analyzed by EDXRF spectrometer system and the inter element effects (absorption and enhancement) were evaluated by means of two method: by using AXIL-QXAS software to calculate the effects and by the emission-transmission method to experimentally determine the same effects. The results obtained were compared and a discrepancy in the absorption results was observed. The discrepancy was attributed to the fact that the absorption in the two methods was calculated in different manners, i.e. in the emission-transmission method the absorption factor was calculated by adding different absorption terms by what is known as the additive law, but in the software program it was calculated from the scattered peaks method which does not obey this law. It was concluded that the program should be modified by inserting the emission-transmission method in the software program to calculate the absorption. Quality assurance of the data was performed though the analysis of the standard alloys obtained from the International Atomic Energy Agency (IAEA). (Author)

  14. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. On the nature of absorption features toward nearby stars

    Science.gov (United States)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  16. An analysis of uncertainties in the reference resonance absorption calculations

    International Nuclear Information System (INIS)

    Milosevic, M.; Pesic, M.

    1997-05-01

    A recently appeared generation of design-oriented methods, which allows to compute the space and energy dependence of the resonant absorption inside the fuel rod, induces a new problem of validation of results obtained with improved resonance treatments, Because no experimental results are available on the spatial and energy distribution of resonance absorption, detailed reference calculations were generated with the continuos-energy Monte Carlo and energy pointwise slowing-down codes. The accuracy of these calculations depends>on various in.fluences. In this paper an analysis of some influences, such as differences ;n nuclear data libraries and philosophy of reproducing the cross section data, is presented. Example application is given for a calculation benchmark that consists of determination of resonance absorption by 238 U in typical PWR pin cell geometry (author)

  17. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  18. Application of atomic absorption in molecular analysis (spectrophotometry)

    International Nuclear Information System (INIS)

    Baliza, S.V.; Soledade, L.E.B.

    1981-01-01

    The apparatus of atomic absorption has been considered by all the experts in chemical analysis as one of the most important equipments in actual utilization in such field. Among its several applications one should emphasize direct and indirect metals analyses using flame, graphite furnace, cold vapor generator,... Besides such known applications, the authors have developed at the R and D Center of CSN a patent pendent method for the utilization of such equipment for molecular analysis, in substitution of a sophisticated and specific apparatus. (Author) [pt

  19. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    Science.gov (United States)

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-04

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  20. Optical absorption analysis of quaternary molybdate- and tungstate-ordered double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2015-08-05

    Highlights: • These compounds present a high optical absorption. • The absorption coefficients using different DFT + U alternatives have been compared. • The absorption coefficients have been split into different contributions. • The maximum efficiency is near the maximum efficiency for multiple-gap solar cells. - Abstract: Quaternary-ordered double perovskite A{sub 2}MM′O{sub 6} (M = Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M′ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions.

  1. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  2. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  3. Analysis by absorption and scattering of radiation. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2002-01-01

    A current bibliography with 100 references based on INIS Atomindex has been compiled on Analysis by absorption and scattering of radiation for years 1998-1999. References are arranged by first author's names. (N.T.)

  4. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    Science.gov (United States)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  5. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. 2: Modeling and analysis

    Science.gov (United States)

    Skocypec, Russell D.; Hogan, Roy E., Jr.; Muir, James F.

    1991-01-01

    The catalytically enhanced solar absorption receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as being essential in improving the confidence in the capability to predict large-scale reactor operation.

  6. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  7. Device Scale Modeling of Solvent Absorption using MFIX-TFM

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Janine E. [National Energy Technology Lab. (NETL), Albany, OR (United States); Finn, Justin R. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2016-10-01

    Recent climate change is largely attributed to greenhouse gases (e.g., carbon dioxide, methane) and fossil fuels account for a large majority of global CO2 emissions. That said, fossil fuels will continue to play a significant role in the generation of power for the foreseeable future. The extent to which CO2 is emitted needs to be reduced, however, carbon capture and sequestration are also necessary actions to tackle climate change. Different approaches exist for CO2 capture including both post-combustion and pre-combustion technologies, oxy-fuel combustion and/or chemical looping combustion. The focus of this effort is on post-combustion solvent-absorption technology. To apply CO2 technologies at commercial scale, the availability and maturity and the potential for scalability of that technology need to be considered. Solvent absorption is a proven technology but not at the scale needed by typical power plant. The scale up and down and design of laboratory and commercial packed bed reactors depends heavily on the specific knowledge of two-phase pressure drop, liquid holdup, the wetting efficiency and mass transfer efficiency as a function of operating conditions. Simple scaling rules often fail to provide proper design. Conventional reactor design modeling approaches will generally characterize complex non-ideal flow and mixing patterns using simplified and/or mechanistic flow assumptions. While there are varying levels of complexity used within these approaches, none of these models resolve the local velocity fields. Consequently, they are unable to account for important design factors such as flow maldistribution and channeling from a fundamental perspective. Ideally design would be aided by development of predictive models based on truer representation of the physical and chemical processes that occur at different scales. Computational fluid dynamic (CFD) models are based on multidimensional flow equations with first

  8. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    Science.gov (United States)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  9. Semimechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Alskär, Oskar; Bagger, Jonatan I; Røge, Rikke M.

    2016-01-01

    The integrated glucose-insulin (IGI) model is a previously published semimechanistic model that describes plasma glucose and insulin concentrations after glucose challenges. The aim of this work was to use knowledge of physiology to improve the IGI model's description of glucose absorption and ga...... model provides a better description and improves the understanding of dynamic glucose tests involving oral glucose....... and gastric emptying after tests with varying glucose doses. The developed model's performance was compared to empirical models. To develop our model, data from oral and intravenous glucose challenges in patients with type 2 diabetes and healthy control subjects were used together with present knowledge...... glucose absorption was superior to linear absorption regardless of the gastric emptying model applied. The semiphysiological model developed performed better than previously published empirical models and allows better understanding of the mechanisms underlying glucose absorption. In conclusion, our new...

  10. Thermodynamics of the CO2–Absorption/Desorption Section in the Integrated Gasifying Combined cycle — II. Analysis

    Directory of Open Access Journals (Sweden)

    Jaroslav KOZACZKA

    2012-06-01

    Full Text Available The thermodynamic analysis of the absorption/desorption section of the ICGC–cycle has been presented using the Second Law with special emphasis on the thermodynamic effectivity concept and usability for complex systems investigations. Essential problems have been discussed based on the classical bibliographical items on the subject. Numerical calculations have been accomplished using results obtained in the first part, which contained absorption and desorption modeling approach oriented onto thermodynamic analyzes. Additionally the special properties of dilute solutions, especially the CO2/water system, have been presented and the problem of the solute chemical concentration exergy change suggested.

  11. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  12. Geometric model from microscopic theory for nuclear absorption

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-07-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  13. Geometric model for nuclear absorption from microscopic theory

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  14. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj

    2009-01-01

    The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...

  15. Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform

    International Nuclear Information System (INIS)

    Mansouri, Rami; Boukholda, Ismail; Bourouis, Mahmoud; Bellagi, Ahmed

    2015-01-01

    A steady-state simulation model of a commercial 3-ton ammonia/water absorption chiller is developed and validated using the flow-sheeting software Aspen-Plus. First an appropriate thermodynamic property model for the ammonia/water fluid mixture is selected. To this purpose nine methods from the software library are pre-selected and tested, but none of the methods predicts the VLE (vapour–liquid equilibrium) with sufficient accuracy. The interaction parameters of these models are then determined by fitting the equations of state (EOS) to VLE data. It is finally found that the Boston–Mathias modified Peng–Robinson EOS with fitted parameters predicts most accurately the VLE for the temperature and pressure ranges encountered in commercial chillers. A simulation model of the machine is then developed. The simulation results are found to be in good agreement with data from literature at a cooling air temperature of 35 ºC. The heat transfer characteristics (UA) of the various heat exchangers of the machine are then determined and the model modified to make it accept these (UA) as input parameters. The comparison of the simulation predictions at cooling air temperatures of 26.7 and 38 ºC with the bibliographical data showed good concordance. The proposed model could be very useful for the analysis and performance prediction of the commercial absorption chiller. - Highlights: • A commercial NH 3 /H 2 O absorption chiller is simulated using the software Aspen-Plus. • Peng-Robinson-Boston-Mathias equation of state is used to predict VLE of NH 3 /H 2 O fluid mixture. • A steady-state model describing the chiller operation is developed. • The model predicts the internal operating conditions and COP of the chiller.

  16. Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)

  17. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, S.S.

    2015-01-01

    Highlights: • It addresses the size and cost estimation of cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • Second law analysis is carried out with modified Gouy-Stodola equation. • The total annual cost of plant operation is optimized in present work. - Abstract: This paper addresses the size and cost estimation of vapor compression–absorption cascaded refrigeration system (VCACRS) for water chilling application taking R410a and water–LiBr as refrigerants in compression and absorption section respectively which can help the design engineers in manufacturing and experimenting on such kind of systems. The main limitation in the practical implementation of VCACRS is its size and cost which are optimized in the present work by implementing Direct Search Method in non-linear programming (NLP) mathematical model of VCACRS. The main objective of optimization is to minimize the total annual cost of system which comprises of costs of exergy input and capital costs in monetary units. The appropriate set of decision variables (temperature of evaporator, condenser, generator, absorber, cascade condenser, degree of overlap and effectiveness of solution heat exchanger) minimizes the total annual cost of VCACRS by 11.9% with 22.4% reduction in investment cost at the base case whereas the same is reduced by 7.5% with 11.7% reduction in investment cost with reduced rate of interest and increased life span and period of operation. Optimization results show that the more investment cost in later case is well compensated through the performance and operational cost of the system. In the present analysis, optimum cascade condensing temperature is a strong function of period of operation and capital recovery factor. The cascading of compression and absorption systems becomes attractive for lower rate of interest and increase life span and operational period

  18. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution

    International Nuclear Information System (INIS)

    Park, K.; Basu, S.; King, W.P.; Zhang, Z.M.

    2008-01-01

    This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency

  19. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector

    International Nuclear Information System (INIS)

    Menbari, Amir; Alemrajabi, Ali Akbar; Rezaei, Amin

    2016-01-01

    Highlights: • The effect of CuO/Water on a direct absorption parabolic collector is investigated. • The power-law is used for simulating the turbulent flow into the receiver pipe. • In this collector the solar irradiance is absorbed directly and converted to heat. • Nanofluid as the working fluid improves the thermal efficiency of the collector. - Abstract: Direct absorption solar collectors (DASCs) form a new class of collectors that directly harvest sun beams via a working fluid. They offer several advantages over their conventional surface absorption counterparts such as reduced surface heat loss and increased solar irradiance absorption. The optical and thermo-physical properties of the working fluid may be improved and system efficiency may be enhanced in direct absorption solar collectors (DASCs) by introducing nanoparticles into the base fluid. The present study investigates, both analytically and experimentally, the effects of CuO/Water nanofluid on the efficiency of a direct absorption parabolic trough collector (DAPTC). The theoretical analysis of DAPTC is based on the power-law with the objective of simulating a turbulent flow into the receiver pipe. Comparison of the results obtained from the model and the experimental measurements reveals a good agreement between the two sets of data, indicating that they can be exploited to validate the numerical solution. Moreover, modeling results indicate that the average radial temperature and energy generation terms due to the solar irradiance absorbed and scattered by the nanoparticles decrease with increasing distance from the receiver pipe wall. It is also found that the solar irradiance is absorbed and converted into a significant amount of sensible heat along the length of the receiver pipe. Finally, the results of both the numerical and the experimental investigations of the DAPTC collector show that the thermal efficiency of the system improves as a result of increased nanoparticle volume fraction

  20. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  1. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    Science.gov (United States)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  2. Analysis of a solar powered absorption system

    International Nuclear Information System (INIS)

    Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U.

    2015-01-01

    Highlights: • Conventional absorption system modified to increase COP. • Results indicated increase of 10% in COP due to dephlegmator heat recovery. • Results indicated increase of 8% in COP due to refrigerant storage unit. • Results indicated increase of 18% in COP due to combined effect of modifications. • Simulation results indicated a very good agreement with the measured results. - Abstract: Today, fossil fuel is the primary extensively used source of energy. However, its negative impact on the environment have forced the energy research continuity to seriously consider renewable sources of energy. Solar energy, in particular, has been the main focus in this regard because it is a source of clean energy and naturally available. This study presents the design and analysis of a solar powered absorption refrigeration system modified to increase its coefficient of performance (COP). The modifications include recovering of waste heat from a dephlegmator and utilization of a refrigerant storage unit. The simulation results indicate an increase of 10% in the COP of the conventional design using dephlegmator heat recovery and an increase of 8% in the COP of the conventional design due to the use of a refrigerant storage. The analysis for the combined effect of modifications indicates an increase of 18% in the COP compared to conventional design. Calculated values of coefficient of performance indicate a very good agreement with the ones obtained based on measurement

  3. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

  4. X-ray absorption anisotropy for polychromatic illumination-Crystal views from inside

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Novikov, D.V.

    2009-01-01

    We review an atomic resolution imaging method based on the analysis of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction. For a polychromatic X-ray beam, due to the suppression of higher order diffraction fringes, X-ray absorption anisotropy patterns can be interpreted as distorted real-space projections of the atomic structure around absorbing atoms. A qualitative method for analysis of X-ray absorption anisotropy patterns is presented, based on modeling of X-ray patterns with ray-traced images calculated for clusters around absorbing atoms.

  5. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    International Nuclear Information System (INIS)

    Novella, R.; Dolz, V.; Martín, J.; Royo-Pascual, L.

    2017-01-01

    Highlights: • Enough power in the exhaust gases is available to operate the absorption cycle. • Three engine operating points are presented in the article. • Improvement potential up to 4% is possible in the engine indicated efficiency. • Engine indicated efficiency benefit was experimentally confirmed by direct testing. - Abstract: This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a 0D thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 °C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct

  6. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    Science.gov (United States)

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  7. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand

    2008-01-01

    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  8. Measurements of the effective thermal neutron absorption cross-section in multi-grain models

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Igielski, A.; Krynicka, E.; Schneider, K.; Woznicka, U.

    2005-01-01

    The effective macroscopic absorption cross-section Σ a eff of thermal neutrons in a grained medium differs from the corresponding cross-section Σ a hom in the homogeneous medium consisting of the same components, contributing in the same amounts. The ratio of these cross-sections defines the grain parameter, G, which is a measure of heterogeneity of the system for neutron absorption. Heterogeneous models have been built as two- or three-component systems (Ag, Cu and Co 3 O 4 grains distributed in a regular grid in Plexiglas, in various proportions between them). The effective absorption cross-section has been measured and the experimental grain parameter has been found for each model. The obtained values are in the interval 0.34 < G < 0.58, while G = 1 means the homogeneous material. (author)

  9. Modelling absorption in porous asphalt concrete for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    A numerical model to predict the sound absorption of porous asphalt has been developed. The approach is a combination between a microstructural approach and a finite element approach. The model used to describe the viscothermal properties of the air inside the pores of the asphalt is the low reduced

  10. Analysis of urinary stone based on a spectrum absorption FTIR-ATR

    International Nuclear Information System (INIS)

    Asyana, V; Haryanto, F; Fitri, L A; Ridwan, T; Anwary, F; Soekersi, H

    2016-01-01

    This research analysed the urinary stone by measuring samples using Fourier transform infrared-attenuated total reflection spectroscopy and black box analysis. The main objective of this study is to find kinds of urinary stone and determine a total spectrum, which is a simple model of the chemical and mineral composition urinary stone through black box analysis using convolution method. The measurements result showed that kinds of urinary stone were pure calcium oxalate monohydrate, ion amino acid calcium oxalate monohydrate, a mixture of calcium oxalate monohydrate with calcium phosphate, a mixture of ion amino acid calcium oxalate monohydrate and calcium phosphate,pure uric acid, ion amino acid uric acid, and a mixture of calcium oxalate monohydrate with ion amino acid uric acid. The results of analysis of black box showed characteristics as the most accurate and precise to confirm the type of urinary stones based on theregion absorption peak on a graph, the results of the convolution, and the shape of the total spectrum on each urinary stones. (paper)

  11. Absorption of beta-carotene and other carotenoids in humans and animal models : a review

    NARCIS (Netherlands)

    Vliet, T. van

    1996-01-01

    Objective: To review available information on absorption and further metabolism of different carotenoids in man and to discuss animal models and approaches in the study of carotenoid absorption and metabolism in man. Conclusions: Humans appear to absorb various carotenoids in a relatively

  12. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar; Tom, Nathan

    2017-09-01

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  13. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  14. From Training to Organizational Behavior: A Mediation Model through Absorptive and Innovative Capacities.

    Science.gov (United States)

    Yáñez-Araque, Benito; Hernández-Perlines, Felipe; Moreno-Garcia, Juan

    2017-01-01

    The training of human resources improves business performance: myth or reality? While the literature has extensively addressed this issue, the transfer that occurs from training to performance still remains unresolved. The present study suggests an empirical solution to this gap, through a multiple mediation model of dynamic capabilities. Accordingly, the study makes a major contribution to the effectiveness of an organizational-level training: the "true" relationship between training and performance is mediated by absorptive and innovative capacities. It is difficult from training to directly affect the results: it must be done through a chain of intermediate variables. Training can be argued to be indirectly related to performance, through absorptive capacity in the first place, and innovative capacity in the second, sequentially in this order (three-path mediated effect). Of all immediate relationships received by performance, its explained variance is achieved partly via absorptive capacity and partly via innovation. The direct relationship through training is not significant and only explains a small percentage of the variance in performance. These results have been corroborated by combining two methods of analysis: PLS-SEM and fsQCA, using data from an online survey. This dual methodology in the study of the same phenomenon allows overcoming the limitations of each method, which would not have been possible with a single methodological approach, and confirming the findings obtained by any of them.

  15. Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam

    Science.gov (United States)

    Dupré, Patrick

    2018-01-01

    With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.

  16. THE ANALYSIS OF ABSORPTION CAPACITY OF EUROPEAN FUNDING IN THE NORTH WESTERN REGION OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Droj Laurentiu

    2010-12-01

    Full Text Available This paper analyzes the Romanian absorption capacity of the funds allocated through the REGIO programme, which is part of ERDF programme. Within the paper are presented the concept of absorption capacity and several opinions regarding its main composing elements. Also the Regio programme, its main axis and its budget is briefly presented. In the last chapter of the analysis a thorough analysis of the implementation of REGIO in the Romanian North-West Region was carried out and several causes for the low absorption of European Founds have been identified.. The process of improving the absorption capacity of European Funds is still at the beginning in Romania and will certainly become an important issue over the following years at all levels of the Romanian society and at the level of the European Funding Authorities as well.

  17. X-ray/UV Observing Campaign on the Mrk 279 AGN Outflow: A Global Fitting Analysis of the UV Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, J.

    2005-03-17

    We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the ''Hubble Space Telescope'' (41 ks) and the ''Far Ultraviolet Spectroscopic Explorer'' (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering--a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both models give good statistical fits to the observed absorption, we favor the model with two covering factors because: (a) the best-fit covering factors for both emission sources are similar for the independent Lyman series and CNO doublet fits; (b) the fits are consistent with full coverage of the continuum source and partial coverage of the emission lines by the absorbers, as expected from the relative sizes of the nuclear emission components; and (c) it provides a natural explanation for variability in the Lya absorption detected in an earlier epoch. We also explore physical and geometrical constraints on the outflow from these results.

  18. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Science.gov (United States)

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Modelling and optimization of the sound absorption of wood-wool cement boards

    NARCIS (Netherlands)

    Botterman, B.; Doudart de la Grée, G.C.H.; Hornikx, M.C.J.; Yu, Q.; Brouwers, H.J.H.

    2018-01-01

    The present article aims to characterize and improve the sound absorption of wood-wool cement boards (WWCB) with varying strand widths, densities, thicknesses and applied with varying air cavity thicknesses by using impedance models. Different rigid-frame impedance models were analysed to predict

  20. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application

    DEFF Research Database (Denmark)

    Gong, M.; Zhang, Y.; Weschler, Charles J.

    2014-01-01

    A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...... and less absorbed into blood than would a steady-state model. In the 7-day scenario, results calculated by the transient and steady-state models converge over a time period that varies between 3 and 4days for all but the largest phthalate (DEHP). Dermal intake is comparable to or larger than inhalation...

  1. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    Science.gov (United States)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  2. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  3. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    2001-01-01

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  4. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    Science.gov (United States)

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  5. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  6. Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr-H2O absorption cycle-Part 1: System configuration and mathematical model

    International Nuclear Information System (INIS)

    Wang Yongqing; Lior, Noam

    2011-01-01

    Simultaneous production of fresh water and refrigeration are often required, e.g. in warm-climate water-deficient regions, and this study is a proposal and analysis of an efficient way of producing both of them by consuming mainly low-grade heat. After introducing the configuration choice methodology, a combined refrigeration and water system, ARHP-MEE (absorption refrigeration heat pump and multi-effect evaporation desalter), which is the integration of a LiBr-H 2 O refrigeration unit, a LiBr-H 2 O heat pump, and a low-temperature multi-effect evaporation desalination unit, is proposed, and the mathematical model is presented and validated. The model serves for conducting a performance analysis of the combined system, reported in Part 2 of this two-part paper.

  7. Absorption of selected radionuclides. Analysis of a literature study. Resorption ausgewaehlter Radionuklide. Analyse einer Literaturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Roedler, H D; Kraus, H M

    1979-12-01

    In October 1978, the Institut fuer Energie- und Umweltforschung Heidelberg e.V. published a contribution to part 26 of the model study of radio-ecology at Biblis under the title 'Estimation of the absorption of radionuclides from the gastrointestinal tract in the blood'. Using the example of this contribution, a critical analysis is made to show how a selection of the information contained in various scientific publications and other items of literature can give uncritical readers the impression that all statements made are scientifically well founded.

  8. Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Kachhwaha, S.S.; Sachdeva, Gulshan

    2013-01-01

    Highlights: • Study includes first and second law analysis with alternatives refrigerants. • Power consumption in cascaded system is 61% less than vapor compression system. • COP of compression system is improved by 155% with cascaded absorption system. • Condenser is more sensitive to external fluid temperature as compare to evaporator. - Abstract: In the present study, a thermodynamic model for cascaded vapor compression–absorption system (CVCAS) has been developed which consists of a vapor compression refrigeration system (VCRS) coupled with single effect vapor absorption refrigeration system (VARS). Based on first and second laws, a comparative performance analysis of CVCAS and an independent VCRS has been carried out for a design capacity of 66.67 kW. The results show that the electric power consumption in CVCAS is reduced by 61% and COP of compression section is improved by 155% with respect to the corresponding values pertaining to a conventional VCRS. However there is a trade-off between these parameters and the rational efficiency which is found to decrease to half of that for a VCRS. The effect of various operating parameters, i.e., superheating, subcooling, cooling capacity, inlet temperature and the product of effectiveness and heat capacitance of external fluids are extensively studied on the COP, total irreversibility and rational efficiency of the CVCAS. Besides, the performance of environment friendly refrigerants such as R410A, R407C and R134A is found to be almost at par with that of R22. Hence, all the alternative refrigerants selected herein can serve as potential substitutes for R22. Furthermore, it has been found that reducing the irreversibility rate of the condenser by one unit due to decrease in condenser temperature depicted approximately 3.8 times greater reduction in the total irreversibility rate of the CVCAS, whereas unit reduction in the evaporator’s irreversibility rate due to increase in evaporator temperature reduced

  9. Analysis of hybrid membrane and chemical absorption systems for CO2 capture

    International Nuclear Information System (INIS)

    Binns, Michael; Oh, Se-Young; Kwak, Dong-Hun; Kim, Jin-Kuk

    2015-01-01

    Amine-based absorption of CO 2 is currently the industry standard technology for capturing CO 2 emitted from power plants, refineries and other large chemical plants. However, more recently there have been a number of competing technologies under consideration, including the use of membranes for CO 2 separation and purification. We constructed and analyzed two different hybrid configurations combining and connecting chemical absorption with membrane separation. For a particular flue gas which is currently treated with amine-based chemical absorption at a pilot plant we considered and tested how membranes could be integrated to improve the performance of the CO 2 capture. In particular we looked at the CO 2 removal efficiency and the energy requirements. Sensitivity analysis was performed varying the size of the membranes and the solvent flow rate

  10. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    Science.gov (United States)

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  11. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

    Science.gov (United States)

    Jakubiak, Paulina; Wagner, Björn; Grimm, Hans Peter; Petrig-Schaffland, Jeannine; Schuler, Franz; Alvarez-Sánchez, Rubén

    2016-02-01

    Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling.

  12. Quantitative analysis of trivalent uranium and lanthanides in a molten chloride by absorption spectrophotometry

    International Nuclear Information System (INIS)

    Toshiyuki Fujii; Akihiro Uehara; Hajimu Yamana

    2013-01-01

    As an analytical application for pyrochemical reprocessing using molten salts, quantitative analysis of uranium and lanthanides by UV/Vis/NIR absorption spectrophotometry was performed. Electronic absorption spectra of LiCl-KCl eutectic at 773 K including trivalent uranium and eight rare earth elements (Y, La, Ce, Pr, Nd, Sm, Eu, and Gd as fission product elements) were measured in the wavenumber region of 4,500-33,000 cm -1 . The composition of the solutes was simulated for a reductive extraction condition in a pyroreprocessing process for spent nuclear fuels, that is, about 2 wt% U and 0.1-2 wt% rare earth elements. Since U(III) possesses strong absorption bands due to f-d transitions, an optical quartz cell with short light path length of 1 mm was adopted in the analysis. The quantitative analysis of trivalent U, Nd, Pr, and Sm was possible with their f-f transition intensities in the NIR region. The analytical results agree with the prepared concentrations within 2σ experimental uncertainties. (author)

  13. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian

    2006-01-01

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  14. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Successive collision calculation of resonance absorption (AWBA Development Program)

    International Nuclear Information System (INIS)

    Schmidt, E.; Eisenhart, L.D.

    1980-07-01

    The successive collision method for calculating resonance absorption solves numerically the neutron slowing down problem in reactor lattices. A discrete energy mesh is used with cross sections taken from a Monte Carlo library. The major physical approximations used are isotropic scattering in both the laboratory and center-of-mass systems. This procedure is intended for day-to-day analysis calculations and has been incorporated into the current version of MUFT. The calculational model used for the analysis of the nuclear performance of LWBR includes this resonance absorption procedure. Test comparisons of results with RCPO1 give very good agreement

  16. Absorption spectra analysis of hydrated uranium(III) complex chlorides

    Science.gov (United States)

    Karbowiak, M.; Gajek, Z.; Drożdżyński, J.

    2000-11-01

    Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.

  17. An In Silico Knockout Model for Gastrointestinal Absorption Using a Systems Pharmacology Approach - Development and Application for Ketones.

    Directory of Open Access Journals (Sweden)

    Vittal Shivva

    Full Text Available Gastrointestinal absorption and disposition of ketones is complex. Recent work describing the pharmacokinetics (PK of d-β-hydroxybutyrate (BHB following oral ingestion of a ketone monoester ((R-3-hydroxybutyl (R-3-hydroxybutyrate found multiple input sites, nonlinear disposition and feedback on endogenous production. In the current work, a human systems pharmacology model for gastrointestinal absorption and subsequent disposition of small molecules (monocarboxylic acids with molecular weight < 200 Da was developed with an application to a ketone monoester. The systems model was developed by collating the information from the literature and knowledge gained from empirical population modelling of the clinical data. In silico knockout variants of this systems model were used to explore the mechanism of gastrointestinal absorption of ketones. The knockouts included active absorption across different regions in the gut and also a passive diffusion knockout, giving 10 gut knockouts in total. Exploration of knockout variants has suggested that there are at least three distinct regions in the gut that contribute to absorption of ketones. Passive diffusion predominates in the proximal gut and active processes contribute to the absorption of ketones in the distal gut. Low doses are predominantly absorbed from the proximal gut by passive diffusion whereas high doses are absorbed across all sites in the gut. This work has provided mechanistic insight into the absorption process of ketones, in the form of unique in silico knockouts that have potential for application with other therapeutics. Future studies on absorption process of ketones are suggested to substantiate findings in this study.

  18. A dynamic model of digestion and absorption in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, Andrzej

    2008-01-01

    The paper describes and evaluates the construction of a mathematical model to study the kinetics of digestion and absorption in growing pigs. The core of the model is based on a compartmental structure, which divides the gastro-intestinal tract into four anatomical segments: the stomach, two parts...... of the small intestine and the large intestine. Within the large intestine, a microbial sub compartment is also considered. In each of these segments, the major organic nutrients are considered: dietary protein, endogenous protein, amino acids, non-amino acid and non-protein nitrogen, lipids, fatty acids......, starch, sugars and dietary fibre. Besides a chemical description of the feed, the model further requires information about daily dry matter intake and feeding frequency....

  19. Process for neptunium analysis by absorption spectrophotometry

    International Nuclear Information System (INIS)

    Wagner, J.F.

    1987-01-01

    An aqueous solution of a neptunium compounds is treated by a reagent, preferentially a vanadyl sulfate oxidized by cerium IV ions, to obtain neptunium V by oxidation of neptunium IV and reduction of neptunium VI. The reagent is chosen for a negligible absorption at the wavelength used for neptunium V absorption spectrophotometry for instance 981 nm [fr

  20. Direct analysis of 210Pb in sediment samples: Self-absorption corrections

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.; Olsen, C.R.

    1983-01-01

    A procedure for the direct #betta#-ray instrumental analysis of 210 Pb in sediment samples is presented. The problem of dependence of self-absorption on sample composition is solved by making a direct transmission measurement on each sample. The procedure has been verified by intercalibrations and other tests. (orig.)

  1. The analysis of coal-and coke ashes by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.; Prates, H.T.; Pereira, C.P.

    1977-01-01

    In order to provide better conditions for the control of the chemical composition of the load in the USIMINAS blast furnaces, a method of analysis for sodium, potassium, iron, aluminium, calcium, magnesium and maganese in coal-and coke ash by atomic absorption spectrophotometry was developed. The precision of the calibration curves and the reproducibility of the results are given, together with an estimate of the speed compared with conventional methods of chemical analysis [pt

  2. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium

    DEFF Research Database (Denmark)

    Portero, Ana; Remuñán-López, Carmen; Nielsen, Hanne Mørck

    2002-01-01

    To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used.......To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used....

  3. The method of the atomic-absorption analysis in a graphite furnace with the metallic collector-ballast

    International Nuclear Information System (INIS)

    Katskov, D.A.; Vasil'eva, L.A.; Grinshtejn, I.L.; Savel'eva, G.O.

    1987-01-01

    New method of atomic-absorption analysis in a graphite furnace with the metallic collector-ballast (tungsten were) is suggested. It enables to widen the number of analyzed objects of liquid products wetting readily graphite and metals. It is shown that application of metallic collector-ballast enables to improve sensitivity and reproducibility of analysis, increase the volume of dosed samples as well as to suppress effectively the influence of excess of mineral and organic substrate on results of atomic-absorption analysis of several elements, including Cd, Sr, In, Te

  4. Optical absorption analysis on diamond crystals modified by H2+ implantation and subsequent annealing

    International Nuclear Information System (INIS)

    Ma, Z.Q.; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Takeshita, Hidefumi; Goppelt-Langer, P.C.

    1995-01-01

    The optical absorption analysis on synthetic diamond irradiated by molecular hydrogen ions (H 2 + ) with 40 keV, 10 15 -10 17 H/cm 2 , at 100 K, showed that the absorption coefficient (α) of modified layer in UV-VIS range was increased with the implanted dose and decreased with thermal annealing. While its relative optical band gap (E r,opt ) was decreased with ion fluence and proportional to the annealing temperature. The possible microstructure of atomic coordination for as-implanted and subsequent annealing samples was discussed tentatively. In addition the optical inhomogeneity of the type Ib diamond has been revealed by absorption topograph at λ=430 nm. (author)

  5. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm.

    Science.gov (United States)

    Kesisoglou, Filippos; Mitra, Amitava

    2015-09-01

    Physiologically based absorption models can be an important tool in understanding product performance and hence implementation of Quality by Design (QbD) in drug product development. In this report, we show several case studies to demonstrate the potential application of absorption modeling in rational design of drug product under the QbD paradigm. The examples include application of absorption modeling—(1) prior to first-in-human studies to guide development of a formulation with minimal sensitivity to higher gastric pH and hence reduced interaction when co-administered with PPIs and/or H2RAs, (2) design of a controlled release formulation with optimal release rate to meet trough plasma concentrations and enable QD dosing, (3) understanding the impact of API particle size distribution on tablet bioavailability and guide formulation design in late-stage development, (4) assess impact of API phase change on product performance to guide specification setting, and (5) investigate the effect of dissolution rate changes on formulation bioperformance and enable appropriate specification setting. These case studies are meant to highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of the product performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  6. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks.

    Science.gov (United States)

    Meisels, R; Toifl, M; Hartlieb, P; Kuchar, F; Antretter, T

    2015-02-10

    A numerical analysis in a two-component model rock is presented including the propagation and absorption of a microwave beam as well as the microwave-induced temperature and stress distributions in a consistent way. The analyses are two-dimensional and consider absorbing inclusions (discs) in a non-absorbing matrix representing the model of a heterogeneous rock. The microwave analysis (finite difference time domain - FDTD) is performed with values of the dielectric permittivity typical for hard rocks. Reflections at the discs/matrix interfaces and absorption in the discs lead to diffuse scattering with up to 20% changes of the intensity in the main beam compared to a homogeneous model rock. The subsequent thermo-mechanical finite element (FE) analysis indicates that the stresses become large enough to initiate damage. The results are supported by preliminary experiments on hard rock performed at 2.45 GHz.

  7. Introduction of Flame Atomic Absorption Spectrometry (FAAS) For River Water Samples Analysis

    International Nuclear Information System (INIS)

    Shakirah Abd Shukor; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2015-01-01

    Metal contamination in water is a major component in the determination of water quality monitoring. In spite of the viability of several other metal ion analysis techniques for river water, atomic absorption spectroscopy (AAS) method is most commonly used due to the reproducibility results, short analysis time, cost effective, lower level detection and robust. Therefore, this article gives an overview on the principles, instrumentation techniques, sample preparations, instrument calibration and data analysis in a simple manner for beginner. (author)

  8. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India

    Directory of Open Access Journals (Sweden)

    Muthalagappan Narayanan

    2017-11-01

    Full Text Available Space cooling and heating always tends to be a major part of the primary energy usage. By using fossil fuel electricity for these purposes, the situation becomes even worse. One of the major electricity consumptions in India is air conditioning. There are a lot of different technologies and few researchers have come up with a debate between solar absorption cooling and PV electric cooling. In a previous paper, PV electric cooling was studied and now as a continuation, this paper focuses on solar thermal absorption cooling systems and their application in commercial/office buildings in India. A typical Indian commercial building is taken for the simulation in TRNSYS. Through this simulation, the feasibility and operational strategy of the system is analysed, after which parametric study and economic analysis of the system is done. When compared with the expenses for a traditional air conditioner unit, this solar absorption cooling will take 13.6 years to pay back and will take 15.5 years to payback the price of itself and there after all the extra money are savings or profit.  Although the place chosen for this study is one of the typical tropical place in India, this payback might vary with different places, climate and the cooling demand. Article History: Received May 12th 2017; Received in revised form August 15th 2017; Accepted 1st Sept 2017; Available online How to Cite This Article: Narayanan, M. (2017. Techno-Economic Analysis of Solar Absorption Cooling for Commercial Buildings in India.  International Journal of Renewable Energy Development, 6(3, 253-262. https://doi.org/10.14710/ijred.6.3.253-262

  9. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  10. Non-isothermal effects on SO2 absorption by water droplets. I - Model development. II - Results and discussion

    Science.gov (United States)

    Reda, M.; Carmichael, G. R.

    1982-01-01

    An analytic model of SO2 absorption in a falling water droplet is developed and a simulation of SO2 washout is performed. Nonisothermic effects on drop growth, droplet physical parameters, reaction rates, and multicomponent diffusion are treated in the model. The gas-liquid interface is assumed to be at equilibrium, and interfacial resistance is negligible. Raindrops are simulated as falling from a 2 km height through an atmospheric region containing SO2. The droplets decrease in size from evaporation and cooling, and their slightly basic pH aids SO2 absorption. The simulation indicates higher SO2 absorption at higher altitudes, and desorption may occur at ground level. Isothermal effects are concluded to be significant, and quantification of effects will depend on further modelling.

  11. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

    Science.gov (United States)

    Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-08-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  12. Managing Creativity for Absorptive Capacity: The NIH Syndrome and the Implementation of Open Innovation Business Model

    DEFF Research Database (Denmark)

    Cokpekin, Özge

    The benefits of the open innovation business model and the absorptive capacity necessary to acquire and utilize external knowledge have been discussed extensively. An emerging literature stream has identified certain intra-organizational antecedents of absorptive capacity. However how firms...... recognize potentially valuable external knowledge to be able to start the knowledge absorption process has not been discussed. This paper suggests creativity management and argues that stimulating meaningfully novel behavior positively influences the recognition ability and the communication it enhances...

  13. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    Science.gov (United States)

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  14. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  15. Analysis of the structure of Saturn's magnetic field using charged particle absorption signatures

    International Nuclear Information System (INIS)

    Chenette, D.L.; Davis, L. Jr.

    1982-01-01

    A new technique is derived for determining the structure of Saturn's magnetic field. This technique uses the observed positions of charged particle absorption signatures due to the satellites and rings of Saturn to determine the parameters of an axially symmetric, spherical harmonic model of the magnetic field using the method of least squares. Absorption signatures observed along the Pioneer 11, Voyager 1, and Voyager 2 spacecraft trajectories are used to derive values for the orientation of the magnetic symmetry axis relative to Saturn's axis of rotation, the axial displacement of the center of the magnetic dipole from the center of Saturn, and the magnitude of the external field component. Comparing these results with the magnetic field model parameters deduced from analyses of magnetometer data leads us to prefer models that incorporate a northward offset of the dipole center by about 0.05 R/sub s/

  16. Antecedents of Absorptive Capacity: A New Model for Developing Learning Processes

    Science.gov (United States)

    Rezaei-Zadeh, Mohammad; Darwish, Tamer K.

    2016-01-01

    Purpose: The purpose of this paper is to provide an integrated framework to indicate which antecedents of absorptive capacity (AC) influence its learning processes, and to propose testing of this model in future work. Design/methodology/approach Relevant literature into the antecedents of AC was critically reviewed and analysed with the objective…

  17. Experimental validation of a model for diffusion-controlled absorption of organic compounds in the trachea

    Energy Technology Data Exchange (ETDEWEB)

    Gerde, P. [National Inst. for Working Life, Solna (Sweden); Muggenburg, B.A.; Thornton-Manning, J.R. [and others

    1995-12-01

    Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipid membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled

  18. Applications of Lagrangian Dispersion Modeling to the Analysis of Changes in the Specific Absorption of Elemental Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Doran, J. C.; Fast, Jerome D.; Barnard, James C.; Laskin, Alexander; Desyaterik, Yury; Gilles, Marry K.; Hopkins, Rebecca J.

    2008-03-07

    We use a Lagrangian dispersion model driven by a mesoscale model with four-dimensional data assimilation to simulate the dispersion of elemental carbon (EC) over a region encompassing Mexico City and its surroundings, the study domain for the 2006 MAX-MEX experiment, which was a component of the MILAGRO campaign. The results are used to identify periods when biomass burning was likely to have had a significant impact on the concentrations of elemental carbon at two sites, T1 and T2, downwind of the city, and when emissions from the Mexico City Metropolitan Area (MCMA) were likely to have been more important. They are also used to estimate the median ages of EC affecting the specific absorption of light, aABS, at 870 nm as well as to identify periods when the urban plume from the MCMA was likely to have been advected over T1 and T2. Values of aABS at T1, the nearer of the two sites to Mexico City, were smaller at night and increased rapidly after mid-morning, peaking in the mid-afternoon. The behavior is attributed to the coating of aerosols with substances such as sulfate or organic carbon during daylight hours, but such coating appears to be limited or absent at night. Evidence for this is provided by scanning electron microscope images of aerosols collected at three sampling sites. During daylight hours the values of aABS did not increase with aerosol age for median ages in the range of 1-4 hours. There is some evidence for absorption increasing as aerosols were advected from T1 to T2 but the statistical significance of that result is not strong.

  19. Synthetic model for Doppler broadening of neutron absorption resonances in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Alejandro J., E-mail: villanueva@cab.cnea.gov.a [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Granada, J.R. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2010-08-15

    A general and systematic approach expressed in modern language, accounting for molecular motion effects on Doppler Broadening of Neutron Absorption Resonances (DBNAR) is given the form of a new model. It relies on well validated hypothesis: The separability of atomic from nuclear degrees of freedom, the use of the Van Hove scattering formalism and the fact that a conceptually identical approach produced experimentally proved predictions when applied to DBNAR in solid systems. We treat the molecular internal degrees of freedom approximately as harmonic oscillators. As a second contribution of this work, a synthetic model is presented in order to make the more complete model mentioned above suitable for neutron calculation codes. This second synthetic model reduces to the exact expressions of the complete model in the low and high neutron energy regimes and provides a plausible transition in between. Numerical results are presented for a general hypothetical case to show its strengths and limitations. Also, both models are applied to a real case of the {sup 238}U 6.674 eV resonant effective broadened absorption cross-section in UF6 (uranium hexafluoride). A direct experimental validation of our models is still necessary for which a special high resolution neutron transmission experiment ought to be devised at low temperatures and pressures on a gaseous system. It is showed how the synthetic model can be used to make thermometric predictions in an improved fashion in comparison to the effective temperature gas model at low temperatures.

  20. Testing Disk-Wind Models with Quasar CIV 1549Å Associated Absorption Lines

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2012-01-01

    Narrow associated C IV 1549Å absorption lines (NALs) with a rest equivalent width EW =3 Å detected in z ˜ 2 radio-loud and radio-quiet quasars, (a) exhibit evidence of an origin in radiatively accelerated gas, and (b) may be closely related to broad absorption line (BAL) outflows. These NALs...... and the few BALs detected in this quasar sample obey key predictions of models of radiatively driven disk-winds in which (1) the local disk luminosity launches the wind, (2) the central UV radiation drives it outwards, and (3) the wind acceleration (i.e., terminal velocity) depends on the strength of the X...

  1. Modelling absorption and photoluminescence of TPD

    International Nuclear Information System (INIS)

    Vragovic, Igor; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C.; Gisslen, L.; Scholz, R.

    2008-01-01

    We analyse the optical spectra of N,N ' -diphenyl-N,N ' -bis(3-methyl-phenyl)-(1,1 ' -biphenyl)-4,4 ' -diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer

  2. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller

    International Nuclear Information System (INIS)

    Zinet, Matthieu; Rulliere, Romuald; Haberschill, Philippe

    2012-01-01

    Highlights: ► Dynamic simulation of a new recirculation single-effect H 2 O/LiBr absorption chiller is developed. ► The chiller is driven by two heat sources and exclusively cooled by the ambient air. ► Heat and mass transfer in the absorber and the desorber are described according to a detailed physical model. ► Analyse of the dynamic behaviour of the chiller after sudden changes in operation. - Abstract: A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film evaporator–absorber, uses mixed recirculation and is exclusively cooled by the ambient air. Heat and mass transfer in the evaporator–absorber and in the desorber are described according to a physical model for vapour absorption based on Nusselt’s film theory. The other heat exchangers are handled using a simplified approach based on the NTU-effectiveness method. The model is then used to analyze the chiller response to a step drop of the heat recovery circuit flow rate, and to a sudden reduction of the cooling need in the conditioned space. In the latter case, a basic temperature regulation system is simulated. In both simulations, the performance of the chiller is well represented and consistent with expectations.

  3. Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches

    International Nuclear Information System (INIS)

    McMullin, Tami S.; Hanneman, William H.; Cranmer, Brian K.; Tessari, John D.; Andersen, Melvin E.

    2007-01-01

    Atrazine (ATRA) is metabolized by cytochrome P450s to the chlorinated metabolites, 2-chloro-4-ethylamino-6-amino-1,3,5-triazine (ETHYL), 2-chloro-4-amino-6-isopropylamino-1, 3, 5-triazine (ISO), and diaminochlorotriazine (DACT). Here, we develop a set of physiologically based pharmacokinetic (PBPK) models that describe the influence of oral absorption and oxidative metabolism on the blood time course curves of individual chlorotriazines (Cl-TRIs) in rat after oral dosing of ATRA. These models first incorporated in vitro metabolic parameters to describe time course plasma concentrations of DACT, ETHYL, and ISO after dosing with each compound. Parameters from each individual model were linked together into a final composite model in order to describe the time course of all 4 Cl-TRIs after ATRA dosing. Oral administration of ISO, ETHYL and ATRA produced double peaks of the compounds in plasma time courses that were described by multiple absorption phases from gut. An adequate description of the uptake and bioavailability of absorbed ATRA also required inclusion of additional oxidative metabolic clearance of ATRA to the mono-dealkylated metabolites occurring in GI a tract compartment. These complex processes regulating tissue dosimetry of atrazine and its chlorinated metabolites likely reflect limited compound solubility in the gut from dosing with an emulsion, and sequential absorption and metabolism along the GI tract at these high oral doses

  4. Stopped pion absorption by medium and heavy nuclei in the cascade-exciton model

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1992-03-01

    A large variety of experimental data on stopped negative pion absorption by nuclei from C to Bi (energy spectra and multiplicities of n, p, d, t, 3 He and 4 He; angular correlations of two secondary particles; spectra of the energy release in the ''live'' 28 Si target on recording protons, deuterons and tritons in the energy range 40-70 MeV, 30-60 MeV and 30-50 MeV, respectively; isotope yields; momentum and angular momentum distributions of residual nuclei) are analyzed within the framework of the cascade-exciton model of nuclear reactions. Comparison is made with other up-to-date models of the process. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed. (author). 59 refs, 13 figs, 4 tabs

  5. Atomic absorption analysis of serial titanium alloys

    International Nuclear Information System (INIS)

    Gorlova, M.N.; Feofanova, N.M.; Kornyushkova, Yu.D.

    1977-01-01

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF 4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl 3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  6. Development of design program for small-sized gas absorption chiller/heaters

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J.I.; Kwon, O.K.; Moon, C.K. [Pukyong National University, Pusan (Korea); Yang, Y.M.; Kim, H.Y. [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-10-01

    Analysis of basic data is performed for development of small size water-cooled household absorption chiller/heater using non CFC refrigerant, analytic simulation program of air cooling performance is developed that system has 1.5-10RT of air cooling performance, we perform cycle analysis and numerical simulation. We develope a performance analysis of simulation program to perform a basic design for 1.5-10RT apparatus of small size system of development model in gas driven double effect absorption chiller/heater. The system working condition and operation limit condition is decided from the existing data which is analyzed and the conference with KOGAS. After the basic input variable and regular condition is established for heat cycle analysis, the simulation algorithm is set up and performance simulation program is coded according to the organized algorithm. The basic design of optimum system is completed from parametric study using developed simulation program and establishing the design variable range of developing object model. 20 refs., 30 figs., 9 tabs.

  7. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  8. Analysis of impurities in silver matrix by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Hussain, R.; Ishaque, M.; Mohammad, D.

    1999-01-01

    A procedure for the analysis of aluminium, chromium, copper, lead, mercury, nickel and zinc mainly using flame lens atomic absorption spectrophotometry has been described. The results depict that the presence of silver does not introduce any significant interference, when standards are prepared in matching silver matrix solutions. The calibration curves obey the straight-line equations passing through the origin. Thus the separation of silver matrix from the analyte solutions is not necessary. The method has successfully been applied for the analysis of silver foils, wires, battery grade silver oxides and silver nitrate samples containing analyte elements in the concentration range 2 to 40 ppm. (author)

  9. Modelling absorption and photoluminescence of TPD

    Energy Technology Data Exchange (ETDEWEB)

    Vragovic, Igor [Dpto. de Fisica Aplicada and Inst. Universitario de Materiales de Alicante, Universidad de Alicante, E-03080 Alicante (Spain)], E-mail: igor.vragovic@ua.es; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C. [Max-Planck-Institut fuer Mikrostrukturphysik, D-06120 Halle (Germany); Gisslen, L.; Scholz, R. [Walter Schottky Institut, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2008-05-15

    We analyse the optical spectra of N,N{sup '}-diphenyl-N,N{sup '}-bis(3-methyl-phenyl)-(1,1{sup '}-biphenyl)-4,4{sup '}-diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer.

  10. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  11. Analysis of gas absorption to a thin liquid film in the presence of a zero-order chemical reaction

    Science.gov (United States)

    Rajagopalan, S.; Rahman, M. M.

    1995-01-01

    The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process was modeled by establishing equations for the conservation of mass, momentum, and species concentration and solving them analytically. A scaling analysis was used to determine dominant transport processes. Appropriate boundary conditions were used to solve these equations to develop expressions for the local concentration of gas across the thickness of the film and distributions of film height, bulk concentration, and Sherwood number along the radius of the disk. The partial differential equation for species concentration was solved using the separation of variables technique along with the Duhamel's theorem and the final analytical solution was expressed using confluent hypergeometric functions. Tables for eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be small when compared to the case of no reaction (pure absorption), but the enhancement factor was very significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results were compared to previous theoretical

  12. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model

    Science.gov (United States)

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index (RI) of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range $250\\,{\\rm nm} - 1100\\,{\\rm nm}$ using the Kramers-Kronig (KK) relations and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  13. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  14. A numerical approach to model and predict the energy absorption and crush mechanics within a long-fiber composite crush tube

    Science.gov (United States)

    Pickett, Leon, Jr.

    Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.

  15. Thermodynamic analysis of diesel engine coupled with ORC and absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Salek, Farhad; Moghaddam, Alireza Naghavi; Naserian, Mohammad Mahdi

    2017-01-01

    Highlights: • Coupling ORC and Ammonia absorption cycles with diesel engine to recover energy. • By using designed bottoming system, recovered diesel engine energy is about 10%. • By using designed bottoming system, engine efficiency will grow about 4.65%. - Abstract: In this paper, Rankine cycle and Ammonia absorption cycle are coupled with Diesel engine to recover the energy of exhaust gases. The novelty of this paper is the use of ammonia absorption refrigeration cycle bottoming Rankine cycle which coupled with diesel engine to produce more power. Bottoming system converts engine exhaust thermal energy to cooling and mechanical energy. Energy transfer process has been done by two shell and tube heat exchangers. Simulation processes have been done by programming mathematic models of cycles in EES Program. Based on results, recovered energy varies with diesel engine load. For the particular load case of current research, the use of two heat exchangers causes 0.5% decrement of engine mechanical power. However, the recovered energy is about 10% of engine mechanical power.

  16. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  17. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  18. Total CMB analysis of streaker aerosol samples by PIXE, PIGE, beta- and optical-absorption analyses

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Przybylowicz, W.J.

    1993-01-01

    Multielemental analyses of aerosol samples are widely used in air pollution receptor modelling. Specifically, the chemical mass balance (CMB) model has become a powerful tool in urban air quality studies. Input data required for the CMB includes not only the traditional X-ray fluorescence (and hence PIXE) detected elements, but also total mass, organic and inorganic carbon, and other light elements including Mg, Na and F. The circular streaker sampler, in combination with PIXE analysis, has developed into a powerful tool for obtaining time-resolved, multielemental aerosol data. However, application in CMB modelling has been limited by the absence of total mass and complementary light element data. This study reports on progress in using techniques complementary to PIXE to obtain additional data from circular streaker samples, maintaining the nondestructive, instrumental approach inherent in PIXE: Beta-gauging using a 147 Pm source for total mass; optical absorption for inorganic carbon; and PIGE to measure the lighter elements. (orig.)

  19. Enhanced Water Vapor Absorption within Tropospheric Clouds: A Partial Explanation for Anomalous Absorption

    Science.gov (United States)

    Crisp, David; Zuffada, Cinzia

    1996-01-01

    Comparisons between solar flux measurements and predictions obtained from theoretical radiative transfer models indicate that most of these models underestimate the globally averaged solar energy absorbed by cloudy atmospheres by up to 25Wm&sup-2;.The origin of this anomalous absorption has not yet been established, but it has been attributed to a variety of sources including oversimplified or missing physical processes in the existing models, uncertainties in the input data, and even measurement errors. We used a sophisticated atmospheric radiative transfer model to provide improved constraints on the physical processes that contribute to the absorption of solar radiation by Earth's atmosphere. The results are described herein.

  20. Analysis of SO/sub 2/ absorption with oxidation in an accelerating stream of drops

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C.; Ramachandran, R.S.; Altwicker, E.R.

    1985-02-01

    Trace gas absorption with chemical reaction in falling drops is of interest for the understanding of several aspects of a variety of engineering systems including gravity spray processes, flue gas desulfurization, as well as below-cloud scavenging by rain. The main components of such systems consist of the fluid dynamics of multiple drops in a gaseous environment and trace gas mass transfer with liquid-phase reaction. Here we deal specifically with the effects of mass and momentum transfer parameters such as fluid flow velocity, drop characteristics, film resistance layers, and the residence time of an accelerating isothermal stream of drops on the absorption and oxidation rates of sulfur dioxide. Predictive results obtained with a new computer simulation model, validated with measured data points, demonstrate the importance of such system parameters on SO/sub 2/ absorption.

  1. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  2. A physiological toxicokinetic model for dermal absorption of waterborne pyrene by trout

    Energy Technology Data Exchange (ETDEWEB)

    Namdari, R.; Law, F.C.P. [Simon Fraser Univ., Burnaby, British Columbia (Canada)

    1995-12-31

    A physiologically-based toxicokinetic (PB-TK) model was developed to describe the disposition of pyrene in trout following a bolus injection into the dorsal aorta. In the present study, the PB-TK model was adapted for dermal absorption of waterborne pyrene by trout. A skin compartment with transdermal flux described mathematically by the permeability-area-concentration product was added to the PB-TK model to allow prediction of pyrene concentrations in target organs and blood on the basis of exposure concentration at the skin surface. Physiologically relevant parameters e.g., organ volume, blood flow rate, and tissue/blood partitioning coefficient which were derived from the model were similar to those reported in the previous publication. The dermal PB-TK model was validated by exposing the trunk of trout (400--500 g) to stagnant water containing 24 ppm pyrene in a specially designed chamber for 4 hr, 24 hr or 48 hr. The trout were sacrificed at the conclusion of pyrene exposure and the tissues analyzed for unchanged pyrene by HPLC. In separate experiments, trout were implanted with dorsal aorta cannuli before the trunks were exposed to stagnant water containing 24 ppm pyrene in the chamber for 4 hr. At specific time intervals during and after pyrene exposure, blood samples were withdrawn through the cannula and analyzed for pyrene by HPLC. The agreement between simulated and experimentally obtained values shows that this model is an appropriate tool to predict dermal absorption of waterborne pyrene by trout.

  3. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  4. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  5. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  6. Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution

    Directory of Open Access Journals (Sweden)

    Ghaemi Ahad

    2017-09-01

    Full Text Available In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.

  7. Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2009-01-01

    Full Text Available In the present work, the development of a method based on the coupling of flow analysis (FA, hydride generation (HG, and derivative molecular absorption spectrophotometry (D-EAM in gas phase (GP, is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm of the absorption spectrum (190 - 300 nm is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

  8. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  9. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  10. The atomic structure of Fe100-xCux nanoalloys: X-ray absorption analysis

    International Nuclear Information System (INIS)

    Kravtsova, A.N.; Yalovega, G.E.; Soldatov, A.V.; Yan, W.S.; Wei, S.Q.

    2009-01-01

    The local atomic structure of Fe 100-x Cu x nanoalloys (x = 0, 10, 20, 40, 60, 70, 80 and 100%) has been investigated by X-ray absorption near edge structure (XANES) analysis. Local environment around copper and iron atoms in Fe 100-x Cu x has been studied by comparing the experimental XANES with corresponding theoretical spectra calculated for several structural models. It has been established that the most probable structure of the Fe 100-x Cu x nanoalloys for a low concentration of copper (x = 10-20%) is a homogenous bcc structure, for a high copper concentration (x = 60-80%)-a homogenous fcc structure, while at an intermediate copper concentration (about 40%) the nanoalloys have an inhomogeneous structure consisting of clusters of fcc solid solution (90%) and of clusters of bcc solid solution (10%)

  11. Fractional intestinal absorption and retention of calcium measured by whole-body counting. Application of a power function model

    International Nuclear Information System (INIS)

    Pors Nielsen, S.; Baerenholdt, O.; Munck, O.

    1975-01-01

    By application of a power function model, fractional intestinal calcium absorption was investigated with a new technique involving whole-body counting after successive oral and intravenous administration of standard doses of 47 Ca. The fractional calcium retention 7 days after the oral load of 47 Ca was also measured. Fractional calcium retention averaged 30.3% in normal subjects and 11.5% in 11 patients with intestinal malabsorption. In the same groups fractional calcium absorption averaged 46.6% and 16.4%, respectively. Fractional calcium retention and intestinal calcium absorption were significantly correlated to body surface area, and there was a well-defined relation between fractional retention and absorption of calcium. These studies demonstrate that measurements of fractional retention and fractional intestinal absorption of calcium can be combined by the use of a whole-body counter, that fractional retention and intestinal absorption are proportional to total body surface area and therefore probably also to the total bone mass, and that fractional retention and absorption are so closely interrelated that frational absorption can be estimated from fractional retention with reasonable accuracy in normal subjects. (auth.)

  12. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  13. SPECTROPHOTOMETRIC, ATOMIC ABSORPTION AND CONDUCTOMETRIC ANALYSIS OF TRAMADOL HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Sara M. Anis

    2011-09-01

    Full Text Available Six simple and sensitive spectroscopic and conductometric procedures (A-F were developed for the determination of tramadol hydrochloride. Methods A, B and C are based on the reaction of cobalt (II thiocyanate with tramadol to form a stable ternary complex, which could be measured by spectrophotometric (method A, atomic absorption (method B or conductometric (method C procedures. Methods D and E depend on the reaction of molybdenum thiocyanate with tramadol to form a stable ternary complex, measured by spectrophotometric means (method D or by atomic absorption procedures (method E, while method F depends on the formation of an ion pair complex between the studied drug and bromothymol blue which is extractable into methylene chloride. Tramadol hydrochloride could be assayed in the range of 80-560 and 40-–220 μg ml-1, 1-15 mg ml-1 and 2.5-22.5, 1.25-11.25 and 5-22 μg ml-1 using methods A,B,C,D,E and F, respectively. Various experimental conditions were studied. The results obtained showed good recoveries. The proposed procedures were applied successfully to the analysis of tramadol in its pharmaceutical preparations and the results were favorably comparable with the official method.

  14. Absorption corrections for x-ray fluorescence analysis of environmental samples

    International Nuclear Information System (INIS)

    Bazan, F.; Bonner, N.A.

    1975-01-01

    The discovery of a very simple and useful relationship between the absorption coefficient of a particular element and the ratio of incoherent to coherent scattering by the sample containing the element is discussed. By measuring the absorption coefficients for a few elements in a few samples, absorption coefficients for many elements in an entire set of similar samples can be obtained. (auth)

  15. Absorption corrections for x-ray fluorescence analysis of environmental samples

    International Nuclear Information System (INIS)

    Bazan, F.; Bonner, N.A.

    1976-01-01

    The discovery of a very simple and useful relationship between the absorption coefficient of a particular element and the ratio of incoherent to coherent scattering by the sample containing the element is discussed. By measuring the absorption coefficients for a few elements in a few samples, absorption coefficients for many elements in an entire set of similar samples can be obtained

  16. The effectiveness of absorption heat pumps application for the increase of economic efficiency of CHP operation

    Directory of Open Access Journals (Sweden)

    Luzhkovoy Dmitriy S.

    2017-01-01

    Full Text Available The article deals with a comparative analysis of CHP operational efficiency in various working modes before and after the absorption heat pumps installation. The calculation was performed using a mathematical model of the extraction turbine PT- 80/100-130/13. Absorption heat pumps of LLC “OKB Teplosibmash” were used as AHP models for the analysis. The most effective way of absorption lithium-bromide heat pumps application as a part of the turbine PT-80/100-130/13 turned out to be their usage in a heat-producing mode during a non-heating season with a load of hot water supply. For this mode the dependence of the turbine heat efficiency on the heat load of the external consumer at a given throttle flow was analyzed.

  17. Compression-recovery model of absorptive glass mat (AGM) separator guided by X-ray micro-computed tomography analysis

    Science.gov (United States)

    Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal

    2017-10-01

    Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.

  18. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    Science.gov (United States)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.

  19. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  20. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  1. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  2. Frenkel defect absorption on dislocations and dislocation discharge rate. Modeling determination of the absorption zone

    International Nuclear Information System (INIS)

    Mikhlin, Eh.Ya.

    1988-01-01

    A situation connected with the fact that evaluations of dislocation discharge strength which somehow or other are based on the elasticity theory in the dislocation nucleus or near it, do not lead to results complying with experimental data, is discussed. Bases of the alternative approach to this problem consisting in direct investigation into the process of Frenkel defect absorption on dislocation by its computerized simulation at the microscopic level are also presented. Methods of investigation and results are described using α dislocation in iron-alpha as an example. The concept of zones of vacancy and interstitial atom absorption on dislocation is discussed. It is shown that a spontaneous transition, performed by any of these defects near a dislocation is not always identical to absorption and usually appears to be only a part of a multistage process leading to the defect disappearance. Potential relief characteristics for vacancy movement near the dislocation are found. An area wide enough in a transverse direction is found around the dislocation. Vacncies reaching this area can be easily transported to places of their disappearance. Therefore the vacancy entry to this area is equivalent to the absorption. the procedure of simulating the atomic structure of a crystallite containing a dislocation with a step is described. Positions from which these defects perform spontaneous transitions, reaching the disappearance places are found on the dislocation near the step

  3. Sublinear absorption in OCS gas

    International Nuclear Information System (INIS)

    Bogani, F.; Querzoli, R.; Ernst, K.

    1988-01-01

    Sublinear absorption in OCS gas has been experimentally studied in detail by means of an optoacustic technique and transmission measurements. The best fit of the results is obtained by a phenomenological model, that considers the process as the sum of one-and two-photon absorptions

  4. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  5. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)

    2017-02-15

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.

  6. A model for absorption determination of radioactive materials: application in the radio dosimetry and nutrition study

    International Nuclear Information System (INIS)

    Mesquita, C.H. de.

    1991-01-01

    A three-parameter model of the sigmoidal relationship is proposed to explain the food passage by intestinal tube. These parameters are: U = intestinal non-absorbed radioactivity; d parameter related to intestinal food dispersion; and t 50 = time to maximal appearance of material from the intestinal lumen. In order to illustrate the applications of this model and its validity, the absorption of 65 Zn from casein semi-purified diet was evaluated in rats. There was a good agreement between the predicted values and the experimental data when the sigmoidal component was added to the conventional multicompartimental equations. With this kind of model the time to maximal appearance (hours), the true absorption level, the fecal concentration and the intestinal dispersion of the ingested radioactivity material may be determined. (author)

  7. Sensitivity of light interaction computer model to the absorption properties of skin

    Science.gov (United States)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  8. Modeling of the fluid dynamics and SO{sub 2} absorption in a gas-liquid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, L. [Alstom Power Italy, Milan (Italy)

    2010-08-01

    This paper illustrates a computational fluid dynamic (CFD) model of a counter-current Open Spray Tower desulphurisation reactor and its application in the simulation of a full-scale industrial equipment. The raw flue gas flows upward while a suspension of water and limestone is sprayed downward from different heights. Thereby sulfur dioxide is washed out of the gas. The two-phase gas-liquid flow inside the equipment has been simulated with an Euler-Lagrange approach using a commercial CFD code, while a model for the SO{sub 2} absorption has been developed and implemented in the software through dedicated modules. Physical absorption is modeled using dual-film theory and appropriate empirical and semi-empirical correlations. The aqueous phase chemistry accounts for the instantaneous equilibrium reactions of eight dissolved species into a slurry droplet. The model is used to simulate an industrial plant at different operating conditions. The numerical results are in good agreement with the measured values of pressure drop and sulphur removal efficiency.

  9. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  10. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Dai Yiping; Zhang Taiyong; Ma Shaolin

    2009-01-01

    A new combined power and ejector-absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector-absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.

  11. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  12. Characterizing, modelling and optimizing the sound absorption of wood wool cement boards (WWCB)

    NARCIS (Netherlands)

    Botterman, B.; Hornikx, M.C.J.; Doudart de la Grée, G.C.H.; Yu, Q.; Brouwers, H.J.H.

    2016-01-01

    The present article aims to characterize and, by using impedance models, predict the sound absorption of wood wool cement boards (WWCB). The main challenge lies in the inhomogeneity of the WWCB; the samples taken from different commercial boards do not only greatly differ in density, but also in

  13. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  14. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  15. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  16. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  17. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  18. Modelling and simulation of an absorption cycle with a blow pump; Modellierung und Simulation eines Absorptionskreislaufes mit einer Blasenpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, Markus

    2011-07-01

    Diffusion-absorption refrigerators are commonly operated with ammonia and water. If a ionic liquid with negligible vapour pressure is substituted for water, the rectifier will be unnecessary. In the context of a diploma thesis, a diffusion-absorption refrigerator with a blower pump and ammonia and a ionic liquid as working fluid was modelled and simulated. For this, three models were selected from the relevant literature and compared. Changes in COP as a result of varied operating parameters were investigated as well. It was shown that it is possible, in principle, to operate a diffusion-absorption refrigerator with a ionic liquid. [German] Diffusions-Absorptions-Kaeltemaschinen werden in der Regel mit dem Arbeitsstoffpaar Ammoniak-Wasser betrieben. Ersetzt man das Absorptionsmittel Wasser gegen eine ionische Fluessigkeit, die nur einen vernachlaessigbaren Dampfdruck besitzt, kann man den Rektifikator einsparen. Im Rahmen einer Diplomarbeit wurde eine Diffusions-Absorptions-Kaeltemaschine mit einer Blasenpumpe und dem Arbeitsstoffpaar Ammoniak-Ionische Fluessigkeit modelliert und simuliert. Hierfuer wurden drei Modelle aus der Literatur ausgewaehlt. Diese Modelle wurden untereinander verglichen. Ausserdem wurde die Veraenderung des COP bei der Variation der Betriebsparameter fuer diese Berechnungsmodelle untersucht. Es konnte gezeigt werden, dass es prinzipiell moeglich ist, eine Diffusions-Absorptions-Kaeltemaschine mit ionischer Fluessigkeit zu betreiben.

  19. Mass: Fortran program for calculating mass-absorption coefficients

    International Nuclear Information System (INIS)

    Nielsen, Aa.; Svane Petersen, T.

    1980-01-01

    Determinations of mass-absorption coefficients in the x-ray analysis of trace elements are an important and time consuming part of the arithmetic calculation. In the course of time different metods have been used. The program MASS calculates the mass-absorption coefficients from a given major element analysis at the x-ray wavelengths normally used in trace element determinations and lists the chemical analysis and the mass-absorption coefficients. The program is coded in FORTRAN IV, and is operational on the IBM 370/165 computer, on the UNIVAC 1110 and on PDP 11/05. (author)

  20. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    Yang, Puqing; Zhang, Houcheng

    2015-01-01

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  1. Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources

    International Nuclear Information System (INIS)

    Kaynakli, Omer; Saka, Kenan; Kaynakli, Faruk

    2015-01-01

    Highlights: • Energy and exergy analysis was performed on double effect series flow absorption refrigeration system. • The refrigeration system runs on various heat sources such as hot water, hot air and steam. • A comparative analysis was carried out on these heat sources in terms of exergy destruction and mass flow rate of heat source. • The effect of heat sources on the exergy destruction of high pressure generator was investigated. - Abstract: Absorption refrigeration systems are environmental friendly since they can utilize industrial waste heat and/or solar energy. In terms of heat source of the systems, researchers prefer one type heat source usually such as hot water or steam. Some studies can be free from environment. In this study, energy and exergy analysis is performed on a double effect series flow absorption refrigeration system with water/lithium bromide as working fluid pair. The refrigeration system runs on various heat sources such as hot water, hot air and steam via High Pressure Generator (HPG) because of hot water/steam and hot air are the most common available heat source for absorption applications but the first law of thermodynamics may not be sufficient analyze the absorption refrigeration system and to show the difference of utilize for different type heat source. On the other hand operation temperatures of the overall system and its components have a major effect on their performance and functionality. In this regard, a parametric study conducted here to investigate this effect on heat capacity and exergy destruction of the HPG, coefficient of performance (COP) of the system, and mass flow rate of heat sources. Also, a comparative analysis is carried out on several heat sources (e.g. hot water, hot air and steam) in terms of exergy destruction and mass flow rate of heat source. From the analyses it is observed that exergy destruction of the HPG increases at higher temperature of the heat sources, condenser and absorber, and lower

  2. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  3. Far-wing absorption in Na-Ar collision

    International Nuclear Information System (INIS)

    Kulander, K.C.

    1985-01-01

    Collision-induced absorption and emission at wavelengths well removed from line center play important roles in many atomic and molecular processes. The authors have developed the theory and computer codes to calculate exact quantum mechanical cross sections for these optical and radiative collisions between atoms. The authors also have produced a quasi-classical model that can efficiently generate accurate absorption cross sections. This model cannot, however, give branching ratios for the final-state populations. Their codes and model can be used to study the propagation of nearly resonant light through gaseous media and to calculate accurate gain and absorption cross sections for the far wings of atomic transitions. The authors have used their theory to study the collision-induced absorption by sodium in argon for wavelengths in the vicinity of the resonance lines D 1 and D 2

  4. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    Science.gov (United States)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  5. Determination of mixture valence plutonium and multicomponent by computer resolution analysis of absorption spectrum (UV/VIS/NIR) (CRAAS)

    International Nuclear Information System (INIS)

    Zhuang Weixin; Ye Guoan; Huang Lifeng; Sun Hongfang; Zhao Yanju

    1996-09-01

    A spectrophotometry has been developed which can directly determine a multi-component sample by spectrophotometry without any chemical separation. CRAAS (Computer Resolution Analysis of Absorption Spectrum) has been reported. It is different from the previous spectrophotometry depending on only one or several special absorption peak. The CRAAS deals with the whole region of absorption spectrum by mathematical statistics. So CRAAS has higher accuracy, stronger power and very high resolution. The trouble comes from overlap of different spectrum in each other has been solved because CRAAS depends on the whole spectrum. As long as two spectra have different shape, their concentrations can be determined even their special absorption peaks are seriously overlapped. The accuracy is about +-5%. (2 refs., 7 figs., 8 tabs.)

  6. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  7. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  8. Analysis of laser remote fusion cutting based on a mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R. S. [Department of Engineering Sciences and Mathematics, Luleå University of Technology, S-971 87 Luleå (Sweden); Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul (Iraq); Ilar, T.; Kaplan, A. F. H. [Department of Engineering Sciences and Mathematics, Luleå University of Technology, S-971 87 Luleå (Sweden)

    2013-12-21

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.

  9. Analysis of laser remote fusion cutting based on a mathematical model

    International Nuclear Information System (INIS)

    Matti, R. S.; Ilar, T.; Kaplan, A. F. H.

    2013-01-01

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too

  10. Clustering of germanium atoms in silica glass responsible for the 3.1 eV emission band studied by optical absorption and X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Muto, Shunsuke; Yuliati, Leny; Yoshida, Hisao; Inada, Yasuhiro

    2009-01-01

    Correlation between the 3.1 eV emission band and local atomic configuration was systematically examined for Ge + implanted silica glass by UV-vis optical absorption spectroscopy and X-ray absorption fine structure (XAFS) analysis. The 2.7 eV emission band, commonly observed in defective silica, was replaced by the sharp and intense 3.1 eV emission band for the Ge + fluence > 2 x 10 16 cm -2 , in which UV-vis absorption spectra suggested clustering of Ge atoms with the size ∼1 nm. XAFS spectroscopy indicated that the Ge atoms were under coordinated with oxygen atoms nearly at a neutral valence state on average. The present results are consistent with the previous ESR study but imply that the small Ge clusters rather than the O=Ge: complexes (point defects) are responsible for the 3.1 eV emission band.

  11. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  12. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  13. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  14. Analysis of trace metals in sodium by flameless atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Mahalingam, T.R.; Geetha, R.; Thiruvengadasamy, A.; Mathews, C.K.

    1981-01-01

    The estimation of trace metallic impurities in sodium is normally carried out by distilling off the sodium in vacuuum and analysing the residue by atomic absorption spectrophotometry (AAS). This paper describes the direct determination of the following impurities (viz.) Fe, Co, Ni, Cr, Mn, Ca, and Cu in sodium without going through the distillation step. Here sodium is simply dissolved and the solution is subjected to analysis by AAS using flameless atomisation in a graphite furnace. The method of standard additions is employed. Preliminary experiments were carried out to study the matrix effect of sodium on the atomic absorption of cobalt. It has been found that if pyrolysis is done at 1250 0 C for 20 seconds prior to atomisation, the bulk of the sodium nitrate matrix could be successfully removed. The use of the optimum pyrolysis temperatures for the various elements listed above and the matrix interference on the absorbances of these analytes are discussed in this paper. The precision and accuracy of our analytical procedure is also presented. (orig.)

  15. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    Science.gov (United States)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  16. Absorption of manganese and iron in a mouse model of hemochromatosis.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1 and Fpn (ferroportin, transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe (-/- knockout mice after intravenous, intragastric, and intranasal administration of (54Mn. These values were compared to intravenous and intragastric administration of (59Fe. Intestinal absorption of (59Fe was increased and clearance of injected (59Fe was also increased in Hfe(-/- mice compared to controls. Hfe (-/- mice displayed greater intestinal absorption of (54Mn compared to wild-type Hfe(+/+ control mice. After intravenous injection, the distribution of (59Fe to heart and liver was greater in Hfe (-/- mice but no remarkable differences were observed for (54Mn. Although olfactory absorption of (54Mn into blood was unchanged in Hfe (-/- mice, higher levels of intranasally-instilled (54Mn were associated with Hfe(-/- brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency.

  17. Absorption characteristics of epidural levobupivacaine with adrenaline and clonidine in children.

    Science.gov (United States)

    Chalkiadis, George A; Abdullah, Farah; Bjorksten, Andrew R; Clarke, Alexander; Cortinez, Luis I; Udayasiri, Sonal; Anderson, Brian J

    2013-01-01

    To determine if the addition of adrenaline, clonidine, or their combination altered the pharmacokinetic profile of levobupivacaine administered via the caudal epidural route in children. Children aged adrenaline 5 mcg · ml(-1) or clonidine 2 mcg · ml(-1) or their combination. Covariate analysis included weight and postnatal age (PNA). Time-concentration profile analysis was undertaken using nonlinear mixed effects models. A one-compartment linear disposition model with first-order input and first-order elimination was used to describe the data. The effect of either clonidine or adrenaline on absorption was investigated using a scaling parameter (Fabs(CLON), Fabs(ADR)) applied to the absorption half-life (Tabs). There were 240 children (median weight 11.0, range 1.9-56.1 kg; median postnatal age 16.7, range 0.6-167.6 months). Absorption of levobupivacaine was faster when mixed with clonidine (Fabs(CLON) 0.60; 95%CI 0.44, 0.83) but slower when mixed with adrenaline (Fabs(ADR) 2.12; 95%CI 1.45, 3.08). The addition of adrenaline to levobupivacaine resulted in a bifid absorption pattern. While initial absorption was unchanged (Tabs 0.15 h 95%CI 0.12, 0.18 h), there was a late absorption peak characterized by a Tabs(LATE) 2.34 h (95%CI 1.44, 4.97 h). The additional use of clonidine with adrenaline had minimal effect on the bifid absorption profile observed with adrenaline alone. Neither clonidine nor adrenaline had any effect on clearance. The population parameter estimate for volume of distribution was 157 l 70 kg(-1). Clearance was 6.5 l · h(-1) 70 kg(-1) at 1-month PNA and increased with a maturation half-time of 1.6 months to reach 90% of the mature value (18.5 l · h(-1) 70 kg(-1)) by 5 months PNA. The addition of adrenaline decreases the rate of levobupivacaine systemic absorption, reducing peak concentration by half. Levobupivacaine concentrations with adrenaline adjuvant were reduced compared to plain levobupivacaine for up to 3.5 hours. Clonidine as an

  18. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gorczyca, T. W., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@head.cfa.harvard.edu, E-mail: timothy.r.kallman@nasa.gov, E-mail: thomas.gorczyca@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  19. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  20. Linear photophysics, two-photon absorption and femtosecond transient absorption spectroscopy of styryl dye bases

    Energy Technology Data Exchange (ETDEWEB)

    Shaydyuk, Ye.O. [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine); Levchenko, S.M. [Institute of Molecular Biology and Genetics, 150, Akademika Zabolotnoho Str., Kyiv 036803 (Ukraine); Kurhuzenkau, S.A. [Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma 43124 (Italy); Anderson, D. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); Masunov, A.E. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); South Ural State University, Lenin pr. 76, Chelyabinsk 454080 (Russian Federation); Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Kachkovsky, O.D.; Slominsky, Yu.L.; Bricks, J.L. [Insitute of Organic Chemistry, Murmanskaya Street, 5, Kyiv 03094 (Ukraine); Belfield, K.D. [College of Science and Liberal Arts, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States); School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Bondar, M.V., E-mail: mbondar@mail.ucf.edu [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine)

    2017-03-15

    The steady-state and time-resolved linear spectral properties, two-photon absorption spectra and fast relaxation processes in the excited states of styryl base-type derivatives were investigated. The nature of linear absorption, fluorescence and excitation anisotropy spectra were analyzed in solvents of different polarity at room temperature and specific dependence of the solvatochromic behavior on the donor-acceptor strength of the terminal substituents was shown. Two-photon absorption (2PA) efficiency of styryl dye bases was determined in a broad spectral range using two-photon induced fluorescence technique, and cross-sections maxima of ~ 100 GM were found. The excited state absorption (ESA) and fast relaxation processes in the molecular structures were investigated by transient absorption femtosecond pump-probe methodology. The role of twisted intramolecular charge transfer (TICT) effect in the excited state of styryl dye base with dimethylamino substituent was shown. The experimental spectroscopic data were also verified by quantum chemical calculations at the Time Dependent Density Functional Theory level, combined with a polarizable continuum model.

  1. Compact extended model for doppler broadening of neutron absorption resonances in solids

    International Nuclear Information System (INIS)

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  2. Approaching Resonant Absorption of Environmental Xenobiotics Harmonic Oscillation by Linear Structures

    Directory of Open Access Journals (Sweden)

    Cornelia A. Bulucea

    2012-03-01

    Full Text Available Over the last several decades, it has become increasingly accepted that the term xenobiotic relates to environmental impact, since environmental xenobiotics are understood to be substances foreign to a biological system, which did not exist in nature before their synthesis by humans. In this context, xenobiotics are persistent pollutants such as dioxins and polychlorinated biphenyls, as well as plastics and pesticides. Dangerous and unstable situations can result from the presence of environmental xenobiotics since their harmful effects on humans and ecosystems are often unpredictable. For instance, the immune system is extremely vulnerable and sensitive to modulation by environmental xenobitics. Various experimental assays could be performed to ascertain the immunotoxic potential of environmental xenobiotics, taking into account genetic factors, the route of xenobiotic penetration, and the amount and duration of exposure, as well as the wave shape of the xenobiotic. In this paper, we propose an approach for the analysis of xenobiotic metabolism using mathematical models and corresponding methods. This study focuses on a pattern depicting mathematically modeled processes of resonant absorption of a xenobiotic harmonic oscillation by an organism modulated as an absorbing oscillator structure. We represent the xenobiotic concentration degree through a spatial concentration vector, and we model and simulate the oscillating regime of environmental xenobiotic absorption. It is anticipated that the results could be used to facilitate the assessment of the processes of environmental xenobiotic absorption, distribution, biotransformation and removal within the framework of compartmental analysis, by establishing appropriate mathematical models and simulations.

  3. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  4. Artificial neural network analysis of triple effect absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com

    2011-07-01

    In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.

  5. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    Science.gov (United States)

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  6. Exergy and Exergoenvironmental Analysis of a CCHP System Based on a Parallel Flow Double-Effect Absorption Chiller

    Directory of Open Access Journals (Sweden)

    Ali Mousafarash

    2016-01-01

    Full Text Available A combined cooling, heating, and power (CCHP system which produces electricity, heating, and cooling is modeled and analyzed. This system is comprised of a gas turbine, a heat recovery steam generator, and a double-effect absorption chiller. Exergy analysis is conducted to address the magnitude and the location of irreversibilities. In order to enhance understanding, a comprehensive parametric study is performed to see the effect of some major design parameters on the system performance. These design parameters are compressor pressure ratio, gas turbine inlet temperature, gas turbine isentropic efficiency, compressor isentropic efficiency, and temperature of absorption chiller generator inlet. The results show that exergy efficiency of the CCHP system is higher than the power generation system and the cogeneration system. In addition, the results indicate that when waste heat is utilized in the heat recovery steam generator, the greenhouse gasses are reduced when the fixed power output is generated. According to the parametric study results, an increase in compressor pressure ratio shows that the network output first increases and then decreases. Furthermore, an increase in gas turbine inlet temperature increases the system exergy efficiency, decreasing the total exergy destruction rate consequently.

  7. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    Science.gov (United States)

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  8. Is oral absorption of vigabatrin carrier-mediated?

    DEFF Research Database (Denmark)

    Nøhr, M. K.; Juul, R. V.; Thale, Z. I.

    2015-01-01

    by mechanistic non-linear mixed effects modelling, evaluating PAT1-ligands as covariates on the PK parameters with a full covariate modelling approach. The oral absorption of vigabatrin was adequately described by a Michaelis-Menten type saturable absorption. Using a Michaelis constant of 32.8 mM, the model......-mediated and if the proton-coupled amino acid transporter 1 (PAT1) was involved in the absorption processes. Vigabatrin (0.3-300 mg/kg) was administered orally or intravenously to Sprague Dawley rats in the absence or presence of PAT1-ligands l-proline, l-tryptophan or sarcosine. The PK profiles of vigabatrin were described...... estimated a maximal oral absorption rate (Vmax) of 64.6 mmol/min and dose-dependent bioavailability with a maximum of 60.9%. Bioavailability was 58.5-60.8% at 0.3-30 mg/kg doses, but decreased to 46.8% at 300 mg/kg. Changes in oral vigabatrin PK after co-administration with PAT1-ligands was explained...

  9. Solubilization of advanced ceramic materials controlled by chemical analysis by means of atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1992-01-01

    This paper purpose is to show the techniques used in chemical analysis laboratory at Escola SENAI Mario Amato in the ceramic nucleus for opening and solubilization of Advanced Ceramic materials, where the elements in its majority are determined for atomic absorption spectroscopy. (author)

  10. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  11. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  12. Profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets using gastrointestinal simulation technology.

    Science.gov (United States)

    Wu, Chunnuan; Sun, Le; Sun, Jin; Yang, Yajun; Ren, Congcong; Ai, Xiaoyu; Lian, He; He, Zhonggui

    2013-09-10

    The aim of the present study was to correlate in vitro properties of drug formulation to its in vivo performance, and to elucidate the deciding properties of oral absorption. Gastrointestinal simulation technology (GST) was used to simulate the in vivo plasma concentration-time curve and was implemented by GastroPlus™ software. Lansoprazole, a typical BCS class II drug, was chosen as a model drug. Firstly, physicochemical and pharmacokinetic parameters of lansoprazole were determined or collected from literature to construct the model. Validation of the developed model was performed by comparison of the predicted and the experimental plasma concentration data. We found that the predicted curve was in a good agreement with the experimental data. Then, parameter sensitivity analysis (PSA) was performed to find the key parameters of oral absorption. The absorption was particularly sensitive to dose, solubility and particle size for lansoprazole enteric-coated tablets. With a single dose of 30 mg and the solubility of 0.04 mg/ml, the absorption was complete. A good absorption could be achieved with lansoprazole particle radius down to about 25 μm. In summary, GST is a useful tool for profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets and guiding the formulation optimization. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  14. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    Science.gov (United States)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  15. Emission and Absorption Entropy Generation in Semiconductors

    DEFF Research Database (Denmark)

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor...... materials due to emission and absorption of electromagnetic radiation. It is shown that the emission and absorption entropy generation reduces the fundamental limit on the efficiency of any semiconductor solar cell even further than the Landsberg limit. The results are derived from purely thermodynamical...

  16. Modeling of light absorption in tissue during infrared neural stimulation

    Science.gov (United States)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  17. Energy absorption capabilities of composite sandwich panels under blast loads

    Science.gov (United States)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  18. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  19. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    The Machine Learning (ML) is one of the fastest developing techniques in the prediction and evaluation of important pharmacokinetic properties such as absorption, distribution, metabolism and excretion. The availability of a large number of robust validation techniques for prediction models devoted to pharmacokinetics has significantly enhanced the trust and authenticity in ML approaches. There is a series of prediction models generated and used for rapid screening of compounds on the basis of absorption in last one decade. Prediction of absorption of compounds using ML models has great potential across the pharmaceutical industry as a non-animal alternative to predict absorption. However, these prediction models still have to go far ahead to develop the confidence similar to conventional experimental methods for estimation of drug absorption. Some of the general concerns are selection of appropriate ML methods and validation techniques in addition to selecting relevant descriptors and authentic data sets for the generation of prediction models. The current review explores published models of ML for the prediction of absorption using physicochemical properties as descriptors and their important conclusions. In addition, some critical challenges in acceptance of ML models for absorption are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Electrically tunable coherent optical absorption in graphene with ion gel.

    Science.gov (United States)

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  1. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    Science.gov (United States)

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  2. Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N. [Posgrado en Ingenieria (Energia), Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico); Garcia-Valladares, O.; Best, R.; Gomez, V.H. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2008-09-15

    A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved. The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia-water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle. The direct ammonia-water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at -10{sup o}C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively. (author)

  3. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Pan, Xiang; Shi, Xiheng; Zhang, Shaohua [Polar Research Institute of China, 451 Jinqiao Road, Shanghai (China); Liu, Wenjuan; Wang, Jianguo [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan (China); Wang, Tinggui; Yang, Chenwei [Department of Astronomy, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui (China); Miller, Lauren P., E-mail: lmsun@mail.ustc.edu.cn [Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015 (United States)

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.

  4. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    Science.gov (United States)

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  5. Effect of oils on drug absorption

    OpenAIRE

    Palin, K.J.

    1981-01-01

    Oil and emulsion vehicles have been shown to alter the oral absorption of many drugs. This may be due to enhanced lymph flow and/or altered gastro-intestinal motility in the presence of the oils. The oral absorption of a model compound (DOT) in the presence of three chemically different oils, arachis oil, Miglyol 812 and liquid paraffin was investigated in rats, the influence of lymphatic absorption and gastro-intestinal motility being determined. The findings were applied to the for.mulation...

  6. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    Science.gov (United States)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  7. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    Science.gov (United States)

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  8. Fitness of the analysis method of magnesium in drinking water using atomic absorption with quadratic calibration curve

    International Nuclear Information System (INIS)

    Perez-Lopez, Esteban

    2014-01-01

    The quantitative chemical analysis has been importance in research. Also, aspects like: quality control, sales of services and other areas of interest. Some instrumental analysis methods for quantification with linear calibration curve have presented limitations, because the short liner dynamic ranges of the analyte, or sometimes, by limiting the technique itself. The need has been to investigate a little more about the convenience of using quadratic calibration curves for analytical quantification, with which it has seeked demonstrate that has been a valid calculation model for chemical analysis instruments. An analysis base method is used on the technique of atomic absorption spectroscopy and in particular a determination of magnesium in a drinking water sample of the Tacares sector North of Grecia. A nonlinear calibration curve was used and specifically a curve with quadratic behavior. The same was compared with the test results obtained for the equal analysis with a linear calibration curve. The results have showed that the methodology has been valid for the determination referred with all confidence, since the concentrations have been very similar and, according to the used hypothesis testing, can be considered equal. (author) [es

  9. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  10. Evaluation of energy absorption performance of steel square profiles with circular discontinuities

    Directory of Open Access Journals (Sweden)

    Dariusz Szwedowicz

    Full Text Available This article details the experimental and numerical results on the energy absorption performance of square tubular profile with circular discontinuities drilled at lengthwise in the structure. A straight profile pattern was utilized to compare the absorption of energy between the ones with discontinuities under quasi-static loads. The collapse mode and energy absorption conditions were modified by circular holes. The holes were drilled symmetrically in two walls and located in three different positions along of profile length. The results showed a better performance on energy absorption for the circular discontinuities located in middle height. With respect to a profile without holes, a maximum increase of 7% in energy absorption capacity was obtained experimentally. Also, the numerical simulation confirmed that the implementation of circular discontinuities can reduce the peak load (Pmax by 10%. A present analysis has been conducted to compare numerical results obtained by means of the finite element method with the experimental data captured by using the testing machine. Finally the discrete model of the tube with and without geometrical discontinuities presents very good agreements with the experimental results.

  11. Radiotracer investigation of the cold-vapour atomic absorption method of analysis for trace mercury

    International Nuclear Information System (INIS)

    Stuart, D.C.

    1978-01-01

    Because of certain problems found in application of the atomic absorption method for trace analysis of mercury, a careful check of the procedures used was undertaken, with radiotracer mercury to facilitate the investigation. The results obtained, in conjunction with those of sample ashing procedures, indicate that the method is less straightforward than its simplicity suggests. (Auth.)

  12. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    2017-01-01

    The absorption spectrum of the MnO4(-) ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high...... by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit...... treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO4(-) absorption spectrum, whose assignment has been elusive....

  13. XUV Absorption by Solid Density Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, C A

    2009-09-21

    An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold, solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV laser applications. The model involves an all-order calculation using a semi-analytical effective electron-ion interaction. The predicted increases in XUV absorption with rising temperature occur via two effects: increased availability of final states from reduced electron degeneracy and a stronger electron-ion interaction from reduced screening. Discrepancies in the temperature dependence as well as other details between the present approach and a recently proposed absorption model are discussed.

  14. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  15. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    Science.gov (United States)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of [formmu5]Δα/α from zero.

  16. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid.

    Science.gov (United States)

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2017-01-01

    This study was aimed to develop a novel microemulsion that contained oleth-5 as a surfactant to enhance the oral absorption of all-trans retinoic acid (ATRA). The prepared microemulsion was evaluated for its particle size, shape, zeta potential, in vitro release, in vitro intestinal absorption, intestinal membrane cytotoxicity and stability. The obtained microemulsion was spherical in shape with a particle size of microemulsion was best fit with the zero-order model. This microemulsion significantly improved the intestinal absorption of ATRA. Confocal laser scanning microscopy analysis using a fluorescent dye-loaded microemulsion also confirmed the intestinal absorption result. The intestinal membrane cytotoxicity of the ATRA-loaded microemulsion did not differ from an edible oil (fish oil). Stability testing showed that the ATRA-loaded microemulsion was more stable at 25°C than 40°C.

  17. Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-08-01

    Full Text Available Due to the merits of energy saving and environmental protection, the absorption chiller (AC has attracted a lot of attention, and previous studies only concentrated on the dynamic response of the AC under a single working condition. However, the working conditions are usually variable, and the dynamic performance under different working conditions is beneficial for the adjustment of AC and the control of the whole system, of which the stabilization can be affected by the AC transient process. Therefore, the steady and dynamic models of a single-effect H2O-LiBr absorption chiller are built up, the thermal inertia and fluid storage are also taken into consideration. And the dynamic performance analyses of the AC are completed under different external parameters. Furthermore, a whole system using AC in a process plant is analyzed. As a conclusion, the time required to reach a new steady-state (relaxation time increases when the step change of the generator inlet temperature becomes large, the cooling water inlet temperature rises, or the evaporator inlet temperature decreases. In addition, the control strategy considering the AC dynamic performance is favorable to the operation of the whole system.

  18. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  19. Adrenaline (epinephrine) microcrystal sublingual tablet formulation: enhanced absorption in a preclinical model.

    Science.gov (United States)

    Rawas-Qalaji, Mutasem; Rachid, Ousama; Mendez, Belacryst A; Losada, Annette; Simons, F Estelle R; Simons, Keith J

    2015-01-01

    For anaphylaxis treatment in community settings, adrenaline (epinephrine) administration using an auto-injector in the thigh is universally recommended. Despite this, many people at risk of anaphylaxis in community settings do not carry their prescribed auto-injectors consistently and hesitate to use them when anaphylaxis occurs.The objective of this research was to study the effect of a substantial reduction in adrenaline (Epi) particle size to a few micrometres (Epi microcrystals (Epi-MC)) on enhancing adrenaline dissolution and increasing the rate and extent of sublingual absorption from a previously developed rapidly disintegrating sublingual tablet (RDST) formulation in a validated preclinical model. The in-vivo absorption of Epi-MC 20 mg RDSTs and Epi 40 mg RDSTs was evaluated in rabbits. Epi 0.3 mg intramuscular (IM) injection in the thigh and placebo RDSTs were used as positive and negative controls, respectively. Epimean (standard deviation) area under the plasma concentration vs time curves up to 60 min and Cmax from Epi-MC 20 mg and Epi 40 mg RDSTs did not differ significantly (P > 0.05) from Epi 0.3 mg IM injection. After adrenaline, regardless of route of administration, pharmacokinetic parameters were significantly higher (P adrenaline levels). Epi-MC RDSTs facilitated a twofold increase in Epi absorption and a 50% reduction in the sublingual dose. This novel sublingual tablet formulation is potentially useful for the first-aid treatment of anaphylaxis in community settings. © 2014 Royal Pharmaceutical Society.

  20. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  1. X-ray absorption near-edge spectroscopic study of nickel catalysts

    International Nuclear Information System (INIS)

    Soldatov, Alexander V.; Smolentsev, Grigory; Kravtsova, Antonina; Yalovega, Galina; Feiters, Martin C.; Metselaar, Gerald A.; Joly, Yves

    2006-01-01

    Ni-isocyanide and Ni-acac complexes have been studied by X-ray absorption spectroscopy. Theoretical analysis has been done using self-consistent full multiple scattering (MS) approach within both muffin-tin (MT) model of the potential and non-MT finite deference method. For the isocyanide complex, it was shown that MS theoretical spectra reproduce all structural details of the X-ray absorption near-edge structure (XANES), but also that it is important to consider the non-MT effects in the potential for a correct simulation of the shape of the pre-edge structures. The contribution of a non-constant potential in the interstitial regions is extremely important for the interpretation of the XANES of Ni(acac) 2

  2. Isospin and the proton-absorptive-potential anomaly near mass 100

    International Nuclear Information System (INIS)

    Flynn, D.S.; Hershberger, R.L.; Gabbard, F.

    1982-01-01

    An isospin coupled-channels analysis of sub-Coulomb-proton-absorption cross sections has been performed for /sup 92,94,96/Zr and /sup 94,96,98,100/Mo. Introduction of coupling to the nA channel is shown to shift and damp the single-particle resonances, in addition to giving rise to isobaric-analog resonances. In spite of these effects due to the coupling, large variations in the absorptive potentials were still required to fit measured (p,n) cross sections. 96 Zr(p,n) and 100 Mo(p,n) cross sections were measured and analyzed with a standard optical model for this work. Other Zr(p,n) and Mo(p,n) cross sections were taken from previous results

  3. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  4. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  5. Comparison and Analysis of Lithium Bromide-water Absorption Chillers Using Plastic Heat Transfer Tubes and Traditional Lithium Bromide-water Absorption Chillers

    OpenAIRE

    Xue-dong Zhang

    2010-01-01

    There are extensive applications of lithium bromide-water absorption chillers in industry, but the heat exchangers corrosion and refrigerating capacity loss are very difficult to be solved. In this paper, an experiment was conducted by using plastic heat transfer tubes instead of copper tubes. As an example, for a lithium bromide-water absorption chiller of refrigerating capacity of 35kW, the correlative performance of the lithium bromide-water absorption chiller using pl...

  6. Weakly relativistic modeling of refraction and absorption for waves with small Nparallel

    International Nuclear Information System (INIS)

    Smith, G.R.; Pearlstein, L.D.; Kritz, A.H.

    1995-01-01

    Transmission measurements for waves near the fundamental and harmonics of the electron-cyclotron frequency indicate that propagation and absorption is not always correctly described when ray trajectories are obtained using cold-plasma analysis. Improved methods have been developed for evaluating the Shkarofsky functions, which appear in the weakly relativistic approximation of the dielectric tensor, for small parallel index of refraction. Computational results for vertical third-harmonic X-mode propagation in Tore Supra show strong, warm-plasma refraction effects that qualitatively agree with experimental observations

  7. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    Science.gov (United States)

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.

  8. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    Science.gov (United States)

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  9. Elemental characterization of herbal medicines used in Ghana by instrumental neutron activation analysis and atomic absorption spectrometry and multivariate statistical analysis

    International Nuclear Information System (INIS)

    Ayivor, J.E.; Nyarko, B.J.B.; Dampare, S.B.; Okine, L.K.

    2010-01-01

    k 0 instrumental neutron activation analysis and atomic absorption spectrometry were applied to determine multi elements in thirteen Ghanaian herbal medicines used for the management of various diseases. Concentrations of AI, Cu, Mg, Mn and Na were determined. As, Br, K, CI, and Na were determined by short and medium irradiations at a thermal neutron flux of 5x10ncm -2 s -1 . Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using atomic absorption spectrometry. Ba, Cu, Li and V were present at trace levels whereas AI, CI, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. The precision and accuracy of the method using real samples and standard reference materials were within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into two statistically significant clusters, reflecting the different chemical compositions. The concentrations of elements were within the recommended daily allowances or maximum permissible levels posing no adverse effects on human health.

  10. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    International Nuclear Information System (INIS)

    Zhang Qi-Xian; Ruan Fang-Ping; Wei Wen-Sheng

    2011-01-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO 2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV–4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  12. Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique

    International Nuclear Information System (INIS)

    Ribiere, M.; Cheron, B.G.

    2010-01-01

    Broad-band near UV absorption spectroscopy was used to analyze atmospheric laser-induced plasmas formed on metallic and refractory targets. When the common emission spectroscopy only provides the density of the radiating atomic excited states, the technique reported in this paper is able to achieve high spatial resolution in the measurement of absolute number densities in expanding laser-induced plasmas. The reliability and the versatility of this technique, which is based on the comparison between results of the numerical integration of the radiative transfer equation and experimental spectra, were tested on different targets. The evolutions in time and space of the absolute population of the plasma species originating from metallic alloys (Al-Mg and Cu-Ni) and refractory materials (C/SiC) were achieved over large time scales. Owing to its accuracy, this absorption technique (that we call 'LIPAS' for Laser Induced Plasma Absorption Spectroscopy) should bring a new and enhanced support to the validation of collisional-radiative models attempting to provide reliable evolutions of laser-induced plasmas.

  13. Narrow absorption lines complex I: one form of broad absorption line

    Science.gov (United States)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  14. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  15. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  16. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    Science.gov (United States)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  18. Statistical Models for Sediment/Detritus and Dissolved Absorption Coefficients in Coastal Waters of the Northern Gulf of Mexico

    National Research Council Canada - National Science Library

    Green, Rebecca E; Gould, Jr., Richard W; Ko, Dong S

    2008-01-01

    ... (CDOM) absorption coefficients from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data...

  19. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    Science.gov (United States)

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  20. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  1. Absorption spectrum of Iodine around 5915 A

    International Nuclear Information System (INIS)

    1990-01-01

    The iodine absorption spectrum around 5915 A is of interest for many authors especially the hyperfine structure of the iodine line. Lodine absorption spectrum was obtained due to the interaction of iodine vapour with dye laser [(R6G) (0.5A) scanning range around 5915 A] which is pumped by(Ar + )laser absorption spectrum. The decrease in the peak of the transmission line around 5915 A shows the signal futher decreased by heating the iodine cell. This analysis has been done using a monochromator

  2. First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)

    International Nuclear Information System (INIS)

    Donnellan, Philip; Byrne, Edmond; Oliveira, Jorge; Cronin, Kevin

    2014-01-01

    Highlights: • A full factorial analysis is conducted upon a triple absorption heat transformer. • The most influential variable settings are determined. • Condensation temperature and pinch heat transfer gradient have the greatest influence. • Points of optimum exist for the temperatures of the two absorber evaporators. • The generator causes the most irreversibility. - Abstract: In this paper, a rigorous multi-dimensional analysis is conducted upon a triple absorption heat transformer (TAHT) using the working fluids water and lithium bromide (LiBr). A full factorial design is created which determines the most influential factors affecting the system’s coefficient of performance (COP), exergetic coefficient of performance (ECOP), flow ratio (FR) and total exergy destruction (E D ). The aim is to draw general conclusions which may be adopted into any such TAHT cycle and not simply be specific to any one scenario. Accordingly the paper analyses the position of each variable across its thermodynamically available range instead of the traditional selection of arbitrary temperatures. It is found that in general the condensation temperature and the pinch heat transfer gradient selected have the greatest effect, and that these should be minimised in all situations. There exist points of optimum for the temperatures of the two absorber–evaporators within the cycle, however the evaporation temperature has conflicting effects for different dependent variables, and must therefore be selected based on an economic analysis. The results of this study also show that the generator is the source of the largest exergy destruction in the cycle, followed by the two absorber–evaporators

  3. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    Science.gov (United States)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  4. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    International Nuclear Information System (INIS)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H.

    2012-01-01

    This study shows the application of semi-absolute k 0 instrumental neutron activation analysis (k 0 -INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k 0 -INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  5. Modelling aging effects on a thermal cycling absorption process column

    Energy Technology Data Exchange (ETDEWEB)

    Laquerbe, C.; Contreras, S. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France); Baudouin, O. [ProSim SA, Stratege Bat. A, BP 27210, F-31672 Labege Cedex (France); Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  6. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  7. Possible stretched exponential parametrization for humidity absorption in polymers.

    Science.gov (United States)

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  8. Threshold nonlinear absorption in Zeeman transitions

    International Nuclear Information System (INIS)

    Narayanan, Andal; Hazra, Abheera; Sandhya, S N

    2010-01-01

    We experimentally study the absorption spectroscopy from a collection of gaseous 87 Rb atoms at room temperature irradiated with three fields. Two of these fields are in a pump-probe saturation absorption configuration. The third field co-propagates with the pump field. The three fields address Zeeman degenerate transitions between hyperfine levels 5S 1/2 , F = 1 and 5P 3/2 , F = 0, F = 1 around the D2 line. We find a sub-natural absorption resonance in the counter-propagating probe field for equal detunings of all three fields. This absorption arises in conjunction with the appearance of increased transmission due to electro-magnetically induced transparency in the co-propagating fields. The novel feature of this absorption is its onset only for the blue of 5P 3/2 , F = 0, as the laser frequency is scanned through the excited states 5P 3/2 , F = 0, F = 1 and F = 2. The absorption rapidly rises to near maximum values within a narrow band of frequency near 5P 3/2 , F = 0. Our experimental results are compared with a dressed atom model. We find the threshold absorption to be a result of coherent interaction between the dressed states of our system.

  9. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2018-03-01

    Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation

  10. Experimental analysis of a diffusion absorption refrigeration system used alternative energy sources

    International Nuclear Information System (INIS)

    Soezen, A.; Oezbas, E.

    2009-01-01

    The continuous-cycle absorption refrigeration device is widely used in domestic refrigerators, and recreational vehicles. It is also used in year-around air conditioning of both homes and larger buildings. The unit consists of four main parts the boiler, condenser, evaporator and the absorber. When the unit operates on kerosene or gas, the heat is supplied by a burner. This element is fitted underneath the central tube. When operating on electricity, the heat is supplied by an element inserted in the pocket. No moving parts are employed. The operation of the refrigerating mechanism is based on Dalton's law. In this study, experimental analysis was performed of a diffusion absorption refrigeration system (DARS) used alternative energy sources such as solar, liquid petroleum gas (LPG) sources. Two basic DAR cycles were set up and investigated: i) In the first cycle (DARS-1), the condensate is sub-cooled prior to the evaporator entrance by the coupled evaporator/gas heat exchanger similar with manufactured by Electrolux Sweden. ii) In the second cycle (DARS-2), the condensate is not sub-cooled prior to the evaporator entrance and gas heat exchanger is separated from the evaporator. (author)

  11. Optical absorption and energy transfer processes in dendrimers

    International Nuclear Information System (INIS)

    Reineker, P.; Engelmann, A.; Yudson, V.I.

    2004-01-01

    For dendrimers of various sizes the energy transfer and the optical absorption is investigated theoretically. The molecular subunits of a dendrimer are modeled as two-level systems. The electronic interaction between them is described via transfer integrals and the influence of vibrational degrees of freedom is taken into account in a first approach using a stochastic model. We discuss the time dependence of the energy transport and show that rim states of the dendrimer dominate the absorption spectra, that in general the electronic excitation energy is concentrated on peripheric molecules, and that the energetically lowest absorption peak is redshifted with increasing dendrimer size due to delocalization of the electronic excitation

  12. Nasal Absorption of Macromolecules from Powder Formulations and Effects of Sodium Carboxymethyl Cellulose on Their Absorption.

    Directory of Open Access Journals (Sweden)

    Akiko Tanaka

    Full Text Available The nasal absorption of macromolecules from powder formulations and the effect of sodium carboxymethyl cellulose (CMC-Na as a pharmaceutical excipient on their absorption were studied. Model macromolecules were fluorescein isothiocyanate-labeled dextran (average molecular weight of 4.4kDa, FD4 and insulin. The plasma concentration of FD4 after application of the powder containing 50% starch (control was higher than that after application of the solution, and the absorption from 50% starch powder was enhanced by the substitution of starch with CMC-Na. The fractional absorption of FD4 after administration of the CMC-Na powder formulation was 30% and 40% higher than that after administration from the solution and the starch powder, respectively. The nasal absorption of insulin from the powder and the effect of CMC-Na were similar with those of FD4. The effective absorption of FD4 and insulin after application of powder with CMC-Na could be due to the increase in the nasal residence of FD4 and insulin. No damage in the nasal mucosa or dysfunction of the mucociliary clearance was observed after application of the drug powder and CMC-Na. The present findings indicate that nasal delivery of powder formulations with the addition of CMC-Na as an excipient is a promising approach for improving the nasal absorption of macromolecules.

  13. The distribution of absorptive power dissipation in irradiated nanoparticulate system

    International Nuclear Information System (INIS)

    Li, Jiayu; Yang, Jian; Gu, Xiaobing

    2016-01-01

    The knowledge of local radiant absorption is important to the nanostructure optimization, it is beneficial to the applications in energy harvesting, optical heating, photocatalysis, etc. In this paper, FDTD model is constructed for the distribution of absorptive power dissipation in irradiated nanoparticulate system. The theoretical model extended from Mie theory is used to examine the FDTD model, the parameters and conditions set for FDTD simulation are confirmed based on the comparison. Then, the influence of Ag nanoparticle on the absorptive properties of nearby TiO_2 nanoparticle is investigated by FDTD simulation at the wavelength of 0.25 μm. It is indicated that suitable distance between TiO_2 and Ag particles is beneficial to the spectral radiant absorption of TiO_2 particle. Considering the agglomeration of nanoparticles and the oxidation at the TiO_2–Ag interface, the Ag core coated with Al_2O_3 shell is suggested, and the simulated results indicated that the shell thickness and the Ag core size need to be optimized for enhancing the radiant absorption of TiO_2 particle. - Highlights: • The absorptive power distribution in nanoparticulate system is simulated by FDTD. • FDTD simulation is compared with theoretical model extended from Mie theory. • The parameters and conditions are confirmed based on the comparison. • The influence of Ag nanoparticle on nearby TiO_2 particle's absorption is analyzed.

  14. Exergy analysis of single effect absorption refrigeration systems: The heat exchange aspect

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz

    2016-01-01

    Highlights: • Exergy analysis of LiBr/H 2 O absorption systems with identical COP was carried out. • Exergy destruction rank: absorber followed by generator, condenser and evaporator. • Lower heat source and chilled water inlet temperature reduced exergy destruction. • Higher cooling water inlet temperature reduced exergy destruction. • Lower HTF mass flow rate increased exergy efficiency even for fixed system COP. - Abstract: The main limitation of conventional energy analysis for the thermal performance of energy systems is that this approach does not consider the quality of energy. On the other hand, exergy analysis not only provides information about the systems performance, but also it can specify the locations and magnitudes of losses. A number of studies investigated the effect of parameters such as the component temperature, and heat transfer fluid (HTF) temperature and mass flow rate on the exergetic performance of the same absorption refrigeration system; thus, reported different coefficient of performance (COP) values. However, in this study, the system COP was considered to remain constant during the investigation. This means comparing systems with different heat exchanger designs (based on HTF mass flow rate and temperature) having the same COP value. The effect of HTF mass flow rate and inlet temperature of the cooling water, chilled water and heat source on the outlet specific exergy and exergy destruction rate of each component was investigated. It was found that the lower HTF mass flow rate decreased exergy destruction of the corresponding component. Moreover, the lower temperature of heat source and chilled water inlet increased the system exergetic efficiency. That was also the case for the higher cooling water inlet temperature. Based on the analysis, since the absorber and condenser accounted for a large portion of the total exergy destruction, cooling tower modification with lower cooling water mass flow rate is recommended

  15. New experiments call for a continuous absorption alternative to the photon model

    Science.gov (United States)

    Reiter, Eric S.

    2015-09-01

    A famous beam-split coincidence test of the photon model is described herein using gamma-rays instead of the usual visible light. A similar a new test was performed using alpha-rays. In both tests, coincidence rates greatly exceed chance, leading to an unquantum effect. In contradiction to quantum theory and the photon model, these new results are strong evidence of the long abandoned accumulation hypothesis, also known as the loading theory. Attention is drawn to assumptions applied to past key-experiments that led to quantum mechanics. The history of the loading theory is outlined, and a few equations for famous experiments are derived, now free of wave-particle duality. Quantum theory usually works because there is a subtle difference between quantized and thresholded absorption.

  16. The Driving Forces of Subsidiary Absorptive Capacity

    DEFF Research Database (Denmark)

    Schleimer, Stephanie C.; Pedersen, Torben

    2013-01-01

    The study investigates how a multinational corporation (MNC) can promote the absorptive capacity of its subsidiaries. The focus is on what drives the MNC subsidiary's ability to absorb marketing strategies that are initiated by the MNC parent, as well as how the subsidiary enacts on this absorptive...... as a purposeful response to this dual embeddedness. An analysis of marketing strategy absorptions undertaken by 213 subsidiaries reveals that MNCs can assist their subsidiaries to compete in competitive and dynamic focal markets by forming specific organizational mechanisms that are conducive to the development...

  17. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  18. Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.

    Science.gov (United States)

    Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan

    2015-11-01

    Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian; Hanigan, Mark D

    2012-01-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated...... exchange across the rumen wall that incorporates epithelial blood flow as a driving force for ruminal VFA removal. The bidirectional fluxes between the ruminal and epithelial pool of VFA were assumed mass action driven, given that passive diffusion of nonionized VFA is the dominant transmembrane VFA flux...... of body weight. The rate constants related to the flux from ruminal fluid to epithelium were in the order isobutyrate rate constants for fluxes of isobutyrate, acetate, propionate, and butyrate...

  20. Zinc absorption in experimental osmotic diarrhea: effect of long-chain fatty acids.

    Science.gov (United States)

    Lee, S Y; Wapnir, R A

    1993-03-01

    The effect of free fatty acids on zinc absorption was studied in a rat model of chronic osmotic diarrhea induced with magnesium citrate and phenolphthalein. In vivo rates of zinc removal from the lumen and analysis of tissue for zinc uptake and metallothionein alterations were monitored. One mmol/L stearate enhanced zinc absorption in rats with or without diarrhea, from 207 +/- 22 and 353 +/- 13 pmol/min x cm to 676 +/- 34 and 610 +/- 26 pmol/min x cm, respectively. Palmitate was only effective in normal rats. Zinc absorption inversely correlated with mucosal zinc content in the perfused intestinal segments, in both type of rats. Hepatic metallothionein was enhanced by zinc and even more by oleate plus zinc in both groups; kidney metallothionein in animals with diarrhea was normalized by either oleate or zinc. The data support previous reports on the effect of long-chain fatty acids on the enhancement of zinc absorption: saturation and a longer chain appear to be positive factors. A membrane modification role of long-chain fatty acids could have nutritional implications in the formulation of special diets.

  1. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  2. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-01-01

    A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test...... chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori...... and the uncertainty of the flow resistivity and the test chamber’s influence are estimated. Inclusion of more than one chamber’s absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%...

  3. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    Science.gov (United States)

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  4. Economic analysis of solar assisted absorption chiller for a commercial building

    Science.gov (United States)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  5. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study...... the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small...... consumed. Benzoic acid derivatives showed low concentration in the plasma (phenolic acids, likely because it is an intermediate in the phenolic acid metabolism...

  6. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  7. Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes

    Directory of Open Access Journals (Sweden)

    Yuya Koike

    2017-03-01

    Full Text Available Trace amounts of Cr, Zn, Cd, and Pb were determined by metal furnace atomic absorption spectrometry using absorption tubes. Various absorption tubes were designed as roof- and tube-types, and fixed above the metal furnace in order to extend the light path length. Aqueous standards and samples were injected in the metal furnace and atomized in a metal atomizer with an absorption tube (6 cm length, 15.5 mm diameter. The used of an absorption tube resulted in an enhancement of the atomic absorbance. The ratios of absorbance values with and without the roof- and tube-type absorption tubes were 1.33 and 1.11 for Cr; 1.42 and 1.99 for Zn; 1.66 and 1.98 for Cd; and 1.31 and 1.16 for Pb, respectively. The use of an absorption tube was effective for Zn and Cd analysis, as the absorbance values for these low boiling point metals doubled. The proposed method was successfully applied in the determination of Zn in tap water.

  8. Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation

    International Nuclear Information System (INIS)

    Rochedo, Pedro R.R.; Szklo, Alexandre

    2013-01-01

    Highlights: • This work defines the minimum work of separation (MWS) for a capture process. • Findings of the analysis indicated a MWS of 0.158 GJ/t for post-combustion. • A review of commercially available processes based on chemical absorption was made. • A review of learning models was conducted, with the addition on a novel model. • A learning curve for post-combustion carbon capture was successfully designed. - Abstract: Carbon capture is one of the most important alternatives for mitigating greenhouse gas emissions in energy facilities. The post-combustion route based on chemical absorption with amine solvents is the most feasible alternative for the short term. However, this route implies in huge energy penalties, mainly related to the solvent regeneration. By defining the minimum work of separation (MWS), this study estimated the minimum energy required to capture the CO 2 emitted by coal-fired thermal power plants. Then, by evaluating solvents and processes and comparing it to the MWS, it proposes the learning model with the best fit for the post-combustion chemical absorption of CO 2 . Learning models are based on earnings from experience, which can include the intensity of research and development. In this study, three models are tested: Wright, DeJong and D and L. Findings of the thermochemical analysis indicated a MWS of 0.158 GJ/t for post-combustion. Conventional solvents currently present an energy penalty eight times the MWS. By using the MWS as a constraint, this study found that the D and L provided the best fit to the available data of chemical solvents and absorption plants. The learning rate determined through this model is very similar to the ones found in the literature

  9. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  10. Effectiveness of the random sequential absorption algorithm in the analysis of volume elements with nanoplatelets

    DEFF Research Database (Denmark)

    Pontefisso, Alessandro; Zappalorto, Michele; Quaresimin, Marino

    2016-01-01

    In this work, a study of the Random Sequential Absorption (RSA) algorithm in the generation of nanoplatelet Volume Elements (VEs) is carried out. The effect of the algorithm input parameters on the reinforcement distribution is studied through the implementation of statistical tools, showing...... that the platelet distribution is systematically affected by these parameters. The consequence is that a parametric analysis of the VE input parameters may be biased by hidden differences in the filler distribution. The same statistical tools used in the analysis are implemented in a modified RSA algorithm...

  11. A Review of Some Features of Radiowave Absorption | Iheonu ...

    African Journals Online (AJOL)

    . The analysis deals with absorption of radiowaves through the ionosphere using the absorption method – A3 (CW Field Strength) adopting data from the Swiss PTT MNIFTZ 4.1 computer predictions for shortwave transmission. The study gives ...

  12. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  13. Energetic analysis of a commercial absorption refrigeration unit using an ammonia-water mixture

    Directory of Open Access Journals (Sweden)

    Josegil Jorge de Araújo

    2017-09-01

    Full Text Available The ROBUR® absorption refrigeration system (ARS, model ACF60, with a capacity of 17.5 kW, is tested, modeled and simulated in the steady state. To simulate the thermal load a heating system with secondary coolant was used, in which a programmable logic controller (PLC kept the inlet temperature EVA at around 285.15 K. The mathematical model used was based on balancing the mass, energy and ammonia concentrations and completed by closing equations such as, Newton's cooling equation. The mathematical model was implemented using the Engineering Equation Solver – EES®. The results obtained after modeling and a numerical permanent simulation are studied using the Duhring diagram. Potential points of internal heat recovery are visualized, and by using graphs of the binary mixture, it is possible to identify the thermodynamic states of all monitored points. The data obtained in the numerical simulation of the ARS was compared with data acquired in the actual tests of the ARS with the ROBUR® apparatus.

  14. The effect of expatriate knowledge transfer on subsidiaries’ performance: a moderating role of absorptive capacity

    Science.gov (United States)

    Arsawan, I. W. E.; Sanjaya, I. B.; Putra, I. K. M.; Sukarta, I. W.

    2018-01-01

    This study aims to examine the relationship between motivation and knowledge transfer to the subsidiaries performance and test the role of absorptive capacity as a moderating variable. The research uses quantitative design through questionnaires distribution with 5 Likert scales. The population frame is five-star hotel in Bali province, Indonesia which amounted to 63 units, the sample of research using proportional random sampling is 54 units and determined the distribution of questionnaires to 162 subsidiaries as the unit of analysis. The research model was built using the structural equation model and analyzed with smart pls- 3 software. The findings of the study revealed that subsidiaries motivation a significant effect on knowledge transfer, knowledge transfer a significant effect on subsidiaries performance, motivation a significant effect on subsidiaries performance and absorptive capacity moderated the relationship between knowledge transfer and subsidiaries performance. These findings suggest that subsidiaries and process of knowledge transfer through absorptive capacity play an important role, and that they have some impact on the subsidiaries performance.

  15. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2

    International Nuclear Information System (INIS)

    Patridge, Christopher J.; Love, Corey T.; Swider-Lyons, Karen E.; Twigg, Mark E.; Ramaker, David E.

    2013-01-01

    The local structure of nanoscale (∼10–40 nm) LiCoO 2 is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO 2 nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO 2 metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO 2 as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO 2 . - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO 2 to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO 2 . • Surface structural changes are emphasized using nanoscale-LiCoO 2 and difference spectra. • Full multiple scattering calculations are used to

  16. Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships

    International Nuclear Information System (INIS)

    Táboas, Francisco; Bourouis, Mahmoud; Vallès, Manel

    2014-01-01

    In this work, the use of waste heat energy of jacket water in diesel engines of fishing ships was analysed for use as a heat source for absorption refrigeration systems. The thermodynamic simulation of an absorption refrigeration cycle with three different working fluid mixtures that use ammonia as a refrigerant was carried out. This analysis was assessed in terms of the cooling demand and cycle performance as a function of the evaporator, condenser and generator temperatures. Moreover, the need for rectifying the vapour stream leaving the generator was analysed together with the drag of the fraction of non-evaporated liquid to the absorber. The results show that the NH 3 /(LiNO 3  + H 2 O) and NH 3 /LiNO 3 fluid mixtures have higher values of COP as compared to NH 3 /H 2 O fluid mixture, the differences being more pronounced at low generation temperatures. If the activation temperature is set to 85 °C, the minimum evaporation temperatures that can be achieved are −18.8 °C for the cycle with NH 3 /LiNO 3 , −17.5 °C for the cycle with NH 3 /(LiNO 3  + H 2 O) cycle and −13.7 °C for the NH 3 /H 2 O cycle at a condensing temperature of 25 °C. Also, for the NH 3 /(LiNO 3  + H 2 O) fluid mixture, it has been demonstrated that the absorption refrigeration cycle can be operated without a distillation column and in this case the water content in the refrigerant stream entering the evaporator is less than 1.5% in weight at the operating conditions selected. - Highlights: •Ammonia absorption systems can provide refrigeration necessities for fishing ships. •Absorption refrigeration systems reduce the energy consumption of fishing ships. •The NH 3 /(LiNO 3  + H 2 O) mixture is recommended for absorption refrigeration cycles

  17. The quasi deuteron model for low energy pion absorption

    International Nuclear Information System (INIS)

    Gouweloos, M.

    1986-01-01

    In this thesis pion absorption in complex nuclei is studied in the quasi-deuteron model in which the pion is absorbed on a nucleon pair in the nucleus. The mechanism is studied in the low-energy domain since then the in-medium (pi→NN) operator turns out to be of simple character. In Ch. 2 and 3 this operator is constructed and analytical expressions are derived for (pi,NN) distributions in a plane wave impulse approximation for nuclei. The results turn out to be very useful for developing insight in the possibilities inherent in the QDM and the interpretation of the results in later chapters. Ch. 4 to 6 are devoted to the more realistic distorted wave calculations. In Ch. 4 the formal framework is presented and the calculational details are discussed. Ch.5 and 6 contain the comparison to stopped pion and in-flight data respectively. In Ch. 7 the main results are summarized. (Auth.)

  18. Absorptive and dispersive optical profiles in fluctuating environments: A stochastic model

    International Nuclear Information System (INIS)

    Paz, J.L.; Mendoza-Garcia, A.; Mastrodomenico, A.

    2011-01-01

    In this study, we determined the absorptive and dispersive optical profiles of a molecular system coupled with a thermal bath. Solvent effects were explicitly considered by modelling the non-radiative interaction with the solute as a random variable. The optical stochastical Bloch equations (OSBE) were solved using a time-ordered cumulant expansion with white noise as a correlation function. We found a solution for the Fourier component of coherence at the third order of perturbation for the nonlinear Four-wave mixing signal and produced analytical expressions for the optical responses of the system. Finally, we examined the behaviour of these properties with respect to the noise parameter, frequency detuning of the dynamic perturbation, and relaxation times.

  19. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  20. Economical analysis of combined fuel cell generators and absorption chillers

    Directory of Open Access Journals (Sweden)

    M. Morsy El-Gohary

    2013-06-01

    Full Text Available This paper presents a co-generation system based on combined heat and power for commercial units. For installation of a co-generation system, certain estimates for this site should be performed through making assessments of electrical loads, domestic water, and thermal demand. This includes domestic hot water, selection of the type of power generator, fuel cell, and the type of air conditioning system, and absorption chillers. As a matter of fact, the co-generation system has demonstrated good results for both major aspects, economic and environmental. From the environmental point of view, this can be considered as an ideal solution for problems concerned with the usage of Chlorofluoro carbons. On the other hand, from the economic point of view, the cost analysis has revealed that the proposed system saves 4% of total cost through using the co-generation system.

  1. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  2. Finite element analysis of interface stress between neutron absorption coating and chop disk

    International Nuclear Information System (INIS)

    Tang Changliang; Zhang Xiaozhang; Jiang Lei; Dai Xingjian

    2012-01-01

    The performance of disk chopper is directly affected by bond strength between neutron absorption coating and chop disk. Based on the finite element analysis software ANSYS, the interface stress distribution under high speed centrifugal load was calculated, which was to investigate the effects of coating's elastic modulus, poisson ratio and coating thickness on the interfacial stress distribution. The results show that soft and tough coating can reduce the peak stress effectively, and coating thickness reducing is helpful to avoid the plastic failure of opening in the disk under high speed centrifugal load. (authors)

  3. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  4. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    2012-01-01

    A 100 kWe liquid-cooled HT-PEMFC subsystem is integrated with an absorption chiller subsystem to provide electricity and cooling. The system is designed, modeled and simulated to investigate the potential of this technology for future novel energy system applications. Liquid-cooling can provide...

  5. PIXE analysis on the absorption of strontium by plants under hydroponic culture

    International Nuclear Information System (INIS)

    Oguri, Yoshiyuki; Kondo, Kotaro

    2016-01-01

    90 Sr is one of the most toxic radioactive nuclides emitted from nuclear disasters. By experiments using the compounds of stable isotopes of Sr, the behavior of this nuclide in plants can be simulated very well (R. S. Russell and H. M. Squire: J. Exp. Bot., Vol. 9, No. 2, pp. 262-276 (1958)). In this paper, we present an application of PIXE (Particle-Induced X-ray Emission) analysis (S. A. E. Johansson, et al.: Particle-Induced X-Ray Emission Spectrometry (PIXE), Wiley-Interscience, New York, ISBN-13: 978-0471589440 (1995)) in the study of Sr absorption by a herbal plant grown in a compact hydroponic setup. (J.P.N.)

  6. Cyclotron absorption and emission in mode conversion layers emdash a new paradigm

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-01-01

    When the analysis of absorption with mode conversion effects included began to mature in recent years, the study of the corresponding effects on emission began and has led to some surprising results. The classical expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from models that did not include mode conversion or its attendant reflection, and classical expressions for the optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that the transmission coefficient, which was understood as being due to absorption, is totally independent of absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for many laboratory plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm in its interpretation. This review includes a summary of the absorption process for both electron and ion cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and a discussion of the emission source distribution in space

  7. [Multiple analysis of the difference in intestinal absorption between the main components and the extract of Glycyrrhiza uralensis].

    Science.gov (United States)

    Wu, Qing-Qing; Chen, Yan; Xin, Ran; Wang, Jin-Yan; Zhou, Lei; Yuan, Ling; Jia, Xiao-Bin

    2012-05-01

    The aim of this study is to investigate the rat intestinal absorption behavior of two main active components, liquiritin, glycyrrhizin and the extract of Glycyrrhiza uralensis. The rat intestinal perfusion model was employed. Concentrations of the compounds of the interest in the intestinal perfusate, bile and plasma samples were determined by HPLC and UPLC. At the same time, the intestinal enzymes incubation test and the partition coefficient determination, the absorption of liquiritin and glycyrrhizin alone and the extract were multiple analyzed. The results showed that the P(eff) (effective permeability) of liquiritin or glycyrrhizin alone or the extract was less than 0.3, which suggested their poor absorption in the intestine. The P(eff) of the two main active components or the extract was not significantly different in duodenum, jejunum, colon and ileum segment. The P(eff) of the glycyrrhizin in the extract had no significant difference in the four intestinal segments compared with the glycyrrhizin alone. The absorption of the liquiritin displayed significant difference (P components might not increase the amount of liquiritin and glycyrrhizin in the bile and plasma within the duration of the test.

  8. Absorption of airborne molecular iodine by water sprays

    International Nuclear Information System (INIS)

    Albert, M.F.; Wichner, R.P.; Baumgarten, P.K.

    1986-01-01

    A computer model, I2WASH, which accounts for the effect of hydrolysis reactions between molecular iodine and water, has been developed to predict the rate of removal of gaseous molecular iodine by water sprays. It has been shown that the hydrolysis reactions can affect the concentration driving force of mass transfer for molecular iodine absorption. Thus, factors that affect the hydrolysis kinetics, such as spray solution pH, iodine concentration, and temperature, should be considered in the design of a well-based absorption model. The described model also includes the effects of spray drop-size distribution, convective heat transfer, droplet evaporation or water condensation, decay heating, and ventilation air flow through the containment. The model was originally developed at Oak Ridge National Laboratory (ORNL) in 1985 for the Nuclear Regulatory Commission's Severe Accident Sequence Analysis program and has been improved to assist in a comprehensive probability risk assessment of the Savannah River Plant (SRP). Results obtained using the model are compared with those of the Containment Systems Experiments conducted at Pacific Northwest Laboratories (PNL) in 1970. An improvement over the earlier model is indicated at room temperatures, but accuracy decreases as the temperature rises. The decreased agreement at high temperature is partially due to an incomplete knowledge of the temperature effects on iodine hydrolysis reactions. The results of the I2WASH model for a postulated catastrophic accident at SRP show that ∼85% of the molecular iodine will be captured by the sprays at a buffered pH of 10.0, and ∼52% will be captured at a buffered pH of 7.0. The model is believed to be a significant improvement over (and more realistic than) other models

  9. Quantitative materials analysis of micro devices using absorption-based thickness measurements

    International Nuclear Information System (INIS)

    Sim, L M; Wog, B S; Spowage, A C

    2006-01-01

    Preliminary work in designing an X-ray inspection machine with the capability of providing quantitative thickness analysis based on absorption measurements has been demonstrated. This study attempts to use the gray levels data to investigate the nature and thickness of occluded features and materials within devices. The investigation focused on metallic materials essential to semiconductor and MEMS technologies such as tin, aluminium, copper, silver, iron and zinc. The materials were arranged to simulate different feature thicknesses and sample geometries. The X-ray parameters were varied in-order to modify the X-ray energy spectrum with the aim of optimising the measurement conditions for each sample. The capability of the method to resolve differences in thicknesses was found to be highly dependent on the material. The thickness resolution with aluminium was the poorest due to its low radiographic density. The thickness resolutions achievable for silver and tin were significantly better and of the order of 0.015 mm and 0.025 mm respectively. From the linear relationship between the X-ray attenuation and sample thickness established, the energy dependent linear attenuation coefficient for each material was determined for a series of specific energy spectra. A decrease in the linear attenuation coefficient was observed as the applied voltage and thickness of the material increased. The results provide a platform for the development of a novel absorption-based thickness measurement system that can be optimised for a range of industrial applications

  10. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  11. Development of population pharmacokinetics model of icotinib with non-linear absorption characters in healthy Chinese volunteers to assess the CYP2C19 polymorphism and food-intake effect.

    Science.gov (United States)

    Hu, Pei; Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji

    2015-07-01

    Icotinib is a potent and selective inhibitor of epidermal growth factor receptors (EGFR) approved to treat non-small cell lung cancer (NSCLC). However, its high variability may impede its application. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in icotinib absorption and/or disposition following single dose of icotinib in healthy volunteers. Data from two clinical studies (n = 22) were analyzed. One study was designed as three-period and Latin-squared (six sequence) trial to evaluate dose proportionality, and the other one was designed as two-way crossover trial to evaluate food effect on pharmacokinetics (PK) characters. Icotinib concentrations in plasma were analyzed using non-linear mixed-effects model (NONMEM) method. The model was used to assess influence of food, demographic characteristics, measurements of blood biochemistry, and CYP2C19 genotype on PK characters of icotinib in humans. The final model was diagnosed by goodness-of-fit plots and evaluated by visual predictive check (VPC) and bootstrap methods. A two-compartment model with saturated absorption character was developed to capture icotinib pharmacokinetics. Typical value of clearance, distribution clearance, central volume of distribution, maximum absorption rate were 29.5 L/h, 24.9 L/h, 18.5 L, 122.2 L and 204,245 μg/h, respectively. When icotinib was administrated with food, bioavailability was estimated to be increased by 48%. Inter-occasion variability was identified to affect on maximum absorption rate constant in food-effect study. CL was identified to be significantly influenced by age, albumin concentration (ALB), and CYP2C19 genotype. No obvious bias was found by VPC and bootstrap methods. The developed model can capture icotinib pharmacokinetics well in healthy volunteers. Food intake can increase icotinib exposure. Three covariates, age, albumin concentration, and CYP2C19 genotype, were identified to

  12. Tests of intestinal absorption using carbon-14-labeled isotopes

    International Nuclear Information System (INIS)

    Fromm, H.; Sarva, R.P.

    1983-01-01

    Beta radiation-emitting isotopes are being used increasingly in diagnostic gastroenterology for the study of absorption. The major reason for the popularity of radioisotopes is that their use is convenient for patient and physician alike. They often obviate naso- or orointestinal intubation and the collection, storage, and analysis of stool. The radioactivity used for the studies of digestive and absorptive processes is small and is not hazardous. In spite of the safety of the radiolabeled compounds, their use is restricted in children and pregnant women. Therefore, for most tests, promising alternative methods that make use of the stable isotope of carbon, /sup 13/C, instead of the radioactive /sup 14/C have been developed. The analysis of stable isotopes requires more sophisticated technology than that of radioactive compounds, however. Only a few centers presently are equipped and staffed to analyze stable isotopes on a routine basis. In contrast, the analysis of radioactive isotopes has become a routine procedure in almost ever major laboratory. The last decade has brought the development of several radioactive absorption tests. The clinically most useful tests relate to the study of bile acid, fat, lactose, and xylose absorption. All of these tests utilize the excretion rate of /sup 14/CO/sub 2/ in breath after ingestion of a /sup 14/C-labeled compound as a measure of the rate of its absorption or malabsorption

  13. Angular absorption of iridium - ICW12 needles: practical considerations

    International Nuclear Information System (INIS)

    Szymczyk, W.; Lesiak, J.

    1984-01-01

    An analysis was made of two potential sources of error in Ir 192 dosimetry: the effect of angular absorption and the differences in the ionization constants found in literature. Corrections for selfabsorption in the ICW12 iridium source were determined from measurements and calculations. It was found that the decrease in the dose caused by the angular absorption in the central therapeutic area of a typical implantation can exceed 5 percent. The need for employing the concept of ''constant exposure rate'' is stressed as well as that for using angular absorption in the form of absorption. 13 refs., 6 figs., 1 tab. (author)

  14. On the Influence of the Sample Absorptivity when Studying the Thermal Degradation of Materials

    Directory of Open Access Journals (Sweden)

    Pascal Boulet

    2015-08-01

    Full Text Available The change in absorptivity during the degradation process of materials is discussed, and its influence as one of the involved parameters in the degradation models is studied. Three materials with very different behaviors are used for the demonstration of its role: a carbon composite material, which is opaque, almost grey, a plywood slab, which is opaque and spectral-dependent and a clear PMMA slab, which is semitransparent. Data are analyzed for virgin and degraded materials at different steps of thermal degradation. It is seen that absorptivity and emissivity often reach high values in the range of 0.90–0.95 with a near-grey behavior after significant thermal aggression, but depending on the materials of interest, some significant evolution may be first observed, especially during the early stages of the degradation. Supplementary inaccuracy can come from the heterogeneity of the incident flux on the slab. As a whole, discrepancies up to 20% can be observed on the absorbed flux depending on the degradation time, mainly because of the spectral variations of the absorption and up to 10% more, depending on the position on the slab. Simple models with a constant and unique value of absorptivity may then lead to inaccuracies in the evaluation of the radiative flux absorption, with possible consequences on the pyrolysis analysis, especially for properties related to the early step of the degradation process, like the time to ignition, for example.

  15. On the Influence of the Sample Absorptivity when Studying the Thermal Degradation of Materials.

    Science.gov (United States)

    Boulet, Pascal; Brissinger, Damien; Collin, Anthony; Acem, Zoubir; Parent, Gilles

    2015-08-21

    The change in absorptivity during the degradation process of materials is discussed, and its influence as one of the involved parameters in the degradation models is studied. Three materials with very different behaviors are used for the demonstration of its role: a carbon composite material, which is opaque, almost grey, a plywood slab, which is opaque and spectral-dependent and a clear PMMA slab, which is semitransparent. Data are analyzed for virgin and degraded materials at different steps of thermal degradation. It is seen that absorptivity and emissivity often reach high values in the range of 0.90-0.95 with a near-grey behavior after significant thermal aggression, but depending on the materials of interest, some significant evolution may be first observed, especially during the early stages of the degradation. Supplementary inaccuracy can come from the heterogeneity of the incident flux on the slab. As a whole, discrepancies up to 20% can be observed on the absorbed flux depending on the degradation time, mainly because of the spectral variations of the absorption and up to 10% more, depending on the position on the slab. Simple models with a constant and unique value of absorptivity may then lead to inaccuracies in the evaluation of the radiative flux absorption, with possible consequences on the pyrolysis analysis, especially for properties related to the early step of the degradation process, like the time to ignition, for example.

  16. Frequency and Thermal Behavior of Acoustic Absorption in ɛ-GaSe Crystals

    Science.gov (United States)

    Dzhafarova, S. Z.

    2018-04-01

    The paper presents results of measuring acoustic absorption in ɛ-GaSe crystals. The absorption of a longitudinal wave which propagates normal to the crystal layers, quadratically depends on frequency. However, it does not depend on temperature, i.e. it displays an Akhiezer behavior although its absolute value considerably exceeds the expected. The analysis of the frequency and thermal behavior of absorption of piezoelectric waves propagating along the layers, includes the deduction of contribution made by the interaction between waves and charge carriers. This analysis shows the linear dependence between the lattice absorption of these waves and the frequency. The linear frequency and weak temperature dependences of the acoustic absorption characterize the additional ultra-Akhiezer absorption in glasses. In our case, it can be caused by various polytypes forming in GaSe crystals which differ merely in a mutual arrangement of layers.

  17. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1986-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneally treatment with CDDP from day 11 to 13 of gestation. Platinum content in different tissues, namely liver, kidney, placenta and brain, was determined at 18 day of pregnancy. Two analytical techniques were used, i.e. neutron activation analysis and atomic absorption spectroscopy. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide results better correlated with the drug treatment. (author)

  18. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1987-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneal treatment with CDDP from the 11st to 13rd day of gestation. Platinum content in different liver, kidney, placenta and brain tissues, was determined at 18. day of pregnancy. Neutron activation analysis and atomic absorption spectroscopy were used. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide better results correlated with the drug treatment. (author) 10 refs.; 4 tables

  19. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...... generator is capable of of reducing the problem of rereflection in multidirectional, irregular wave fields significantly....

  20. Constraining the Intergalactic and Circumgalactic Media with Lyman-Alpha Absorption

    Science.gov (United States)

    Sorini, Daniele; Onorbe, Jose; Hennawi, Joseph F.; Lukic, Zarija

    2018-01-01

    Lyman-alpha (Ly-a) absorption features detected in quasar spectra in the redshift range 02Mpc, the simulations asymptotically match the observations, because the ΛCDM model successfully describes the ambient IGM. This represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations are present on scales 20kpc-2Mpc, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as ~2Mpc, indicating that the `sphere-of-influence' of galaxies could extend to approximately ~20 times the halo virial radius (~100kpc). Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. I demonstrate that the Ly-a absorption profile is primarily sensitive to the underlying temperature-density relationship of diffuse gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models. With near-future high-precision observations of Ly-a absorption, the tools developed in my thesis set the stage for even stronger constraints on models of galaxy formation and cosmology.

  1. Bayesian inversion from sabine absorption coefficients to flow resistivity values for porous absorbers

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2015-01-01

    to determine the flow resistivity of a porous material from the Sabine absorption coefficient was investigated through a reliable model. The model for the flow resistivity estimation is based on an equivalent fluid model, i.e., Miki’s model, together with the most advanced model that accounts for edge...... diffraction, named Thomasson’s finite size correction. As input data, a set of the Sabine absorption coefficients in a recent absorption round robin test in 13 European chambers was used. Finally, the flow resistivity of the test specimen is characterized via the Bayesian framework, together...

  2. Theory of X-ray absorption and emission spectra

    International Nuclear Information System (INIS)

    Mukoyama, Takeshi

    2004-01-01

    Theoretical studies on X-ray absorption and emission spectroscopy are discussed. Simple expressions for X-ray emission rate and X-ray absorption cross section are presented in the dipole approximation. Various atomic models to obtain realistic wave functions and theoretical calculations for X-ray absorption cross sections and X-ray emission rates are described. In the case of molecules and solids, molecular orbital methods for electronic structures and molecular wave functions are discussed. The emphasis is on the procedures to obtain the excited-state and continuum wave functions for molecules and to calculate the multi-center dipole matrix elements. The examples of the calculated X-ray absorption and emission spectra are shown and compared with the experimental results

  3. Direct Determination of the Absorption of Graphene Mono- and Multi-layers in the Visible and Near-Infrared

    Science.gov (United States)

    Wu, Yang; Mak, Kin Fai; Lui, Chun Hung; Maultzsch, Janina; Heinz, Tony

    2008-03-01

    Single-crystal mono- and multi-layer graphene samples were prepared by mechanical exfoliation on quartz substrates. The absorption spectra of samples of 1 -- 8 monolayer thickness were measured in the optical and near-infrared range. The absorption coefficient was found to be largely independent of photon energy and linear in the number of graphene layers. Such absorption measurements can thus be used to determine the thickness of mesoscopic graphite to monolayer accuracy, as already demonstrated in the context of Rayleigh scattering [Casiraghi et al. Nano Letters 2007]. By analysis of the optical transmission problem for a thin film at the air-quartz interface, we deduced an absorption of 2.3% per layer. The magnitude of the monolayer absorption agrees with the value of πα, where α is the fine-structure constant, and corresponds the result obtained from a tight-binding model of the graphene electronic structure [Gusynin et al. PRL 2006]. The predicted (and measured) optical absorption, we note, is equivalent to a constant optical conductance ofπe^22h=6.09x10-5φ-1.

  4. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    International Nuclear Information System (INIS)

    Gatuzz, E.; Mendoza, C.; García, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 10 21 cm –2 ; an ionization parameter of log ξ = –2.70 ± 0.023; an oxygen abundance of A O = 0.689 +0.015 -0.010 ; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A O =0.952 +0.020 -0.013 , a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  5. Nitrogen oxide absorption into water and dilute nitric acid in an engineering-scale sieve-plate column: description of a mathematical model and comparison with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Counce, R M

    1978-09-01

    The study reported here is concerned with the absorption of gaseous NO/sub x/ compounds into water and dilute HNO/sub 3/ in a three-stage sieve-plate column with plates designed for high gas-liquid interfacial area. The performance of the column was measured while several operating parameters were varied. A mechanistic model was developed and presented to explain the observed phenomena. The results of the study indicate the importance of three mechanisms in the absorption of gaseous NO/sub x/ compounds: (a) the absorption of NO/sub 2/*, which results in the production of liquid HNO/sub 3/ and HNO/sub 2/; (b) the dissociation of the liquid HNO/sub 2/ into HNO/sub 3/ and gaseous NO; and (c) the gas-phase oxidation of NO to NO/sub 2/. A useful model was developed to explain the absorption of NO/sub x/ compounds based on the above mechanisms. This model is presented and discussed.

  6. Phytosterol glycosides reduce cholesterol absorption in humans

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  7. Mixture component effects on the in vitro dermal absorption of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, J.E.; Qiao, G.; Baynes, R.E.; Brooks, J.D. [Coll. of Veterinary Medicine, North Carolina State Univ., Raleigh, NC (United States); Mumtaz, M. [Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA (United States)

    2001-08-01

    Interactions between chemicals in a mixture and interactions of mixture components with the skin can significantly alter the rate and extent of percutaneous absorption, as well as the cutaneous disposition of a topically applied chemical. The predictive ability of dermal absorption models, and consequently the dermal risk assessment process, would be greatly improved by the elucidation and characterization of these interactions. Pentachlorophenol (PCP), a compound known to penetrate the skin readily, was used as a marker compound to examine mixture component effects using in vitro porcine skin models. PCP was administered in ethanol or in a 40% ethanol/60% water mixture or a 40% ethanol/60% water mixture containing either the rubefacient methyl nicotinate (MNA) or the surfactant sodium lauryl sulfate (SLS), or both MNA and SLS. Experiments were also conducted with {sup 14}C-labelled 3,3',4,4'-tetrachlorobiphenyl (TCB) and 3,3',4,4',5-pentachlorobiphenyl (PCB). Maximal PCP absorption was 14.12% of the applied dose from the mixture containing SLS, MNA, ethanol and water. However, when PCP was administered in ethanol only, absorption was only 1.12% of the applied dose. There were also qualitative differences among the absorption profiles for the different PCP mixtures. In contrast with the PCP results, absorption of TCB or PCB was negligible in perfused porcine skin, with only 0.14% of the applied TCB dose and 0.05% of the applied PCB dose being maximally absorbed. The low absorption levels for the PCB congeners precluded the identification of mixture component effects. These results suggest that dermal absorption estimates from a single chemical exposure may not reflect absorption seen after exposure as a chemical mixture and that absorption of both TCB and PCB are minimal in this model system. (orig.)

  8. Analysis of aerosol absorption properties and transport over North Africa and the Middle East using AERONET data

    Directory of Open Access Journals (Sweden)

    A. Farahat

    2016-11-01

    Full Text Available In this paper particle categorization and absorption properties were discussed to understand transport mechanisms at different geographic locations and possible radiative impacts on climate. The long-term Aerosol Robotic Network (AERONET data set (1999–2015 is used to estimate aerosol optical depth (AOD, single scattering albedo (SSA, and the absorption Ångström exponent (αabs at eight locations in North Africa and the Middle East. Average variation in SSA is calculated at four wavelengths (440, 675, 870, and 1020 nm, and the relationship between aerosol absorption and physical properties is used to infer dominant aerosol types at different locations. It was found that seasonality and geographic location play a major role in identifying dominant aerosol types at each location. Analyzing aerosol characteristics among different sites using AERONET Version 2, Level 2.0 data retrievals and the Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT backward trajectories shows possible aerosol particle transport among different locations indicating the importance of understanding transport mechanisms in identifying aerosol sources.

  9. Parametric study of an absorption refrigeration machine using advanced exergy analysis

    International Nuclear Information System (INIS)

    Gong, Sunyoung; Goni Boulama, Kiari

    2014-01-01

    An advanced exergy analysis of a water–lithium bromide absorption refrigeration machine was conducted. For each component of the machine, the proposed analysis quantified the irreversibility that can be avoided and the irreversibility that is unavoidable. It also identified the irreversibility originating from inefficiencies within the component and the irreversibility that does not originate from the operation of the considered component. It was observed that the desorber and absorber concentrated most of the exergy destruction. Furthermore, the exergy destruction at these components was found to be dominantly endogenous and unavoidable. A parametrical study has been presented discussing the sensitivity of the different performance indicators to the temperature at which the heat source is available, the temperature of the refrigerated environment, and the temperature of the cooling medium used at the condenser and absorber. It was observed that the endogenous avoidable exergy destruction at the desorber, i.e. the portion of the desorber irreversibility that could be avoided by improving the design and operation of the desorber, decreased when the heat source or the temperature at which the cooling effect was generated increased, and it decreased when the heat sink temperature increased. The endogenous avoidable exergy destruction at the absorber displayed the same variations, though it was observed to be less affected by the heat source temperature. Contrary to the aforementioned two components, the exergy destruction at the evaporator and condenser were dominantly endogenous and avoidable, with little sensitivity to the cycle operating parameters. - Highlights: • Endogenous, exogenous, avoidable and unavoidable irreversibilities were calculated for a water–LiBr absorption machine. • Overall, desorber and absorber concentrated most of the exergy destruction of the cycle. • The exergy destruction was mainly endogenous and unavoidable for the desorber and

  10. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Science.gov (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  11. The Zone of Inertia: Absorptive Capacity and Organizational Change

    Science.gov (United States)

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  12. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  13. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  14. Mechanistic understanding of time-dependent oral absorption based on gastric motor activity in humans.

    Science.gov (United States)

    Higaki, Kazutaka; Choe, Sally Y; Löbenberg, Raimar; Welage, Lynda S; Amidon, Gordon L

    2008-09-01

    The relationship of gastric motor activity and gastric emptying of 0.7 mm caffeine pellets with their absorption was investigated in the fed state in healthy human subjects by simultaneous monitoring of antral motility and plasma concentrations. A kinetic model for gastric emptying-dependent absorption yielded multiple phases of gastric emptying and rate constants (k(g)) with large inter-individual differences and large variability in onset of gastric emptying (50-175 min). The model suggests that 50% of the dose is emptied in 1-2h and over 90% emptied by 3.5h following dosing, in all subjects. The maximum values of k(g) (k(g)(max)) were much greater than those reported for emptying of liquids in the fasted state and were comparable to k(g) values in the late Phase II/III of the migrating motor complex (MMC). The model described the observed irregular absorption rate-time and plasma concentration-time profiles adequately but not in detail. The model was more successful at simulating double-peak phenomena in absorption rate profiles and onset of caffeine absorption. The results suggest that gastric emptying regulates drug absorption of small particles in the fed state. Further, estimates of k(a) derived using the time-dependent absorption model were closer to the intrinsic absorption rate constant for caffeine.

  15. Effect of nonlinear wave-particle interaction on electron-cyclotron absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C; Vlahos, L [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2006-09-15

    We perform a self-consistent analysis of the nonlinear interaction of magnetized plasmas with electron-cyclotron (EC) waves. A closed set of equations is derived, which consists of the relativistic equations of motion under the wave field and the wave equation for the vector potential. The plasma is described in terms of ensembles of electrons which collectively determine the evolution of the wave amplitude and frequency through the current response. This description allows for effects of the electron motions on the efficiency of the wave absorption, for example, the asynchrony between the wave phase and the gyroperiod. As an application, we study the absorption of an EC wave beam in a simplified tokamak geometry, for plasma parameters relevant to current and future fusion experiments. We conclude that, within the limits of our model, there are cases where the linear theory for the absorption of EC waves, used widely in the current literature, may overestimate the energy deposition. In such cases, nonlinear effects are essential for the accurate estimation of the plasma-wave coupling and their inclusion should be considered, especially when the wave power is dramatically increased as in the case of ITER.

  16. Effect of nonlinear wave-particle interaction on electron-cyclotron absorption

    International Nuclear Information System (INIS)

    Tsironis, C; Vlahos, L

    2006-01-01

    We perform a self-consistent analysis of the nonlinear interaction of magnetized plasmas with electron-cyclotron (EC) waves. A closed set of equations is derived, which consists of the relativistic equations of motion under the wave field and the wave equation for the vector potential. The plasma is described in terms of ensembles of electrons which collectively determine the evolution of the wave amplitude and frequency through the current response. This description allows for effects of the electron motions on the efficiency of the wave absorption, for example, the asynchrony between the wave phase and the gyroperiod. As an application, we study the absorption of an EC wave beam in a simplified tokamak geometry, for plasma parameters relevant to current and future fusion experiments. We conclude that, within the limits of our model, there are cases where the linear theory for the absorption of EC waves, used widely in the current literature, may overestimate the energy deposition. In such cases, nonlinear effects are essential for the accurate estimation of the plasma-wave coupling and their inclusion should be considered, especially when the wave power is dramatically increased as in the case of ITER

  17. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  18. Vertical electro-absorption modulator design and its integration in a VCSEL

    Science.gov (United States)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.

    2018-04-01

    Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.

  19. Orbital elements and an analysis of models for HDE 226868 = Cygnus X-1

    International Nuclear Information System (INIS)

    Bolton, C.T.

    1975-01-01

    Radial velocities from 21 new high-dispersion spectrograms of HDE 226868 are presented. These are combined with previously published data to calculate a ''definitive'' set of orbital elements for the binary system. In particular, archival data are used to obtain a precise period. The ellipsoidal light curve is analyzed using both a Roche model and an ellipsoidal model, and the results are compared with work by Hutchings. Information from the absorption-line and emission-line velocity curves and the light curve is combined to give estimates for the orbital inclination and the component masses. The possible errors in the analysis are discussed and are shown to be negligible. A qualitative model for the mass transfer is proposed that explains the intensity and velocity variations of the optical emission lines and the variations in the X-ray intensity: including the low-energy X-ray absorption events sometimes seen near superior conjunction of the secondary. Tests of this model are also proposed. Finally, the observations are used to test various models that have been proposed for the system. The observations rule out low mass and rotating degenerate dwarf secondaries and present difficulties for the triple star model. The magnetic reconnection model is not ruled out by the observations. Models in which the secondary is a black hole are consistent with all available observations

  20. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  1. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Patridge, Christopher J. [NRC/NRL Cooperative Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Love, Corey T., E-mail: corey.love@nrl.navy.mil [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Swider-Lyons, Karen E. [Chemistry Division, Code 6113, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Twigg, Mark E. [Electronics Science and Technology Division, Code 6812, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Ramaker, David E. [Chemistry Division, Code 6189, U.S. Naval Research laboratory, Washington, DC 20375 (United States)

    2013-07-15

    The local structure of nanoscale (∼10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple

  2. Laser-based absorption spectroscopy as a technique for rapid in-line analysis of respired gas concentrations of O2 and CO2.

    Science.gov (United States)

    Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2011-07-01

    The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.

  3. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs.

    Science.gov (United States)

    Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia

    2018-05-30

    The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.

  4. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  5. Absorptive form factors for high-energy electron diffraction

    International Nuclear Information System (INIS)

    Bird, D.M.; King, Q.A.

    1990-01-01

    The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)

  6. Theoretical calculation of saturated absorption for multilevel atoms

    International Nuclear Information System (INIS)

    O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.

    1998-01-01

    We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement

  7. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  8. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  9. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T. [Physics Department, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557 (United States); Smalyuk, V. A.; Regan, S. P.; Delettrez, J. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

    2014-08-15

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1–2 transitions in F- through Li-like Ti ions in the 4400–4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e} = 400–600 eV and N{sub e} = 3.0–10.0 × 10{sup 24} cm{sup −3} for all but the most distant Ti-doped layer, with error bars ∼5% T{sub e} value and ∼10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  10. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    Science.gov (United States)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  11. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum

    International Nuclear Information System (INIS)

    Chantler, C T; Bourke, J D

    2014-01-01

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property—the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model. (paper)

  12. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    Science.gov (United States)

    Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.

    2013-09-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.

  13. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  14. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  15. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  16. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  17. Development of a canine model to enable the preclinical assessment of pH-dependent absorption of test compounds.

    Science.gov (United States)

    Fancher, R Marcus; Zhang, Hongjian; Sleczka, Bogdan; Derbin, George; Rockar, Richard; Marathe, Punit

    2011-07-01

    A preclinical canine model capable of predicting a compound's potential for pH-dependent absorption in humans was developed. This involved the surgical insertion of a gastrostomy feeding tube into the stomach of a beagle dog. The tube was sutured in position to allow frequent withdrawal of gastric fluid for pH measurement. Therefore, it was possible to measure pH in the stomach and assess the effect of gastric pH-modifying agents on the absorption of various test compounds. Fasted gastric pH in the dog showed considerable inter- and intra-animal variability. Pretreatment of pentagastrin (6 µg/kg intramuscularly) 20 min prior to test compound administration was determined to be adequate for simulating fasting stomach pH in humans. Pretreatment with famotidine [40 mg orally] 1 h prior to test compound administration was determined to be adequate for simulating human gastric pH when acid-reducing agents are coadministered. Pentagastrin and famotidine pretreatments were used to test two discovery compounds and distinct differences in their potential for pH-dependent absorption were observed. The model described herein can be used preclinically to screen out compounds, differentiate compounds, and support the assessment of various formulation- and prodrug-based strategies to mitigate the pH effect. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  18. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    Science.gov (United States)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  19. Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer

    Science.gov (United States)

    Khamooshi, Mehrdad; Yari, Mortaza; Egelioglu, Fuat; Salati, Hana

    2014-01-01

    First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle. PMID:25136702

  20. Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer

    Directory of Open Access Journals (Sweden)

    Mehrdad Khamooshi

    2014-01-01

    Full Text Available First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers’ efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

  1. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  2. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  3. Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption

    International Nuclear Information System (INIS)

    Kriegel, I.; Scotognella, F.; Soavi, G.; Brescia, R.; Rodríguez-Fernández, J.; Feldmann, J.; Lanzani, G.; Tassone, F.

    2016-01-01

    Highlights: • We study the photophysics of CdTe nanorods by ultrafast absorption spectroscopy. • We fit photobleaching and photoinduced absorption features at all time delays. • Dynamics are extracted from superpositions of bleaches (Gaussians) and derivatives. • Fast non-radiative recombination and slower hole trapping processes are extracted. • A potential approach to unveil ultrafast non-radiative recombination processes. - Abstract: In transient absorption (TA) spectra, the bleach features originating from state filling are overlapped by their energy-shifted derivatives, arising from excited state energy level shifts. This makes the direct extraction of carrier dynamics from a single-wavelength time-trace misleading. Fitting TA spectra in time, as Gaussian functions and their derivative-like shifted Gaussians, allows to individually extract the real dynamics of both photobleached transitions, and their energy shifts. In CdTe nanorods (NRs) we found a delayed heating of holes due to the release of the large excess energy in the electron relaxation process. The slow hole-trapping process is consistent with a high number of surface trap states in these model NRs. Our results show that only a correct disentanglement of bleaching and energy shift contributions provides a reliable framework to extract the underlying carrier relaxation dynamics, including trapping, non-radiative recombination, and eventually carrier multiplication.

  4. Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, I., E-mail: ilka.kriegel@iit.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Scotognella, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy); Soavi, G. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Brescia, R. [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy); Rodríguez-Fernández, J.; Feldmann, J. [Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich (Germany); Lanzani, G., E-mail: guglielmo.lanzani@iit.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy); Tassone, F. [CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy)

    2016-06-01

    Highlights: • We study the photophysics of CdTe nanorods by ultrafast absorption spectroscopy. • We fit photobleaching and photoinduced absorption features at all time delays. • Dynamics are extracted from superpositions of bleaches (Gaussians) and derivatives. • Fast non-radiative recombination and slower hole trapping processes are extracted. • A potential approach to unveil ultrafast non-radiative recombination processes. - Abstract: In transient absorption (TA) spectra, the bleach features originating from state filling are overlapped by their energy-shifted derivatives, arising from excited state energy level shifts. This makes the direct extraction of carrier dynamics from a single-wavelength time-trace misleading. Fitting TA spectra in time, as Gaussian functions and their derivative-like shifted Gaussians, allows to individually extract the real dynamics of both photobleached transitions, and their energy shifts. In CdTe nanorods (NRs) we found a delayed heating of holes due to the release of the large excess energy in the electron relaxation process. The slow hole-trapping process is consistent with a high number of surface trap states in these model NRs. Our results show that only a correct disentanglement of bleaching and energy shift contributions provides a reliable framework to extract the underlying carrier relaxation dynamics, including trapping, non-radiative recombination, and eventually carrier multiplication.

  5. Absorptive capacity and smart companies

    Directory of Open Access Journals (Sweden)

    Patricia Moro González

    2014-12-01

    Full Text Available Purpose: The current competitive environment is substantially modifying the organizations’ learning processes due to a global increase of available information allowing this to be transformed into knowledge. This opportunity has been exploited since the nineties by the tools of “Business Analytics” and “Business Intelligence” but, nevertheless, being integrated in the study of new organizational capacities engaged in the process of creating intelligence inside organizations is still an outstanding task. The review of the concept of absorptive capacity and a detailed study from the perspective of this new reality will be the main objective of study of this paper.Design/methodology/approach: By comparing classical absorptive capacity and absorptive capacity from the point of view of information management tools in each one of the three stages of the organizational learning cycle, some gaps of the former are overcome/fulfilled. The academic/bibliographical references provided in this paper have been obtained from ISI web of knowledge, Scopus and Dialnet data bases, supporting the state of affairs on absorptive capacity and thereafter filtering by "Business Intelligence" and "Business Analytics". Specialized websites and Business Schools` Publications there have also been included, crowning the content on information management tools used that are currently used in the strategic consulting.Findings: Our contribution to the literature is the development of "smart absorptive capacity". This is a new capacity emerging from the reformulation of the classical concept of absorptive capacity wherein some aspects of its definition that might have been omitted are emphasized. The result of this new approach is the creation of a new Theoretical Model of Organizational Intelligence, which aims to explain, within the framework of the Resources and Capabilities Theory, the competitive advantage achieved by the so-called smart companies

  6. Steady state simulation of a double-effect steam absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.S.A.M.S.; Gilani, S.I.U.H. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    Absorption cooling systems have become increasingly popular in recent years from the viewpoint of energy and environment. Despite a lower coefficient of performance (COP) as compared to the vapor compression, absorption refrigeration systems are attractive for using inexpensive waste heat, solar, geothermal or biomass energy sources for which the cost of supply is negligible in many cases. In addition absorption refrigeration uses natural substances which do not contribute towards ozone depletion and global warming. Owing to the serious environmental problems and the price of the traditional energy resources, the use of industrial waste heat or renewable energy as the driving force for vapor absorption cooling systems is continuously increasing. A steady-state model is developed to predict the performance of an absorption refrigeration system using LiBr-water as working pair. Each component of the cycle is modelled based on mass and energy balances. The design point parameters are determined. The refrigeration effect, coefficient of performance and load factor are analyzed for different heat input. Simulation is carried out and the results are compared with actual data and showed good agreement.

  7. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  8. Studying energy absorption in tapered thick walled tubes

    Directory of Open Access Journals (Sweden)

    P. Hosseini Tehrani

    Full Text Available In many engineering structures different energy absorption systems may be used to improve crashworthiness capability of the system and to control damages that may occur in a system during an accident. Therefore, extensive research has been done on the energy-absorbing cells. In this paper, energy absorption in tapered thick walled tubes has been investigated. As a practical case, studies have been focused on the crush element of Siemens ER24PC locomotive. To investigate performance of this part at collision time, it has been modeled in Abaqus software and its collision characteristics have been evaluated. Considering that the crash element is folded at time of collision, an analytical approach has been presented for calculation of instantaneous folding force under axial load. Basis of this method is definition and analysis of main folding mechanism and calculation of average folding force. This method has been used for validation of the results of numerical solution. Since sheet thickness of the crash element is high and may be ruptured at time of collision, some damage models have been used for numerical simulations. One of the three damage models used in this paper is available in the software and coding has been done for two other damage models and desirable damage model has been specified by comparing results of numerical solution with results of laboratory test. In addition, authenticity of the desirable damage model has been studied through ECE R 66 standard. To improve crashworthiness characteristic some attempts, such as use of metal foam and creation of trigger in suitable situations to reduce maximum force resulting from collision, have been performed. Finally though different simulation optimal crush element has been introduced and its performance and efficiency have been evaluated.

  9. A study of luminescence and absorption spectra of GaP

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Abdel Wahab, S.M.

    1994-08-01

    Experimental luminescence and absorption spectra of GaP at room temperature are presented. A theoretical analysis has been performed on the luminescence and absorption spectra in GaP. The experimental data are in good agreement with the theoretical results. (author). 18 refs, 8 figs

  10. Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies

    Directory of Open Access Journals (Sweden)

    David I Forrester

    2014-09-01

    Full Text Available Background Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR, and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models.

  11. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  12. Study of atmospheric aerosols in Zaire by instrumental neutron activation analysis, atomic absorption spectrophotometry and ion-exchange chromatography

    International Nuclear Information System (INIS)

    Tshiashala, M.D.; Lumu, B.M.; Matamba, K.; Ronneau, C.

    1992-01-01

    Instrumental neutron activation analysis and atomic absorption spectroscopy were applied to the determination of trace element abundances in airborne particulate matter collected throughout Kinshasa, Zaire. Statistical treatment of the resulting data was used to assess the variations between sites and to identify the sources of the pollutants. 10 refs, 5 tabs

  13. Phytosterol glycosides reduce cholesterol absorption in humans.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Anderson Spearie, Catherine L; Ostlund, Richard E

    2009-04-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (Pphytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.

  14. Wine absorption by cork stoppers research in foods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Adrados, J. R.; Gonzalez-Hernandez, F.; Garcia de Ceca, J. L.; Caceres-Esteban, M. J.; Garcia-Vallejo, M. C.

    2008-07-01

    To evaluate the magnitude of wine absorption by cork under conditions as close to reality as possible and its evolution in time, ready-to-use natural cork stoppers and ''1+1'' cork stoppers were used to close bottles filled with red wine. Stoppers were removed after 3, 6, 12 and 24 months of contact to determine absorption of liquid and liquid progression along the lateral surface of the cork stopper.Variation of absorption with contact time was studied by adjusting the model Absorption = a {radical} t(R{sup 2}: 82.19 - 93.63%). A scheme of the evolution of wine absorption with time is proposed, differentiating liquid flow along cork-glass interface, diffusion in cell walls and liquid flow through the cell lumens. In conditions of use, a value of 4.48.10{sup 1}3 m{sup 2} s{sup -}1 was obtained for non-radial diffusion coefficient (D). (Author) 13 refs.

  15. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    Science.gov (United States)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  16. Prediction of refrigerant absorption and onset of natural convection in lubricant oil

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jader R.; Marcelino Neto, Moises A. [Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, SC 88040900 (Brazil); Thoma, Stefan M. [Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology, Sonneggstrasse 3, 8092 Zurich (Switzerland)

    2008-11-15

    Refrigerant absorption and mixing in lubricant oil are important in the design of refrigeration compressors and refrigeration systems. Experimental work is reported on absorption of R-134a vapour through the top interface of an initially stagnant layer of pure lubricant oil. Since the liquid refrigerant is heavier than the oil, mixing is enhanced due to natural mass convection. In the present paper, the behaviour of the liquid temperature during absorption is described based on measurements carried out in a test rig consisting of a transparent 70 mm ID, 150 mm long, vertical glass tube through which absorption can be directly observed. Transient liquid temperatures were measured at three different heights in the test section (two in the vapour, one in the liquid). The experimental work is complemented by a theoretical analysis of the critical time for the onset of mass transfer induced Rayleigh instability. The model is based on a critical mass transfer Rayleigh number criterion widely reported in the literature and takes into account the variation of physical properties in the liquid layer. The critical time for the onset of natural mass convection increases with decreasing system pressure as a result of a lower equilibrium concentration at the vapour-liquid interface. (author)

  17. Ocular pharmacokinetics of a novel tetrahydroquinoline analog in rabbit: absorption, disposition, and non-compartmental analysis.

    Science.gov (United States)

    Pamulapati, Chandrasena R; Schoenwald, Ronald D

    2011-12-01

    The pharmacologically active compound (33% reduction in rabbit intraocular pressure recovery rate assay) 1-ethyl-6-fluoro-1,2,3,4-tetrahydroquinoline (MC4), which showed ocular hypotensive action and had optimum physicochemical properties, was characterized for its ocular absorption and distribution properties to better understand its in vivo potency in comparison with an inactive compound, N-ethyl-1,4-benzoxazine (MC1). Tissue distribution to various ocular tissues was determined after absorption by both corneal and conjunctival-scleral routes, following administration by the "topical infusion" technique. The rank order of penetration for both the compounds was cornea > iris-ciliary body > aqueous humor > lens > conjunctiva-sclera. Overall, MC4 had significantly higher concentrations than MC1 in various ocular tissues, but particularly in the iris-ciliary body, which is the site of action (biophase). Ocular disposition studies of the active compound MC4 were then conducted to characterize its elimination kinetics, and the pharmacokinetic parameters were determined by non-compartmental and moment analysis using equations specific to "topical infusion" technique: first-order absorption rate constant, 4.1 × 10(-4) min(-1) ; elimination rate constant, 0.012 min(-1) ; mean residence time, 39.6 min; steady-state volume of distribution, 0.721 mL; and aqueous humor ocular clearance, 8.44 µL/min. The results were consistent with the conclusion that MC4 is well absorbed and distributed to the active site. Copyright © 2011 Wiley-Liss, Inc.

  18. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Richard J. Naftalin

    2016-04-01

    Full Text Available A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD, non-alcoholic steatohepatitis, (NASH and type 2 diabetes mellitus, (T2DM demonstrates how when glucagon-like peptide-1, (GLP-1 is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU. When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic

  19. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  20. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection

    Directory of Open Access Journals (Sweden)

    Yuka Matsumoto

    2017-09-01

    Full Text Available Ileocecal resection (ICR, one of several types of intestinal resection that results in short bowel syndrome (SBS, causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.

  1. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  2. Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats.

    Science.gov (United States)

    Saratale, Rijuta Ganesh; Lee, Hee-Seok; Koo, Yong Eui; Saratale, Ganesh Dattatraya; Kim, Young Jun; Imm, Jee Young; Park, Yooheon

    2018-04-01

    The absorption kinetics of food ingredients such as nanoemulsified vitamin E and green tea microstructures were evaluated by the intestinal in situ single perfusion technique. Absorption rate, sub-acute oral toxicity and organ morphology in a rat model were examined. The intestinal in situ single perfusion technique and HPLC analysis were applied to investigate the absorption rate of selected materials by examining time-dependent changes in the serum levels of catechin and dl-α-tocopherol. The acute toxicity test and histopathological evaluation were applied to analyze the safety of microsized green tea and nanosized vitamin E in a rat model. Total serum dl-α-tocopherol levels significantly increased with nanosized vitamin E administration (PE until 90min after administration showed significantly increased absorption rate of serum dl-α-tocopherol levels at each time point (10min interval) (PE and microsized green tea did not show signs of acute toxicity or death after 14days of observation. In addition, macroscopic analysis showed that there were no changes in representative organ sections of rats following the oral administration of food-related nanoscale materials. We successfully demonstrated that using nanosized vitamin E increased absorption rate to a greater extent than normal food-related material, and these results occurs via safety analyses on food-related nanoscale materials for human consumption. These results could be useful for the design and development of novel nanoemulsified vitamin E and microsized green tea formulations that can overcome the problem of their bioavailability and improve their efficacy while still maintaining their essential therapeutic efficacies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    International Nuclear Information System (INIS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO_2 absorption continuum near 2.3 µm is determined for a series of sub atmospheric pressures (250–750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO_2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO_2 continuum was obtained as the difference between the CO_2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm"−"1. Following the results of the preceding analysis of the CO_2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer (10.1016/j.jqsrt.2016.07.002), a CO_2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10"−"8 cm"−"1 amagat"−"2 between 4320 and 4380 cm"−"1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra. - Highlights: • The CO_2 absorption continuum is measured by CRDS in the 2.3 µm window. • The achieved sensitivity and stability allow measurements at sub-atmospheric pressure. • The absorption coefficient is on the order of 3×10"−"8 cm"−"1 amagat"−"2 near 4350 cm"−"1. • A good agreement is obtained with previous results at much higher density (20 amagat).

  4. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  5. Cosmological Evolution of QSO Absorption Systems

    Science.gov (United States)

    Stengler-Larrea, Erik

    1995-08-01

    First, the evolution with cosmic time of the hydrogen clouds which produce the Lyman-alpha absorption lines is studied in dependence on the strength of these lines. From the analysis it is concluded that the results show no evidence of a dependence in the sense of stronger lines evolving faster, although for the resolution at which the used observations were done, it can not be ruled out. Within the same analysis, a distribution of the Doppler parameter of the lines was obtained, with large values and a wide spread. This parameter being an indicator of the gas temperature, this result is in accordance with high temperatures and, consequently, large ionised fractions and a large fraction of the baryonic matter of the universe being associated with these clouds. However, recent high resolution studies seem to reveal that much lower temperatures are characteristic of the clouds. The main content of this thesis, however, focuses on the redshift evolution of the absorbing systems producing absorption at the Lyman limit and of the amount of CIV producing CIV absorption lines. Regarding the CIV absorbers, previous predictions on the effects underlying their redshift distribution pointed to an increase with redshift of the absorbing column densities. In this thesis the first direct measurements of such column densities by profile fitting of a large number of absorption systems (73) are presented, confirming the predictions of a decrease of at least a factor of 3 between z=1.5 and z=3.0. The study on the evolution of Lyman limit absorption systems (LLSs) puts an end to previous discrepancies between the results of different groups. Both a smooth single power law dependence of the LLS number density on redshift indicating no evolution in number density for 0.4 Team of the HST Key Project on QSO absorption lines, and in particular to estimate the necessary exposure times, the magnitudes of several of these objects had to be re-measured. The acquisition of their images and the

  6. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  7. New constraints in absorptive capacity and the optimum rate of petroleum output

    Energy Technology Data Exchange (ETDEWEB)

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

  8. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  9. Effect of antibiotic treatment on fat absorption in mice with cystic fibrosis

    NARCIS (Netherlands)

    Wouthuyzen-Bakker, Marjan; Bijvelds, Marcel J. C.; de Jonge, Hugo R.; De Lisle, Robert C.; Burgerhof, Johannes G. M.; Verkade, Henkjan J.

    INTRODUCTION: Improving fat absorption remains a challenge in cystic fibrosis (CF). Antibiotics (AB) treatment has been shown to improve body weight in CF mice. The mechanism may include improvement in fat absorption. We aimed to determine the effect of AB on fat absorption in two CF mouse models.

  10. The standardisation of trace elements in international biological standard reference materials with neutron activation analysis and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Pieterse, H.

    1981-12-01

    An investigation was undertaken into the analytical procedures and the identification of problem areas, for the certification of a new biological standard reference material supplied by the International Atomic Energy Agency, namely, a human hair sample designated as HH-I. The analyses comprised the determination of the elements As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, Se, and Zn in the hair sample by using two analytical techniques, namely, Instrumental Neutron Activation Analysis and Atomic Absorption. Three other certified biological reference materials, namely, Orchard Leaves (ORCH-L), Sea Plant Material (SPM-I) and Copepod (MAA-I) were used as control standards. Determinations were made of the moisture content of the samples, using varying conditions of drying, and the necessary corrections were applied to all analytical results so that the final elemental values related to dry weight of samples. Attention was also given to the possible loss of specific elements during ashing of the samples prior to the actual instrumental analysis. The results obtained for the hair sample by the two techniques were in good agreement for the elements Co, Fe, Mn, and Zn, but did not agree for the elements Cr and Sb. As, Hg and Se could only be determined with Instrumental Neutron Activation Analysis, and Cd, Cu and Ni only with Atomic Absorption. Most of the results obtained for the three control standard reference materials were within the ranges specified for the individual elements in each sample. The analytical procedures used for determining Cd, Cr, Cu, Ni and Sb with Instrumental Neutron Activation Analysis and As, Cr, Sb and Se with Atomic Absorption, need further investigation. The measurement of the moisture content and the ashing of samples also require further investigation with a view to improving accuracy

  11. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  12. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  13. Intraband light absorption by holes in InGaAsP/InP quantum wells

    Science.gov (United States)

    Pavlov, N. V.; Zegrya, G. G.

    2018-03-01

    A microscopic analysis of the mechanism of intraband radiation absorption by holes with their transition to a spin-split band for quantum wells based on InGaAsP/InP solid solutions is performed within the framework of the four-band Kane model. The calculation is made for two polarizations of the incident radiation: along the crystal growth axis and in the plane of the quantum well. It is shown that this process can be the main mechanism of internal radiation losses for quantum well lasers. It is also shown that the dependence of the absorption coefficient on the width of the quantum well has a maximum at a well width from 40 to 60 A.

  14. Asymptotic analysis of the spatial discretization of radiation absorption and re-emission in Implicit Monte Carlo

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2011-01-01

    We perform an asymptotic analysis of the spatial discretization of radiation absorption and re-emission in Implicit Monte Carlo (IMC), a Monte Carlo technique for simulating nonlinear radiative transfer. Specifically, we examine the approximation of absorption and re-emission by a spatially continuous artificial-scattering process and either a piecewise-constant or piecewise-linear emission source within each spatial cell. We consider three asymptotic scalings representing (i) a time step that resolves the mean-free time, (ii) a Courant limit on the time-step size, and (iii) a fixed time step that does not depend on any asymptotic scaling. For the piecewise-constant approximation, we show that only the third scaling results in a valid discretization of the proper diffusion equation, which implies that IMC may generate inaccurate solutions with optically large spatial cells if time steps are refined. However, we also demonstrate that, for a certain class of problems, the piecewise-linear approximation yields an appropriate discretized diffusion equation under all three scalings. We therefore expect IMC to produce accurate solutions for a wider range of time-step sizes when the piecewise-linear instead of piecewise-constant discretization is employed. We demonstrate the validity of our analysis with a set of numerical examples.

  15. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2018-04-24

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  16. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  17. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)

    2006-04-07

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  18. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  19. Rare earth analysis in human biological samples by atomic absorption using electrothermal atomization

    International Nuclear Information System (INIS)

    Citron, I.M.; Holtzman, R.B.; Leiman, J.

    1982-01-01

    The determination of Sc and seven rare earth elements, Nd, Sm, Dy, Ho, Eu, Tm, and Yb, in biological samplesby atomic absorption spectrophotometric analysis (AAS) using electrothermal atomization in a pyrolytic graphite tube is shown to be rapid, precise and accurate. The technique utilizes the method of standard additions and linear regression analysis to determine results from peak area data. Inter-elemental interferences are negligible. The elements found sensitive enough for this type of analysis are, in order of decreasing sensitivity, Yb, Eu, Tm, Dy, Sc, Ho, Sm and Nd. The determination in these types of materials of Gd and elements less sensitive to AAS detection than Gd does not appear to be feasible. Results are presented on the concentrations of these elements in 41 samples from human subjects, cows and vegetables with normal environmental exposure to the rare earth elements. The composite percent mean deviation in peak-area readings for all samples and all elements examined was 4%. The mean standard error in the results among samples was about 6.5%

  20. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan

    2016-05-01

    This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  1. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  2. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  3. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  4. Drug Delivery and Transport into the Central Circulation: An Example of Zero-Order In vivo Absorption of Rotigotine from a Transdermal Patch Formulation.

    Science.gov (United States)

    Cawello, Willi; Braun, Marina; Andreas, Jens-Otto

    2018-01-13

    Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.

  5. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Yang

    Full Text Available A previously presented physiologically-based pharmacokinetic model for immediate release (IR methylphenidate (MPH was extended to characterize the pharmacokinetic behaviors of oral extended release (ER MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations.

  6. Seasonal Solar Thermal Absorption Energy Storage Development.

    Science.gov (United States)

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  7. Building a Conceptual Model of Routines, Capabilities, and Absorptive Capacity Interplay

    Directory of Open Access Journals (Sweden)

    Ivan Stefanovic

    2014-05-01

    Full Text Available Researchers have often used constructs such as routines, operational capability, dynamic capability, absorptive capacity, etc., to explain various organizational phenomena, especially a competitive advantage of firms. As a consequence of their frequent use in different contexts, these constructs have become extremely broad and blurred, thus making a void in strategic management literature. In this paper we attempt to bring a sense of holistic perspective on these constructs by briefly reviewing the current state of the research and presenting a conceptual model that provides an explanation for the causal relationships between them. The final section of the paper sheds some light on this topic from the econophysics perspective. Authors hope that findings in this paper may serve as a foundation for other research endeavours related to the topic of how firms achieve competitive advantage and thrive in their environments.

  8. GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments

    KAUST Repository

    Agus, Marco; Boges, Daniya; Gagnon, Nicolas; Magistretti, Pierre J.; Hadwiger, Markus; Cali, Corrado

    2018-01-01

    Human brain accounts for about one hundred billion neurons, but they cannot work properly without ultrastructural and metabolic support. For this reason, mammalian brains host another type of cells called “glial cells”, whose role is to maintain proper conditions for efficient neuronal function. One type of glial cell, astrocytes, are involved in particular in the metabolic support of neurons, by feeding them with lactate, one byproduct of glucose metabolism that they can take up from blood vessels, and store it under another form, glycogen granules. These energy-storage molecules, whose morphology resembles to spheres with a diameter ranging 10–80 nanometers roughly, can be easily recognized using electron microscopy, the only technique whose resolution is high enough to resolve them. Understanding and quantifying their distribution is of particular relevance for neuroscientists, in order to understand where and when neurons use energy under this form. To answer this question, we developed a visualization technique, dubbed GLAM (Glycogen-derived Lactate Absorption Map), and customized for the analysis of the interaction of astrocytic glycogen on surrounding neurites in order to formulate hypotheses on the energy absorption mechanisms. The method integrates high-resolution surface reconstruction of neurites, astrocytes, and the energy sources in form of glycogen granules from different automated serial electron microscopy methods, like focused ion beam scanning electron microscopy (FIB-SEM) or serial block face electron microscopy (SBEM), together with an absorption map computed as a radiance transfer mechanism. The resulting visual representation provides an immediate and comprehensible illustration of the areas in which the probability of lactate shuttling is higher. The computed dataset can be then explored and quantified in a 3D space, either using 3D modeling software or virtual reality environments. Domain scientists have evaluated the technique by

  9. GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments

    KAUST Repository

    Agus, Marco

    2018-05-21

    Human brain accounts for about one hundred billion neurons, but they cannot work properly without ultrastructural and metabolic support. For this reason, mammalian brains host another type of cells called “glial cells”, whose role is to maintain proper conditions for efficient neuronal function. One type of glial cell, astrocytes, are involved in particular in the metabolic support of neurons, by feeding them with lactate, one byproduct of glucose metabolism that they can take up from blood vessels, and store it under another form, glycogen granules. These energy-storage molecules, whose morphology resembles to spheres with a diameter ranging 10–80 nanometers roughly, can be easily recognized using electron microscopy, the only technique whose resolution is high enough to resolve them. Understanding and quantifying their distribution is of particular relevance for neuroscientists, in order to understand where and when neurons use energy under this form. To answer this question, we developed a visualization technique, dubbed GLAM (Glycogen-derived Lactate Absorption Map), and customized for the analysis of the interaction of astrocytic glycogen on surrounding neurites in order to formulate hypotheses on the energy absorption mechanisms. The method integrates high-resolution surface reconstruction of neurites, astrocytes, and the energy sources in form of glycogen granules from different automated serial electron microscopy methods, like focused ion beam scanning electron microscopy (FIB-SEM) or serial block face electron microscopy (SBEM), together with an absorption map computed as a radiance transfer mechanism. The resulting visual representation provides an immediate and comprehensible illustration of the areas in which the probability of lactate shuttling is higher. The computed dataset can be then explored and quantified in a 3D space, either using 3D modeling software or virtual reality environments. Domain scientists have evaluated the technique by

  10. Contrasting ERP absorption between transition and developed economies from Central and Eastern Europe (CEE)

    DEFF Research Database (Denmark)

    Bernroider, Edward W.N.; Sudzina, Frantisek; Pucihar, Andreja

    2011-01-01

    This article investigates Enterprise Resource Planning absorption in transition and developed economies in Central and Eastern Europe. Using absorptive capacity theory and data envelopment analysis, we view organizational transformation in Enterprise Resource Planning absorption as an economic...

  11. Analysis of Hybrid-Integrated High-Speed Electro-Absorption Modulated Lasers Based on EM/Circuit Co-simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Kazmierski, C.

    2009-01-01

    An improved electromagnetic simulation (EM) based approach has been developed for optimization of the electrical to optical (E/O) transmission properties of integrated electro-absorption modulated lasers (EMLs) aiming at 100 Gbit/s Ethernet applications. Our approach allows for an accurate analysis...... of the EML performance in a hybrid microstrip assembly. The established EM-based approach provides a design methodology for the future hybrid integration of the EML with its driving electronics....

  12. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  14. Rate of water absorption and proximate analysis of different varieties ...

    African Journals Online (AJOL)

    GREGORY

    2010-12-21

    Dec 21, 2010 ... corn and yellow corn soaked at different temperatures and time duration were determined. Absorption ... found very effective in decreasing faecal transit times. Bressani and Elias (1983). .... evaporation of water. This method ...

  15. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    Science.gov (United States)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  16. Study of the influence of chemical binding on resonant absorption and scattering of neutrons; Etude de l'influence des liaisons chimiques sur l'absorption et la diffusion des neutrons aux energies de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Naberejnev, D G [Aix-Marseille-1 Univ., 13 - Marseille (France)

    1999-02-01

    At present time the problem of taking into account of the crystalline binding in the heavy nuclei resonance range is not correctly treated in nuclear data processing codes. The present work deals separately with resonant absorption and scattering of neutrons. The influence of crystalline binding is considered for both types of reactions in the harmonic crystal frame work. The harmonic crystal model is applied to the study of resonant absorption cross sections to show the inconsistency of the free gas model widely in use in reactor neutronics. The errors due to the use of the latter were found to be non negligible. These errors should be corrected by introducing a more elaborated harmonic crystal model in codes for resonances analysis and on the nuclear data processing stage. Currently the influence of crystalline binding on transfer cross section in the resonance domain is taken into account in a naive manner using the model of the free nucleus at rest in the laboratory system. In this work I present a formalism (Uncoupled Phonon Approximation) which permits to consider in more detail the crystalline structure of the nuclear fuel. This formalism shows new features in comparison with the static model. (author)

  17. Gas absorption and discharge behaviors of lead-lithium

    International Nuclear Information System (INIS)

    Sakabe, Toshiro; Yokomine, Takehiko; Kunugi, Tomoaki; Kawara, Zensaku; Ueki, Yoshitaka; Tanaka, Teruya

    2014-01-01

    Highlights: • The absorption of argon in the lead-lithium is comparable with that of helium even at the solid state. • For the molten state of lead-lithium, the absorption of argon could be larger than that of helium. • It is observed that the argon tends to desorb when the phase change of lead-lithium occurs. • It is observed from the TPD-MS analysis that the argon tends to desorb when the phase change of lead-lithium occurs. - Abstract: The absorption of rare gas in the lead-lithium has been quite low and the gas is used as a cover-gas to control the environment of experiment. In our previous thermo-fluid experiment by using lithium-lead, it was found the cover gas pressure enclosed in the very leak tight container of lithium-lead was decreased with time, that is, the gas-absorption of the solid lithium-lead occurred at room temperature under atmospheric pressure. The variation of pressure exceeded the retention of argon in lead-lithium which is expected by the published data. Therefore, we aim to confirm those phenomena under well-controlled experimental condition by using argon, nitrogen and helium. According to the results of gas exposure tests, the absorption of argon in the lead-lithium is comparable with that of helium even at the solid state. For the molten state of lead-lithium, the absorption of argon could be larger than that of helium. It is also observed from the TPD-MS analysis that the argon tends to desorb when the phase change of lead-lithium occurs. If the retention of argon in the lead-lithium cannot be ignored, the problem of Ar-41 activity should be taken into consideration as well as the problem of argon bubble in the lead-lithium

  18. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    Science.gov (United States)

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  19. Modelling LiBr-H2O solution concentration/crystallization of low thermal-powered absorption air conditioning system

    International Nuclear Information System (INIS)

    Abdullah, M.O.

    2000-01-01

    A computer model is developed to predict the concentration of lithium bromide - water (LiBr-H 2 O) solution for used in low thermal energy-driven absorption air conditioning plants design. The computer program is capable to alert the users from undesirable solidification or crystallization zones. Good agreements between simulated concentration and experimental data from standard chart/table have been obtained. (Author)

  20. Review on absorption technology with emphasis on small capacity absorption machines

    Directory of Open Access Journals (Sweden)

    Labus Jerko M.

    2013-01-01

    Full Text Available The aim of this paper is to review the past achievements in the field of absorption systems, their potential and possible directions for future development. Various types of absorption systems and research on working fluids are discussed in detail. Among various applications, solar cooling and combined cooling, heating and power (CCHP are identified as two most promising applications for further development of absorption machines. Under the same framework, special attention is given to the small capacity absorption machines and their current status at the market. Although this technology looks promising, it is still in development and many issues are open. With respect to that fact, this paper covers all the relevant aspects for further development of small capacity absorption machines.

  1. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    Science.gov (United States)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  2. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    Science.gov (United States)

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  3. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    Directory of Open Access Journals (Sweden)

    Takuro Iwata

    2016-12-01

    Full Text Available A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  4. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets.

    Directory of Open Access Journals (Sweden)

    Muhammad Qumar

    Full Text Available Short-chain fatty acids (SCFAs and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8 or interruptedly (Int; n = 8. Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1 and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4. Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline, while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides

  5. Absorption and long term retention of Mn-54 in man

    International Nuclear Information System (INIS)

    Cederblad, A.; Eriksson, R.; Alpsten, M.; Davidsson, L.

    1989-01-01

    The manganese absorption is found to be ≤ 16% after administration of some infant diets as well as from water solutions of manganese. These absorption figures might in some cases be an underestimation of the true initial absorption due to the rapid initial excretion of Mn-54. This means that both the often quoted figure for manganese absorption in humans, 3.0±0.5% and the value 10% used by ICRP 1979 are underestimations of the fractional absorption of manganese under some circumstances. The long term retention curve obtained, where the ratio between retention day 200 and day 30 had a mean value of 0.19 (range 0.10-0.35), could be compared to the two-component exponential function used by ICRP 1979 based on studies by Mahoney and Small 1968 where the corresponding ratio is 0.045. In the study by Mahoney and Small Mn-54 retention was studied after intravenous administration. We have earlier observed a difference between the metabolic handling of Mn-54 introduced orally and intravenously in man. Another model proposed by Caughtrey and Thorne 1983 consisting of a three component exponential function is in better agreement with our measurements and gives the ratio 0.22. The ICRP model for dose calculations tends to underestimate fractional absorption as well as long term retention of manganese. (orig./HP)

  6. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  7. The analysis, by atomic-absorption spectrophotometry, of matte-leach residues

    International Nuclear Information System (INIS)

    Mallett, R.C.; Ring, E.J.; Middleton, H.R.; Dubois, M.

    1973-01-01

    Alternative methods for the analysis of matte-leach residues by atomic-absorption spectrophotometry were investigated. For the determination of the platinum-group metals, gold, and certain of the base metals, a fusion with sodium peroxide, followed by the separation of gold by reverse-phase chromatography and of the platinum-group metals by ion-exchange, is proposed. The noble metals are then determined in a solution that is free of most base metals including the sodium present as a result of the fusion. Copper, nickel, iron, calcium, magnesium, and aluminium can be determined after they have been removed from the ion-exchange column. Arsenic, selenium, tellurium, bismuth, tin, silver, lead, manganese, zinc, and cobalt can be determined in a separate sample after dissolution by a sealed-tube method. This is also an alternative method for the determination of copper, nickel, and iron. Chromium is determined separately after fusion with sodium peroxide, and silver can also be determined in this way. The laboratory method for these procedures is given as an appendix [af

  8. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  9. Analysis and parameter identification for characteristic equations of single- and double-effect absorption chillers by means of multivariable regression

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; López-Villada, Jesús; Bruno, Joan Carles

    2010-01-01

    Two approaches to the characteristic equation method have been compared in order to find a simple model that best describes the performance of thermal chillers. After comparing the results obtained using experimental data from a single-effect absorption chiller, we concluded that the adaptation o...... chillers. The characteristic parameters for these chillers are given and can be incorporated as a chiller module in thermal modelling and simulation packages....

  10. Use of appropriate absorption coefficients in gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gopinath, D.V.; Natarajan, A.; Subbaiah, K.V.

    1985-01-01

    The current use of the different types of absorption coefficients in the computation of γ-ray energy deposition rates and air dose is critically analyzed. Transport calculations are presented to bring out the errors associated with the use of different absorption coefficients. It is observed that except for source energies in the range of 0.3 to 3.0 MeV the consistent use of the absorption coefficient, μ/sub a/ results in an underestimate of the air dose everywhere and of energy deposition at regions away from source. The underestimate becomes more significant with increased atomic number (Z) of the medium. Based on the computations and analysis it is concluded that the absorption coefficients μ/sub a/ and μ/sub k/ are of very limited use in practical γ-ray dosimetry

  11. Effect of economic growth on income inequality, labor absorption, and welfare

    OpenAIRE

    Kurniasih, Erni Panca

    2017-01-01

    This research aims to analyze the effect of economic growth on income inequality, labor absorption and economic welfare in Indonesian provinces. A 165 observations of panel data was analyzed using path analysis. The result showed that the economic growth has significant negative effect on income inequality in Indonesian provinces but it has no significant effect on both labor absorption and economic welfare. The labor absorption has significant positive effect on income inequality even though...

  12. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  13. The Scaled SLW model of gas radiation in non-uniform media based on Planck-weighted moments of gas absorption cross-section

    Science.gov (United States)

    Solovjov, Vladimir P.; Andre, Frederic; Lemonnier, Denis; Webb, Brent W.

    2018-02-01

    The Scaled SLW model for prediction of radiation transfer in non-uniform gaseous media is presented. The paper considers a new approach for construction of a Scaled SLW model. In order to maintain the SLW method as a simple and computationally efficient engineering method special attention is paid to explicit non-iterative methods of calculation of the scaling coefficient. The moments of gas absorption cross-section weighted by the Planck blackbody emissive power (in particular, the first moment - Planck mean, and first inverse moment - Rosseland mean) are used as the total characteristics of the absorption spectrum to be preserved by scaling. Generalized SLW modelling using these moments including both discrete gray gases and the continuous formulation is presented. Application of line-by-line look-up table for corresponding ALBDF and inverse ALBDF distribution functions (such that no solution of implicit equations is needed) ensures that the method is flexible and efficient. Predictions for radiative transfer using the Scaled SLW model are compared to line-by-line benchmark solutions, and predictions using the Rank Correlated SLW model and SLW Reference Approach. Conclusions and recommendations regarding application of the Scaled SLW model are made.

  14. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explaination for the Cloud Absorption Anomaly

    Science.gov (United States)

    Crisp, D.

    1996-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 Wm(sup -2)...Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere.

  15. The zig-zag walk with scattering and absorption on the real half line and in a lattice model

    Science.gov (United States)

    Wuttke, Joachim

    2014-05-01

    The Darwin-Hamilton equations, describing one-dimensional transport with scattering and absorption, are expanded into a recursion. The solution involves ballot numbers. The recurrence probability as function of scattering order is given by Catalan numbers. To reproduce this analytical result in a lattice model, a novel relation between Narayana and Catalan numbers is derived.

  16. Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Talukdar, K.

    2014-01-01

    Highlights: • Exergy analysis of a combined power–absorption cooling system is provided. • Exergetic efficiency of the power cycle and absorption cooling system are calculated. • Irreversibility in each component and total system irreversibility are calculated. • Effect of operating parameters on exergetic performance and irreversibility is analyzed. • Optimum operating parameters are identified based on energy and exergy based results. - Abstract: In this paper, exergy analysis of a combined reheat regenerative steam turbine (ST) based power cycle and water–LiBr vapor absorption refrigeration system (VARS) is presented. Exergetic efficiency of the power cycle and VARS, energy utilization factor (EUF) of the combined system (CS) and irreversibility in each system component are calculated. The effect of fuel flow rate, boiler pressure, cooling capacity and VARS components’ temperature on performance, component and total system irreversibility is analyzed. The second law based results indicate optimum performance at 150 bar boiler pressure and VARS generator, condenser, evaporator and absorber temperature of 80 °C, 37.5 °C, 15 °C and 35 °C respectively. The present exergy based results conform well to the first law based results obtained in a previous analysis done on the same combined system. Irreversibility distribution among various power cycle components shows the highest irreversibility in the cooling tower. Irreversibility of the exhaust flue gas leaving the boiler and the boiler are the next major contributors. Among the VARS components, exergy destruction in the generator is the highest followed by irreversibility contribution of the absorber, condenser and the evaporator

  17. Drug gastrointestinal absorption in rat: Strain and gender differences.

    Science.gov (United States)

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    Directory of Open Access Journals (Sweden)

    Y. W. Sun

    2013-08-01

    Full Text Available In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  19. Absorption dynamics and delay time in complex potentials

    Science.gov (United States)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  20. Realistic absorption coefficient of ultrathin films

    International Nuclear Information System (INIS)

    Cesaria, M; Caricato, A P; Martino, M

    2012-01-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film–substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film–substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films. (paper)

  1. Realistic absorption coefficient of ultrathin films

    Science.gov (United States)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  2. $J/\\psi$ Absorption in Heavy Ion Collisions

    CERN Document Server

    Maiani, Luciano; Polosa, Antonio; Riquer, V

    2004-01-01

    We present a new calculation of the pi-J/psi dissociation cross sections within the Constituent Quark-Meson Model recently introduced. To discuss the absorption of J/psi in heavy-ion collisions, we assume the J/psi to be produced inside a thermalized pion gas, as discussed by Bjorken, and introduce the corrections due to absorption by nuclear matter as well. We fit the absorption length of the J/psi to the data obtained at the CERN SPS by the NA50 Collaboration for Pb-Pb collisions. Collisions of lower centrality allow us to determine the temperature and the energy density of the pion gas. For both these quantities we find values close to those indicated by lattice gauge calculations for the transition to a quark-gluon plasma. A simple extrapolation to more central collisions, which takes into account the increase of the energy deposited due to the increased nucleon flux, fails to reproduce the break in J/psi absorption indicated by NA50, thus lending support to the idea that an unconfined quark-gluon phase m...

  3. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  4. New thermodynamical systems. Alternative of compression-absorption; Nouveaux systemes thermodynamiques. Alternative de la compression-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M.; Brunin, O.; Lottin, O.; Vidal, J.F. [Universite Henri Poincare Nancy, 54 - Vandoeuvre-les-Nancy (France); Hivet, B. [Electricite de France, 77 - Moret sur Loing (France)

    1996-12-31

    This paper describes a 5 years joint research work carried out by Electricite de France (EdF) and the ESPE group of the LEMTA on compression-absorption heat pumps. It shows how a thermodynamical model of machinery, completed with precise exchanger-reactor models, allows to simulate and dimension (and eventually optimize) the system. A small power prototype has been tested and the first results are analyzed with the help of the models. A real scale experiment in industrial sites is expected in the future. (J.S.) 20 refs.

  5. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  6. Quantitative analysis of the self-absorption and reemission effects on the emission spectrum of photoluminescence in right-angle excitation—detection configuration

    International Nuclear Information System (INIS)

    Wang Zhen-Hua; Wu Yu-E; Zhang Xin-Zheng; Yun Zhi-Qiang; Li Wei; Xu Jing-Jun

    2013-01-01

    A theoretical approach based on differential radiative transport is proposed to quantitatively analyze the self-absorption and reemission effects on the emission spectrum for right angle excitation—detection photoluminescence measurements, and the wavelength dependence of the reemission effect is taken into account. Simulations and experiments are performed using rhodamine 6G solutions in ethanol as model samples. It is shown that the self-absorption effect is the dominant effect on the detected spectrum by inducing pseudo red-shift and reducing total intensity; whereas the reemission effect partly compensates for signal decrease and also results in an apparent signal gain at the wavelengths without absorption. Both effects decrease with the decrease in the sample concentration and the propagation distance of the emission light inside the sample. We therefore suggest that diluted solutions are required for accurate photoluminescence spectrum measurements and photoluminescence-based measurements

  7. Absorption of pentacaine from ulcerous rat stomach

    International Nuclear Information System (INIS)

    Tomcikova, O.; Babulova, A.; Durisova, M.; Trnovec, T.; Benes, L.

    1985-01-01

    Pentacaine is a local anaesthetic which exhibited positive effects on healing of model ulcers in the rat stomach. The in situ disappearance of pentacaine from the ulcerous and intact rat stomach was studied. Gastric ulcers were produced by oral administration of phenylbutazone (200 mg/kg) 3.5 h before absorption experiment. Pentacaine exhibited a biexponential decrease from the lumen of the stomach, the rate of which was essentially the same in both groups. The total amount of pentacaine absorbed was small because of extremly low absorption rate. (author)

  8. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  9. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    International Nuclear Information System (INIS)

    Zhao, W.; Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y.; Zhou, D.W.; Shi, N.; Marcelli, A.; Niu, L.W.; Teng, M.K.; Gong, W.M.; Benfatto, M.; Wu, Z.Y.

    2007-01-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations

  10. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  11. Analysis of a multicomponent gas absorption system with carrier gas coabsorption

    International Nuclear Information System (INIS)

    Merriman, J.R.

    1975-03-01

    Conventional integrated versions of the packed gas absorber design equations do not account for significant coabsorption of the carrier gas along with the dilute transferring species. These equations, as a result, also neglect the relationship between dilute component transfer and carrier gas coabsorption. In the absorption of Kr and Xe from various carrier gases, using CCl 2 F 2 as the process solvent, carrier coabsorption is substantial. Consequently, a design package was developed to deal with multicomponent gas absorption in systems characterized by carrier gas coabsorption. Developed within the general film theory framework, the basic feature of this design approach is a view of dilute component mass-transfer as a conventional diffusive transfer superimposed on a net flux caused by carrier absorption. Other supporting elements of the design package include predictive techniques for various fluid properties, estimating procedures for carrier gas equilibrium constants, and correlations for carrier gas and dilute gas mass-transfer coefficients. When applied to systems using CCl 2 F 2 as the solvent; He, N 2 , air, or Ar as the carrier gas; and Kr or Xe as the dilute gas; the design approach gave good results, even when extended to conditions well beyond those of its development. (U.S.)

  12. Observation of soft x-ray radiation from Heliotron E plasmas by the absorption method for the measurement of electron temperatures

    International Nuclear Information System (INIS)

    Kaneko, H.; Tohda, T.; Iiyoshi, A.

    1989-01-01

    An absorption method of soft x ray is applied to Heliotron E plasmas for measurement of the electron temperature. Nitrogen gas is used as an absorber for convenience, owing to its accurate, uniform, and easily controllable density. The general feature of the absorption method for measurement of the electron temperature is discussed using a model with two parameters: the generalized thickness of the absorber and the electron temperature. The energy resolution of this method is not sufficient as a general method for spectral analysis. Hence, it is necessary to assume in advance such a model spectrum as consists of bremsstrahlung, recombination radiation, and impurity line radiation. Since the spectrum is always assumed before the analysis, we should try to find the origins of deformation of the energy spectrum and to correct the contribution. The effect of line emission from impurity ions to the estimated electron temperature is evaluated as a function of the electron temperature and the energy of the line relative to the generalized absorber thickness used in the measurement. An actual spectrum is measured by a pulse-height analysis (PHA) of the soft x ray. The one clear line, from chlorine, is not significant in the present determination of the electron temperature by the absorption method. Another possible line from iron at energy less than 1 keV is included in the analysis. Using a convenient method for determination of local emissivity from a chord-integrated emissivity, the electron temperature is determined from the local emissivity. The observed broad electron-temperature profile might be an artifact due to recombination radiation of the highly ionized ion diffused out of the hot core of the plasma. It is confirmed that the absorption method gives absolute measurement of the electron temperature at the plasma center, when additional information on impurity lines are given by PHA

  13. Dietary fibers from mushroom sclerotia. 4. In vivo mineral absorption using ovariectomized rat model.

    Science.gov (United States)

    Wong, Ka-Hing; Katsumata, Shin-Ichi; Masuyama, Ritsuko; Uehara, Mariko; Suzuki, Kazuharu; Cheung, Peter C K

    2006-03-08

    The effect of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporus rhinocerus, and Wolfiporia cocos, on calcium and magnesium absorption was evaluated in ovariectomized (OVX) rats fed with sclerotial DF based and low Ca (0.3%) diets for 14 days. The animals in the W. cocos DF diet group possessed significantly (p cocos DF group were also significantly (p cocos DF could improve the overall Ca and Mg absorptions of the OVX rats fed a low Ca diet. The potential use of sclerotial DFs as a functional food ingredient for enhancing mineral absorption is also discussed.

  14. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  15. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    Science.gov (United States)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).

  16. Study of the influence of chemical binding on resonant absorption and scattering of neutrons; Etude de l'influence des liaisons chimiques sur l'absorption et la diffusion des neutrons aux energies de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Naberejnev, D.G. [Aix-Marseille-1 Univ., 13 - Marseille (France)

    1999-02-01

    At present time the problem of taking into account of the crystalline binding in the heavy nuclei resonance range is not correctly treated in nuclear data processing codes. The present work deals separately with resonant absorption and scattering of neutrons. The influence of crystalline binding is considered for both types of reactions in the harmonic crystal frame work. The harmonic crystal model is applied to the study of resonant absorption cross sections to show the inconsistency of the free gas model widely in use in reactor neutronics. The errors due to the use of the latter were found to be non negligible. These errors should be corrected by introducing a more elaborated harmonic crystal model in codes for resonances analysis and on the nuclear data processing stage. Currently the influence of crystalline binding on transfer cross section in the resonance domain is taken into account in a naive manner using the model of the free nucleus at rest in the laboratory system. In this work I present a formalism (Uncoupled Phonon Approximation) which permits to consider in more detail the crystalline structure of the nuclear fuel. This formalism shows new features in comparison with the static model. (author)

  17. Absorption and Transport of Sea Cucumber Saponins from Apostichopus japonicus.

    Science.gov (United States)

    Li, Shuai; Wang, Yuanhong; Jiang, Tingfu; Wang, Han; Yang, Shuang; Lv, Zhihua

    2016-06-17

    The present study is focused on the intestinal absorption of sea cucumber saponins. We determined the pharmacokinetic characteristics and bioavailability of Echinoside A and Holotoxin A₁; the findings indicated that the bioavailability of Holotoxin A₁ was lower than Echinoside A. We inferred that the differences in chemical structure between compounds was a factor that explained their different characteristics of transport across the intestine. In order to confirm the absorption characteristics of Echinoside A and Holotoxin A₁, we examined their transport across Caco-2 cell monolayer and effective permeability by single-pass intestinal perfusion. The results of Caco-2 cell model indicate that Echinoside A is transported by passive diffusion, and not influenced by the exocytosis of P-glycoprotein (P-gp, expressed in the apical side of Caco-2 monolayers as the classic inhibitor). The intestinal perfusion also demonstrated well the absorption of Echinoside A and poor absorption of Holotoxin A₁, which matched up with the result of the Caco-2 cell model. The results demonstrated our conjecture and provides fundamental information on the relationship between the chemical structure of these sea cucumber saponins and their absorption characteristics, and we believe that our findings build a foundation for the further metabolism study of sea cucumber saponins and contribute to the further clinical research of saponins.

  18. In silico, experimental, mechanistic model for extended-release felodipine disposition exhibiting complex absorption and a highly variable food interaction.

    Directory of Open Access Journals (Sweden)

    Sean H J Kim

    Full Text Available The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog's plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability.

  19. Dynamics of water absorption through superabsorbent polymer

    Science.gov (United States)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  20. Constraining Absorption of Organic Aerosol from Biomass Burning with Observations

    Science.gov (United States)

    Feng, Y.; Liu, X.

    2014-12-01

    Biomass burning emissions contribute to a large fraction of global organic aerosol (OA) emissions. In most models, radiative forcing of black carbon (BC) and OA from biomass burning offsets each other to give a small or close to zero total forcing, i.e., an estimate of 0 (-0.2 to +0.2) W m-2 by IPCC-AR5. Recent observational and modeling studies have shown the absorbing part of OA, referred to as "brown" carbon (BrC), to be a significant source of direct absorption of solar radiation thus positive forcing, in particular over regions dominated by biomass burning and biofuel emissions. Here we implement optical treatment for the BrC absorption in the CESM1/CAM5 model, and compare the calculated aerosol spectral absorption with ground-based AERONET and DOE/ARM observations. In this version of CAM5, biomass burning and biofuel OA are treated separately from fossil fuel OA with different imaginary refractive index. Because the absorption of BrC is highly variable and uncertain depending on source, aging, and mixing state, sensitivity studies of BrC refractive index parameterized by fuel type and ratio of BC to OA mass will be examined and the resulting uncertainty in the estimated forcing will be discussed. Preliminary results suggest the simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing OA to 1.2 (or 1.0) for strongly (or moderately) absorbing BrC. The AAE calculated for the strongly absorbing BrC agrees with AERONET spectral observations at 440-870 nm over most regions but overpredicts for the open biomass burning-dominated South America and southern Africa, in which inclusion of moderately absorbing BrC exhibits better agreement.