WorldWideScience

Sample records for absorption machine based

  1. Review on absorption technology with emphasis on small capacity absorption machines

    Directory of Open Access Journals (Sweden)

    Labus Jerko M.

    2013-01-01

    Full Text Available The aim of this paper is to review the past achievements in the field of absorption systems, their potential and possible directions for future development. Various types of absorption systems and research on working fluids are discussed in detail. Among various applications, solar cooling and combined cooling, heating and power (CCHP are identified as two most promising applications for further development of absorption machines. Under the same framework, special attention is given to the small capacity absorption machines and their current status at the market. Although this technology looks promising, it is still in development and many issues are open. With respect to that fact, this paper covers all the relevant aspects for further development of small capacity absorption machines.

  2. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine

  3. Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine

    International Nuclear Information System (INIS)

    Wonchala, Jason; Hazledine, Maxwell; Goni Boulama, Kiari

    2014-01-01

    The water–lithium bromide absorption cooling machine was investigated theoretically in this paper. A detailed solution procedure was proposed and validated. A parametric study was conducted over the entire admissible ranges of the desorber, condenser, absorber and evaporator temperatures. The performance of the machine was evaluated based on the circulation ratio which is a measure of the system size and cost, the first law coefficient of performance and the second law exergy efficiency. The circulation ratio and the coefficient of performance were seen to improve as the temperature of the heat source increased, while the second law performance deteriorated. The same qualitative responses were obtained when the temperature of the refrigerated environment was increased. On the other hand, simultaneously raising the condenser and absorber temperatures was seen to result in a severe deterioration of both the circulation ratio and first law coefficient of performance, while the second law performance indicator improved significantly. The influence of the difference between the condenser and absorber exit temperatures, as well as that of the internal recovery heat exchanger on the different performance indicators was also calculated and discussed. - Highlights: • Analysis of a water–LiBr absorption machine, including detailed solution procedure. • Performance assessed using first and second law considerations, as well as flow ratio. • Effects of heat source and refrigerated environment temperatures on the performance. • Effects of the difference between condenser and absorber temperatures. • Effects of internal heat exchanger efficiency on overall cooling machine performance

  4. Study of an absorption machine for an ammonia-water system ...

    African Journals Online (AJOL)

    This paper deals with Study of an absorption machine for an ammonia-water system decentralized trigeneration. The effects of evaporator, absorber and boiler temperature on the coefficient of performance of this cycle investigate. Simulation results show that with increasing the evaporator and absorber temperature the ...

  5. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  6. Evolution of absorption machines; Evolution des machines a absorption

    Energy Technology Data Exchange (ETDEWEB)

    Soide, I; Klemsdal, E [Gaz de France (GDF), 75 - Paris (France); Le Goff, P; Hornut, J M [LSGC-ENSIC, 54 - Nancy (France)

    1998-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  7. Evolution of absorption machines; Evolution des machines a absorption

    Energy Technology Data Exchange (ETDEWEB)

    Soide, I.; Klemsdal, E. [Gaz de France (GDF), 75 - Paris (France); Le Goff, P.; Hornut, J.M. [LSGC-ENSIC, 54 - Nancy (France)

    1997-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  8. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  9. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    The Machine Learning (ML) is one of the fastest developing techniques in the prediction and evaluation of important pharmacokinetic properties such as absorption, distribution, metabolism and excretion. The availability of a large number of robust validation techniques for prediction models devoted to pharmacokinetics has significantly enhanced the trust and authenticity in ML approaches. There is a series of prediction models generated and used for rapid screening of compounds on the basis of absorption in last one decade. Prediction of absorption of compounds using ML models has great potential across the pharmaceutical industry as a non-animal alternative to predict absorption. However, these prediction models still have to go far ahead to develop the confidence similar to conventional experimental methods for estimation of drug absorption. Some of the general concerns are selection of appropriate ML methods and validation techniques in addition to selecting relevant descriptors and authentic data sets for the generation of prediction models. The current review explores published models of ML for the prediction of absorption using physicochemical properties as descriptors and their important conclusions. In addition, some critical challenges in acceptance of ML models for absorption are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Coldness production and heat revalorization: particular machines; Production de froid et revalorisation de la chaleur: machines particulieres

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M. [Universite Henri Poincare - Nancy-1, 54 - Nancy (France)

    2003-10-01

    The machines presented in this article are not the common reverse cycle machines. They use some systems based on different physical principles which have some consequences on the analysis of cycles: 1 - permanent gas machines (thermal separators, pulse gas tube, thermal-acoustic machines); 2 - phase change machines (mechanical vapor compression machines, absorption machines, ejection machines, adsorption machines); 3 - thermoelectric machines (thermoelectric effects, thermodynamic model of a thermoelectric machine). (J.S.)

  11. Parametric study of an absorption refrigeration machine using advanced exergy analysis

    International Nuclear Information System (INIS)

    Gong, Sunyoung; Goni Boulama, Kiari

    2014-01-01

    An advanced exergy analysis of a water–lithium bromide absorption refrigeration machine was conducted. For each component of the machine, the proposed analysis quantified the irreversibility that can be avoided and the irreversibility that is unavoidable. It also identified the irreversibility originating from inefficiencies within the component and the irreversibility that does not originate from the operation of the considered component. It was observed that the desorber and absorber concentrated most of the exergy destruction. Furthermore, the exergy destruction at these components was found to be dominantly endogenous and unavoidable. A parametrical study has been presented discussing the sensitivity of the different performance indicators to the temperature at which the heat source is available, the temperature of the refrigerated environment, and the temperature of the cooling medium used at the condenser and absorber. It was observed that the endogenous avoidable exergy destruction at the desorber, i.e. the portion of the desorber irreversibility that could be avoided by improving the design and operation of the desorber, decreased when the heat source or the temperature at which the cooling effect was generated increased, and it decreased when the heat sink temperature increased. The endogenous avoidable exergy destruction at the absorber displayed the same variations, though it was observed to be less affected by the heat source temperature. Contrary to the aforementioned two components, the exergy destruction at the evaporator and condenser were dominantly endogenous and avoidable, with little sensitivity to the cycle operating parameters. - Highlights: • Endogenous, exogenous, avoidable and unavoidable irreversibilities were calculated for a water–LiBr absorption machine. • Overall, desorber and absorber concentrated most of the exergy destruction of the cycle. • The exergy destruction was mainly endogenous and unavoidable for the desorber and

  12. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  13. Measurement of properties of a lithium bromide aqueous solution for the determination of the concentration for a prototype absorption machine

    International Nuclear Information System (INIS)

    Labra, L.; Juárez-Romero, D.; Siqueiros, J.; Coronas, A.; Salavera, D.

    2017-01-01

    Highlights: • Determination of concentration of absorption mixture for absorption heat transformers. • Measurement of physical properties for heat transformer assessment. • Comparative behavior of Electric conductivity, Refractive index, and density of LiBr-H_2O. - Abstract: An electrolyte solution of Lithium Bromide (LiBr) water was chosen for study because of its wide use in prototype absorption machines. The LiBr must be operated close to the temperature and mass fraction at which lithium bromide achieves the highest efficiency. For the purpose of establishing the concentration in a prototype absorption machines, measurements were made of the properties that vary with temperature and concentration. The selected properties are electrical conductivity, density, refractive indexes and sound velocity. The resulting measured properties values were compared with some values found in previous works. The properties of aqueous lithium bromide solutions were measured at the concentration range of 45–65% of LiBr and temperatures range of 20–80 °C. Semi-empirical correlations that determine the properties of lithium bromide are also proposed. The methods for measuring the properties of aqueous solutions were considered taking into account their reliability, simplicity and sampling time.

  14. Numerical Investigation of an Absorption-Diffusion Cooling Machine Using C3H8/C9H20 as Binary Working Fluid Étude numérique d’une machine frigorifique à absorption-diffusion utilisant le couple C3H8/C9H20

    Directory of Open Access Journals (Sweden)

    Dardour H.

    2013-05-01

    Full Text Available This paper is concerned with the analysis and the simulation of a heat-driven absorption-diffusion cooling machine which can operate with low-grade heat sources. The simplified configuration of the heat-powered absorption-diffusion refrigerating machine considered in this study is based on the Platen-Munters single pressure refrigerators principle [Platen B.C.V. and Munters C.G. (1928 Refrigerator, US Patent 1, 685-764J. Three working fluids are used, nonane as an absorbent, propane as a refrigerant and hydrogen as the inert auxiliary gas. The designed cooling capacity of the machine is 1 kW which is suitable for a domestic use for refrigeration purposes. We restricted the maximum temperature of the driving heat supplied to the generator to 130 °C, a temperature achievable with evacuated-tube solar collectors. The simulations are carried out using a commercially available flow sheeting software with the PengRobinson equation of state as property prediction method. In this paper, we analyze the heat and mass transfer characteristics in all relevant machine components (absorber, condenser, generator and solution heat exchangers. The simulations results allow determining the values of different parameters of the systems such as the refrigerant and the solvent temperatures in various points of the machine, the liquid and the vapor flow rates and compositions. The system performances were parametrically analyzed using the flow sheeting software. Performance characteristics were determined for a wide range of operating conditions allowing investigating and evaluating the effect of various design parameters. Ce papier est consacré à l’étude et l’analyse d’une machine frigorifique à absorption-diffusion. La machine est actionnée grâce à une source de chaleur de température modérée. La configuration et le principe de fonctionnement de l’appareil obéissent au modèle de Platen Munters [Platen B.C.V. and Munters C.G. (1928 Refrigerator

  15. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  16. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-23

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine. The duty cycle and the pulse repetition rate of the laser were optimized for increased tuning range, high chirp rate, and small line width to achieve effective laser-cavity coupling. This enabled spectrally resolved CO line-shape measurements at high pressures (P ~10 bar). A gain factor of 133 and a time resolution of 10 μs were demonstrated. CO concentration-time profiles during the oxidation of highly dilute n-octane/air mixtures were recorded, illustrating new opportunities in RCM experiments for chemical kinetics.

  17. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  18. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    Science.gov (United States)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  19. A rich solution spray as a refining method in a small capacity, single effect, solar assisted absorption machine with the pair NH3/H2O: Experimental results

    International Nuclear Information System (INIS)

    Mendes, L.F.; Collares-Pereira, M.; Ziegler, F.

    2007-01-01

    Ammonia vapour refining is a common procedure in ammonia-water absorption machines. A solar assisted single effect absorption machine that uses the pair ammonia-water was developed and tested. Its desorber has a built-in adiabatic refining column constituted by a rich solution spray. The refining method proved its feasibility. The spray provided a more or less constant ammonia vapour enrichment of about 1% which is enough for the working temperature ranges of this type of machine. It was also verified that the refining effect of the spray is almost independent of the refrigerant vapour and solution mass flow rates

  20. Norwegian contribution to the IEA Annex 24 - Absorption Machines for Heating and Cooling; IEA annex 24. Absorpsjonsmaskin for oppvarming og kjoeling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Svein

    2000-01-01

    This report summarizes the Norwegian contribution to the IEA Annex 24 - Absorption Machines for Heating and Cooling in Future Energy Systems. Thermally operated heat pumps and coolers have not been widely used in Norway. They are not economically competitive compared to compression heat pumps because of Norway's cheap hydroelectric power. If the present trend in Norway's use of electricity persists, Norway will soon be dependent on imported electric power. This calls for measures to reduce the consumption of electricity, and the role of absorption heat pumps will be of increasing importance, especially for cooling purposes. For larger commercial buildings that require climate cooling, absorption coolers based on waste heat may have a good total economy. Industrial processes that have an excess of heat at a high temperature and which need cooling, may profit from the use of this type of cooler. Information dissemination is important for efficient use of this technology. The research work done at Institute of energy technology, Kjeller, Norway, is an important contribution to this end.

  1. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. A Performance Survey on Stack-based and Register-based Virtual Machines

    OpenAIRE

    Fang, Ruijie; Liu, Siqi

    2016-01-01

    Virtual machines have been widely adapted for high-level programming language implementations and for providing a degree of platform neutrality. As the overall use and adaptation of virtual machines grow, the overall performance of virtual machines has become a widely-discussed topic. In this paper, we present a survey on the performance differences of the two most widely adapted types of virtual machines - the stack-based virtual machine and the register-based virtual machine - using various...

  3. Machine function based control code algebras

    NARCIS (Netherlands)

    Bergstra, J.A.

    Machine functions have been introduced by Earley and Sturgis in [6] in order to provide a mathematical foundation of the use of the T-diagrams proposed by Bratman in [5]. Machine functions describe the operation of a machine at a very abstract level. A theory of hardware and software based on

  4. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  5. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  6. Architecture for Absorption Based Heaters

    Science.gov (United States)

    Moghaddam, Saeed; Chugh, Devesh

    2018-04-24

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. The absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.

  7. Preliminary Test of Upgraded Conventional Milling Machine into PC Based CNC Milling Machine

    International Nuclear Information System (INIS)

    Abdul Hafid

    2008-01-01

    CNC (Computerized Numerical Control) milling machine yields a challenge to make an innovation in the field of machining. With an action job is machining quality equivalent to CNC milling machine, the conventional milling machine ability was improved to be based on PC CNC milling machine. Mechanically and instrumentally change. As a control replacing was conducted by servo drive and proximity were used. Computer programme was constructed to give instruction into milling machine. The program structure of consists GUI model and ladder diagram. Program was put on programming systems called RTX software. The result of up-grade is computer programming and CNC instruction job. The result was beginning step and it will be continued in next time. With upgrading ability milling machine becomes user can be done safe and optimal from accident risk. By improving performance of milling machine, the user will be more working optimal and safely against accident risk. (author)

  8. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy.

    Science.gov (United States)

    Werblinski, Thomas; Fendt, Peter; Zigan, Lars; Will, Stefan

    2017-05-20

    The first results under fired internal combustion engine conditions based on a supercontinuum absorption spectrometer are presented and discussed. Temperature, pressure, and water mole fraction are inferred simultaneously from broadband H 2 O absorbance spectra ranging from 1340 nm to 1440 nm. The auto-ignition combustion process is monitored for two premixed n-heptane/air mixtures with 10 kHz in a rapid compression machine. Pressure and temperature levels during combustion exceed 65 bar and 1900 K, respectively. To allow for combustion measurements, the robustness of the spectrometer against beam steering has been improved compared to its previous version. Additionally, the detectable wavelength range has been extended further into the infrared region to allow for the acquisition of distinct high-temperature water transitions located in the P-branch above 1410 nm. Based on a theoretical study, line-of-sight (LOS) effects introduced by temperature stratification on the broadband fitting algorithm in the complete range from 1340 nm to 1440 nm are discussed. In this context, the recorded spectra during combustion were evaluated only within a narrower spectral region exhibiting almost no interference from low-temperature molecules (here, P-branch from 1410 nm to 1440 nm). It is shown that this strategy mitigates almost all of the LOS effects introduced by cold molecules and the evaluation of the spectrum in the entirely recorded wavelength range at engine combustion conditions.

  9. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  10. The renewed absorption refrigerating engineering; Le groupe frigorifique a absorption, technique d`avenir?

    Energy Technology Data Exchange (ETDEWEB)

    Roumajon, J. [BETM (Country unknown/Code not available)

    1998-04-01

    This article reviews the characteristics of a refrigerating unit based on absorption. The main advantages are: silence, no vibration, security (no pressure, no inflammable and toxic gas), and a broad range of energy sources can be used (solar, geothermal, natural gas). The main disadvantages compared to a current compression cooling machine are: low yield, important volume of equipment, high cost and great amount of heat released. An installation based on a lithium bromide-water mixture is described, the role played by the different parts of the installation is explained. (A.C.)

  11. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  12. In silico machine learning methods in drug development.

    Science.gov (United States)

    Dobchev, Dimitar A; Pillai, Girinath G; Karelson, Mati

    2014-01-01

    Machine learning (ML) computational methods for predicting compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties are being increasingly applied in drug discovery and evaluation. Recently, machine learning techniques such as artificial neural networks, support vector machines and genetic programming have been explored for predicting inhibitors, antagonists, blockers, agonists, activators and substrates of proteins related to specific therapeutic targets. These methods are particularly useful for screening compound libraries of diverse chemical structures, "noisy" and high-dimensional data to complement QSAR methods, and in cases of unavailable receptor 3D structure to complement structure-based methods. A variety of studies have demonstrated the potential of machine-learning methods for predicting compounds as potential drug candidates. The present review is intended to give an overview of the strategies and current progress in using machine learning methods for drug design and the potential of the respective model development tools. We also regard a number of applications of the machine learning algorithms based on common classes of diseases.

  13. The application of machine learning to the modelling of percutaneous absorption: an overview and guide.

    Science.gov (United States)

    Ashrafi, P; Moss, G P; Wilkinson, S C; Davey, N; Sun, Y

    2015-01-01

    Machine learning (ML) methods have been applied to the analysis of a range of biological systems. This paper reviews the application of these methods to the problem domain of skin permeability and addresses critically some of the key issues. Specifically, ML methods offer great potential in both predictive ability and their ability to provide mechanistic insight to, in this case, the phenomena of skin permeation. However, they are beset by perceptions of a lack of transparency and, often, once a ML or related method has been published there is little impetus from other researchers to adopt such methods. This is usually due to the lack of transparency in some methods and the lack of availability of specific coding for running advanced ML methods. This paper reviews critically the application of ML methods to percutaneous absorption and addresses the key issue of transparency by describing in detail - and providing the detailed coding for - the process of running a ML method (in this case, a Gaussian process regression method). Although this method is applied here to the field of percutaneous absorption, it may be applied more broadly to any biological system.

  14. Linear photophysics, two-photon absorption and femtosecond transient absorption spectroscopy of styryl dye bases

    Energy Technology Data Exchange (ETDEWEB)

    Shaydyuk, Ye.O. [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine); Levchenko, S.M. [Institute of Molecular Biology and Genetics, 150, Akademika Zabolotnoho Str., Kyiv 036803 (Ukraine); Kurhuzenkau, S.A. [Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma 43124 (Italy); Anderson, D. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); Masunov, A.E. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); South Ural State University, Lenin pr. 76, Chelyabinsk 454080 (Russian Federation); Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Kachkovsky, O.D.; Slominsky, Yu.L.; Bricks, J.L. [Insitute of Organic Chemistry, Murmanskaya Street, 5, Kyiv 03094 (Ukraine); Belfield, K.D. [College of Science and Liberal Arts, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States); School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Bondar, M.V., E-mail: mbondar@mail.ucf.edu [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine)

    2017-03-15

    The steady-state and time-resolved linear spectral properties, two-photon absorption spectra and fast relaxation processes in the excited states of styryl base-type derivatives were investigated. The nature of linear absorption, fluorescence and excitation anisotropy spectra were analyzed in solvents of different polarity at room temperature and specific dependence of the solvatochromic behavior on the donor-acceptor strength of the terminal substituents was shown. Two-photon absorption (2PA) efficiency of styryl dye bases was determined in a broad spectral range using two-photon induced fluorescence technique, and cross-sections maxima of ~ 100 GM were found. The excited state absorption (ESA) and fast relaxation processes in the molecular structures were investigated by transient absorption femtosecond pump-probe methodology. The role of twisted intramolecular charge transfer (TICT) effect in the excited state of styryl dye base with dimethylamino substituent was shown. The experimental spectroscopic data were also verified by quantum chemical calculations at the Time Dependent Density Functional Theory level, combined with a polarizable continuum model.

  15. Tunable electromagnetically induced absorption based on graphene

    Science.gov (United States)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  16. A Review of Virtual Machine Attack Based on Xen

    Directory of Open Access Journals (Sweden)

    Ren xun-yi

    2016-01-01

    Full Text Available Virtualization technology as the foundation of cloud computing gets more and more attention because the cloud computing has been widely used. Analyzing the threat with the security of virtual machine and summarizing attack about virtual machine based on XEN to predict visible security hidden recently. Base on this paper can provide a reference for the further research on the security of virtual machine.

  17. Quantitative materials analysis of micro devices using absorption-based thickness measurements

    International Nuclear Information System (INIS)

    Sim, L M; Wog, B S; Spowage, A C

    2006-01-01

    Preliminary work in designing an X-ray inspection machine with the capability of providing quantitative thickness analysis based on absorption measurements has been demonstrated. This study attempts to use the gray levels data to investigate the nature and thickness of occluded features and materials within devices. The investigation focused on metallic materials essential to semiconductor and MEMS technologies such as tin, aluminium, copper, silver, iron and zinc. The materials were arranged to simulate different feature thicknesses and sample geometries. The X-ray parameters were varied in-order to modify the X-ray energy spectrum with the aim of optimising the measurement conditions for each sample. The capability of the method to resolve differences in thicknesses was found to be highly dependent on the material. The thickness resolution with aluminium was the poorest due to its low radiographic density. The thickness resolutions achievable for silver and tin were significantly better and of the order of 0.015 mm and 0.025 mm respectively. From the linear relationship between the X-ray attenuation and sample thickness established, the energy dependent linear attenuation coefficient for each material was determined for a series of specific energy spectra. A decrease in the linear attenuation coefficient was observed as the applied voltage and thickness of the material increased. The results provide a platform for the development of a novel absorption-based thickness measurement system that can be optimised for a range of industrial applications

  18. Machine intelligence and knowledge bases

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K

    1981-09-01

    The basic functions necessary in machine intelligence are a knowledge base and a logic programming language such as PROLOG using deductive reasoning. Recently inductive reasoning based on meta knowledge and default reasoning have been developed. The creative thought model of Lenit is reviewed and the concept of knowledge engineering is introduced. 17 references.

  19. An Interactive Web-based Learning System for Assisting Machining Technology Education

    Directory of Open Access Journals (Sweden)

    Min Jou

    2008-05-01

    Full Text Available The key technique of manufacturing methods is machining. The degree of technique of machining directly affects the quality of the product. Therefore, the machining technique is of primary importance in promoting student practice ability during the training process. Currently, practical training is applied in shop floor to discipline student’s practice ability. Much time and cost are used to teach these techniques. Particularly, computerized machines are continuously increasing in use. The development of educating engineers on computerized machines becomes much more difficult than with traditional machines. This is because of the limitation of the extremely expensive cost of teaching. The quality and quantity of teaching cannot always be promoted in this respect. The traditional teaching methods can not respond well to the needs of the future. Therefore, this research aims to the following topics; (1.Propose the teaching strategies for the students to learning machining processing planning through web-based learning system. (2.Establish on-line teaching material for the computer-aided manufacturing courses including CNC coding method, CNC simulation. (3.Develop the virtual machining laboratory to bring the machining practical training to web-based learning system. (4.Integrate multi-media and virtual laboratory in the developed e-learning web-based system to enhance the effectiveness of machining education through web-based system.

  20. Dictionary Based Machine Translation from Kannada to Telugu

    Science.gov (United States)

    Sindhu, D. V.; Sagar, B. M.

    2017-08-01

    Machine Translation is a task of translating from one language to another language. For the languages with less linguistic resources like Kannada and Telugu Dictionary based approach is the best approach. This paper mainly focuses on Dictionary based machine translation for Kannada to Telugu. The proposed methodology uses dictionary for translating word by word without much correlation of semantics between them. The dictionary based machine translation process has the following sub process: Morph analyzer, dictionary, transliteration, transfer grammar and the morph generator. As a part of this work bilingual dictionary with 8000 entries is developed and the suffix mapping table at the tag level is built. This system is tested for the children stories. In near future this system can be further improved by defining transfer grammar rules.

  1. The research on construction and application of machining process knowledge base

    Science.gov (United States)

    Zhao, Tan; Qiao, Lihong; Qie, Yifan; Guo, Kai

    2018-03-01

    In order to realize the application of knowledge in machining process design, from the perspective of knowledge in the application of computer aided process planning(CAPP), a hierarchical structure of knowledge classification is established according to the characteristics of mechanical engineering field. The expression of machining process knowledge is structured by means of production rules and the object-oriented methods. Three kinds of knowledge base models are constructed according to the representation of machining process knowledge. In this paper, the definition and classification of machining process knowledge, knowledge model, and the application flow of the process design based on the knowledge base are given, and the main steps of the design decision of the machine tool are carried out as an application by using the knowledge base.

  2. A survey of machine readable data bases

    Science.gov (United States)

    Matlock, P.

    1981-01-01

    Forty-two of the machine readable data bases available to the technologist and researcher in the natural sciences and engineering are described and compared with the data bases and date base services offered by NASA.

  3. Prediction Model of Machining Failure Trend Based on Large Data Analysis

    Science.gov (United States)

    Li, Jirong

    2017-12-01

    The mechanical processing has high complexity, strong coupling, a lot of control factors in the machining process, it is prone to failure, in order to improve the accuracy of fault detection of large mechanical equipment, research on fault trend prediction requires machining, machining fault trend prediction model based on fault data. The characteristics of data processing using genetic algorithm K mean clustering for machining, machining feature extraction which reflects the correlation dimension of fault, spectrum characteristics analysis of abnormal vibration of complex mechanical parts processing process, the extraction method of the abnormal vibration of complex mechanical parts processing process of multi-component spectral decomposition and empirical mode decomposition Hilbert based on feature extraction and the decomposition results, in order to establish the intelligent expert system for the data base, combined with large data analysis method to realize the machining of the Fault trend prediction. The simulation results show that this method of fault trend prediction of mechanical machining accuracy is better, the fault in the mechanical process accurate judgment ability, it has good application value analysis and fault diagnosis in the machining process.

  4. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O; Feidt, M; Benelmir, R [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1998-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  5. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Feidt, M.; Benelmir, R. [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1997-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  6. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  7. A nanoplasmonic switch based on molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-06-01

    We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental data show that an Au nanodisk array, coated with rotaxane molecular machines, switches its localized surface plasmon resonances (LSPR) reversibly when it is exposed to chemical oxidants and reductants. Conversely, bare Au nanodisks and disks coated with mechanically inert control compounds, do not display the same switching behavior. Along with calculations based on time-dependent density functional theory (TDDFT), these observations suggest that the nanoscale movements within surface-bound "molecular machines" can be used as the active components in plasmonic devices. ©2009 IEEE.

  8. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  9. Connection machine: a computer architecture based on cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Hillis, W D

    1984-01-01

    This paper describes the connection machine, a programmable computer based on cellular automata. The essential idea behind the connection machine is that a regular locally-connected cellular array can be made to behave as if the processing cells are connected into any desired topology. When the topology of the machine is chosen to match the topology of the application program, the result is a fast, powerful computing engine. The connection machine was originally designed to implement knowledge retrieval operations in artificial intelligence programs, but the hardware and the programming techniques are apparently applicable to a much larger class of problems. A machine with 100000 processing cells is currently being constructed. 27 references.

  10. BEBP: An Poisoning Method Against Machine Learning Based IDSs

    OpenAIRE

    Li, Pan; Liu, Qiang; Zhao, Wentao; Wang, Dongxu; Wang, Siqi

    2018-01-01

    In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). However, practical IDSs generally update their decision module by feeding new data then retraining learning models in a periodical way. Hence, some attacks that comprise the data for training or testing classifiers significantly challenge the detecting capability of machine learning-based IDSs. Poisoning attack, which is one of the most recognized security threats towards machine learning...

  11. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  12. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    Science.gov (United States)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  13. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    Science.gov (United States)

    2016-03-02

    Based on Man -machine Interface The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 adaptive training, EEG, man -machine interface...non peer-reviewed journals: Final Report: Adaptive Training and Collective Decision Support Based on Man -machine Interface Report Title The existence of

  14. Machine-based mapping of innovation portfolios

    NARCIS (Netherlands)

    de Visser, Matthias; Miao, Shengfa; Englebienne, Gwenn; Sools, Anna Maria; Visscher, Klaasjan

    2017-01-01

    Machine learning techniques show a great promise for improving innovation portfolio management. In this paper we experiment with different methods to classify innovation projects of a high-tech firm as either explorative or exploitative, and compare the results with a manual, theory-based mapping of

  15. Photon absorption of calcium phosphate-based dental biomaterials

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Tekin, H. O.; Kara, U.; Vega C, H. R.; Fernandes Z, M. A.

    2017-10-01

    Effective atomic number and mass energy absorption buildup factors for four calcium phosphate-based biomaterials used in dental treatments were calculated for 0.015 to 15 MeV photons. The mass energy absorption coefficients were calculated for 0.5 to 40 mean free paths of photons. In the energy region important for dental radiology the Zeff for all studied biomaterials are larger in comparison to larger energies. In x-rays for dental radiology and the energy absorption buildup factors are low, however CbMDI bio material shows a resonance at 80 keV. (Author)

  16. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  17. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  18. Towards Measuring the Abstractness of State Machines based on Mutation Testing

    Directory of Open Access Journals (Sweden)

    Thomas Baar

    2017-01-01

    Full Text Available Abstract. The notation of state machines is widely adopted as a formalism to describe the behaviour of systems. Usually, multiple state machine models can be developed for the very same software system. Some of these models might turn out to be equivalent, but, in many cases, different state machines describing the same system also differ in their level of abstraction. In this paper, we present an approach to actually measure the abstractness level of state machines w.r.t. a given implemented software system. A state machine is considered to be less abstract when it is conceptionally closer to the implemented system. In our approach, this distance between state machine and implementation is measured by applying coverage criteria known from software mutation testing. Abstractness of state machines can be considered as a new metric. As for other metrics as well, a known value for the abstractness of a given state machine allows to assess its quality in terms of a simple number. In model-based software development projects, the abstract metric can help to prevent model degradation since it can actually measure the semantic distance from the behavioural specification of a system in form of a state machine to the current implementation of the system. In contrast to other metrics for state machines, the abstractness cannot be statically computed based on the state machine’s structure, but requires to execute both state machine and corresponding system implementation. The article is published in the author’s wording. 

  19. Quantum neural network based machine translator for Hindi to English.

    Science.gov (United States)

    Narayan, Ravi; Singh, V P; Chakraverty, S

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.

  20. An efficient flow-based botnet detection using supervised machine learning

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2014-01-01

    Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper...... introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs...... to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates...

  1. Detection of Watermelon Seeds Exterior Quality based on Machine Vision

    OpenAIRE

    Xiai Chen; Ling Wang; Wenquan Chen; Yanfeng Gao

    2013-01-01

    To investigate the detection of watermelon seeds exterior quality, a machine vision system based on least square support vector machine was developed. Appearance characteristics of watermelon seeds included area, perimeter, roughness, minimum enclosing rectangle and solidity were calculated by image analysis after image preprocess.The broken seeds, normal seeds and high-quality seeds were distinguished by least square support vector machine optimized by genetic algorithm. Compared to the grid...

  2. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review

    Directory of Open Access Journals (Sweden)

    Kaya Eren

    2017-12-01

    Full Text Available Nickel based superalloys offer high strength, corrosion resistance, thermal stability and superb thermal fatigue properties. However, they have been one of the most difficult materials to machine due to these properties. Although we are witnessing improved machining strategies with the developing machining, tooling and inspection technologies, machining of nickel based superalloys is still a challenging task due to in-process strains and post process part quality demands.

  3. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  4. IoT Security Techniques Based on Machine Learning

    OpenAIRE

    Xiao, Liang; Wan, Xiaoyue; Lu, Xiaozhen; Zhang, Yanyong; Wu, Di

    2018-01-01

    Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques including supervised learning, unsupervised learning and reinforcement learning. We focus on the machine le...

  5. Machine vision based quality inspection of flat glass products

    Science.gov (United States)

    Zauner, G.; Schagerl, M.

    2014-03-01

    This application paper presents a machine vision solution for the quality inspection of flat glass products. A contact image sensor (CIS) is used to generate digital images of the glass surfaces. The presented machine vision based quality inspection at the end of the production line aims to classify five different glass defect types. The defect images are usually characterized by very little `image structure', i.e. homogeneous regions without distinct image texture. Additionally, these defect images usually consist of only a few pixels. At the same time the appearance of certain defect classes can be very diverse (e.g. water drops). We used simple state-of-the-art image features like histogram-based features (std. deviation, curtosis, skewness), geometric features (form factor/elongation, eccentricity, Hu-moments) and texture features (grey level run length matrix, co-occurrence matrix) to extract defect information. The main contribution of this work now lies in the systematic evaluation of various machine learning algorithms to identify appropriate classification approaches for this specific class of images. In this way, the following machine learning algorithms were compared: decision tree (J48), random forest, JRip rules, naive Bayes, Support Vector Machine (multi class), neural network (multilayer perceptron) and k-Nearest Neighbour. We used a representative image database of 2300 defect images and applied cross validation for evaluation purposes.

  6. Passive ranging using a filter-based non-imaging method based on oxygen absorption.

    Science.gov (United States)

    Yu, Hao; Liu, Bingqi; Yan, Zongqun; Zhang, Yu

    2017-10-01

    To solve the problem of poor real-time measurement caused by a hyperspectral imaging system and to simplify the design in passive ranging technology based on oxygen absorption spectrum, a filter-based non-imaging ranging method is proposed. In this method, three bandpass filters are used to obtain the source radiation intensities that are located in the oxygen absorption band near 762 nm and the band's left and right non-absorption shoulders, and a photomultiplier tube is used as the non-imaging sensor of the passive ranging system. Range is estimated by comparing the calculated values of band-average transmission due to oxygen absorption, τ O 2 , against the predicted curve of τ O 2 versus range. The method is tested under short-range conditions. Accuracy of 6.5% is achieved with the designed experimental ranging system at the range of 400 m.

  7. Experimental investigation of the tip based micro/nano machining

    Science.gov (United States)

    Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.

    2017-12-01

    Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.

  8. Analytical Model-Based Design Optimization of a Transverse Flux Machine

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variables that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.

  9. Machine learning for network-based malware detection

    DEFF Research Database (Denmark)

    Stevanovic, Matija

    and based on different, mutually complementary, principles of traffic analysis. The proposed approaches rely on machine learning algorithms (MLAs) for automated and resource-efficient identification of the patterns of malicious network traffic. We evaluated the proposed methods through extensive evaluations...

  10. Machine learning-based methods for prediction of linear B-cell epitopes.

    Science.gov (United States)

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  11. Performance of machine learning methods for ligand-based virtual screening.

    Science.gov (United States)

    Plewczynski, Dariusz; Spieser, Stéphane A H; Koch, Uwe

    2009-05-01

    Computational screening of compound databases has become increasingly popular in pharmaceutical research. This review focuses on the evaluation of ligand-based virtual screening using active compounds as templates in the context of drug discovery. Ligand-based screening techniques are based on comparative molecular similarity analysis of compounds with known and unknown activity. We provide an overview of publications that have evaluated different machine learning methods, such as support vector machines, decision trees, ensemble methods such as boosting, bagging and random forests, clustering methods, neuronal networks, naïve Bayesian, data fusion methods and others.

  12. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    Science.gov (United States)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  13. Synchrotron radiation based Mössbauer absorption spectroscopy of various nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Ryo, E-mail: masudar@rri.kyoto-u.ac.jp; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina [Kyoto University, Research Reactor Institute (Japan); Yoda, Yoshitaka [Japan Synchrotron Radiation Research Institute, Resarch and Utilization Division (Japan); Mitsui, Takaya [Japan Atomic Energy Agency, Condensed Matter Science Division, Sector of Nuclear Science Research (Japan); Seto, Makoto [Kyoto University, Research Reactor Institute (Japan)

    2016-12-15

    Synchrotron-radiation (SR) based Mössbauer absorption spectroscopy of various nuclides is reviewed. The details of the measuring system and analysis method are described. Especially, the following two advantages of the current system are described: the detection of internal conversion electrons and the close distance between the energy standard scatterer and the detector. Both of these advantages yield the enhancement of the counting rate and reduction of the measuring time. Furthermore, SR-based Mössbauer absorption spectroscopy of {sup 40}K, {sup 151}Eu, and {sup 174}Yb is introduced to show the wide applicability of this method. In addition to these three nuclides, SR-based Mössbauer absorption spectroscopy of {sup 61}Ni, {sup 73}Ge, {sup 119}Sn, {sup 125}Te, {sup 127}I, {sup 149}Sm, and {sup 189}Os has been performed. We continue to develop the method to increase available nuclides and to increase its ease of use. The complementary relation between the time-domain method using SR, such as nuclear forward scattering and the energy-domain methods such as SR-based Mössbauer absorption spectroscopy is also noted.

  14. An Android malware detection system based on machine learning

    Science.gov (United States)

    Wen, Long; Yu, Haiyang

    2017-08-01

    The Android smartphone, with its open source character and excellent performance, has attracted many users. However, the convenience of the Android platform also has motivated the development of malware. The traditional method which detects the malware based on the signature is unable to detect unknown applications. The article proposes a machine learning-based lightweight system that is capable of identifying malware on Android devices. In this system we extract features based on the static analysis and the dynamitic analysis, then a new feature selection approach based on principle component analysis (PCA) and relief are presented in the article to decrease the dimensions of the features. After that, a model will be constructed with support vector machine (SVM) for classification. Experimental results show that our system provides an effective method in Android malware detection.

  15. Distance based control system for machine vision-based selective spraying

    NARCIS (Netherlands)

    Steward, B.L.; Tian, L.F.; Tang, L.

    2002-01-01

    For effective operation of a selective sprayer with real-time local weed sensing, herbicides must be delivered, accurately to weed targets in the field. With a machine vision-based selective spraying system, acquiring sequential images and switching nozzles on and off at the correct locations are

  16. Voice based gender classification using machine learning

    Science.gov (United States)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  17. Simulation and Community-Based Instruction of Vending Machines with Time Delay.

    Science.gov (United States)

    Browder, Diane M.; And Others

    1988-01-01

    The study evaluated the use of simulated instruction on vending machine use as an adjunct to community-based instruction with two moderately retarded children. Results showed concurrent acquisition of the vending machine skills across trained and untrained sites. (Author/DB)

  18. Machine Learning Based Localization and Classification with Atomic Magnetometers

    Science.gov (United States)

    Deans, Cameron; Griffin, Lewis D.; Marmugi, Luca; Renzoni, Ferruccio

    2018-01-01

    We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb 85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.

  19. Terahertz gas sensor based on absorption-induced transparency

    Directory of Open Access Journals (Sweden)

    Rodrigo Sergio G.

    2016-01-01

    Full Text Available A system for the detection of spectral signatures of gases at the Terahertz regime is presented. The system consists in an initially opaque holey metal film whereby the introduction of a gas provokes the appearance of spectral features in transmission and reflection, due to the phenomenom of absorption-induced transparency (AIT. The peaks in transmission and dips in reflection observed in AIT occur close to the absorption energies of the molecules, hence its name. The presence of the gas would be thus revealed as a strong drop in reflectivity measurements at one (or several of the gas absorption resonances. As a proof of principle, we theoretically demonstrate how the AIT-based sensor would serve to detect tiny amounts of hydrocyanic acid.

  20. Towards a Standard-based Domain-specific Platform to Solve Machine Learning-based Problems

    Directory of Open Access Journals (Sweden)

    Vicente García-Díaz

    2015-12-01

    Full Text Available Machine learning is one of the most important subfields of computer science and can be used to solve a variety of interesting artificial intelligence problems. There are different languages, framework and tools to define the data needed to solve machine learning-based problems. However, there is a great number of very diverse alternatives which makes it difficult the intercommunication, portability and re-usability of the definitions, designs or algorithms that any developer may create. In this paper, we take the first step towards a language and a development environment independent of the underlying technologies, allowing developers to design solutions to solve machine learning-based problems in a simple and fast way, automatically generating code for other technologies. That can be considered a transparent bridge among current technologies. We rely on Model-Driven Engineering approach, focusing on the creation of models to abstract the definition of artifacts from the underlying technologies.

  1. Development of Web-based Virtual Training Environment for Machining

    Science.gov (United States)

    Yang, Zhixin; Wong, S. F.

    2010-05-01

    With the booming in the manufacturing sector of shoe, garments and toy, etc. in pearl region, training the usage of various facilities and design the facility layout become crucial for the success of industry companies. There is evidence that the use of virtual training may provide benefits in improving the effect of learning and reducing risk in the physical work environment. This paper proposed an advanced web-based training environment that could demonstrate the usage of a CNC machine in terms of working condition and parameters selection. The developed virtual environment could provide training at junior level and advanced level. Junior level training is to explain machining knowledge including safety factors, machine parameters (ex. material, speed, feed rate). Advanced level training enables interactive programming of NG coding and effect simulation. Operation sequence was used to assist the user to choose the appropriate machining condition. Several case studies were also carried out with animation of milling and turning operations.

  2. Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available This paper presents a dynamic characteristic-based fuzzy adaptive control algorithm (DCbFACA to avoid the influence of cutting force changing rapidly on the machining stability and precision. The cutting force is indirectly obtained in real time by monitoring and extraction of the motorized spindle current, the feed speed is fuzzy adjusted online, and the current was used as a feedback to control cutting force and maintain the machining process stable. Different from the traditional fuzzy control methods using the experience-based control rules, and according to the complex nonlinear characteristics of CNC machining, the power bond graph method is implemented to describe the dynamic characteristics of process, and then the appropriate variation relations are achieved between current and feed speed, and the control rules are optimized and established based on it. The numerical results indicated that DCbFACA can make the CNC machining process more stable and improve the machining precision.

  3. TEA CO2 laser machining of CFRP composite

    Science.gov (United States)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  4. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    Science.gov (United States)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  5. Sample-Based Extreme Learning Machine with Missing Data

    Directory of Open Access Journals (Sweden)

    Hang Gao

    2015-01-01

    Full Text Available Extreme learning machine (ELM has been extensively studied in machine learning community during the last few decades due to its high efficiency and the unification of classification, regression, and so forth. Though bearing such merits, existing ELM algorithms cannot efficiently handle the issue of missing data, which is relatively common in practical applications. The problem of missing data is commonly handled by imputation (i.e., replacing missing values with substituted values according to available information. However, imputation methods are not always effective. In this paper, we propose a sample-based learning framework to address this issue. Based on this framework, we develop two sample-based ELM algorithms for classification and regression, respectively. Comprehensive experiments have been conducted in synthetic data sets, UCI benchmark data sets, and a real world fingerprint image data set. As indicated, without introducing extra computational complexity, the proposed algorithms do more accurate and stable learning than other state-of-the-art ones, especially in the case of higher missing ratio.

  6. Investigation on Wire Electrochemical Micro Machining of Ni-based Metallic Glass

    International Nuclear Information System (INIS)

    Meng, Lingchao; Zeng, Yongbin; Zhu, Di

    2017-01-01

    Highlights: • WECMM with nanosecond pulses is proposed firstly for fabricating micro complex components based on metallic glasses. • Applicable electrolyte for WECMM of the Ni-based MG is discussed. • Significantly uniform machined surface is achieved in H_2SO_4 solution. • High machining efficiency and stability are obtained experimentally by modifying pulse waveforms and electrolyte compositions. • Complex microstructures of Ni-based MG are fabricated by WECMM with optimized parameters. - Abstract: Metallic glasses (MGs) have been recognized as promising materials for realizing high-performance micro devices in micro electromechanical systems (MEMS) due to their excellent functional and structural characteristics. However, the applications of MGs are currently limited because of the difficulty of shaping them on the microscale. Wire electrochemical micro machining (WECMM) is increasingly recognized as a flexible and effective method to fabricate complex-shaped micro metal components with many advantages relative to the thermomechanical processing, which appears to be well suitable for micro shaping of MGs. We consider the example of a Ni-based MG, Ni_7_2Cr_1_9Si_7B_2, which has a typical passivation characteristic in 0.1 M H_2SO_4 solution. The transpassive process can be used for localized material removal when combined with nanosecond pulsed WECMM technique. In present work, the applicable electrolyte for WECMM of the Ni-based MG was discussed firstly. Then the voltage pulse waveform and electrolyte composition were modified to improve machining efficiency and stability. Several complex microstructures such as micro curved cantilever beam, micro gear, and micro square helix were machined with different optimized parameters.

  7. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  8. Ab-sorption machines for heating and cooling in future energy systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tozer, R.; Gustafsson, M.

    2000-12-15

    After the Executive Summary and a brief introductory chapter, Chapter 2, Sorption Technologies for Heating and Cooling in Future Energy Systems, reviews the main types of sorption systems. Chapter 3, Market Segmentation, then considers the major segments of the market including residential, commercial/institutional and industrial, and the types of sorption hardware most suitable to each. The highly important residential and commercial/institutional markets are mostly concerned with air-conditioning of buildings. More applications are identified and discussed for the industrial market, including refrigeration, food-storage cooling, process cooling, and process heating at various temperature ranges from hot water for hand-washing to high-temperature (greater than 130C). Other interesting industrial applications are absorption cooling or heating combined with co-generation, desiccant cooling, gas turbine inlet air cooling, combining absorption chillers with district heating systems, direct-fired absorption heat pumps (AHPs), and a closed greenhouse concept being developed for that economically important sector in the Netherlands. Most of the sorption market at this time comprises direct-fired absorption chillers, or hot water or steam absorption chillers indirectly driven by direct-fired boilers. Throughout the report, this category of absorption chillers is referred to generically as 'direct-fired'. In addition, this report covers absorption (reversible) heat pumps, absorption heat transformers, compression-absorption heat pumps, and adsorption chillers and heat pumps. Adsorption systems together with desiccant systems are also addressed. Chapter 4, Factors Affecting the Market, considers economic, environmental and policy issues. The geographical make-up of the world sorption market is then reviewed, followed by a number of practical operating and control considerations. These include vacuum requirements, crystallisation, corrosion, maintenance, health and

  9. Design of an ARM-based Automatic Rice-Selling Machine for Cafeterias

    Directory of Open Access Journals (Sweden)

    Zhiliang Kang

    2016-02-01

    Full Text Available To address the problems of low selling efficiency, poor sanitation conditions, labor-intensive requirement, and quick rice cooling speed in manual rice selling in cafeterias, especially in colleges and secondary schools, this paper presented an Advanced RISC Machines (ARM microprocessor-based rice-selling machine for cafeterias. The machines consisted of a funnel-shaped rice bin, a thermal insulation box, and a conveying and scattering mechanism. Moreover, this machine exerts fuzzy control over stepper motor rpm, and the motor drives the conveyor belt with a scraper to scatter rice, deliver it, and keep it warm. Apart from an external 4*4 keyboard, a point of sale (POS machine, an ARM process and a pressure sensor, the machine is also equipped with card swiping and weighting mechanisms to achieve functions of card swiping payment and precise measurement, respectively. In addition, detection of the right amount of rice and the alarm function are achieved using an ultrasonic sensor and a beeper, respectively. The presence of the rice container on the rice outlet is detected by an optoelectronic switch. Results show that this rice-selling machine achieves precise measurement, quick card swiping, fast rice selling, stable operation, and good rice heat preservation. Therefore, the mechanical design enables the machine to achieve its goals.

  10. [Card-based age control mechanisms at tobacco vending machines. Effect and consequences].

    Science.gov (United States)

    Schneider, S; Meyer, C; Löber, S; Röhrig, S; Solle, D

    2010-02-01

    Until recently, 700,000 tobacco vending machines provided uncontrolled access to cigarettes for children and adolescents in Germany. On January 1, 2007, a card-based electronic locking device was attached to all tobacco vending machines to prevent the purchase of cigarettes by children and adolescents under 16. Starting in 2009, only persons older than 18 are able to buy cigarettes from tobacco vending machines. The aim of the present investigation (SToP Study: "Sources of Tobacco for Pupils" Study) was to assess changes in the number of tobacco vending machines after the introduction of these new technical devices (supplier's reaction). In addition, the ways smoking adolescents make purchases were assessed (consumer's reaction). We registered and mapped the total number of tobacco points of sale (tobacco POS) before and after the introduction of the card-based electronic locking device in two selected districts of the city of Cologne. Furthermore, pupils from local schools (response rate: 83%) were asked about their tobacco consumption and ways of purchase using a questionnaire. Results indicated that in the area investigated the total number of tobacco POSs decreased from 315 in 2005 to 277 in 2007. The rates of decrease were 48% for outdoor vending machines and 8% for indoor vending machines. Adolescents reported circumventing the card-based electronic locking devices (e.g., by using cards from older friends) and using other tobacco POSs (especially newspaper kiosks) or relying on their social network (mainly friends). The decreasing number of tobacco vending machines has not had a significant impact on cigarette acquisition by adolescent smokers as they tend to circumvent the newly introduced security measures.

  11. A deviation based assessment methodology for multiple machine health patterns classification and fault detection

    Science.gov (United States)

    Jia, Xiaodong; Jin, Chao; Buzza, Matt; Di, Yuan; Siegel, David; Lee, Jay

    2018-01-01

    Successful applications of Diffusion Map (DM) in machine failure detection and diagnosis have been reported in several recent studies. DM provides an efficient way to visualize the high-dimensional, complex and nonlinear machine data, and thus suggests more knowledge about the machine under monitoring. In this paper, a DM based methodology named as DM-EVD is proposed for machine degradation assessment, abnormality detection and diagnosis in an online fashion. Several limitations and challenges of using DM for machine health monitoring have been analyzed and addressed. Based on the proposed DM-EVD, a deviation based methodology is then proposed to include more dimension reduction methods. In this work, the incorporation of Laplacian Eigen-map and Principal Component Analysis (PCA) are explored, and the latter algorithm is named as PCA-Dev and is validated in the case study. To show the successful application of the proposed methodology, case studies from diverse fields are presented and investigated in this work. Improved results are reported by benchmarking with other machine learning algorithms.

  12. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  13. A reliability-based preventive maintenance methodology for the projection spot welding machine

    Directory of Open Access Journals (Sweden)

    Fayzimatov Ulugbek

    2018-06-01

    Full Text Available An effective operations of a projection spot welding (PSW machine is closely related to the effec-tiveness of the maintenance. Timely maintenance can prevent failures and improve reliability and maintainability of the machine. Therefore, establishing the maintenance frequency for the welding machine is one of the most important tasks for plant engineers. In this regard, reliability analysis of the welding machine can be used to establish preventive maintenance intervals (PMI and to identify the critical parts of the system. In this reliability and maintainability study, analysis of the PSW machine was carried out. The failure and repair data for analysis were obtained from automobile manufacturing company located in Uzbekistan. The machine was divided into three main sub-systems: electrical, pneumatic and hydraulic. Different distributions functions for all sub-systems was tested and their parameters tabulated. Based on estimated parameters of the analyzed distribu-tions, PMI for the PSW machines sub-systems at different reliability levels was calculated. Finally, preventive measures for enhancing the reliability of the PSW machine sub-systems are suggested.

  14. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  15. Optimizing block-based maintenance under random machine usage

    NARCIS (Netherlands)

    de Jonge, Bram; Jakobsons, Edgars

    Existing studies on maintenance optimization generally assume that machines are either used continuously, or that times until failure do not depend on the actual usage. In practice, however, these assumptions are often not realistic. In this paper, we consider block-based maintenance optimization

  16. Machine learning versus knowledge based classification of legal texts

    NARCIS (Netherlands)

    de Maat, E.; Krabben, K.; Winkels, R.; Winkels, R.G.F.

    2010-01-01

    This paper presents results of an experiment in which we used machine learning (ML) techniques to classify sentences in Dutch legislation. These results are compared to the results of a pattern-based classifier. Overall, the ML classifier performs as accurate (>90%) as the pattern based one, but

  17. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  18. Development and evaluation of intelligent machine tools based on knowledge evolution in M2M environment

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Song, Jun Yeob; Lee, Jong Hyun; Cha, Suk Keun

    2009-01-01

    In the near future, the foreseen improvement in machine tools will be in the form of a knowledge evolution-based intelligent device. The goal of this study is to develop intelligent machine tools having knowledge-evolution capability in Machine to Machine (M2M) wired and wireless environment. The knowledge evolution-based intelligent machine tools are expected to be capable of gathering knowledge autonomously, producing knowledge, understanding knowledge, applying reasoning to knowledge, making new decisions, dialoguing with other machines, etc. The concept of the knowledge-evolution intelligent machine originated from the process of machine control operation by the sense, dialogue and decision of a human expert. The structure of knowledge evolution in M2M and the scheme for a dialogue agent among agent-based modules such as a sensory agent, a dialogue agent and an expert system (decision support agent) are presented in this paper, and work-offset compensation from thermal change and recommendation of cutting condition are performed on-line for knowledge-evolution verification

  19. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    International Nuclear Information System (INIS)

    Vudyasetu, Praveen K.; Howell, John C.; Camacho, Ryan M.

    2010-01-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  20. Runtime Optimizations for Tree-Based Machine Learning Models

    NARCIS (Netherlands)

    N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression

  1. Machine Translation Using Constraint-Based Synchronous Grammar

    Institute of Scientific and Technical Information of China (English)

    WONG Fai; DONG Mingchui; HU Dongcheng

    2006-01-01

    A synchronous grammar based on the formalism of context-free grammar was developed by generalizing the first component of production that models the source text. Unlike other synchronous grammars,the grammar allows multiple target productions to be associated to a single production rule which can be used to guide a parser to infer different possible translational equivalences for a recognized input string according to the feature constraints of symbols in the pattern. An extended generalized LR algorithm was adapted to the parsing of the proposed formalism to analyze the syntactic structure of a language. The grammar was used as the basis for building a machine translation system for Portuguese to Chinese translation. The empirical results show that the grammar is more expressive when modeling the translational equivalences of parallel texts for machine translation and grammar rewriting applications.

  2. Timer-based data acquisitioning of creep testing machines

    International Nuclear Information System (INIS)

    Rana, M.A.; Farooq, M.A.; Ali, L.

    1998-01-01

    Duration of a creep test may be short or long term extending over several years. Continuous operation of a computer for automatic data acquisition of creep testing machines is useless. Timer based data acquisitioning of the machines already interface with IBM-Pc/AT and compatibles has been streamlined for economical use of the computer. A locally designed and fabricated timer has been introduced in the system in this regard to meet the requirements of the system. The timer switches on the computer according to pre scheduled interval of time of capture creep data in Real time. The periodically captured data is logged on the hard disk for analysis and report generation. (author)

  3. Engagement techniques and playing level impact the biomechanical demands on rugby forwards during machine-based scrummaging.

    Science.gov (United States)

    Preatoni, Ezio; Stokes, Keith A; England, Michael E; Trewartha, Grant

    2015-04-01

    This cross-sectional study investigated the factors that may influence the physical loading on rugby forwards performing a scrum by studying the biomechanics of machine-based scrummaging under different engagement techniques and playing levels. 34 forward packs from six playing levels performed repetitions of five different types of engagement techniques against an instrumented scrum machine under realistic training conditions. Applied forces and body movements were recorded in three orthogonal directions. The modification of the engagement technique altered the load acting on players. These changes were in a similar direction and of similar magnitude irrespective of the playing level. Reducing the dynamics of the initial engagement through a fold-in procedure decreased the peak compression force, the peak downward force and the engagement speed in excess of 30%. For example, peak compression (horizontal) forces in the professional teams changed from 16.5 (baseline technique) to 8.6 kN (fold-in procedure). The fold-in technique also reduced the occurrence of combined high forces and head-trunk misalignment during the absorption of the impact, which was used as a measure of potential hazard, by more than 30%. Reducing the initial impact did not decrease the ability of the teams to produce sustained compression forces. De-emphasising the initial impact against the scrum machine decreased the mechanical stresses acting on forward players and may benefit players' welfare by reducing the hazard factors that may induce chronic degeneration of the spine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  5. Artificial emotional model based on finite state machine

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-mei; WU Wei-guo

    2008-01-01

    According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition function was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform.And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.

  6. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption

    Science.gov (United States)

    Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-01

    Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.

  7. Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework

    Science.gov (United States)

    Yu, Jianbo

    2015-12-01

    Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.

  8. English to Sanskrit Machine Translation Using Transfer Based approach

    Science.gov (United States)

    Pathak, Ganesh R.; Godse, Sachin P.

    2010-11-01

    Translation is one of the needs of global society for communicating thoughts and ideas of one country with other country. Translation is the process of interpretation of text meaning and subsequent production of equivalent text, also called as communicating same meaning (message) in another language. In this paper we gave detail information on how to convert source language text in to target language text using Transfer Based Approach for machine translation. Here we implemented English to Sanskrit machine translator using transfer based approach. English is global language used for business and communication but large amount of population in India is not using and understand the English. Sanskrit is ancient language of India most of the languages in India are derived from Sanskrit. Sanskrit can be act as an intermediate language for multilingual translation.

  9. Transition between laser absorption dominated regimes in carbon-based plasma

    Directory of Open Access Journals (Sweden)

    K. Hajisharifi

    2017-09-01

    Full Text Available In this work, we investigate the energy absorption enhancement of a laser by adding a variety of light ion species to a primarily carbon-based plasma during the high-power laser interaction with the finite size targets. A developed Particle-In-Cell simulation code is used to study the reduction of laser reflectivity (stimulated backward scatterings in both Brillouin- and Raman-dominated regimes. The simulation is performed in various Carbon-light ion plasmas such as Carbon-Hydrogen, Carbon-Helium, Carbon-Deuterium, and Carbon-Tritium. The results show that, in the optimized condition, the inclusion of light Hydrogen ions into the Carbon-based plasma up to 50%-50% mixture enhances the laser absorption exceeding 20% in the Brillouin regime due to the suppression of laser reflectivity in contract to 4% in the Raman-dominated regime. Moreover, the absorption dominated regime switches from Raman to Brillouin regime by adding 50% of Hydrogen ions to a purely carbon target. The results of this investigation will be applicable to the laser-plasma experiments so long as the laser energy absorption in the Carbon plasma target, the most readily available material in laboratory, is concerned.

  10. Pre-use anesthesia machine check; certified anesthesia technician based quality improvement audit.

    Science.gov (United States)

    Al Suhaibani, Mazen; Al Malki, Assaf; Al Dosary, Saad; Al Barmawi, Hanan; Pogoku, Mahdhav

    2014-01-01

    Quality assurance of providing a work ready machine in multiple theatre operating rooms in a tertiary modern medical center in Riyadh. The aim of the following study is to keep high quality environment for workers and patients in surgical operating rooms. Technicians based audit by using key performance indicators to assure inspection, passing test of machine worthiness for use daily and in between cases and in case of unexpected failure to provide quick replacement by ready to use another anesthetic machine. The anesthetic machines in all operating rooms are daily and continuously inspected and passed as ready by technicians and verified by anesthesiologist consultant or assistant consultant. The daily records of each machines were collected then inspected for data analysis by quality improvement committee department for descriptive analysis and report the degree of staff compliance to daily inspection as "met" items. Replaced machine during use and overall compliance. Distractive statistic using Microsoft Excel 2003 tables and graphs of sums and percentages of item studied in this audit. Audit obtained highest compliance percentage and low rate of replacement of machine which indicate unexpected machine state of use and quick machine switch. The authors are able to conclude that following regular inspection and running self-check recommended by the manufacturers can contribute to abort any possibility of hazard of anesthesia machine failure during operation. Furthermore in case of unexpected reason to replace the anesthesia machine in quick maneuver contributes to high assured operative utilization of man machine inter-phase in modern surgical operating rooms.

  11. Association Rule-based Predictive Model for Machine Failure in Industrial Internet of Things

    Science.gov (United States)

    Kwon, Jung-Hyok; Lee, Sol-Bee; Park, Jaehoon; Kim, Eui-Jik

    2017-09-01

    This paper proposes an association rule-based predictive model for machine failure in industrial Internet of things (IIoT), which can accurately predict the machine failure in real manufacturing environment by investigating the relationship between the cause and type of machine failure. To develop the predictive model, we consider three major steps: 1) binarization, 2) rule creation, 3) visualization. The binarization step translates item values in a dataset into one or zero, then the rule creation step creates association rules as IF-THEN structures using the Lattice model and Apriori algorithm. Finally, the created rules are visualized in various ways for users’ understanding. An experimental implementation was conducted using R Studio version 3.3.2. The results show that the proposed predictive model realistically predicts machine failure based on association rules.

  12. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    Science.gov (United States)

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  13. Impedance Mismatch study between the Microwave Generator and the PUPR Plasma Machine

    International Nuclear Information System (INIS)

    Gaudier, Jorge R.; Castellanos, Ligeia; Encarnacion, Kabir; Zavala, Natyaliz; Rivera, Ramon; Farahat, Nader; Leal, Edberto

    2006-01-01

    Impedance mismatch inside the connection from the microwave power generator to the plasma machine is studied. A magnetron power generator transmits microwaves of 2.45 GHz and variable power from 50W to 5000W, through a flexible rectangular waveguide to heat plasma inside a Mirror Cusp devise located at the Polytechnic University of Puerto Rico. Before the production of plasma, the residual gas of the devise must be extracted by a vacuum system (5Torr or better), then Argon gas is injected to the machine. The microwaves heat the Argon ions to initiate ionization and plasma is produced. A dielectric wall is used inside the rectangular waveguide to isolate the plasma machine and maintain vacuum. Even though the dielectric will not block the wave propagation, some absorption of microwaves will occur. This absorption will cause reflection, reducing the efficiency of the power transfer. Typically a thin layer of Teflon is used, but measurements using this dielectric show a significant reflection of power back to the generator. Due to the high-power nature of the generator (5KW), this mismatch is not desirable. An electromagnetic field solver based on the Finite Difference Time Domain Method(FDTD) is used to model the rectangular waveguide connection. The characteristic impedance of the simulation is compared with the analytical formula expression and a good agreement is obtain. Furthermore the Teflon-loaded guide is modeled using the above program and the input impedance is computed. The reflection coefficient is calculated based on the transmission line theory with the characteristic and input impedances. Based on the simulation results it is possible to optimize the thickness, shape and dielectric constant of the material, in order to seal the connection with a better match

  14. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  15. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  16. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    Science.gov (United States)

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  17. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  18. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    Science.gov (United States)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  19. Trip Travel Time Forecasting Based on Selective Forgetting Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Zhiming Gui

    2014-01-01

    Full Text Available Travel time estimation on road networks is a valuable traffic metric. In this paper, we propose a machine learning based method for trip travel time estimation in road networks. The method uses the historical trip information extracted from taxis trace data as the training data. An optimized online sequential extreme machine, selective forgetting extreme learning machine, is adopted to make the prediction. Its selective forgetting learning ability enables the prediction algorithm to adapt to trip conditions changes well. Experimental results using real-life taxis trace data show that the forecasting model provides an effective and practical way for the travel time forecasting.

  20. DROUGHT FORECASTING BASED ON MACHINE LEARNING OF REMOTE SENSING AND LONG-RANGE FORECAST DATA

    Directory of Open Access Journals (Sweden)

    J. Rhee

    2016-06-01

    Full Text Available The reduction of drought impacts may be achieved through sustainable drought management and proactive measures against drought disaster. Accurate and timely provision of drought information is essential. In this study, drought forecasting models to provide high-resolution drought information based on drought indicators for ungauged areas were developed. The developed models predict drought indices of the 6-month Standardized Precipitation Index (SPI6 and the 6-month Standardized Precipitation Evapotranspiration Index (SPEI6. An interpolation method based on multiquadric spline interpolation method as well as three machine learning models were tested. Three machine learning models of Decision Tree, Random Forest, and Extremely Randomized Trees were tested to enhance the provision of drought initial conditions based on remote sensing data, since initial conditions is one of the most important factors for drought forecasting. Machine learning-based methods performed better than interpolation methods for both classification and regression, and the methods using climatology data outperformed the methods using long-range forecast. The model based on climatological data and the machine learning method outperformed overall.

  1. Dynamic model of an autonomous solar absorption refrigerator

    International Nuclear Information System (INIS)

    Ali Fellah; Tahar Khir; Ammar Ben Brahim

    2009-01-01

    The performance analysis of a solar absorption refrigerator operating in an autonomous way is investigated. The water/LiBr machine satisfies the air-conditioning needs along the day. The refrigerator performances were simulated regarding a dynamic model. For the solar driven absorption machines, two applications could be distinguished. The sun provides the thermal part of the useful energy. In this case, it is necessary to use additional energy as the electric one to activate the pumps, the fans and the control system. On the other hand, the sun provides all the necessary energy. Here, both photovoltaic cells and thermal concentrators should be used. The simulation in dynamic regime of the cycle requires the knowledge of the geometric characteristics of every component as the exchange areas and the internal volumes. Real characteristics of a refrigerator available at the applied thermodynamic research unit (ATRU) at the engineers' national school of Gabes are notified. The development of the thermal and matter balances in every component of the cycle has permitted to simulate in dynamic regime the performances of a solar absorption refrigerator operating with the water/LiBr couple for air-conditioning needs. The developed model could be used to perform intermittent refrigeration cycle autonomously driven. (author)

  2. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  3. The Foregger Midget: a machine that traveled.

    Science.gov (United States)

    Ball, Christine M

    2013-11-01

    Next year marks the 100th anniversary of the founding of the Foregger Company, an important manufacturer of anesthetic equipment in the first half of the 20th century. Founded by Richard von Foregger in a barn in Long Island, New York in 1914, the Foregger Company developed equipment in collaboration with anesthesiologists. Their first product was the Gwathmey machine, built around the rudimentary flowmeter designed by the anesthesiologist, James Tayloe Gwathmey. This machine was the cornerstone of future anesthetic machine development. As the company grew, von Foregger formed other liaisons, joining forces with Ralph Waters to create the Waters to-and-fro canister for carbon dioxide absorption, and with Arthur Guedel, a variety of nontraumatic airways. The combined creativity of these three men ultimately led to the Foregger Midget. This portable machine extended the reach of the Foregger Company well beyond the shores of America, as far away as the isolated west coast of Australia.

  4. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  5. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    Science.gov (United States)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  6. Tunable THz perfect absorber with two absorption peaks based on graphene microribbons

    DEFF Research Database (Denmark)

    Gu, Mingyue; Xiao, Binggang; Xiao, Sanshui

    2018-01-01

    Perfect absorption is characterised by the complete suppression of incident and reflected electromagnetic wave, and complete dissipation of the incident energy. A tunable perfect terahertz (THz) absorber with two absorption peaks based on graphene is presented. The proposed structure consists of ...

  7. Earth-moving equipment as base machines in forest work. Final report of an NSR project

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Jerry [ed.

    1997-12-31

    Excavators have been used for forest draining for a long time in the Nordic countries. Only during the 1980s they were introduced as base machines for other forest operations, such as mounding, processing, harvesting, and road construction and road maintenance. Backhoe loaders were introduced in forestry at a somewhat later stage and to a smaller degree. The number of this type of base machines in forestry is so far small and is increasing very slowly. The NSR project `Earth moving equipment as base machines in forest work` started in 1993 and the project ended in 1995. The objective of the project was to obtain an overall picture of this type of machines up to a point where the logs are at landing site, ready for transportation to the industry. The project should cover as many aspects as possible. In order to obtain this picture, the main project was divided into sub projects. The sub projects separately described in this volume are (1) Excavators in ditching operations and site preparation, (2) Backhoe loaders in harvesting operations, (3) Excavators in wood cutting operations, (4) Tracked excavators in forestry operations, (5) Crawler versus wheeled base machines for single-grip harvester, and (6) Soil changes - A comparison between a wheeled and a tracked forest machine

  8. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    Science.gov (United States)

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  9. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2014-01-01

    Full Text Available Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to assembly connection strength to depict the assembling difficulty level. The transmissibility based on trust relationship was applied on the assembly connection strength. Assembly unit partition based on assembly connection strength was conducted, and interferential assembly units were identified and revised. The assembly sequence planning and optimization of parts in each assembly unit and between assembly units was conducted using genetic algorithm. With certain type of high speed CNC turning center, as an example, this paper explored into the assembly modeling, assembly unit partition, and assembly sequence planning and optimization and realized the optimized assembly sequence of headstock of CNC machine tool.

  10. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  11. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  12. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    Science.gov (United States)

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-06

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  13. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2018-01-01

    Full Text Available As an intrinsic part of the Internet of Things (IoT ecosystem, machine-to-machine (M2M communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  14. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics.

    Science.gov (United States)

    Jung, Haejoon; Lee, In-Ho

    2018-01-12

    As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  15. Design and synthesis of hyperstructured molecules based on cyclophosphazene core for multiphoton absorption

    International Nuclear Information System (INIS)

    Naik, K. Praveen Kumar; Sreeramulu, V.; Ramya, E.; Muralidharan, K.; Rao, D. Narayana

    2016-01-01

    Cyclophosphazene based hyperstructured molecules were synthesized through simple nucleophilic substitution reactions. All these molecules were characterized by multinuclear NMR, MALDI and HRMS spectral data. Third order nonlinear optical properties of the hyperstructured molecules were measured using Z-scan technique with 532 nm, picosecond (ps) laser and 800 nm, femtosecond (fs) laser pulses. The molecules showed reverse saturable absorption on excitation at both 532 nm and 800 nm, which could be attributed to the two-photon absorption (2 PA) and three-photon absorption (3 PA), respectively. The 2 PA and 3 PA cross section values exhibited by the molecules based on cyclophosphazene are as high as 527 GM and 1.86 × 10"−"7"6 cm"−"6 s"2 photon"−"1, respectively. The 2PA, 3PA coefficients and optical limiting properties make them suitable candidates for nonlinear optical devices in the visible and near IR range. - Graphical abstract: The hyperstructured molecules based on cyclophosphazene core were synthesized and used for multiphoton absorption. Open aperture Z-scan curves of hyper structured molecules at the excitation of (a) picosecond laser and (b) femtosecond laser representing multiphoton absorption properties are reported. - Highlights: • Two hyperstructured molecules based on cyclophosphazene core are designed for multiphoton absorption. • NLO properties are measured using Z-scan technique at 532 nm and 800 nm wavelengths. • The molecules were tested for the optical limiting applications at 532 nm and 800 nm laser pulses.

  16. Design and synthesis of hyperstructured molecules based on cyclophosphazene core for multiphoton absorption

    Energy Technology Data Exchange (ETDEWEB)

    Naik, K. Praveen Kumar [School of Chemistry, University of Hyderabad, Hyderabad 500046 India (India); Sreeramulu, V. [School of Physics, University of Hyderabad, Hyderabad 500046 India (India); CNR-IFN CSMFO Laboratory, Via alla Cascata, 56/C Povo, Trento (Italy); Ramya, E. [School of Physics, University of Hyderabad, Hyderabad 500046 India (India); Muralidharan, K., E-mail: murali@uohyd.ac.in [School of Chemistry, University of Hyderabad, Hyderabad 500046 India (India); Rao, D. Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 India (India)

    2016-09-01

    Cyclophosphazene based hyperstructured molecules were synthesized through simple nucleophilic substitution reactions. All these molecules were characterized by multinuclear NMR, MALDI and HRMS spectral data. Third order nonlinear optical properties of the hyperstructured molecules were measured using Z-scan technique with 532 nm, picosecond (ps) laser and 800 nm, femtosecond (fs) laser pulses. The molecules showed reverse saturable absorption on excitation at both 532 nm and 800 nm, which could be attributed to the two-photon absorption (2 PA) and three-photon absorption (3 PA), respectively. The 2 PA and 3 PA cross section values exhibited by the molecules based on cyclophosphazene are as high as 527 GM and 1.86 × 10{sup −76} cm{sup −6} s{sup 2} photon{sup −1}, respectively. The 2PA, 3PA coefficients and optical limiting properties make them suitable candidates for nonlinear optical devices in the visible and near IR range. - Graphical abstract: The hyperstructured molecules based on cyclophosphazene core were synthesized and used for multiphoton absorption. Open aperture Z-scan curves of hyper structured molecules at the excitation of (a) picosecond laser and (b) femtosecond laser representing multiphoton absorption properties are reported. - Highlights: • Two hyperstructured molecules based on cyclophosphazene core are designed for multiphoton absorption. • NLO properties are measured using Z-scan technique at 532 nm and 800 nm wavelengths. • The molecules were tested for the optical limiting applications at 532 nm and 800 nm laser pulses.

  17. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  18. A New Type of Tea Baking Machine Based on Pro/E Design

    Science.gov (United States)

    Lin, Xin-Ying; Wang, Wei

    2017-11-01

    In this paper, the production process of wulong tea was discussed, mainly the effect of baking on the quality of tea. The suitable baking temperature of different tea was introduced. Based on Pro/E, a new type of baking machine suitable for wulong tea baking was designed. The working principle, mechanical structure and constant temperature timing intelligent control system of baking machine were expounded. Finally, the characteristics and innovation of new baking machine were discussed.The mechanical structure of this baking machine is more simple and reasonable, and can use the heat of the inlet and outlet, more energy saving and environmental protection. The temperature control part adopts fuzzy PID control, which can improve the accuracy and response speed of temperature control and reduce the dependence of baking operation on skilled experience.

  19. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  20. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    Science.gov (United States)

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  1. Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method

    Directory of Open Access Journals (Sweden)

    Muneki Yasuda

    2018-04-01

    Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.

  2. Fuzzy-based multi-kernel spherical support vector machine for ...

    Indian Academy of Sciences (India)

    In the proposed classifier, we design a new multi-kernel function based on the fuzzy triangular membership function. Finally, a newly developed multi-kernel function is incorporated into the spherical support vector machine to enhance the performance significantly. The experimental results are evaluated and performance is ...

  3. Ideology of a multiparametric system for estimating the insulation system of electric machines on the basis of absorption testing methods

    Science.gov (United States)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.

  4. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  5. Component based modelling of piezoelectric ultrasonic actuators for machining applications

    International Nuclear Information System (INIS)

    Saleem, A; Ahmed, N; Salah, M; Silberschmidt, V V

    2013-01-01

    Ultrasonically Assisted Machining (UAM) is an emerging technology that has been utilized to improve the surface finishing in machining processes such as turning, milling, and drilling. In this context, piezoelectric ultrasonic transducers are being used to vibrate the cutting tip while machining at predetermined amplitude and frequency. However, modelling and simulation of these transducers is a tedious and difficult task. This is due to the inherent nonlinearities associated with smart materials. Therefore, this paper presents a component-based model of ultrasonic transducers that mimics the nonlinear behaviour of such a system. The system is decomposed into components, a mathematical model of each component is created, and the whole system model is accomplished by aggregating the basic components' model. System parameters are identified using Finite Element technique which then has been used to simulate the system in Matlab/SIMULINK. Various operation conditions are tested and performed to demonstrate the system performance

  6. Acoustically sticky topographic metasurfaces for underwater sound absorption.

    Science.gov (United States)

    Lee, Hunki; Jung, Myungki; Kim, Minsoo; Shin, Ryung; Kang, Shinill; Ohm, Won-Suk; Kim, Yong Tae

    2018-03-01

    A class of metasurfaces for underwater sound absorption, based on a design principle that maximizes thermoviscous loss, is presented. When a sound meets a solid surface, it leaves a footprint in the form of thermoviscous boundary layers in which energy loss takes place. Considered to be a nuisance, this acoustic to vorticity/entropy mode conversion and the subsequent loss are often ignored in the existing designs of acoustic metamaterials and metasurfaces. The metasurface created is made of a series of topographic meta-atoms, i.e., intaglios and reliefs engraved directly on the solid object to be concealed. The metasurface is acoustically sticky in that it rather facilitates the conversion of the incident sound to vorticity and entropy modes, hence the thermoviscous loss, leading to the desired anechoic property. A prototype metasurface machined on a brass object is tested for its anechoicity, and shows a multitude of absorption peaks as large as unity in the 2-5 MHz range. Computations also indicate that a topographic metasurface is robust to hydrostatic pressure variation, a quality much sought-after in underwater applications.

  7. Testing and further development of a solar absorption cooling plant

    Science.gov (United States)

    Amannsberger, K.; Heckel, H.; Kreutmair, J.; Weber, K. H.

    1984-12-01

    Ammonia water absorption cooling units using the process heat of line-focusing solar collectors were developed and tested. Reduction of the evaporation temperature to minus 10 C; development of an air-cooled rectifying device for the refrigerant vapor; dry cooling of absorber and condenser by natural draft; refrigerating capacities of 14 to 10 kW which correspond to air temperatures of 25 to 40 C and 24 kW power consumption to heat the machine; auxiliary power requirement 450 W; full compatibility with changing heat input and air temperature, adaptation by automatic stabilization effects; and power optimization under changing boundary conditions by a simple regulating procedure independent of auxiliary power are achieved. The dynamic behavior of the directly linked collector-refrigeration machine system was determined. Operating conditions, market, and economic viability of solar cooling in third-world countries are described. Ice production procedures using absorption cooling units are demonstrated.

  8. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  9. Ultra-precision machining induced phase decomposition at surface of Zn-Al based alloy

    International Nuclear Information System (INIS)

    To, S.; Zhu, Y.H.; Lee, W.B.

    2006-01-01

    The microstructural changes and phase transformation of an ultra-precision machined Zn-Al based alloy were examined using X-ray diffraction and back-scattered electron microscopy techniques. Decomposition of the Zn-rich η phase and the related changes in crystal orientation was detected at the surface of the ultra-precision machined alloy specimen. The effects of the machining parameters, such as cutting speed and depth of cut, on the phase decomposition were discussed in comparison with the tensile and rolling induced microstrucutural changes and phase decomposition

  10. A Novel Bearing Fault Diagnosis Method Based on Gaussian Restricted Boltzmann Machine

    Directory of Open Access Journals (Sweden)

    Xiao-hui He

    2016-01-01

    Full Text Available To realize the fault diagnosis of bearing effectively, this paper presents a novel bearing fault diagnosis method based on Gaussian restricted Boltzmann machine (Gaussian RBM. Vibration signals are firstly resampled to the same equivalent speed. Subsequently, the envelope spectrums of the resampled data are used directly as the feature vectors to represent the fault types of bearing. Finally, in order to deal with the high-dimensional feature vectors based on envelope spectrum, a classifier model based on Gaussian RBM is applied. Gaussian RBM has the ability to provide a closed-form representation of the distribution underlying the training data, and it is very convenient for modeling high-dimensional real-valued data. Experiments on 10 different data sets verify the performance of the proposed method. The superiority of Gaussian RBM classifier is also confirmed by comparing with other classifiers, such as extreme learning machine, support vector machine, and deep belief network. The robustness of the proposed method is also studied in this paper. It can be concluded that the proposed method can realize the bearing fault diagnosis accurately and effectively.

  11. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  12. A model for analysis and design of H2O-LiBr absorption heat pumps

    International Nuclear Information System (INIS)

    Bakhtiari, Bahador; Fradette, Louis; Legros, Robert; Paris, Jean

    2011-01-01

    An experimental and simulation analysis of a laboratory single-stage H 2 O-LiBr absorption heat pump with a cooling capacity of 14 kW has been performed. Design characteristics of the machine are given and experimental results obtained from the variation of the five most influential parameters are presented. The machine performance, as described by the coefficient of performance (COP) and cooling capacity was then measured at different flow rates and temperatures of the external cool and hot water loops and for different temperatures of produced chilled water. A design and dimensioning model of H 2 O-LiBr absorption heat pumps was developed. First, the steady-state simulation results of the model were compared with experimental measurements. Close agreement between experimental and simulation results was found. Results also show that the heat pump can adequately operate over a wide range of generator input energy and chilled water temperature; the cooling water flow rate and temperature significantly affect the performance of the machine. Finally, the capability of the model is illustrated by dimensioning an absorption heat pump implemented in a Kraft process.

  13. Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach.

    Science.gov (United States)

    Pasupa, Kitsuchart; Kudisthalert, Wasu

    2018-01-01

    Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets-Maximum Unbiased Validation Dataset-which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6.

  14. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    Science.gov (United States)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  15. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    Science.gov (United States)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  16. Support vector machine based battery model for electric vehicles

    International Nuclear Information System (INIS)

    Wang Junping; Chen Quanshi; Cao Binggang

    2006-01-01

    The support vector machine (SVM) is a novel type of learning machine based on statistical learning theory that can map a nonlinear function successfully. As a battery is a nonlinear system, it is difficult to establish the relationship between the load voltage and the current under different temperatures and state of charge (SOC). The SVM is used to model the battery nonlinear dynamics in this paper. Tests are performed on an 80Ah Ni/MH battery pack with the Federal Urban Driving Schedule (FUDS) cycle to set up the SVM model. Compared with the Nernst and Shepherd combined model, the SVM model can simulate the battery dynamics better with small amounts of experimental data. The maximum relative error is 3.61%

  17. Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

    Science.gov (United States)

    Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.

  18. Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders: Machine-Learning-Based Voice Analysis Versus Speech Therapists.

    Science.gov (United States)

    Nakai, Yasushi; Takiguchi, Tetsuya; Matsui, Gakuyo; Yamaoka, Noriko; Takada, Satoshi

    2017-10-01

    Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.

  19. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    Science.gov (United States)

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  20. Extreme Learning Machine and Moving Least Square Regression Based Solar Panel Vision Inspection

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2017-01-01

    Full Text Available In recent years, learning based machine intelligence has aroused a lot of attention across science and engineering. Particularly in the field of automatic industry inspection, the machine learning based vision inspection plays a more and more important role in defect identification and feature extraction. Through learning from image samples, many features of industry objects, such as shapes, positions, and orientations angles, can be obtained and then can be well utilized to determine whether there is defect or not. However, the robustness and the quickness are not easily achieved in such inspection way. In this work, for solar panel vision inspection, we present an extreme learning machine (ELM and moving least square regression based approach to identify solder joint defect and detect the panel position. Firstly, histogram peaks distribution (HPD and fractional calculus are applied for image preprocessing. Then an ELM-based defective solder joints identification is discussed in detail. Finally, moving least square regression (MLSR algorithm is introduced for solar panel position determination. Experimental results and comparisons show that the proposed ELM and MLSR based inspection method is efficient not only in detection accuracy but also in processing speed.

  1. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  2. and Three-Photon Absorption Properties of PRODAN based chemo ...

    Indian Academy of Sciences (India)

    Mehboob

    Solvent dependent One-, Two- and Three-Photon Absorption. Properties of PRODAN based chemo-sensors. Md. Mehboob Alam, Mausumi Chattopadhyaya. Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009,. India. CONTENTS. 1) Optimized coordinates of all the systems in Gas phase and ...

  3. Automated Bug Assignment: Ensemble-based Machine Learning in Large Scale Industrial Contexts

    OpenAIRE

    Jonsson, Leif; Borg, Markus; Broman, David; Sandahl, Kristian; Eldh, Sigrid; Runeson, Per

    2016-01-01

    Bug report assignment is an important part of software maintenance. In particular, incorrect assignments of bug reports to development teams can be very expensive in large software development projects. Several studies propose automating bug assignment techniques using machine learning in open source software contexts, but no study exists for large-scale proprietary projects in industry. The goal of this study is to evaluate automated bug assignment techniques that are based on machine learni...

  4. Experimental program based on a High Beta Q Machine. Final report, 1 May 1978-30 September 1980

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1980-07-01

    This report summarizes work done in designing and constructing the High Beta Q Machine from the inception of the work in May 1978 until the present time. It is a 3-m long, low-compression theta pinch with a 22-cm-diameter segmented compression coil with a minimum axial periodicity length of 10 cm. This capability of driving the machine as a simple, low-density theta pinch, and also of independently applying periodic magnetic fields before or after formation of the plasma column, gives the device considerable flexibility. Reported here is the construction and testing of the machine, development of its diagnostics and initial measurements of the plasma at early times in the duration of the crowbarred magnetic field. The experimental effort has been paralleled by theoretical work to model the diffuse profile, collisionless plasma in its response to the periodic RF magnetic fields. The model chosen is the Freidberg-Pearlstein Vlasov-fluid model which provides an MHD-like description but with accounting of ion kinetic effects over diffuse equilibrium profiles. A computer code has been developed to accurately calculate the resistive response of the plasma column, giving the power absorption by ion Landau damping and more recently, ion-cyclotron damping

  5. Light-operated machines based on threaded molecular structures.

    Science.gov (United States)

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  6. Web based machine status display for INDUS-1 And INDUS-2

    International Nuclear Information System (INIS)

    Srivastava, B.S.K.; Fatnani, P.

    2003-01-01

    Web based machine status display for Indus-1 and Indus-2 is designated to provide on-line status of Indus-1 and Indus-2 to the clients located at various places of CAT premises. Presently, this system provides Indus-1 machine status (e.g. beam current, integrated current, beam life-time etc) to the users working in Indus-1 building, but using the web browsers the same information can be accessed throughout the CAT network. This system is basically a part of Indus-1 Control System Web Site which is under construction (partially constructed). (author)

  7. Energy Analysis of Contention Tree-Based Access Protocols in Dense Machine-to-Machine Area Networks

    Directory of Open Access Journals (Sweden)

    Francisco Vázquez-Gallego

    2015-01-01

    Full Text Available Machine-to-Machine (M2M area networks aim at connecting an M2M gateway with a large number of energy-constrained devices that must operate autonomously for years. Therefore, attaining high energy efficiency is essential in the deployment of M2M networks. In this paper, we consider a dense M2M area network composed of hundreds or thousands of devices that periodically transmit data upon request from a gateway or coordinator. We theoretically analyse the devices’ energy consumption using two Medium Access Control (MAC protocols which are based on a tree-splitting algorithm to resolve collisions among devices: the Contention Tree Algorithm (CTA and the Distributed Queuing (DQ access. We have carried out computer-based simulations to validate the accuracy of the theoretical models and to compare the energy performance using DQ, CTA, and Frame Slotted-ALOHA (FSA in M2M area networks with devices in compliance with the IEEE 802.15.4 physical layer. Results show that the performance of DQ is totally independent of the number of contending devices, and it can reduce the energy consumed per device in more than 35% with respect to CTA and in more than 80% with respect to FSA.

  8. Integrating source-language context into phrase-based statistical machine translation

    NARCIS (Netherlands)

    Haque, R.; Kumar Naskar, S.; Bosch, A.P.J. van den; Way, A.

    2011-01-01

    The translation features typically used in Phrase-Based Statistical Machine Translation (PB-SMT) model dependencies between the source and target phrases, but not among the phrases in the source language themselves. A swathe of research has demonstrated that integrating source context modelling

  9. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  10. Programming and machining of complex parts based on CATIA solid modeling

    Science.gov (United States)

    Zhu, Xiurong

    2017-09-01

    The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.

  11. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  12. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  13. Knowledge-based machine indexing from natural language text: Knowledge base design, development, and maintenance

    Science.gov (United States)

    Genuardi, Michael T.

    1993-01-01

    One strategy for machine-aided indexing (MAI) is to provide a concept-level analysis of the textual elements of documents or document abstracts. In such systems, natural-language phrases are analyzed in order to identify and classify concepts related to a particular subject domain. The overall performance of these MAI systems is largely dependent on the quality and comprehensiveness of their knowledge bases. These knowledge bases function to (1) define the relations between a controlled indexing vocabulary and natural language expressions; (2) provide a simple mechanism for disambiguation and the determination of relevancy; and (3) allow the extension of concept-hierarchical structure to all elements of the knowledge file. After a brief description of the NASA Machine-Aided Indexing system, concerns related to the development and maintenance of MAI knowledge bases are discussed. Particular emphasis is given to statistically-based text analysis tools designed to aid the knowledge base developer. One such tool, the Knowledge Base Building (KBB) program, presents the domain expert with a well-filtered list of synonyms and conceptually-related phrases for each thesaurus concept. Another tool, the Knowledge Base Maintenance (KBM) program, functions to identify areas of the knowledge base affected by changes in the conceptual domain (for example, the addition of a new thesaurus term). An alternate use of the KBM as an aid in thesaurus construction is also discussed.

  14. Functional networks inference from rule-based machine learning models.

    Science.gov (United States)

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The

  15. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  16. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    Science.gov (United States)

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  17. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  18. Learning Algorithms for Audio and Video Processing: Independent Component Analysis and Support Vector Machine Based Approaches

    National Research Council Canada - National Science Library

    Qi, Yuan

    2000-01-01

    In this thesis, we propose two new machine learning schemes, a subband-based Independent Component Analysis scheme and a hybrid Independent Component Analysis/Support Vector Machine scheme, and apply...

  19. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  20. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    OpenAIRE

    Fu Yu; Mu Jiong; Duan Xu Liang

    2016-01-01

    By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research...

  1. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  2. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach

    OpenAIRE

    Weng, Wei-Hung; Wagholikar, Kavishwar B.; McCray, Alexa T.; Szolovits, Peter; Chueh, Henry C.

    2017-01-01

    Background The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. Methods We constructed the pipeline using the clinical ...

  3. Are there intelligent Turing machines?

    OpenAIRE

    Bátfai, Norbert

    2015-01-01

    This paper introduces a new computing model based on the cooperation among Turing machines called orchestrated machines. Like universal Turing machines, orchestrated machines are also designed to simulate Turing machines but they can also modify the original operation of the included Turing machines to create a new layer of some kind of collective behavior. Using this new model we can define some interested notions related to cooperation ability of Turing machines such as the intelligence quo...

  4. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2016-01-01

    Full Text Available By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research thinking concerning extreme learning machine into the economics classification area so as to fulfill the purpose of computerizing the speedy but effective evaluation of massive financial statements of listed companies pertain to different classes

  5. Design Methodology of a Brushless IPM Machine for a Zero Speed Injection Based Sensorless Control

    OpenAIRE

    Godbehere, Jonathan; Wrobel, Rafal; Drury, David; Mellor, Phil

    2015-01-01

    In this paper a design approach for a sensorless controlled, brushless, interior permanent magnet machine is attained. An initial study based on established electrical machine formulas provides the machine’s basic geometrical sizing. The next design stage combines a particle swarm optimisation (PSO) search routine with a magneto-static finite element (FE) solver to provide a more in depth optimisation. The optimisation system has been formulated to derive alternative machine design variants, ...

  6. Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    OpenAIRE

    Thiruvenkadam, T; Karthikeyani, V

    2014-01-01

    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...

  7. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  8. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  9. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    Science.gov (United States)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  10. Improved method for SNR prediction in machine-learning-based test

    NARCIS (Netherlands)

    Sheng, Xiaoqin; Kerkhoff, Hans G.

    2010-01-01

    This paper applies an improved method for testing the signal-to-noise ratio (SNR) of Analogue-to-Digital Converters (ADC). In previous work, a noisy and nonlinear pulse signal is exploited as the input stimulus to obtain the signature results of ADC. By applying a machine-learning-based approach,

  11. A Virtual Machine Migration Strategy Based on Time Series Workload Prediction Using Cloud Model

    Directory of Open Access Journals (Sweden)

    Yanbing Liu

    2014-01-01

    Full Text Available Aimed at resolving the issues of the imbalance of resources and workloads at data centers and the overhead together with the high cost of virtual machine (VM migrations, this paper proposes a new VM migration strategy which is based on the cloud model time series workload prediction algorithm. By setting the upper and lower workload bounds for host machines, forecasting the tendency of their subsequent workloads by creating a workload time series using the cloud model, and stipulating a general VM migration criterion workload-aware migration (WAM, the proposed strategy selects a source host machine, a destination host machine, and a VM on the source host machine carrying out the task of the VM migration. Experimental results and analyses show, through comparison with other peer research works, that the proposed method can effectively avoid VM migrations caused by momentary peak workload values, significantly lower the number of VM migrations, and dynamically reach and maintain a resource and workload balance for virtual machines promoting an improved utilization of resources in the entire data center.

  12. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  13. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    Science.gov (United States)

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  14. Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less effective. More specifically, they cannot cope with various types of Android malware and have limitation in detection by utilizing a single classification algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this approach, we first extract eight types of features from static analysis on Android apps and build two kinds of feature sets after feature selection. Then, a parallel machine learning detection model is developed for speeding up the process of classification. Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can effectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison with real-world Android apps. The experimental results demonstrate that Mlifdect is capable of achieving higher detection accuracy as well as a remarkable run-time efficiency compared to the existing malware detection solutions.

  15. Real-time wavelet-based inline banknote-in-bundle counting for cut-and-bundle machines

    Science.gov (United States)

    Petker, Denis; Lohweg, Volker; Gillich, Eugen; Türke, Thomas; Willeke, Harald; Lochmüller, Jens; Schaede, Johannes

    2011-03-01

    Automatic banknote sheet cut-and-bundle machines are widely used within the scope of banknote production. Beside the cutting-and-bundling, which is a mature technology, image-processing-based quality inspection for this type of machine is attractive. We present in this work a new real-time Touchless Counting and perspective cutting blade quality insurance system, based on a Color-CCD-Camera and a dual-core Computer, for cut-and-bundle applications in banknote production. The system, which applies Wavelet-based multi-scale filtering is able to count banknotes inside a 100-bundle within 200-300 ms depending on the window size.

  16. A Cooperative Approach to Virtual Machine Based Fault Injection

    Energy Technology Data Exchange (ETDEWEB)

    Naughton III, Thomas J [ORNL; Engelmann, Christian [ORNL; Vallee, Geoffroy R [ORNL; Aderholdt, William Ferrol [ORNL; Scott, Stephen L [Tennessee Technological University (TTU)

    2017-01-01

    Resilience investigations often employ fault injection (FI) tools to study the effects of simulated errors on a target system. It is important to keep the target system under test (SUT) isolated from the controlling environment in order to maintain control of the experiement. Virtual machines (VMs) have been used to aid these investigations due to the strong isolation properties of system-level virtualization. A key challenge in fault injection tools is to gain proper insight and context about the SUT. In VM-based FI tools, this challenge of target con- text is increased due to the separation between host and guest (VM). We discuss an approach to VM-based FI that leverages virtual machine introspection (VMI) methods to gain insight into the target s context running within the VM. The key to this environment is the ability to provide basic information to the FI system that can be used to create a map of the target environment. We describe a proof- of-concept implementation and a demonstration of its use to introduce simulated soft errors into an iterative solver benchmark running in user-space of a guest VM.

  17. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  18. Research on intrusion detection based on Kohonen network and support vector machine

    Science.gov (United States)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  19. New concept of electrical drives for paper and board machines based on energy efficiency principles

    Directory of Open Access Journals (Sweden)

    Jeftenić Borislav

    2006-01-01

    Full Text Available In this paper, it is described how the reconstruction of the facility of paper machine has been conducted, at the press and drying part of the machine in June 2001, as well as the expansion of the Paper Machine with the "third coating" introducing, that has been done in July 2002, in the board factory "Umka". The existing old drive of the press and the drive of drying groups were established as a Line Shaft Drive, 76 m long. The novel drive is developed on the basis of conventional squirrel cage induction motor application, with frequency converter. The system control is carried out with the programmable controller, and the communication between controllers, converters, and control boards is accomplished trough profibus. Reconstruction of the coating part of the machine, during technological reconstruction of this part of the machine, was being conducted with a purpose to improve performance of the machine by adding device for spreading "third coating". The demands for the power facility were to replace existing facility with the new one, based on energy efficiency principles and to provide adequate facility for new technological sections. Also, new part of the facility had to be connected with the remaining part of the machine, i.e. with the press and drying part, which have been reconstructed in 2001. It has to be stressed that energy efficiency principles means to realize new, modernized drive with better performances and greater capacity for the as small as possible amount of increased installed power of separate drives. In the paper are also, graphically presented achieved energy savings results, based on measurements performed on separate parts of paper machine, before and after reconstruction. .

  20. A human-machine cooperation route planning method based on improved A* algorithm

    Science.gov (United States)

    Zhang, Zhengsheng; Cai, Chao

    2011-12-01

    To avoid the limitation of common route planning method to blindly pursue higher Machine Intelligence and autoimmunization, this paper presents a human-machine cooperation route planning method. The proposed method includes a new A* path searing strategy based on dynamic heuristic searching and a human cooperated decision strategy to prune searching area. It can overcome the shortage of A* algorithm to fall into a local long term searching. Experiments showed that this method can quickly plan a feasible route to meet the macro-policy thinking.

  1. An Automatic Assembling System for Sealing Rings Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Mingyu Gao

    2017-01-01

    Full Text Available In order to grab and place the sealing rings of battery lid quickly and accurately, an automatic assembling system for sealing rings based on machine vision is developed in this paper. The whole system is composed of the light sources, cameras, industrial control units, and a 4-degree-of-freedom industrial robot. Specifically, the sealing rings are recognized and located automatically with the machine vision module. Then industrial robot is controlled for grabbing the sealing rings dynamically under the joint work of multiple control units and visual feedback. Furthermore, the coordinates of the fast-moving battery lid are tracked by the machine vision module. Finally the sealing rings are placed on the sealing ports of battery lid accurately and automatically. Experimental results demonstrate that the proposed system can grab the sealing rings and place them on the sealing port of the fast-moving battery lid successfully. More importantly, the proposed system can improve the efficiency of the battery production line obviously.

  2. Duality-based algorithms for scheduling on unrelated parallel machines

    NARCIS (Netherlands)

    van de Velde, S.L.; van de Velde, S.L.

    1993-01-01

    We consider the following parallel machine scheduling problem. Each of n independent jobs has to be scheduled on one of m unrelated parallel machines. The processing of job J[sub l] on machine Mi requires an uninterrupted period of positive length p[sub lj]. The objective is to find an assignment of

  3. Prototype-based models in machine learning.

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of potentially high-dimensional, complex datasets. We discuss basic schemes of competitive vector quantization as well as the so-called neural gas approach and Kohonen's topology-preserving self-organizing map. Supervised learning in prototype systems is exemplified in terms of learning vector quantization. Most frequently, the familiar Euclidean distance serves as a dissimilarity measure. We present extensions of the framework to nonstandard measures and give an introduction to the use of adaptive distances in relevance learning. © 2016 Wiley Periodicals, Inc.

  4. Cheminformatics Modeling of Amine Solutions for Assessing their CO2 Absorption Properties.

    Science.gov (United States)

    Kuenemann, Melaine A; Fourches, Denis

    2017-07-01

    As stricter regulations on CO 2 emissions are adopted worldwide, identifying efficient chemical processes to capture and recycle CO 2 is of critical importance for industry. The most common process known as amine scrubbing suffers from the lack of available amine solutions capable of capturing CO 2 efficiently. Tertiary amines characterized by low heats of reaction are considered good candidates but their absorption properties can significantly differ from one analogue to another despite high structural similarity. Herein, after collecting and curating experimental data from the literature, we have built a modeling set of 41 amine structures with their absorption properties. Then we analyzed their chemical composition using molecular descriptors and non-supervised clustering. Furthermore, we developed a series of quantitative structure-property relationships (QSPR) to assess amines' CO 2 absorption properties from their structural characteristics. These models afforded reasonable prediction performances (e. g., Q 2 LOO =0.63 for CO 2 absorption amount) even though they are solely based on 2D chemical descriptors and individual machine learning techniques (random forest and neural network). Overall, we believe the chemical analysis and the series of QSPR models presented in this proof-of-concept study represent new knowledge and innovative tools that could be very useful for screening and prioritizing hypothetical amines to be synthesized and tested experimentally for their CO 2 absorption properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  6. Anodic solubility and electrochemical machining of hard alloys on the base of chromium and titanium carbides

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A D; Klepikov, A N; Malofeeva, A N; Moroz, I I

    1985-01-01

    The regularities of anodic behaviour and electrochemical machining (ECM) of the samples of three materials with the following compositions: 25% of Cr/sub 3/C/sub 2/, 15% of Ni, 70% of TiC, 25% of Ni, 5% of Cr, 70% of TiC, 15% of Ni, 15% of Mo are investigated. It is shown that the electrochemical method is applicable to hard alloys machining on the base of chromium and titanium carbides, the machining of which mechanically meets serious difficulties. The alloys machining rate by a mobile cathode constitutes about 0.5 mm/min.

  7. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach

    Science.gov (United States)

    Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546

  8. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach.

    Science.gov (United States)

    Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.

  9. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  10. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  11. Study of on-machine error identification and compensation methods for micro machine tools

    International Nuclear Information System (INIS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-01-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  12. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    Science.gov (United States)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products

  13. A rule-based approach to model checking of UML state machines

    Science.gov (United States)

    Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz

    2016-12-01

    In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.

  14. Fault Diagnosis for Engine Based on Single-Stage Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2016-01-01

    Full Text Available Single-Stage Extreme Learning Machine (SS-ELM is presented to dispose of the mechanical fault diagnosis in this paper. Based on it, the traditional mapping type of extreme learning machine (ELM has been changed and the eigenvectors extracted from signal processing methods are directly regarded as outputs of the network’s hidden layer. Then the uncertainty that training data transformed from the input space to the ELM feature space with the ELM mapping and problem of the selection of the hidden nodes are avoided effectively. The experiment results of diesel engine fault diagnosis show good performance of the SS-ELM algorithm.

  15. Optimization of machining parameters of turning operations based on multi performance criteria

    Directory of Open Access Journals (Sweden)

    N.K.Mandal

    2013-01-01

    Full Text Available The selection of optimum machining parameters plays a significant role to ensure quality of product, to reduce the manufacturing cost and to increase productivity in computer controlled manufacturing process. For many years, multi-objective optimization of turning based on inherent complexity of process is a competitive engineering issue. This study investigates multi-response optimization of turning process for an optimal parametric combination to yield the minimum power consumption, surface roughness and frequency of tool vibration using a combination of a Grey relational analysis (GRA. Confirmation test is conducted for the optimal machining parameters to validate the test result. Various turning parameters, such as spindle speed, feed and depth of cut are considered. Experiments are designed and conducted based on full factorial design of experiment.

  16. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    Science.gov (United States)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  17. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  18. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  19. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  20. Dynamic simulation of a sorption machine : application to a two-stage waterfall cycle; Simulation dynamique d'une machine a adsorption : application a un cycle cascade bi-etage

    Energy Technology Data Exchange (ETDEWEB)

    Lachance, D.; Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Castaing-Lasvignottes, J.; Meunier, F. [Laboratoire du Froid, CNAM, Paris (France)

    2002-07-01

    Trithermal sorption machines are an alternative solution to replace conventional refrigeration and air conditioning systems. This paper completed and followed other work concerning the study of the performance of a two-stage waterfall cycle, coupling a water/zeolite adsorption machine to a water/lithium bromide absorption machine. The objective of the coupling was to increase the global coefficient of performance of the installation. A dynamic model of the behaviour of the water/zeolite adsorption machine simple effect was described and validated using experimental data. The model was then adapted to the double effect cycle heat recovery in order to perform its energy analysis. The originality of this system stems from its functioning at relatively high condensation and regeneration temperatures of 100 Celsius and 300 Celsius respectively, leading to a high compression rate of 100 to 1. 6 refs., 12 figs.

  1. Density Based Support Vector Machines for Classification

    OpenAIRE

    Zahra Nazari; Dongshik Kang

    2015-01-01

    Support Vector Machines (SVM) is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification) of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classification performance, and machine should better to discard them. SVM as a popular and widely used cl...

  2. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  3. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate

    International Nuclear Information System (INIS)

    Zhu, Wu-Le; Yang, Shunyao; Ju, Bing-Feng; Jiang, Jiacheng; Sun, Anyu

    2015-01-01

    A scanning tunneling microscope-based multi-axis measuring system is specially developed for the on-machine measurement of three-dimensional (3D) microstructures, to address the quality control difficulty with the traditional off-line measurement process. A typical 3D microstructure of the curved compound eye was diamond-machined by the slow slide servo technique, and then the whole surface was on-machine scanned three-dimensionally based on the tip-tracking strategy by utilizing a spindle, two linear motion stages, and an additional rotary stage. The machined surface profile and its shape deviation were accurately measured on-machine. The distortion of imaged ommatidia on the curved substrate was distinctively evaluated based on the characterized points extracted from the measured surface. Furthermore, the machining errors were investigated in connection with the on-machine measured surface and its characteristic parameters. Through experiments, the proposed measurement system is demonstrated to feature versatile on-machine measurement of 3D microstructures with a curved substrate, which is highly meaningful for quality control in the fabrication field. (paper)

  4. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection.

    Science.gov (United States)

    Putra, I Putu Edy Suardiyana; Brusey, James; Gaura, Elena; Vesilo, Rein

    2017-12-22

    The fixed-size non-overlapping sliding window (FNSW) and fixed-size overlapping sliding window (FOSW) approaches are the most commonly used data-segmentation techniques in machine learning-based fall detection using accelerometer sensors. However, these techniques do not segment by fall stages (pre-impact, impact, and post-impact) and thus useful information is lost, which may reduce the detection rate of the classifier. Aligning the segment with the fall stage is difficult, as the segment size varies. We propose an event-triggered machine learning (EvenT-ML) approach that aligns each fall stage so that the characteristic features of the fall stages are more easily recognized. To evaluate our approach, two publicly accessible datasets were used. Classification and regression tree (CART), k -nearest neighbor ( k -NN), logistic regression (LR), and the support vector machine (SVM) were used to train the classifiers. EvenT-ML gives classifier F-scores of 98% for a chest-worn sensor and 92% for a waist-worn sensor, and significantly reduces the computational cost compared with the FNSW- and FOSW-based approaches, with reductions of up to 8-fold and 78-fold, respectively. EvenT-ML achieves a significantly better F-score than existing fall detection approaches. These results indicate that aligning feature segments with fall stages significantly increases the detection rate and reduces the computational cost.

  5. Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval

    Science.gov (United States)

    Karisani, Payam; Qin, Zhaohui S; Agichtein, Eugene

    2018-01-01

    Abstract The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge. Our experiments with probabilistic information retrieval methods, such as query term weight optimization, automatic query expansion and simulated user relevance feedback, demonstrate that automatically boosting the weights of important keywords in a verbose query is more effective than other methods. We also show that although there is a rich space of potential representations and features available in this domain, machine learning-based re-ranking models are not able to improve on probabilistic information retrieval techniques with the currently available training data. The models and algorithms presented in this paper can serve as a viable implementation of a search engine to provide access to biomedical datasets. The retrieval performance is expected to be further improved by using additional training data that is created by expert annotation, or gathered through usage logs, clicks and other processes during natural operation of the system. Database URL: https://github.com/emory-irlab/biocaddie

  6. Man machine interface based on speech recognition

    International Nuclear Information System (INIS)

    Jorge, Carlos A.F.; Aghina, Mauricio A.C.; Mol, Antonio C.A.; Pereira, Claudio M.N.A.

    2007-01-01

    This work reports the development of a Man Machine Interface based on speech recognition. The system must recognize spoken commands, and execute the desired tasks, without manual interventions of operators. The range of applications goes from the execution of commands in an industrial plant's control room, to navigation and interaction in virtual environments. Results are reported for isolated word recognition, the isolated words corresponding to the spoken commands. For the pre-processing stage, relevant parameters are extracted from the speech signals, using the cepstral analysis technique, that are used for isolated word recognition, and corresponds to the inputs of an artificial neural network, that performs recognition tasks. (author)

  7. Game-powered machine learning.

    Science.gov (United States)

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  8. Qubit absorption refrigerator at strong coupling

    Science.gov (United States)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  9. Research on bearing life prediction based on support vector machine and its application

    International Nuclear Information System (INIS)

    Sun Chuang; Zhang Zhousuo; He Zhengjia

    2011-01-01

    Life prediction of rolling element bearing is the urgent demand in engineering practice, and the effective life prediction technique is beneficial to predictive maintenance. Support vector machine (SVM) is a novel machine learning method based on statistical learning theory, and is of advantage in prediction. This paper develops SVM-based model for bearing life prediction. The inputs of the model are features of bearing vibration signal and the output is the bearing running time-bearing failure time ratio. The model is built base on a few failed bearing data, and it can fuse information of the predicted bearing. So it is of advantage to bearing life prediction in practice. The model is applied to life prediction of a bearing, and the result shows the proposed model is of high precision.

  10. Component Pin Recognition Using Algorithms Based on Machine Learning

    Science.gov (United States)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  11. Machine learning and radiology.

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  12. Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A laser absorption sensor for carbon monoxide concentration was developed for combustion studies in a rapid compression machine using a pulsed quantum cascade laser near 4.89 μm. Cavity enhancement reduced minimum detection limit down to 2.4 ppm

  13. The Integration of Project-Based Methodology into Teaching in Machine Translation

    Science.gov (United States)

    Madkour, Magda

    2016-01-01

    This quantitative-qualitative analytical research aimed at investigating the effect of integrating project-based teaching methodology into teaching machine translation on students' performance. Data was collected from the graduate students in the College of Languages and Translation, at Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi…

  14. Development of PC based data acquisition system for universal test machine

    International Nuclear Information System (INIS)

    Nageswara Rao, T.S.V.R.; Hari Prasad, V.; Satyadev, B.; Banarjee, P.K.

    2010-01-01

    To determine the tensile properties of nuclear fuel tubes and other components, the Universal Test Machine is being used in Material testing section of Quality Assurance, NFC. This machine consists of Chart Recorder to chart the Load Vs. Strain graph. The tensile properties of the test material viz. Ultimate Tensile Strength (UTS), Yield Strength (YS), and Young's Modulus (e) etc. are usually determined by graphical method using a ruler. To overcome the problems faced due to embargo and non-availability of spares of recorder, a PC based Data Acquisition System (DAS) with necessary software algorithm was developed for automatic calculation of tensile properties by extracting the linear portion of tensile test curve where the Tangent and Secant Modulus coincide, without intervention of the user. This developmental work reduces human error in calculation, facilitates the use of state-of-the art technology and the risk of obsolescence by employing PC based architecture. (author)

  15. Modeling and simulation of five-axis virtual machine based on NX

    Science.gov (United States)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  16. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  17. The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2012-01-01

    This paper presents the relevance voxel machine (RVoxM), a dedicated Bayesian model for making predictions based on medical imaging data. In contrast to the generic machine learning algorithms that have often been used for this purpose, the method is designed to utilize a small number of spatially...

  18. Rule based systems for big data a machine learning approach

    CERN Document Server

    Liu, Han; Cocea, Mihaela

    2016-01-01

    The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

  19. Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation.

    Science.gov (United States)

    Zhang, Lei; Zhang, David

    2016-08-10

    We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA). It allows us to learn a category transformation and an ELM classifier with random projection by minimizing the -norm of the network output weights and the learning error simultaneously. The unlabeled target data, as useful knowledge, is also integrated as a fidelity term to guarantee the stability during cross domain learning. It minimizes the matching error between the learned classifier and a base classifier, such that many existing classifiers can be readily incorporated as base classifiers. The network output weights cannot only be analytically determined, but also transferrable. Additionally, a manifold regularization with Laplacian graph is incorporated, such that it is beneficial to semi-supervised learning. Extensively, we also propose a model of multiple views, referred as MvEDA. Experiments on benchmark visual datasets for video event recognition and object recognition, demonstrate that our EDA methods outperform existing cross-domain learning methods.

  20. The machinability of nickel-based alloys in high-pressure jet assisted (HPJA turning

    Directory of Open Access Journals (Sweden)

    D. Kramar

    2013-10-01

    Full Text Available Due to their mechanical, thermal and chemical properties, nickel-based alloys are generally included among materials that are hard to machine. An experimental study has been performed to investigate the capabilities of conventional and high-pressure jet assisted (HPJA turning of hard-to-machine materials, namely Inconel 718. The capabilities of different hard turning procedures are compared by means of chip breakability. The obtained results show that HPJA method offers a significant increase in chip breakability, under the same cutting conditions (cutting speed, feed rate, depth of cut.

  1. An expert system for vibration based diagnostics of rotating machines

    International Nuclear Information System (INIS)

    Korteniemi, A.

    1990-01-01

    Very often changes in the mechanical condition of the rotating machinery can be observed as changes in its vibration. This paper presents an expert system for vibration-based diagnosis of rotating machines by describing the architecture of the developed prototype system. The importance of modelling the problem solving knowledge as well as the domain knowledge is emphasized by presenting the knowledge in several levels

  2. A User-Oriented Splog Filtering Based on a Machine Learning

    Science.gov (United States)

    Yoshinaka, Takayuki; Ishii, Soichi; Fukuhara, Tomohiro; Masuda, Hidetaka; Nakagawa, Hiroshi

    A method for filtering spam blogs (splogs) based on a machine learning technique, and its evaluation results are described. Today, spam blogs (splogs) became one of major issues on the Web. The problem of splogs is that values of blog sites are different by people. We propose a novel user-oriented splog filtering method that can adapt each user's preference for valuable blogs. We use the SVM(Support Vector Machine) for creating a personalized splog filter for each user. We had two experiments: (1) an experiment of individual splog judgement, and (2) an experiment for user oriented splog filtering. From the former experiment, we found existence of 'gray' blogs that are needed to treat by persons. From the latter experiment, we found that we can provide appropriate personalized filters by choosing the best feature set for each user. An overview of proposed method, and evaluation results are described.

  3. Research on intelligent machine self-perception method based on LSTM

    Science.gov (United States)

    Wang, Qiang; Cheng, Tao

    2018-05-01

    In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.

  4. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    Science.gov (United States)

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  5. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    Science.gov (United States)

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  6. A machine learning-based framework to identify type 2 diabetes through electronic health records.

    Science.gov (United States)

    Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You

    2017-01-01

    To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature

  7. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  8. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    Science.gov (United States)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  9. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  10. Successful attack on permutation-parity-machine-based neural cryptography.

    Science.gov (United States)

    Seoane, Luís F; Ruttor, Andreas

    2012-02-01

    An algorithm is presented which implements a probabilistic attack on the key-exchange protocol based on permutation parity machines. Instead of imitating the synchronization of the communicating partners, the strategy consists of a Monte Carlo method to sample the space of possible weights during inner rounds and an analytic approach to convey the extracted information from one outer round to the next one. The results show that the protocol under attack fails to synchronize faster than an eavesdropper using this algorithm.

  11. Improving the quality of automated DVD subtitles via example-based machine translation

    DEFF Research Database (Denmark)

    Armstrong, Stephen; Caffrey, Colm; Flanagan, Marian

    Denoual (2005) discovered that, contrary to popular belief, an Example-Based Machine Translation system trained on heterogeneous data produced significantly better results than a system trained on homogeneous data. Using similar evaluation metrics and a few additional ones, in this paper we show...

  12. Recycling Texts: Human evaluation of example-based machine translation subtitles for DVD

    DEFF Research Database (Denmark)

    Flanagan, Marian

    2009-01-01

    This project focuses on translation reusability in audiovisual contexts. Specifically, the project seeks to establish (1) whether target language subtitles produced by an Example-Based Machine Translation (EBMT) system are considered intelligible and acceptable by viewers of movies on DVD, and (2...

  13. Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    Science.gov (United States)

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.

  14. Virtual screening for cytochromes p450: successes of machine learning filters.

    Science.gov (United States)

    Burton, Julien; Ijjaali, Ismail; Petitet, François; Michel, André; Vercauteren, Daniel P

    2009-05-01

    Cytochromes P450 (CYPs) are crucial targets when predicting the ADME properties (absorption, distribution, metabolism, and excretion) of drugs in development. Particularly, CYPs mediated drug-drug interactions are responsible for major failures in the drug design process. Accurate and robust screening filters are thus needed to predict interactions of potent compounds with CYPs as early as possible in the process. In recent years, more and more 3D structures of various CYP isoforms have been solved, opening the gate of accurate structure-based studies of interactions. Nevertheless, the ligand-based approach still remains popular. This success can be explained by the growing number of available data and the satisfying performances of existing machine learning (ML) methods. The aim of this contribution is to give an overview of the recent achievements in ML applications to CYP datasets. Particularly, popular methods such as support vector machine, decision trees, artificial neural networks, k-nearest neighbors, and partial least squares will be compared as well as the quality of the datasets and the descriptors used. Consensus of different methods will also be discussed. Often reaching 90% of accuracy, the models will be analyzed to highlight the key descriptors permitting the good prediction of CYPs binding.

  15. The use of machine learning and nonlinear statistical tools for ADME prediction.

    Science.gov (United States)

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future.

  16. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  17. An Extreme Learning Machine Based on the Mixed Kernel Function of Triangular Kernel and Generalized Hermite Dirichlet Kernel

    Directory of Open Access Journals (Sweden)

    Senyue Zhang

    2016-01-01

    Full Text Available According to the characteristics that the kernel function of extreme learning machine (ELM and its performance have a strong correlation, a novel extreme learning machine based on a generalized triangle Hermitian kernel function was proposed in this paper. First, the generalized triangle Hermitian kernel function was constructed by using the product of triangular kernel and generalized Hermite Dirichlet kernel, and the proposed kernel function was proved as a valid kernel function of extreme learning machine. Then, the learning methodology of the extreme learning machine based on the proposed kernel function was presented. The biggest advantage of the proposed kernel is its kernel parameter values only chosen in the natural numbers, which thus can greatly shorten the computational time of parameter optimization and retain more of its sample data structure information. Experiments were performed on a number of binary classification, multiclassification, and regression datasets from the UCI benchmark repository. The experiment results demonstrated that the robustness and generalization performance of the proposed method are outperformed compared to other extreme learning machines with different kernels. Furthermore, the learning speed of proposed method is faster than support vector machine (SVM methods.

  18. An experimental study of water absorption characteristics for generator stator winding insulation

    International Nuclear Information System (INIS)

    Lee, D. S.; Bae, Y. C.; Kim, H. S.; Kim, Y. H.; Lee, H.

    2004-01-01

    Leaking water coolant into stator electrical insulation is a growing concern for the aging water-cooled generator since leaks in the generator water-cooled stator winding can affect machine availability and insulation life. But a domestic techniques of such field are insufficient and depend wholly on GE or TOSHIBA technique. Therefore this paper introduces measuring principle and developed measuring system, which has been used to detecting wet absorption. We accomplished the experiment with a stator promotion of virtue which is used in actual power plant. Also, experimental method of generator stator winding, which is investigated into wet absorption test

  19. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  20. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  1. PredPsych: A toolbox for predictive machine learning-based approach in experimental psychology research.

    Science.gov (United States)

    Koul, Atesh; Becchio, Cristina; Cavallo, Andrea

    2017-12-12

    Recent years have seen an increased interest in machine learning-based predictive methods for analyzing quantitative behavioral data in experimental psychology. While these methods can achieve relatively greater sensitivity compared to conventional univariate techniques, they still lack an established and accessible implementation. The aim of current work was to build an open-source R toolbox - "PredPsych" - that could make these methods readily available to all psychologists. PredPsych is a user-friendly, R toolbox based on machine-learning predictive algorithms. In this paper, we present the framework of PredPsych via the analysis of a recently published multiple-subject motion capture dataset. In addition, we discuss examples of possible research questions that can be addressed with the machine-learning algorithms implemented in PredPsych and cannot be easily addressed with univariate statistical analysis. We anticipate that PredPsych will be of use to researchers with limited programming experience not only in the field of psychology, but also in that of clinical neuroscience, enabling computational assessment of putative bio-behavioral markers for both prognosis and diagnosis.

  2. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-01-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  3. Predictive Analysis for the Thermal Diffusion of the Plasma-Assisted Machining of Superalloy Inconel-718 Based on Exponential Smoothing

    Directory of Open Access Journals (Sweden)

    Chen Shao-Hsien

    2018-01-01

    Full Text Available Nickel base and titanium base materials have been widely applied to engines in aerospace industry, and these engines are essential components of airplanes. The machining characteristics of aerospace materials may cause machining cutters to be worn down in a short time and thus reduce the accuracy of processing. The plasma-assisted machining adopted in the research is a kind of the complex machining method. In the cases of nickel base and titanium base alloys, the method can heat workpieces in an extremely short duration to soften the materials for the ease of cutting so that the cutting force, cutter wear, and machining cost will all be reduced. The research adopted plasma heating to soften parts of the materials and aimed to explore the heating of nickel base alloy. The temperature variation of the materials was investigated and measured by adjusting the current and feed velocity. Moreover, Inconel-718 superalloy was adopted for the comparison with nickel base alloy for the observation of the influence and change brought by heat, and the method of exponential smoothing was adopted to conduct the prediction and analysis of thermal diffusion for understanding the influence and change brought by electric current on nickel base materials. Finally, given the current from 20 A to 80 A and feed velocity from 1,000 mm/min to 3,000 mm/min, the influence of thermal diffusion was investigated and the related model was built.

  4. Quality Evaluation for Appearance of Needle Green Tea Based on Machine Vision and Process Parameters

    DEFF Research Database (Denmark)

    Dong, Chunwang; Zhu, Hongkai; Zhou, Xiaofen

    2017-01-01

    ), extreme learning machine (ELM) and strong predictor integration algorithm (ELM-AdaBoost). The comparison of the results showed that the ELM-AdaBoost model based on image characteristics had the best performance (RPD was more than 2). Its predictive performance was superior to other models, with smaller......, and modeling faster (0.014~0.281 s). AdaBoost method, which was a hybrid integrated algorithm, can further promote the accuracy and generalization capability of the model. The above conclusions indicated that it was feasible to evaluate the quality of appearance of needle green tea based on machine vision...

  5. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  6. A Method to Optimize Geometric Errors of Machine Tool based on SNR Quality Loss Function and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Cai Ligang

    2017-01-01

    Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.

  7. A comparative investigation on absorption performances of three expanded graphite-based complex materials for toluene

    International Nuclear Information System (INIS)

    Li Shande; Tian Shuanghong; Feng Yunfeng; Lei Jiajia; Wang, Piaopiao; Xiong Ya

    2010-01-01

    Three kinds of expanded graphite-based complex materials were prepared to absorb toluene by dispersing plant oil, animal oil and mineral oil on the surface of expanded graphite, respectively. These complex materials were characterized by scanning electronic micrograph, contact angle meter and Brunauer-Emmett-Teller surface area. And their absorption capacities for toluene were comparatively investigated. The results showed that the surfaces of the three types of sorbents were very hydrophobic and nonporous, but they all had excellent absorption capacities for toluene. And their absorption capacities were proportional to the toluene concentration in streams and decreased differently with increasing the absorption temperature. It was noteworthy that the absorption capacities varied with the unsaturated degree of the complex materials and kept unchanged under different relative humidities of streams. Moreover, the regeneration experiments showed that after 15-run regeneration the absorption capacities of expanded graphite modified by mineral oil almost kept unchanged, while that of expanded graphite loaded plant oil and animal oil dropped by 157 and 93.6 mg g -1 , respectively. The losses of their absorption capacities were ascribed to the destruction of their unsaturated carbon bounds.

  8. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    Science.gov (United States)

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  9. A Concrete Framework for Environment Machines

    DEFF Research Database (Denmark)

    Biernacka, Malgorzata; Danvy, Olivier

    2007-01-01

    calculus with explicit substitutions), we extend it minimally so that it can also express one-step reduction strategies, and we methodically derive a series of environment machines from the specification of two one-step reduction strategies for the lambda-calculus: normal order and applicative order....... The derivation extends Danvy and Nielsen’s refocusing-based construction of abstract machines with two new steps: one for coalescing two successive transitions into one, and the other for unfolding a closure into a term and an environment in the resulting abstract machine. The resulting environment machines...... include both the Krivine machine and the original version of Krivine’s machine, Felleisen et al.’s CEK machine, and Leroy’s Zinc abstract machine....

  10. Evaluation of energy absorption performance of steel square profiles with circular discontinuities

    Directory of Open Access Journals (Sweden)

    Dariusz Szwedowicz

    Full Text Available This article details the experimental and numerical results on the energy absorption performance of square tubular profile with circular discontinuities drilled at lengthwise in the structure. A straight profile pattern was utilized to compare the absorption of energy between the ones with discontinuities under quasi-static loads. The collapse mode and energy absorption conditions were modified by circular holes. The holes were drilled symmetrically in two walls and located in three different positions along of profile length. The results showed a better performance on energy absorption for the circular discontinuities located in middle height. With respect to a profile without holes, a maximum increase of 7% in energy absorption capacity was obtained experimentally. Also, the numerical simulation confirmed that the implementation of circular discontinuities can reduce the peak load (Pmax by 10%. A present analysis has been conducted to compare numerical results obtained by means of the finite element method with the experimental data captured by using the testing machine. Finally the discrete model of the tube with and without geometrical discontinuities presents very good agreements with the experimental results.

  11. The Value Simulation-Based Learning Added to Machining Technology in Singapore

    Science.gov (United States)

    Fang, Linda; Tan, Hock Soon; Thwin, Mya Mya; Tan, Kim Cheng; Koh, Caroline

    2011-01-01

    This study seeks to understand the value simulation-based learning (SBL) added to the learning of Machining Technology in a 15-week core subject course offered to university students. The research questions were: (1) How did SBL enhance classroom learning? (2) How did SBL help participants in their test? (3) How did SBL prepare participants for…

  12. Summary of vulnerability related technologies based on machine learning

    Science.gov (United States)

    Zhao, Lei; Chen, Zhihao; Jia, Qiong

    2018-04-01

    As the scale of information system increases by an order of magnitude, the complexity of system software is getting higher. The vulnerability interaction from design, development and deployment to implementation stages greatly increases the risk of the entire information system being attacked successfully. Considering the limitations and lags of the existing mainstream security vulnerability detection techniques, this paper summarizes the development and current status of related technologies based on the machine learning methods applied to deal with massive and irregular data, and handling security vulnerabilities.

  13. A experimental system for the checking of the absorption of E.C.A.G. graphite

    International Nuclear Information System (INIS)

    Raievski, V.; Vidal, R.

    1958-01-01

    A system is described for measuring the mean absorption cross section in thermal neutrons of graphite. This system consists of a graphite stack containing a Ra-Be source and a BF3 counter. A cavity in the stack receives the graphite to be studied or the graphite standard. By comparing the counting rates their absorption ratio can be deduced. The measurement is performed on graphite rods which have been machined before being placed in the pile. It provides the possibility of detecting over a batch of 1 ton of graphite, in a single measurement, a difference in absorption of 0.1 milli barn. (author) [fr

  14. Restrictions of process machine retooling at machine-building enterprises

    Directory of Open Access Journals (Sweden)

    Kuznetsova Elena

    2017-01-01

    Full Text Available The competitiveness of the national economy depends on the technological level of the machine-building enterprises production equipment. Today in Russia there are objective and subjective restrictions for the optimum policy formation of the manufacturing equipment renewal. The analysis of the manufacturing equipment age structure dynamics in the Russian machine-building complex indicates the negative tendencies intensification: increase in the equipment service life, reduction in the share of up-to-date equipment, and drop in its use efficiency. The article investigates and classifies the main restrictions of the manufacturing equipment renewal process, such as regulatory and legislative, financial, organizational, competency-based. The economic consequences of the revealed restrictions influence on the machine-building enterprises activity are shown.

  15. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  16. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection

    Directory of Open Access Journals (Sweden)

    Sanggyun Lee

    2016-08-01

    Full Text Available Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s. In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel approaches for lead detection using two machine learning algorithms: decision trees and random forest. CryoSat-2 satellite data collected in March and April of 2011–2014 over the Arctic region were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean, including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter sigma-0. The parameters were used to identify leads in the machine learning models. Results show that the proposed approaches, with overall accuracy >90%, produced much better performance than existing lead detection methods based on simple thresholding approaches. Sea ice thickness estimated based on the machine learning-detected leads was compared to the averaged Airborne Electromagnetic (AEM-bird data collected over two days during the CryoSat Validation experiment (CryoVex field campaign in April 2011. This comparison showed that the proposed machine learning methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE = 0.29 m compared to thickness estimation based on existing lead detection methods (RMSE = 0.86–0.93 m. Sea ice thickness based on the machine learning approaches showed a consistent decline from 2011–2013 and rebounded in 2014.

  17. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    Science.gov (United States)

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A data-based technique for monitoring of wound rotor induction machines: A simulation study

    KAUST Repository

    Harrou, Fouzi

    2016-05-09

    Detecting faults induction machines is crucial for a safe operation of these machines. The aim of this paper is to present a statistical fault detection methodology for the detection of faults in three-phase wound rotor induction machines (WRIM). The proposed fault detection approach is based on the use of principal components analysis (PCA). However, conventional PCA-based detection indices, such as the T2T2 and the Q statistics, are not well suited to detect small faults because these indices only use information from the most recent available samples. Detection of small faults is one of the most crucial and challenging tasks in the area of fault detection and diagnosis. In this paper, a new statistical system monitoring strategy is proposed for detecting changes resulting from small shifts in several variables associated with WRIM. The proposed approach combines modeling using PCA modeling with the exponentially weighted moving average (EWMA) control scheme. In the proposed approach, EWMA control scheme is applied on the ignored principal components to detect the presence of faults. The performance of the proposed method is compared with those of the traditional PCA-based fault detection indices. The simulation results clearly show the effectiveness of the proposed method over the conventional ones, especially in the presence of faults with small magnitudes.

  19. Adsorption Machine & Desiccant Wheel based SOLAR COOLING in a Second Law perspective

    OpenAIRE

    Bivona, Santo

    2011-01-01

    This thesis work is intended to investigate energy and exergy performance of a low power prototype solar air conditioning system based on sorption materials. Its performance is analyzed in the light of both the First and Second Law of Thermodynamics and compared with conventional HVAC systems as well as with a further solar cooling technology based on desiccant wheels (Solar DEC). The adsorption machine based solar cooling plant was thoroughly designed and its thermal performance analysed ...

  20. Classification of HTTP traffic based on C5.0 Machine Learning Algorithm

    DEFF Research Database (Denmark)

    Bujlow, Tomasz; Riaz, Tahir; Pedersen, Jens Myrup

    2012-01-01

    streaming through third-party plugins, etc. This paper suggests and evaluates two approaches to distinguish various types of HTTP traffic based on the content: distributed among volunteers' machines and centralized running in the core of the network. We also assess the accuracy of the centralized classifier...

  1. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  2. Extracting Date/Time Expressions in Super-Function Based Japanese-English Machine Translation

    Science.gov (United States)

    Sasayama, Manabu; Kuroiwa, Shingo; Ren, Fuji

    Super-Function Based Machine Translation(SFBMT) which is a type of Example-Based Machine Translation has a feature which makes it possible to expand the coverage of examples by changing nouns into variables, however, there were problems extracting entire date/time expressions containing parts-of-speech other than nouns, because only nouns/numbers were changed into variables. We describe a method for extracting date/time expressions for SFBMT. SFBMT uses noun determination rules to extract nouns and a bilingual dictionary to obtain correspondence of the extracted nouns between the source and the target languages. In this method, we add a rule to extract date/time expressions and then extract date/time expressions from a Japanese-English bilingual corpus. The evaluation results shows that the precision of this method for Japanese sentences is 96.7%, with a recall of 98.2% and the precision for English sentences is 94.7%, with a recall of 92.7%.

  3. Aging Detection of Electrical Point Machines Based on Support Vector Data Description

    Directory of Open Access Journals (Sweden)

    Jaewon Sa

    2017-11-01

    Full Text Available Electrical point machines (EPM must be replaced at an appropriate time to prevent the occurrence of operational safety or stability problems in trains resulting from aging or budget constraints. However, it is difficult to replace EPMs effectively because the aging conditions of EPMs depend on the operating environments, and thus, a guideline is typically not be suitable for replacing EPMs at the most timely moment. In this study, we propose a method of classification for the detection of an aging effect to facilitate the timely replacement of EPMs. We employ support vector data description to segregate data of “aged” and “not-yet-aged” equipment by analyzing the subtle differences in normalized electrical signals resulting from aging. Based on the before and after-replacement data that was obtained from experimental studies that were conducted on EPMs, we confirmed that the proposed method was capable of classifying machines based on exhibited aging effects with adequate accuracy.

  4. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    Science.gov (United States)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  5. Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters

    International Nuclear Information System (INIS)

    Kim, Jong Do; Lee, Su Jin; Suh, Jeong

    2011-01-01

    This paper describes the Laser Assisted Machining (LAM) that cuts and removes softened parts by locally heating the ceramic with laser. Silicon nitride ceramics can be machined with general machining tools as well, because YSiAlON, which was made up ceramics, is soften at about 1,000 .deg. C. In particular, the laser, which concentrates on highly dense energy, can locally heat materials and very effectively control the temperature of the heated part of specimen. Therefore, this paper intends to propose an efficient machining method of ceramic by deducing the machining governing factors of laser assisted machining and understanding its mechanism. While laser power is the machining factor that controls the temperature, the CBN cutting tool could cut the material more easily as the material gets deteriorated from the temperature increase by increasing the laser power, but excessive oxidation can negatively affect the quality of the material surface after machining. As the feed rate and cutting depth increase, the cutting force increases and tool lifespan decreases, but surface oxidation also decreases. In this experiment, the material can be cut to 3 mm of cutting depth. And based on the results of the experiment, the laser assisted machining mechanism is clarified

  6. Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank

    Directory of Open Access Journals (Sweden)

    Adria Moreno Miquel

    2018-06-01

    Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for

  7. Permutation parity machines for neural cryptography.

    Science.gov (United States)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  8. Permutation parity machines for neural cryptography

    International Nuclear Information System (INIS)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-01-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  9. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  10. NMF-Based Image Quality Assessment Using Extreme Learning Machine.

    Science.gov (United States)

    Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun

    2017-01-01

    Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.

  11. Improved Extreme Learning Machine based on the Sensitivity Analysis

    Science.gov (United States)

    Cui, Licheng; Zhai, Huawei; Wang, Benchao; Qu, Zengtang

    2018-03-01

    Extreme learning machine and its improved ones is weak in some points, such as computing complex, learning error and so on. After deeply analyzing, referencing the importance of hidden nodes in SVM, an novel analyzing method of the sensitivity is proposed which meets people’s cognitive habits. Based on these, an improved ELM is proposed, it could remove hidden nodes before meeting the learning error, and it can efficiently manage the number of hidden nodes, so as to improve the its performance. After comparing tests, it is better in learning time, accuracy and so on.

  12. Rule-based machine translation for Aymara

    NARCIS (Netherlands)

    Coler, Matthew; Homola, Petr; Jones, Mari

    2014-01-01

    This paper presents the ongoing result of an approach developed by the collaboration of a computational linguist with a field linguist that addresses one of the oft-overlooked keys to language maintenance: the development of modern language-learning tools. Although machine translation isn’t commonly

  13. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators

    International Nuclear Information System (INIS)

    Ahmadivand, Arash; Sinha, Raju; Karabiyik, Mustafa; Vabbina, Phani Kiran; Gerislioglu, Burak; Kaya, Serkan; Pala, Nezih

    2017-01-01

    Graphene plasmonics has been introduced as a novel platform to design various nano- and microstructures to function in a wide range of spectrum from optical to THz frequencies. Herein, we propose a tunable plasmonic metamaterial in the THz regime by using metallic (silver) concentric microscale split ring resonator arrays on a multilayer metasurface composed of silica and silicon layers. We obtained an absorption percentage of 47.9% including two strong Fano resonant dips in THz regime for the purely plasmonic metamaterial without graphene layer. Considering the data of an atomic graphene sheet (with the thickness of ~0.35 nm) in both analytical and experimental regimes obtained by prior works, we employed a graphene layer under concentric split ring resonator arrays and above the multilayer metasurface to enhance the absorption ratio in THz bandwidth. Our numerical and analytical results proved that the presence of a thin graphene layer enhances the absorption coefficient of MM to 64.35%, at the highest peak in absorption profile that corresponds to the Fano dip position. We also have shown that changing the intrinsic characteristics of graphene sheet leads to shifts in the position of Fano dips and variations in the absorption efficiency. The maximum percentage of absorption (~67%) was obtained for graphene-based MM with graphene layer with dissipative loss factor of 1477 Ω. Employing the antisymmetric feature of the split ring resonators, the proposed graphene-based metamaterial with strong polarization dependency is highly sensitive to the polarization angle of the incident THz beam.

  14. Machine learning in virtual screening.

    Science.gov (United States)

    Melville, James L; Burke, Edmund K; Hirst, Jonathan D

    2009-05-01

    In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

  15. Base for a remote quality control system for magnetic resonance images machines

    International Nuclear Information System (INIS)

    Gonzalez Dalmau, Evelio R; Cabal Mirabal, Carlos; Noda Guerra, Manuel

    2014-01-01

    The medical images systems convert characteristic of the tissues in gray levels or color, using a physical method and a specific mathematical transformation. In Magnetic Resonance Images (MRI) these levels have a multi-parametric dependence, this a reason of their strong presence in the daily clinical practice. This technological complexity, the high costs and the importance that have these study for the patient's life, confer to the Quality Control (QC) human, technological, economic and juridical implications. Several international groups dedicated to the QC in MRI and diversity of approaches to carry out the tests of acceptance and periodic control of the quality exist. The characterization is habitually carried out, with global methods that don't allow a detailed quantitative parametric study. A novel system of quantitative control was developed based on quantitative describers by slices and temporal. This system is formed for: 1) standard methodology of acquisition of the experimental data, 2) subsystem of functions and programs developed in MatLab, 3) subsystem of graphics and reports, and 4) the expert. It is used successfully in the characterization and the periodic control of MRI machines of several magnetic fields in Cuba and in Venezuela. They were defined and established quantitative descriptors for MRI machines. The software flexibility allows carry out the QC to any machine facilitating the standardization and its use in multi-center studies. The retrospective and predictive value of the system was demonstrated. They feel the bases for the remote realization of the test

  16. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jin [School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, Shandong 250353 (China); Liu, Zhanqiang, E-mail: melius@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Shandong (China); Lv, Shaoyu [School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061 (China)

    2014-02-15

    Ni-based superalloy represents a significant metal portion of the aircraft critical structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels and excellent service performance, surface integrity is one of the most relevant parameter used for evaluating the quality of finish machined surfaces. In the study of surface integrity, the formation white layer is a very important research topic. The formation of white layer on the Ni-based superalloy machined surface will reduce the machined parts service performance and fatigue life. This paper was conducted to determine the effects of cutting speed on white layer formation in high speed machining of FGH95 Ni-based superalloy. Optical microscope, scanning electron microscope and X-ray diffraction were employed to analyze the elements and microstructures of white layer and bulk materials. The statistical analysis for grain numbers was executed to study the influence of cutting speed on the grain refinement in the machined surface. The investigation results showed that white layer exhibits significantly different microstructures with the bulk materials. It shows densification, no obvious structural features characteristic. The microstructure and phase of Ni-based solid solution changed during cutting process. The increase of cutting speed causes the increase of white layer thickness when the cutting speed is less than 2000 m/min. However, white layer thickness reduces with the cutting speed further increase. The higher the cutting speed, the more serious grains refinement in machined surface. 2-D FEM for machining FGH95 were carried out to simulate the cutting process and obtained the cutting temperature field, cutting strain field and strain rate field. The impact mechanisms of cutting temperature, cutting strain and strain rates on white layer formation were analyzed. At last, deformation-phase transformation

  17. Mechanical design of machine components

    CERN Document Server

    Ugural, Ansel C

    2015-01-01

    Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combines the theory needed to gain insight into mechanics with numerical methods in design. It presents real-world engineering applications, and reveals the link between basic mechanics and the specific design of machine components and machines. Divided into three parts, this revised text presents basic background topics, deals with failure prevention in a variety of machine elements and covers applications in design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included.Key Features of the Second Edition:Incorporates material that has been completely updated with new chapters, problems, practical examples...

  18. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  19. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  20. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  1. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  2. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  3. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    Science.gov (United States)

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  4. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  5. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  6. Discrimination of Rock Fracture and Blast Events Based on Signal Complexity and Machine Learning

    Directory of Open Access Journals (Sweden)

    Zilong Zhou

    2018-01-01

    Full Text Available The automatic discrimination of rock fracture and blast events is complex and challenging due to the similar waveform characteristics. To solve this problem, a new method based on the signal complexity analysis and machine learning has been proposed in this paper. First, the permutation entropy values of signals at different scale factors are calculated to reflect complexity of signals and constructed into a feature vector set. Secondly, based on the feature vector set, back-propagation neural network (BPNN as a means of machine learning is applied to establish a discriminator for rock fracture and blast events. Then to evaluate the classification performances of the new method, the classifying accuracies of support vector machine (SVM, naive Bayes classifier, and the new method are compared, and the receiver operating characteristic (ROC curves are also analyzed. The results show the new method obtains the best classification performances. In addition, the influence of different scale factor q and number of training samples n on discrimination results is discussed. It is found that the classifying accuracy of the new method reaches the highest value when q = 8–15 or 8–20 and n=140.

  7. An Individual Claims History Simulation Machine

    Directory of Open Access Journals (Sweden)

    Andrea Gabrielli

    2018-03-01

    Full Text Available The aim of this project is to develop a stochastic simulation machine that generates individual claims histories of non-life insurance claims. This simulation machine is based on neural networks to incorporate individual claims feature information. We provide a fully calibrated stochastic scenario generator that is based on real non-life insurance data. This stochastic simulation machine allows everyone to simulate their own synthetic insurance portfolio of individual claims histories and back-test thier preferred claims reserving method.

  8. The influence of negative training set size on machine learning-based virtual screening.

    Science.gov (United States)

    Kurczab, Rafał; Smusz, Sabina; Bojarski, Andrzej J

    2014-01-01

    The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening.

  9. Explaining Support Vector Machines: A Color Based Nomogram.

    Directory of Open Access Journals (Sweden)

    Vanya Van Belle

    Full Text Available Support vector machines (SVMs are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant. When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method.

  10. Machine rates for selected forest harvesting machines

    Science.gov (United States)

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  11. Human-machine interface upgrade

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The article describes a new human-machine interface that was installed at the VR-1 training reactor. The human-machine interface upgrade was completed in the summer 2001. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between the reactor operator and the nuclear reactor I and C. The second display is a graphical one. It presents the status of the reactor, principal parameters (as power, period), control rods positions, course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human-machine interface was produced with the InTouch developing tool of the Wonder-Ware Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors to the reactor. Microcomputer based communication units with proper software were developed to connect the new human-machine interface with the present reactor I and C. The new human-machine interface at the VR-1 training reactor improves the comfort and safety of the reactor utilisation, facilitates experiments and training, and provides better support for foreign visitors. (orig.)

  12. Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E.; Ferro, V.R., E-mail: victor.ferro@uam.es; Riva, J. de; Moreno, D.; Palomar, J.

    2014-06-01

    Highlights: • NH{sub 3}–IL absorption cycles are modeled by COSMO-based Aspen simulations. • Proposed a priori computational approach is validated using experimental data. • Cycle performance was analyzed for conventional and task-specific ILs. • IL solvents with high NH{sub 3} absorption capacity improve the cycle performance. • Using IL mixtures is revealed as promising alternative in NH{sub 3} absorption applications. - Abstract: COSMO-based process simulations with Aspen Plus/Aspen HYSYS are used, for the first time, to a priori estimate the thermodynamic performance of ammonia absorption refrigeration cycles using ionic liquids as absorbents. This allows not only broadening the criteria set used to select/design ionic liquids with optimized properties to be used in that role, but also evaluating innovative strategies to improve the cycle’s performances. COSMO-RS method provides the information required for both creating the ionic liquid non-database components and specifying the COSMOSAC property model to perform Aspen Plus calculations. The computational procedure used here gives at the same time reasonable good property predictions of the vapor (refrigerant) and the condensed (ammonia + ionic liquid) phases as well as physically consistent estimations of the cycle’s performance under different conditions. Current results agree with those previously reported in the literature for several ionic liquid-based systems taken for comparison. In addition, task-specific ionic liquids, with improved properties for ammonia absorption, and also binary ionic liquid mixtures are considered in the analysis. It is obtained that ionic liquids showing higher ammonia absorption capacity among the considered absorbents simultaneously provide the best cycle’s performances. The cycle performances vary in relatively wide intervals depending on the ammonia concentration in the (refrigerant + absorbent) solutions. This behavior is strongly modulated by the ammonia

  13. Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations

    International Nuclear Information System (INIS)

    Ruiz, E.; Ferro, V.R.; Riva, J. de; Moreno, D.; Palomar, J.

    2014-01-01

    Highlights: • NH 3 –IL absorption cycles are modeled by COSMO-based Aspen simulations. • Proposed a priori computational approach is validated using experimental data. • Cycle performance was analyzed for conventional and task-specific ILs. • IL solvents with high NH 3 absorption capacity improve the cycle performance. • Using IL mixtures is revealed as promising alternative in NH 3 absorption applications. - Abstract: COSMO-based process simulations with Aspen Plus/Aspen HYSYS are used, for the first time, to a priori estimate the thermodynamic performance of ammonia absorption refrigeration cycles using ionic liquids as absorbents. This allows not only broadening the criteria set used to select/design ionic liquids with optimized properties to be used in that role, but also evaluating innovative strategies to improve the cycle’s performances. COSMO-RS method provides the information required for both creating the ionic liquid non-database components and specifying the COSMOSAC property model to perform Aspen Plus calculations. The computational procedure used here gives at the same time reasonable good property predictions of the vapor (refrigerant) and the condensed (ammonia + ionic liquid) phases as well as physically consistent estimations of the cycle’s performance under different conditions. Current results agree with those previously reported in the literature for several ionic liquid-based systems taken for comparison. In addition, task-specific ionic liquids, with improved properties for ammonia absorption, and also binary ionic liquid mixtures are considered in the analysis. It is obtained that ionic liquids showing higher ammonia absorption capacity among the considered absorbents simultaneously provide the best cycle’s performances. The cycle performances vary in relatively wide intervals depending on the ammonia concentration in the (refrigerant + absorbent) solutions. This behavior is strongly modulated by the ammonia absorption

  14. Real-time power angle determination of salient-pole synchronous machine based on air gap measurements

    Energy Technology Data Exchange (ETDEWEB)

    Despalatovic, Marin; Jadric, Martin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, R. Boskovica bb, 21000 Split (Croatia)

    2008-11-15

    This paper presents a new method for the real-time power angle determination of the salient-pole synchronous machines. This method is based on the terminal voltage and air gap measurements, which are the common features of the hydroturbine generator monitoring system. The raw signal of the air gap sensor is used to detect the rotor displacement with reference to the fundamental component of the terminal voltage. First, the algorithm developed for the real-time power angle determination is tested using the synthetic data obtained by the standard machine model simulation. Thereafter, the experimental investigation is carried out on the 26 MVA utility generator. The validity of the method is verified by comparing with another method, which is based on a tooth gear mounted on the rotor shaft. The proposed real-time algorithm has an adequate accuracy and needs a very short processing time. For applications that do not require real-time processing, such as the estimation of the synchronous machine parameters, the accuracy is additionally increased by applying an off-line data-processing algorithm. (author)

  15. Figure of merit for macrouniformity based on image quality ruler evaluation and machine learning framework

    Science.gov (United States)

    Wang, Weibao; Overall, Gary; Riggs, Travis; Silveston-Keith, Rebecca; Whitney, Julie; Chiu, George; Allebach, Jan P.

    2013-01-01

    Assessment of macro-uniformity is a capability that is important for the development and manufacture of printer products. Our goal is to develop a metric that will predict macro-uniformity, as judged by human subjects, by scanning and analyzing printed pages. We consider two different machine learning frameworks for the metric: linear regression and the support vector machine. We have implemented the image quality ruler, based on the recommendations of the INCITS W1.1 macro-uniformity team. Using 12 subjects at Purdue University and 20 subjects at Lexmark, evenly balanced with respect to gender, we conducted subjective evaluations with a set of 35 uniform b/w prints from seven different printers with five levels of tint coverage. Our results suggest that the image quality ruler method provides a reliable means to assess macro-uniformity. We then defined and implemented separate features to measure graininess, mottle, large area variation, jitter, and large-scale non-uniformity. The algorithms that we used are largely based on ISO image quality standards. Finally, we used these features computed for a set of test pages and the subjects' image quality ruler assessments of these pages to train the two different predictors - one based on linear regression and the other based on the support vector machine (SVM). Using five-fold cross-validation, we confirmed the efficacy of our predictor.

  16. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  17. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Dezhi Wang

    2018-02-01

    Full Text Available In the dwindling natural mangrove today, mangrove reforestation projects are conducted worldwide to prevent further losses. Due to monoculture and the low survival rate of artificial mangroves, it is necessary to pay attention to mapping and monitoring them dynamically. Remote sensing techniques have been widely used to map mangrove forests due to their capacity for large-scale, accurate, efficient, and repetitive monitoring. This study evaluated the capability of a 0.5-m Pléiades-1 in classifying artificial mangrove species using both pixel-based and object-based classification schemes. For comparison, three machine learning algorithms—decision tree (DT, support vector machine (SVM, and random forest (RF—were used as the classifiers in the pixel-based and object-based classification procedure. The results showed that both the pixel-based and object-based approaches could recognize the major discriminations between the four major artificial mangrove species. However, the object-based method had a better overall accuracy than the pixel-based method on average. For pixel-based image analysis, SVM produced the highest overall accuracy (79.63%; for object-based image analysis, RF could achieve the highest overall accuracy (82.40%, and it was also the best machine learning algorithm for classifying artificial mangroves. The patches produced by object-based image analysis approaches presented a more generalized appearance and could contiguously depict mangrove species communities. When the same machine learning algorithms were compared by McNemar’s test, a statistically significant difference in overall classification accuracy between the pixel-based and object-based classifications only existed in the RF algorithm. Regarding species, monoculture and dominant mangrove species Sonneratia apetala group 1 (SA1 as well as partly mixed and regular shape mangrove species Hibiscus tiliaceus (HT could well be identified. However, for complex and easily

  18. Engagement techniques and playing level impact the biomechanical demands on rugby forwards during machine-based scrummaging

    OpenAIRE

    Preatoni, Ezio; Stokes, Keith A.; England, Michael E.; Trewartha, Grant

    2014-01-01

    Objectives This cross-sectional study investigated the factors that may influence the physical loading on rugby forwards performing a scrum by studying the biomechanics of machine-based scrummaging under different engagement techniques and playing levels.Methods 34 forward packs from six playing levels performed repetitions of five different types of engagement techniques against an instrumented scrum machine under realistic training conditions. Applied forces and body movements were recorded...

  19. Support vector machine-based facial-expression recognition method combining shape and appearance

    Science.gov (United States)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  20. Constructing a modern city machine

    DEFF Research Database (Denmark)

    Lindegaard, Hanne; Jørgensen, Ulrik

    1998-01-01

    Based on the Copenhagen sewers debates and constructions the role of changing perceptions of water, hygiene and environment is discussed in relation to the modernisation of cities by machinating flows and infrastructures.......Based on the Copenhagen sewers debates and constructions the role of changing perceptions of water, hygiene and environment is discussed in relation to the modernisation of cities by machinating flows and infrastructures....

  1. Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption

    International Nuclear Information System (INIS)

    Kant, Niti; Wani, Manzoor Ahmad

    2015-01-01

    Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The field distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear absorption coefficient. The differential equation for the beam width parameter is solved by following Wentzel–Kramers–Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density, decentered parameter and with different absorption levels in the medium. The results reveal that these parameters can affect the self-focusing significantly. (paper)

  2. Towards Massive Machine Type Cellular Communications

    OpenAIRE

    Dawy, Zaher; Saad, Walid; Ghosh, Arunabha; Andrews, Jeffrey G.; Yaacoub, Elias

    2015-01-01

    Cellular networks have been engineered and optimized to carrying ever-increasing amounts of mobile data, but over the last few years, a new class of applications based on machine-centric communications has begun to emerge. Automated devices such as sensors, tracking devices, and meters - often referred to as machine-to-machine (M2M) or machine-type communications (MTC) - introduce an attractive revenue stream for mobile network operators, if a massive number of them can be efficiently support...

  3. Man-machine communication based on the computerized operator support system

    International Nuclear Information System (INIS)

    Sano, Y.; Fukumoto, A.; Seki, E.; Tai, I.; Mori, N.; Tsuchida, M.; Sato, N.

    1985-01-01

    Development of a man-machine communication system in a nuclear power plant has been performed, utilizing the new communication technologies and an advanced diagnosis system. In the course of elaborating the communication concept, selection and rearrangement of communication functions in a control room were made based on the human factors engineering. Guidelines and criteria for information display system and operational equipments were also studied and evaluated. The outline of the communication concept and some evaluation test results are described. (author)

  4. Machine Learning-based Intelligent Formal Reasoning and Proving System

    Science.gov (United States)

    Chen, Shengqing; Huang, Xiaojian; Fang, Jiaze; Liang, Jia

    2018-03-01

    The reasoning system can be used in many fields. How to improve reasoning efficiency is the core of the design of system. Through the formal description of formal proof and the regular matching algorithm, after introducing the machine learning algorithm, the system of intelligent formal reasoning and verification has high efficiency. The experimental results show that the system can verify the correctness of propositional logic reasoning and reuse the propositional logical reasoning results, so as to obtain the implicit knowledge in the knowledge base and provide the basic reasoning model for the construction of intelligent system.

  5. A nanoplasmonic switch based on molecular machines

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental

  6. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  7. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  8. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    Science.gov (United States)

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  9. Experimental investigation and exergy analysis of a triple fluid vapor absorption refrigerator

    International Nuclear Information System (INIS)

    Jemaa, Radhouane Ben; Mansouri, Rami; Boukholda, Ismail; Bellagi, Ahmed

    2016-01-01

    Highlights: • Experimental study on a commercial triple fluid vapor absorption refrigerator performed. • An Aspen-hysys model developed and validated with experimental measurements. • Exergy analysis of the unit performed and discussed. • Absorber identified as largest source of irreversibility, followed by solution heat exchanger. - Abstract: This paper presents an energy and exergy analyses of a triple fluid vapor absorption refrigerator working with ammonia as refrigerant, water as absorbent and hydrogen as auxiliary gas. The experimental setup is constituted of a commercial unit equipped with the appropriate metrology. The temperature at the inlet and outlet of every component of the machine, as well as the cabinet and ambient temperature are continuously measured and monitored. A simulation model of the machine is developed using the process simulator Aspen-Hysys. The thermodynamic analysis includes energy and exergy efficiency calculations, destroyed exergy evaluation and degradation of the coefficient of performance (COP) in each component of the refrigerator. The results indicate that the absorber exhibits the largest source of irreversibility followed by the solution heat exchanger. These two components alone are at the origin of 63% of the total degradation of COP.

  10. Semi-empirical γ-ray peak efficiency determination including self-absorption correction based on numerical integration

    International Nuclear Information System (INIS)

    Noguchi, M.; Takeda, K.; Higuchi, H.

    1981-01-01

    A method of γ-ray efficiency determination for extended (plane or bulk) samples based on numerical integration of point source efficiency is studied. The proposed method is widely applicable to samples of various shapes and materials. The geometrical factor in the peak efficiency can easily be corrected for by simply changing the integration region, and γ-ray self-absorption is also corrected by the absorption coefficients for the sample matrix. (author)

  11. MRTD: man versus machine

    Science.gov (United States)

    van Rheenen, Arthur D.; Taule, Petter; Thomassen, Jan Brede; Madsen, Eirik Blix

    2018-04-01

    We present Minimum-Resolvable Temperature Difference (MRTD) curves obtained by letting an ensemble of observers judge how many of the six four-bar patterns they can "see" in a set of images taken with different bar-to-background contrasts. The same images are analyzed using elemental signal analysis algorithms and machine-analysis based MRTD curves are obtained. We show that by adjusting the minimum required signal-to-noise ratio the machine-based MRTDs are very similar to the ones obtained with the help of the human observers.

  12. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    Directory of Open Access Journals (Sweden)

    Pietrowski Wojciech

    2017-12-01

    Full Text Available Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN. The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN and multi-layer perceptron neural network (MLP. Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  13. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    Science.gov (United States)

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  14. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  15. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    International Nuclear Information System (INIS)

    Du, Z C; Lv, C F; Hong, M S

    2006-01-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'

  16. Investigation into the accuracy of a proposed laser diode based multilateration machine tool calibration system

    International Nuclear Information System (INIS)

    Fletcher, S; Longstaff, A P; Myers, A

    2005-01-01

    Geometric and thermal calibration of CNC machine tools is required in modern machine shops with volumetric accuracy assessment becoming the standard machine tool qualification in many industries. Laser interferometry is a popular method of measuring the errors but this, and other alternatives, tend to be expensive, time consuming or both. This paper investigates the feasibility of using a laser diode based system that capitalises on the low cost nature of the diode to provide multiple laser sources for fast error measurement using multilateration. Laser diode module technology enables improved wavelength stability and spectral linewidth which are important factors for laser interferometry. With more than three laser sources, the set-up process can be greatly simplified while providing flexibility in the location of the laser sources improving the accuracy of the system

  17. Design Guidelines for Coffee Vending Machines

    OpenAIRE

    Schneidermeier, Tim; Burghardt, Manuel; Wolff, Christian

    2013-01-01

    Walk-up-and-use-systems such as vending and self-service machines request special attention concerning an easy to use and self-explanatory user interface. In this paper we present a set of design guidelines for coffee vending machines based on the results of an expert-based usability evaluation of thirteen different models.

  18. A Support Vector Machine-Based Gender Identification Using Speech Signal

    Science.gov (United States)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  19. Failure Identification of Hacksaw Machine REMOR 400

    International Nuclear Information System (INIS)

    Paidjo; Abdul Hafid; Sagino

    2007-01-01

    REMOR 400 Hack sawing machine is one of machines type has been old age. For arrange of cutting pressure and repeat lifting load after cutting process by using the hydraulic system. Beside of worn-out of hacksaw blade, failure cutting earn also because of leakage from the hydraulic system of machine. Leakage of hydraulic system occurs because of over load factor using or aging. Base on inspection result, hacksaw machine REMOR 400 fault on hydraulic system in the 2006 year. This matter will be seen from its seal brittle from the machine. For activate to return machine so much replacement repeat the seals used by machine. (author)

  20. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  1. Formal modeling of virtual machines

    Science.gov (United States)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  2. Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.

    Science.gov (United States)

    Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank

    2018-02-01

    Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists

  3. VATE: VAlidation of high TEchnology based on large database analysis by learning machine

    NARCIS (Netherlands)

    Meldolesi, E; Van Soest, J; Alitto, A R; Autorino, R; Dinapoli, N; Dekker, A; Gambacorta, M A; Gatta, R; Tagliaferri, L; Damiani, A; Valentini, V

    2014-01-01

    The interaction between implementation of new technologies and different outcomes can allow a broad range of researches to be expanded. The purpose of this paper is to introduce the VAlidation of high TEchnology based on large database analysis by learning machine (VATE) project that aims to combine

  4. The Relevance Voxel Machine (RVoxM): A Bayesian Method for Image-Based Prediction

    DEFF Research Database (Denmark)

    Sabuncu, Mert R.; Van Leemput, Koen

    2011-01-01

    This paper presents the Relevance VoxelMachine (RVoxM), a Bayesian multivariate pattern analysis (MVPA) algorithm that is specifically designed for making predictions based on image data. In contrast to generic MVPA algorithms that have often been used for this purpose, the method is designed to ...

  5. Design challenges for stepper motor actuated microvalve based on fine and micro-machining

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2007-01-01

    We present a normally open stepper motor actuated microvalve based on micro and fine-machining technique. In this paper, first we have described how the larger controllable flow range can be achieved with simple micromachining techniques and secondly we have presented the results which show how the

  6. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  7. Feature recognition and detection for ancient architecture based on machine vision

    Science.gov (United States)

    Zou, Zheng; Wang, Niannian; Zhao, Peng; Zhao, Xuefeng

    2018-03-01

    Ancient architecture has a very high historical and artistic value. The ancient buildings have a wide variety of textures and decorative paintings, which contain a lot of historical meaning. Therefore, the research and statistics work of these different compositional and decorative features play an important role in the subsequent research. However, until recently, the statistics of those components are mainly by artificial method, which consumes a lot of labor and time, inefficiently. At present, as the strong support of big data and GPU accelerated training, machine vision with deep learning as the core has been rapidly developed and widely used in many fields. This paper proposes an idea to recognize and detect the textures, decorations and other features of ancient building based on machine vision. First, classify a large number of surface textures images of ancient building components manually as a set of samples. Then, using the convolution neural network to train the samples in order to get a classification detector. Finally verify its precision.

  8. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  9. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  10. LHCb experience with running jobs in virtual machines

    CERN Document Server

    McNab, A; Luzzi, C

    2015-01-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites mana...

  11. Typologically robust statistical machine translation : Understanding and exploiting differences and similarities between languages in machine translation

    NARCIS (Netherlands)

    Daiber, J.

    2018-01-01

    Machine translation systems often incorporate modeling assumptions motivated by properties of the language pairs they initially target. When such systems are applied to language families with considerably different properties, translation quality can deteriorate. Phrase-based machine translation

  12. Automating horizontal boring and milling machine

    International Nuclear Information System (INIS)

    Naqvi, S.A.R.; Mahmood, T.; Choudhry, M.A.; Hanif, A.

    2012-01-01

    Aiming at the requirements of modification for many old import machine tools in industry, the schemes suited to the renovation are presented in this paper. A horizontal boring and milling machine (HBM) involved in machining of tank Al-Khalid has been modified using Mitsubishi FX-1N and FX-2N PLC. The developed software is for control of all the functions of the said machine. These functions include power on/off oil pump, spindle rotation and machine movement in all axes. All the decisions required by the machine for actuation of instructions are based on the data acquired from the control panel, timers and limit switches. Also the developed software minimize the down time, safety of operator and error free actuation of instructions. (author)

  13. Automatic Test Pattern Generator for Fuzzing Based on Finite State Machine

    Directory of Open Access Journals (Sweden)

    Ming-Hung Wang

    2017-01-01

    Full Text Available With the rapid development of the Internet, several emerging technologies are adopted to construct fancy, interactive, and user-friendly websites. Among these technologies, HTML5 is a popular one and is widely used in establishing modern sites. However, the security issues in the new web technologies are also raised and are worthy of investigation. For vulnerability investigation, many previous studies used fuzzing and focused on generation-based approaches to produce test cases for fuzzing; however, these methods require a significant amount of knowledge and mental efforts to develop test patterns for generating test cases. To decrease the entry barrier of conducting fuzzing, in this study, we propose a test pattern generation algorithm based on the concept of finite state machines. We apply graph analysis techniques to extract paths from finite state machines and use these paths to construct test patterns automatically. According to the proposal, fuzzing can be completed through inputting a regular expression corresponding to the test target. To evaluate the performance of our proposal, we conduct an experiment in identifying vulnerabilities of the input attributes in HTML5. According to the results, our approach is not only efficient but also effective for identifying weak validators in HTML5.

  14. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  15. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  16. Static Object Detection Based on a Dual Background Model and a Finite-State Machine

    Directory of Open Access Journals (Sweden)

    Heras Evangelio Rubén

    2011-01-01

    Full Text Available Detecting static objects in video sequences has a high relevance in many surveillance applications, such as the detection of abandoned objects in public areas. In this paper, we present a system for the detection of static objects in crowded scenes. Based on the detection of two background models learning at different rates, pixels are classified with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction; it can be implemented as a look-up table with negligible computational cost and it can be easily extended. Due to the definition of the states in the state machine, the system can be used either full automatically or interactively, making it extremely suitable for real-life surveillance applications. The system was successfully validated with several public datasets.

  17. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  18. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  19. SELF-ABSORPTION CORRECTIONS BASED ON MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Kamila Johnová

    2016-12-01

    Full Text Available The main aim of this article is to demonstrate how Monte Carlo simulations are implemented in our gamma spectrometry laboratory at the Department of Dosimetry and Application of Ionizing Radiation in order to calculate the self-absorption within the samples. A model of real HPGe detector created for MCNP simulations is presented in this paper. All of the possible parameters, which may influence the self-absorption, are at first discussed theoretically and lately described using the calculated results.

  20. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    Sharma Mradul; Koul Maharaj Krishna; Mitra Abhas; Nayak Jitadeepa; Bose Smarajit

    2014-01-01

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  1. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  2. Teraflop-scale Incremental Machine Learning

    OpenAIRE

    Özkural, Eray

    2011-01-01

    We propose a long-term memory design for artificial general intelligence based on Solomonoff's incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on Stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-u...

  3. FPGA-based multisensor real-time machine vision for banknote printing

    Science.gov (United States)

    Li, Rui; Türke, Thomas; Schaede, Johannes; Willeke, Harald; Lohweg, Volker

    2009-02-01

    Automatic sheet inspection in banknote production has been used as a standard quality control tool for more than a decade. As more and more print techniques and new security features are established, total quality in bank note printing must be guaranteed. This aspect has a direct impact on the research and development for bank note inspection systems in general in the sense of technological sustainability. It is accepted, that print defects are generated not only by printing parameter changes, but also by mechanical machine parameter changes, which will change unnoticed in production. Therefore, a new concept for a multi-sensory adaptive learning and classification model based on Fuzzy-Pattern- Classifiers for data inspection and machine conditioning is proposed. A general aim is to improve the known inspection techniques and propose an inspection methodology that can ensure a comprehensive quality control of the printed substrates processed by printing presses, especially printing presses which are designed to process substrates used in the course of the production of banknotes, security documents and others. Therefore, the research and development work in this area necessitates a change in concept for banknote inspection in general. In this paper a new generation of FPGA (Field Programmable Gate Array) based real time inspection technology is presented, which allows not only colour inspection on banknote sheets, but has also the implementation flexibility for various inspection algorithms for security features, such as window threads, embedded threads, OVDs, watermarks, screen printing etc., and multi-sensory data processing. A variety of algorithms is described in the paper, which are designed for and implemented on FPGAs. The focus is based on algorithmic approaches.

  4. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  5. Building machine learning systems with Python

    CERN Document Server

    Richert, Willi

    2013-01-01

    This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro

  6. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  7. Lithium bromide high-temperature absorption heat pump: coefficient of performance and exergetic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M [Consejo Superior de Investigaciones Cientificas, Madrid (ES). Inst. de Optica; Aroca, S [Escuela Tecnica Superior de Ingenieros Industriales, Valladolid (ES). Catedratico de Ingenieria Termica

    1990-04-01

    A theoretical study of a lithium bromide absorption heat pump, used as a machine type I and aimed to produce heat at 120{sup 0}C via waste heat sources at 60{sup 0}C, is given. Real performance conditions are stated for each component of the machine. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Q{sub e}, the heat delivered to the absorber Q{sub a} and to the condenser Q{sub c}, and the heat supplied to the generator Q{sub g}. The heat delivered by the hot solution to the cold solution in the heat recovered Q{sub r}, and the work W{sub p} done by the solution pump are calculated. The probable COP is calculated as close to 1.4 and the working temperature in the generator ranges from 178 to 200{sup 0}C. The heat produced by the heat pump is 22% cheaper than that obtained from a cogeneration system comprising a natural gas internal combustion engine and high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined leading to an exergetic efficiency of 75% which provides the quality index of the absorption cycle. (author).

  8. Machine learning based analysis of cardiovascular images

    NARCIS (Netherlands)

    Wolterink, JM

    2017-01-01

    Cardiovascular diseases (CVDs), including coronary artery disease (CAD) and congenital heart disease (CHD) are the global leading cause of death. Computed tomography (CT) and magnetic resonance imaging (MRI) allow non-invasive imaging of cardiovascular structures. This thesis presents machine

  9. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  10. Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

    Directory of Open Access Journals (Sweden)

    Zhang Yinong

    2014-09-01

    Full Text Available Thin film solar cell consists of various layers so the surface of solar cell shows heterogeneous textures. Because of this property the visual inspection of micro-crack is very difficult. In this paper, we propose the machine vision-based micro-crack detection scheme for thin film solar cell panel. In the proposed method, the crack edge detection is based on the application of diagonal-kernel and cross-kernel in parallel. Experimental results show that the proposed method has better performance of micro-crack detection than conventional anisotropic model based methods on a cross- kernel.

  11. A novel improved fuzzy support vector machine based stock price trend forecast model

    OpenAIRE

    Wang, Shuheng; Li, Guohao; Bao, Yifan

    2018-01-01

    Application of fuzzy support vector machine in stock price forecast. Support vector machine is a new type of machine learning method proposed in 1990s. It can deal with classification and regression problems very successfully. Due to the excellent learning performance of support vector machine, the technology has become a hot research topic in the field of machine learning, and it has been successfully applied in many fields. However, as a new technology, there are many limitations to support...

  12. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    Science.gov (United States)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  13. Considerations upon the Machine Learning Technologies

    OpenAIRE

    Alin Munteanu; Cristina Ofelia Sofran

    2006-01-01

    Artificial intelligence offers superior techniques and methods by which problems from diverse domains may find an optimal solution. The Machine Learning technologies refer to the domain of artificial intelligence aiming to develop the techniques allowing the computers to “learn”. Some systems based on Machine Learning technologies tend to eliminate the necessity of the human intelligence while the others adopt a man-machine collaborative approach.

  14. Machine listening intelligence

    Science.gov (United States)

    Cella, C. E.

    2017-05-01

    This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.

  15. Machine-vision-based identification of broken inserts in edge profile milling heads

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    This paper presents a reliable machine vision system to automatically detect inserts and determine if they are broken. Unlike the machining operations studied in the literature, we are dealing with edge milling head tools for aggressive machining of thick plates (up to 12 centimetres) in a single

  16. DNS Tunneling Detection Method Based on Multilabel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ahmed Almusawi

    2018-01-01

    Full Text Available DNS tunneling is a method used by malicious users who intend to bypass the firewall to send or receive commands and data. This has a significant impact on revealing or releasing classified information. Several researchers have examined the use of machine learning in terms of detecting DNS tunneling. However, these studies have treated the problem of DNS tunneling as a binary classification where the class label is either legitimate or tunnel. In fact, there are different types of DNS tunneling such as FTP-DNS tunneling, HTTP-DNS tunneling, HTTPS-DNS tunneling, and POP3-DNS tunneling. Therefore, there is a vital demand to not only detect the DNS tunneling but rather classify such tunnel. This study aims to propose a multilabel support vector machine in order to detect and classify the DNS tunneling. The proposed method has been evaluated using a benchmark dataset that contains numerous DNS queries and is compared with a multilabel Bayesian classifier based on the number of corrected classified DNS tunneling instances. Experimental results demonstrate the efficacy of the proposed SVM classification method by obtaining an f-measure of 0.80.

  17. Flocking small smart machines: An experiment in cooperative, multi-machine control

    International Nuclear Information System (INIS)

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm's individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation's configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above

  18. Decomposition of the compound Atwood machine

    Science.gov (United States)

    Lopes Coelho, R.

    2017-11-01

    Non-standard solving strategies for the compound Atwood machine problem have been proposed. The present strategy is based on a very simple idea. Taking an Atwood machine and replacing one of its bodies by another Atwood machine, we have a compound machine. As this operation can be repeated, we can construct any compound Atwood machine. This rule of construction is transferred to a mathematical model, whereby the equations of motion are obtained. The only difference between the machine and its model is that instead of pulleys and bodies, we have reference frames that move solidarily with these objects. This model provides us with the accelerations in the non-inertial frames of the bodies, which we will use to obtain the equations of motion. This approach to the problem will be justified by the Lagrange method and exemplified by machines with six and eight bodies.

  19. Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines

    International Nuclear Information System (INIS)

    Li Jiazhong; Liu Huanxiang; Yao Xiaojun; Liu Mancang; Hu Zhide; Fan Botao

    2007-01-01

    The least-squares support vector machines (LS-SVMs), as an effective modified algorithm of support vector machine, was used to build structure-activity relationship (SAR) models to classify the oxindole-based inhibitors of cyclin-dependent kinases (CDKs) based on their activity. Each compound was depicted by the structural descriptors that encode constitutional, topological, geometrical, electrostatic and quantum-chemical features. The forward-step-wise linear discriminate analysis method was used to search the descriptor space and select the structural descriptors responsible for activity. The linear discriminant analysis (LDA) and nonlinear LS-SVMs method were employed to build classification models, and the best results were obtained by the LS-SVMs method with prediction accuracy of 100% on the test set and 90.91% for CDK1 and CDK2, respectively, as well as that of LDA models 95.45% and 86.36%. This paper provides an effective method to screen CDKs inhibitors

  20. A Character Level Based and Word Level Based Approach for Chinese-Vietnamese Machine Translation

    Directory of Open Access Journals (Sweden)

    Phuoc Tran

    2016-01-01

    Full Text Available Chinese and Vietnamese have the same isolated language; that is, the words are not delimited by spaces. In machine translation, word segmentation is often done first when translating from Chinese or Vietnamese into different languages (typically English and vice versa. However, it is a matter for consideration that words may or may not be segmented when translating between two languages in which spaces are not used between words, such as Chinese and Vietnamese. Since Chinese-Vietnamese is a low-resource language pair, the sparse data problem is evident in the translation system of this language pair. Therefore, while translating, whether it should be segmented or not becomes more important. In this paper, we propose a new method for translating Chinese to Vietnamese based on a combination of the advantages of character level and word level translation. In addition, a hybrid approach that combines statistics and rules is used to translate on the word level. And at the character level, a statistical translation is used. The experimental results showed that our method improved the performance of machine translation over that of character or word level translation.

  1. A Character Level Based and Word Level Based Approach for Chinese-Vietnamese Machine Translation.

    Science.gov (United States)

    Tran, Phuoc; Dinh, Dien; Nguyen, Hien T

    2016-01-01

    Chinese and Vietnamese have the same isolated language; that is, the words are not delimited by spaces. In machine translation, word segmentation is often done first when translating from Chinese or Vietnamese into different languages (typically English) and vice versa. However, it is a matter for consideration that words may or may not be segmented when translating between two languages in which spaces are not used between words, such as Chinese and Vietnamese. Since Chinese-Vietnamese is a low-resource language pair, the sparse data problem is evident in the translation system of this language pair. Therefore, while translating, whether it should be segmented or not becomes more important. In this paper, we propose a new method for translating Chinese to Vietnamese based on a combination of the advantages of character level and word level translation. In addition, a hybrid approach that combines statistics and rules is used to translate on the word level. And at the character level, a statistical translation is used. The experimental results showed that our method improved the performance of machine translation over that of character or word level translation.

  2. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  3. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  4. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  5. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  6. Considerations upon the Machine Learning Technologies

    Directory of Open Access Journals (Sweden)

    Alin Munteanu

    2006-01-01

    Full Text Available Artificial intelligence offers superior techniques and methods by which problems from diverse domains may find an optimal solution. The Machine Learning technologies refer to the domain of artificial intelligence aiming to develop the techniques allowing the computers to “learn”. Some systems based on Machine Learning technologies tend to eliminate the necessity of the human intelligence while the others adopt a man-machine collaborative approach.

  7. Man Machine Systems in Education.

    Science.gov (United States)

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  8. SAM: Support Vector Machine Based Active Queue Management

    International Nuclear Information System (INIS)

    Shah, M.S.

    2014-01-01

    Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers. (author)

  9. Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-07

    A laser absorption sensor for carbon monoxide concentration was developed for combustion studies in a rapid compression machine using a pulsed quantum cascade laser near 4.89 μm. Cavity enhancement reduced minimum detection limit down to 2.4 ppm at combustion relevant conditions. Off-axis alignment and rapid intra-pulse down-chirp resulted in effective suppression of cavity noise.

  10. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data.

    Science.gov (United States)

    Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter

    2017-06-28

    High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  12. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  13. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening.

    Science.gov (United States)

    Ain, Qurrat Ul; Aleksandrova, Antoniya; Roessler, Florian D; Ballester, Pedro J

    2015-01-01

    Docking tools to predict whether and how a small molecule binds to a target can be applied if a structural model of such target is available. The reliability of docking depends, however, on the accuracy of the adopted scoring function (SF). Despite intense research over the years, improving the accuracy of SFs for structure-based binding affinity prediction or virtual screening has proven to be a challenging task for any class of method. New SFs based on modern machine-learning regression models, which do not impose a predetermined functional form and thus are able to exploit effectively much larger amounts of experimental data, have recently been introduced. These machine-learning SFs have been shown to outperform a wide range of classical SFs at both binding affinity prediction and virtual screening. The emerging picture from these studies is that the classical approach of using linear regression with a small number of expert-selected structural features can be strongly improved by a machine-learning approach based on nonlinear regression allied with comprehensive data-driven feature selection. Furthermore, the performance of classical SFs does not grow with larger training datasets and hence this performance gap is expected to widen as more training data becomes available in the future. Other topics covered in this review include predicting the reliability of a SF on a particular target class, generating synthetic data to improve predictive performance and modeling guidelines for SF development. WIREs Comput Mol Sci 2015, 5:405-424. doi: 10.1002/wcms.1225 For further resources related to this article, please visit the WIREs website.

  14. A new method of machine vision reprocessing based on cellular neural networks

    International Nuclear Information System (INIS)

    Jianhua, W.; Liping, Z.; Fenfang, Z.; Guojian, H.

    1996-01-01

    This paper proposed a method of image preprocessing in machine vision based on Cellular Neural Network (CNN). CNN is introduced to design image smoothing, image recovering, image boundary detecting and other image preprocessing problems. The proposed methods are so simple that the speed of algorithms are increased greatly to suit the needs of real-time image processing. The experimental results show a satisfactory reply

  15. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    Science.gov (United States)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  16. Philips high tension generator (x-ray machine) testing for baby ebm (electron beam machine) project

    International Nuclear Information System (INIS)

    Norman Awalludin; Leo Kwee Wah; Abu Bakar Mhd Ghazali

    2005-01-01

    This paper describes the test of the HT system (from X-ray machine) for usage of the mini EBM (Electron Beam Machine). It consists the procedures of the installation, the safety procedures when deals with HT, modification of the system for testing purpose and the technique/method for testing the HT system. As a result, the voltage for the HT system and the electron gun (filament) current can be measured. Based on the results, suitability of the machine for baby EBM could be confirmed. (Author)

  17. The application of state machine based on labview for solid target transfer control system at BATAN’s cyclotron

    International Nuclear Information System (INIS)

    Heranudin; Rajiman; Parwanto; Edy Slamet R

    2015-01-01

    Software programming for the new solid target transfer control system referred to the working principle of the whole each sub system. System modeling with state machine diagram was chosen because this simplified a complex design of the control system. State machine implementation of this system was performed by creating basic state drawn from the working system of each sub system. All states with their described inputs, outputs and algorithms were compiled in the sequential state machine diagram. In order to ease the operation, three modes namely automatic, major states and micro states were created. Testing of the system has been conducted and as a result, the system worked properly. The implementation of State machine based on LabView has several advantages such as faster, easier programming and the capability for further developments. (author)

  18. Extending the features of RBMK refuelling machine simulator with a training tool based on virtual reality

    International Nuclear Information System (INIS)

    Khoudiakov, M.; Slonimsky, V.; Mitrofanov, S.

    2004-01-01

    The paper describes a continuation of efforts of an international Russian - Norwegian joint team to improve operational safety during the refuelling process of an RBMK-type reactor by implementing a training simulator based on an innovative Virtual Reality (VR) approach. During the preceding 1st stage of the project a display-based simulator was extended with VR models of the real Refuelling Machine (RM) and its environment in order to improve both the learning process and operation's effectiveness. The simulator's challenge is to support the performance (operational activity) of RM operational staff firstly by helping them to develop basic knowledge and skills as well as to keep skilled staff in close touch with the complex machinery of the Refuelling Machine. During the 2nd stage of the joint project the functional scope of the VR-simulator was greatly enhanced - firstly, by connecting to the RBMK-unit full-scope simulator, and, secondly, by including a training program and simulator model upgrade. The present 3rd stage of the Project is primarily oriented towards the improvement of the training process for maintenance and operational personnel by means of a development of the Training Support Methodology and Courses (TSMC) to be based on Virtual Reality and enlarged functionality of 3D and process modelling. The TMSC development is based on Russian and International Regulatory Bodies requirements and recommendations. Design, development and creation of a specialised VR-based Training System for RM Maintenance Personnel are very important for the Russian RBMK plants. The main goal is to create a powerful, autonomous VR-based simulator for training technical maintenance personnel on the Refuelling Machine. VR based training is expected to improve the effect of training compared to the current training based on traditional methods using printed documentation. The LNPP management and the Regulatory Bodies supported this goal. The VR-based Training System should

  19. Effect of Machining Velocity in Nanoscale Machining Operations

    International Nuclear Information System (INIS)

    Islam, Sumaiya; Khondoker, Noman; Ibrahim, Raafat

    2015-01-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s. (paper)

  20. Reverse hypothesis machine learning a practitioner's perspective

    CERN Document Server

    Kulkarni, Parag

    2017-01-01

    This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as ...

  1. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  2. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  3. The Complexity of Abstract Machines

    Directory of Open Access Journals (Sweden)

    Beniamino Accattoli

    2017-01-01

    Full Text Available The lambda-calculus is a peculiar computational model whose definition does not come with a notion of machine. Unsurprisingly, implementations of the lambda-calculus have been studied for decades. Abstract machines are implementations schema for fixed evaluation strategies that are a compromise between theory and practice: they are concrete enough to provide a notion of machine and abstract enough to avoid the many intricacies of actual implementations. There is an extensive literature about abstract machines for the lambda-calculus, and yet—quite mysteriously—the efficiency of these machines with respect to the strategy that they implement has almost never been studied. This paper provides an unusual introduction to abstract machines, based on the complexity of their overhead with respect to the length of the implemented strategies. It is conceived to be a tutorial, focusing on the case study of implementing the weak head (call-by-name strategy, and yet it is an original re-elaboration of known results. Moreover, some of the observation contained here never appeared in print before.

  4. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    Science.gov (United States)

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species

  5. Time-frequency feature analysis and recognition of fission neutrons signal based on support vector machine

    International Nuclear Information System (INIS)

    Jin Jing; Wei Biao; Feng Peng; Tang Yuelin; Zhou Mi

    2010-01-01

    Based on the interdependent relationship between fission neutrons ( 252 Cf) and fission chain ( 235 U system), the paper presents the time-frequency feature analysis and recognition in fission neutron signal based on support vector machine (SVM) through the analysis on signal characteristics and the measuring principle of the 252 Cf fission neutron signal. The time-frequency characteristics and energy features of the fission neutron signal are extracted by using wavelet decomposition and de-noising wavelet packet decomposition, and then applied to training and classification by means of support vector machine based on statistical learning theory. The results show that, it is effective to obtain features of nuclear signal via wavelet decomposition and de-noising wavelet packet decomposition, and the latter can reflect the internal characteristics of the fission neutron system better. With the training accomplished, the SVM classifier achieves an accuracy rate above 70%, overcoming the lack of training samples, and verifying the effectiveness of the algorithm. (authors)

  6. Housing Value Forecasting Based on Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Jingyi Mu

    2014-01-01

    Full Text Available In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper, on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According to the predictions, the government and developers can make decisions about whether developing the real estate on corresponding regions or not. In this paper, support vector machine (SVM, least squares support vector machine (LSSVM, and partial least squares (PLS methods are used to forecast the home values. And these algorithms are compared according to the predicted results. Experiment shows that although the data set exists serious nonlinearity, the experiment result also show SVM and LSSVM methods are superior to PLS on dealing with the problem of nonlinearity. The global optimal solution can be found and best forecasting effect can be achieved by SVM because of solving a quadratic programming problem. In this paper, the different computation efficiencies of the algorithms are compared according to the computing times of relevant algorithms.

  7. Tunable Absorption System based on magnetorheological elastomers and Halbach array: design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Mirosław; Kaleta, Jerzy; Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.edu.pl; Przybylski, Michał

    2017-08-01

    Highlights: • Construction of a Tunable Absorption System incorporating MRE has been done. • For system control by magnetic field a double circular Halbach array has been used. • Significant changes of the TSAs natural frequency and damping has been obtained. - Abstract: In this paper, the systematic design, construction and testing of a Tunable Absorption System (TAS) incorporating magnetorheological elastomer (MRE) has been investigated. The TAS has been designed for energy absorption and mitigation of vibratory motions from an impact excitation. The main advantage of the designed TAS is that it has the ability to change and adapt to working conditions. Tunability can be realised through a change in the magnetic field caused by the change of an internal arrangement of permanent magnets within a double dipolar circular Halbach array. To show the capabilities of the tested system, experiments based on an impulse excitation have been performed. Significant changes of the TASs natural frequency and damping characteristics have been obtained. By incorporating magnetic tunability within the TAS a significant qualitative and quantitative change in the devices mechanical properties and performance were obtained.

  8. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes a new thermal compressor model with boost pressure ratio. • The proposed model is an effective way to optimize the absorption-generation process. • Boost pressure ratio is a key parameter in the proposed thermal compressor model. • The optimum boost pressure ratios for two typical refrigeration systems are obtained. - Abstract: The absorption refrigeration cycle is a basic cycle that establishes the systems for utilizing mid-low temperature heat sources. A new thermal compressor model with a key parameter of boost pressure ratio is proposed to optimize the absorption-generation process. The ultimate generation pressure and boost pressure ratio are used to represent the potential and operating conditions of the thermal compressor, respectively. Using the proposed thermal compressor model, the operation mechanism and requirements of the absorption refrigeration system and absorption-compression refrigeration system are elucidated. Furthermore, the two typical heat conversion systems are optimized based on the thermal compressor model. The optimum boost pressure ratios of the absorption refrigeration system and the absorption-compression refrigeration system are 0.5 and 0.75, respectively. For the absorption refrigeration system, the optimum generation temperature is 125.31 °C at the cooling water temperature of 30 °C, which is obtained by simple thermodynamic calculation. The optimized thermodynamic performance of the absorption-compression refrigeration system is 16.7% higher than that of the conventional absorption refrigeration system when the generation temperature is 100 °C. The thermal compressor model proposed in this paper is an effective method for simplifying the optimization of the thermodynamic systems involving an absorption-generation process.

  9. The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizuddin Ab Ghani

    2011-01-01

    Full Text Available Water absorption is a major concern for natural fibers as reinforcement in wood plastic composites (WPCs. This paper presents a study on the comparison analysis of water absorption between two types of twin-screw extruders, namely, counterrotating and corotating with presence of variable antioxidants content. Composites of mixed fibres between rice husk and saw dust with recycled high-density polyethylene (rHDPE were prepared with two different extruder machines, namely, counterrotating and corotating twin screw, respectively. The contents of matrix (30 wt% and fibres (62 wt% were mixed with additives (8 wt% and compounded using compounder before extruded using both of the machines. Samples were immersed in distilled water according to ASTM D 570-98. From the study, results indicated a significant difference among samples extruded by counterrotating and corotating twin-screw extruders. The counterrotating twin-screw extruder gives the smallest value of water absorption compared to corotating twin-screw extruder. This indicates that the types of screw play an important role in water uptake by improving the adhesion between natural fillers and the polymer matrix.

  10. Support vector machine learning-based fMRI data group analysis.

    Science.gov (United States)

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  11. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    Science.gov (United States)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  12. Status Checking System of Home Appliances using machine learning

    Directory of Open Access Journals (Sweden)

    Yoon Chi-Yurl

    2017-01-01

    Full Text Available This paper describes status checking system of home appliances based on machine learning, which can be applied to existing household appliances without networking function. Designed status checking system consists of sensor modules, a wireless communication module, cloud server, android application and a machine learning algorithm. The developed system applied to washing machine analyses and judges the four-kinds of appliance’s status such as staying, washing, rinsing and spin-drying. The measurements of sensor and transmission of sensing data are operated on an Arduino board and the data are transmitted to cloud server in real time. The collected data are parsed by an Android application and injected into the machine learning algorithm for learning the status of the appliances. The machine learning algorithm compares the stored learning data with collected real-time data from the appliances. Our results are expected to contribute as a base technology to design an automatic control system based on machine learning technology for household appliances in real-time.

  13. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  14. Automated Biometric Voice-Based Access Control in Automatic Teller Machine (ATM)

    OpenAIRE

    Yekini N.A.; Itegboje A.O.; Oyeyinka I.K.; Akinwole A.K.

    2012-01-01

    An automatic teller machine requires a user to pass an identity test before any transaction can be granted. The current method available for access control in ATM is based on smartcard. Efforts were made to conduct an interview with structured questions among the ATM users and the result proofed that a lot of problems was associated with ATM smartcard for access control. Among the problems are; it is very difficult to prevent another person from attaining and using a legitimate persons card, ...

  15. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  16. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  17. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson's disease.

    Science.gov (United States)

    Peng, Bo; Wang, Suhong; Zhou, Zhiyong; Liu, Yan; Tong, Baotong; Zhang, Tao; Dai, Yakang

    2017-06-09

    Machine learning methods have been widely used in recent years for detection of neuroimaging biomarkers in regions of interest (ROIs) and assisting diagnosis of neurodegenerative diseases. The innovation of this study is to use multilevel-ROI-features-based machine learning method to detect sensitive morphometric biomarkers in Parkinson's disease (PD). Specifically, the low-level ROI features (gray matter volume, cortical thickness, etc.) and high-level correlative features (connectivity between ROIs) are integrated to construct the multilevel ROI features. Filter- and wrapper- based feature selection method and multi-kernel support vector machine (SVM) are used in the classification algorithm. T1-weighted brain magnetic resonance (MR) images of 69 PD patients and 103 normal controls from the Parkinson's Progression Markers Initiative (PPMI) dataset are included in the study. The machine learning method performs well in classification between PD patients and normal controls with an accuracy of 85.78%, a specificity of 87.79%, and a sensitivity of 87.64%. The most sensitive biomarkers between PD patients and normal controls are mainly distributed in frontal lobe, parental lobe, limbic lobe, temporal lobe, and central region. The classification performance of our method with multilevel ROI features is significantly improved comparing with other classification methods using single-level features. The proposed method shows promising identification ability for detecting morphometric biomarkers in PD, thus confirming the potentiality of our method in assisting diagnosis of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Study of cutting speed on surface roughness and chip formation when machining nickel-based alloy

    International Nuclear Information System (INIS)

    Khidhir, Basim A.; Mohamed, Bashir

    2010-01-01

    Nickel- based alloy is difficult-to-machine because of its low thermal diffusive property and high strength at higher temperature. The machinability of nickel- based Hastelloy C-276 in turning operations has been carried out using different types of inserts under dry conditions on a computer numerical control (CNC) turning machine at different stages of cutting speed. The effects of cutting speed on surface roughness have been investigated. This study explores the types of wear caused by the effect of cutting speed on coated and uncoated carbide inserts. In addition, the effect of burr formation is investigated. The chip burr is found to have different shapes at lower speeds. Triangles and squares have been noticed for both coated and uncoated tips as well. The conclusion from this study is that the transition from thick continuous chip to wider discontinuous chip is caused by different types of inserts. The chip burr has a significant effect on tool damage starting in the line of depth-of-cut. For the coated insert tips, the burr disappears when the speed increases to above 150 m/min with the improvement of surface roughness; increasing the speed above the same limit for uncoated insert tips increases the chip burr size. The results of this study showed that the surface finish of nickel-based alloy is highly affected by the insert type with respect to cutting speed changes and its effect on chip burr formation and tool failure

  19. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  20. Microscopic machining mechanism of polishing based on vibrations of liquid

    International Nuclear Information System (INIS)

    Huang, Z G; Guo, Z N; Chen, X; Yu, Z Q; Yu, T M; Lee, W B

    2007-01-01

    A molecular dynamics method has been applied to study the mechanism of polishing based on vibrations of liquid. Movements of polishing particles and formations of impact dents are simulated and discussed. The abrasive effect between particle and machined substrate is evaluated empirically. Polishing qualities, including roughness and fractal character under multiple impacts, are obtained by numerical methods. Results show that the particle will vibrate and roll viscously on the substrate. Press, tear and self-organization effects will be responsible for the formation of impact dents. Simulation results are compared with experimental data to verify the conclusions

  1. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  2. Machine Translation in Post-Contemporary Era

    Science.gov (United States)

    Lin, Grace Hui Chin

    2010-01-01

    This article focusing on translating techniques via personal computer or laptop reports updated artificial intelligence progresses before 2010. Based on interpretations and information for field of MT [Machine Translation] by Yorick Wilks' book, "Machine Translation, Its scope and limits," this paper displays understandable theoretical frameworks…

  3. LHCb experience with running jobs in virtual machines

    Science.gov (United States)

    McNab, A.; Stagni, F.; Luzzi, C.

    2015-12-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.

  4. MLViS: A Web Tool for Machine Learning-Based Virtual Screening in Early-Phase of Drug Discovery and Development.

    Science.gov (United States)

    Korkmaz, Selcuk; Zararsiz, Gokmen; Goksuluk, Dincer

    2015-01-01

    Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine learning methods are widely used in drug discovery studies for classification purpose. Here, we aim to develop a new tool, which can classify molecules as drug-like and nondrug-like based on various machine learning methods, including discriminant, tree-based, kernel-based, ensemble and other algorithms. To construct this tool, first, performances of twenty-three different machine learning algorithms are compared by ten different measures, then, ten best performing algorithms have been selected based on principal component and hierarchical cluster analysis results. Besides classification, this application has also ability to create heat map and dendrogram for visual inspection of the molecules through hierarchical cluster analysis. Moreover, users can connect the PubChem database to download molecular information and to create two-dimensional structures of compounds. This application is freely available through www.biosoft.hacettepe.edu.tr/MLViS/.

  5. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  6. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2018-03-01

    Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation

  7. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  8. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  9. In vivo analysis of supersaturation/precipitation/absorption behavior after oral administration of pioglitazone hydrochloride salt; determinant site of oral absorption.

    Science.gov (United States)

    Tanaka, Yusuke; Sugihara, Masahisa; Kawakami, Ayaka; Imai, So; Itou, Takafumi; Murase, Hirokazu; Saiki, Kazunori; Kasaoka, Satoshi; Yoshikawa, Hiroshi

    2017-08-30

    The purpose of this study was to evaluate in vivo supersaturation/precipitation/absorption behavior in the gastrointestinal (GI) tract based on the luminal concentration-time profiles after oral administration of pioglitazone (PG, a highly permeable lipophilic base) and its hydrochloride salt (PG-HCl) to rats. In the in vitro precipitation experiment in the classic closed system, while the supersaturation was stable in the simulated gastric condition, PG drastically precipitated in the simulated intestinal condition, particularly at a higher initial degree of supersaturation. Nonetheless, a drastic and moderate improvement in absorption was observed in vivo at a low and high dose of PG-HCl, respectively. Analysis based on the luminal concentration of PG after oral administration of PG-HCl at a low dose revealed that most of the dissolved PG emptied from the stomach was rapidly absorbed before its precipitation in the duodenum. At a high dose of PG-HCl, PG partly precipitated in the duodenum but was absorbed to some extent. Therefore, the extent of the absorption was mainly dependent on the duodenal precipitation behavior. Furthermore, a higher-than expected absorption after oral administration of PG-HCl from in vitro precipitation study may be due to the absorption process in the small intestine, which suppresses the precipitation by removal of the drug. This study successfully clarify the impact of the absorption process on the supersaturation/precipitation/absorption behavior and key absorption site for a salt formulation of a highly permeable lipophilic base based on the direct observation of in vivo luminal concentration. Our findings may be beneficial in developing an ideal physiologically based pharmacokinetic model and in vitro predictive dissolution tools and/or translating the in silico and in vitro data to the in vivo outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Perspective of Chinese Forest Carbon Absorption Trade Based on Low-Carbon Economy

    OpenAIRE

    Wang, Ming-gang

    2011-01-01

    The paper analyzes the basis of forest carbon trade including me feasibility of carbon absorption trade, main body, platform and standard. The purposes of capital of carbon absorption trade is introduced. Caron absorption trade capital can be used to resettle ecological migrants, absorb employment, build forest and increase fund, increase local income, enhance forest science and technology development and launch environmental proportion. The perspective of developing forest carbon absorption ...

  11. Quantum cloning machines and the applications

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Wang, Yi-Nan; Jing, Li [School of Physics, Peking University, Beijing 100871 (China); Yue, Jie-Dong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu [School of Physics, Peking University, Beijing 100871 (China)

    2014-11-20

    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.

  12. Quantum cloning machines and the applications

    International Nuclear Information System (INIS)

    Fan, Heng; Wang, Yi-Nan; Jing, Li; Yue, Jie-Dong; Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu

    2014-01-01

    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results

  13. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    Science.gov (United States)

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.

  14. Parallel Boltzmann machines : a mathematical model

    NARCIS (Netherlands)

    Zwietering, P.J.; Aarts, E.H.L.

    1991-01-01

    A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a

  15. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  16. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  17. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    Science.gov (United States)

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  18. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    Science.gov (United States)

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  19. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  20. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    Science.gov (United States)

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  1. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    OpenAIRE

    Zhongqi Sheng; Lei Zhang; Hualong Xie; Changchun Liu

    2014-01-01

    Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to as...

  2. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    Science.gov (United States)

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Translating DVD Subtitles English-German, English-Japanese, Using Example-based Machine Translation

    DEFF Research Database (Denmark)

    Armstrong, Stephen; Caffrey, Colm; Flanagan, Marian

    2006-01-01

    Due to limited budgets and an ever-diminishing time-frame for the production of subtitles for movies released in cinema and DVD, there is a compelling case for a technology-based translation solution for subtitles. In this paper we describe how an Example-Based Machine Translation (EBMT) approach...... to the translation of English DVD subtitles into German and Japanese can aid the subtitler. Our research focuses on an EBMT tool that produces fully automated translations, which in turn can be edited if required. To our knowledge this is the first time that any EBMT approach has been used with DVD subtitle...

  4. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Sergio Alonso-Garcia

    2011-07-01

    Full Text Available An electromiographic (EMG-based human-machine interface (HMI is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  5. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    Science.gov (United States)

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  6. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NARCIS (Netherlands)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-01-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to

  7. Control System Design for Automatic Cavity Tuning Machines

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; /Fermilab; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  8. Control System Design for Automatic Cavity Tuning Machines

    International Nuclear Information System (INIS)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.

    2009-01-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  9. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  10. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  11. Dispersion stability and thermophysical properties of environmentally friendly graphite oil–based nanofluids used in machining

    Directory of Open Access Journals (Sweden)

    Yu Su

    2016-01-01

    Full Text Available As environmentally friendly cutting fluids, vegetable-based oil and ester oil are being more and more widely used in metal cutting industry. However, their cooling and lubricating properties are required to be further improved in order to meet more cooling and lubricating challenges in high-efficiency machining. Nanofluids with enhanced heat carrying and lubricating capabilities seem to give a promising solution. In this article, graphite oil–based nanofluids with LB2000 vegetable-based oil and PriEco6000 unsaturated polyol ester as base fluids were prepared by ultrasonically assisted two-step method, and their dispersion stability and thermophysical properties such as viscosity and thermal conductivity were experimentally and theoretically investigated at different ultrasonication times. The results indicate that graphite-PriEco6000 nanofluid showed better dispersion stability, higher viscosity, and thermal conductivity than graphite-LB2000 nanofluid, which made it more suitable for application in high-efficiency machining as coolant and lubricant. The theoretical classical models showed good agreement with the thermal conductivity values of graphite oil–based nanofluids measured experimentally. However, the deviation between the experimental values of viscosity and the theoretical models was relatively big. New empirical correlations were proposed for predicting the viscosity of graphite oil–based nanofluids at various ultrasonication times.

  12. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  13. A new accurate curvature matching and optimal tool based five-axis machining algorithm

    International Nuclear Information System (INIS)

    Lin, Than; Lee, Jae Woo; Bohez, Erik L. J.

    2009-01-01

    Free-form surfaces are widely used in CAD systems to describe the part surface. Today, the most advanced machining of free from surfaces is done in five-axis machining using a flat end mill cutter. However, five-axis machining requires complex algorithms for gouging avoidance, collision detection and powerful computer-aided manufacturing (CAM) systems to support various operations. An accurate and efficient method is proposed for five-axis CNC machining of free-form surfaces. The proposed algorithm selects the best tool and plans the tool path autonomously using curvature matching and integrated inverse kinematics of the machine tool. The new algorithm uses the real cutter contact tool path generated by the inverse kinematics and not the linearized piecewise real cutter location tool path

  14. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Science.gov (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  15. Design and development of Hoeken's structural dynamic linkage based agro-tiller machine

    Science.gov (United States)

    Hynes, N. Rajesh Jesudoss; Saran, K.; Pavithran, V.

    2018-05-01

    India is one of biggest exporters of medicinal plants, spices and other many agro products in the world. Owing to the special needs, an agricultural machine is designed using Hoeken linkage with Pantograph mechanism and developed that ensures safety digging to uproot the plant. Thus, the focus is to cut the plant by machine with proper care and shoot system is cut properly avoiding any damage to the upper part of the plant and rather be cut in the root area to use it. This is done by the agricultural cutting machine by the name "agricultural tiller machine" that can perform the action same as the objective needed for the effective production of raw materials for manufacturing of the agro products.

  16. WIDE-AREA BASED ON COORDINATED TUNING OF FUZZY PSS AND FACTS CONTROLLER IN MULTI-MACHINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper coordination of fuzzy power system stabilizer (FPSS and flexible ac transmission systems (FACTS have been considered in a multi-machine power system. The proposed model, has been applied for a wide-area power system. The proposed FPSS presented with local, nonlinear feedbacks, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs. For this model, in fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Also, the parameters of FACTS controller have been evaluated by improved honey bee mating optimization (IHBMO. The effectiveness of the proposed method has been applied over two case studies of single-machine infinite-bus (SMIB and two areas four machine (TAFM Kundur’s power system. The obtained results demonstrate the superiority of proposed strategy.

  17. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  18. Support vector machine based estimation of remaining useful life: current research status and future trends

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Wang, Hai Kun; Li, Yan Feng; Zhang, Longlong; Liu, Zhiliang

    2015-01-01

    Estimation of remaining useful life (RUL) is helpful to manage life cycles of machines and to reduce maintenance cost. Support vector machine (SVM) is a promising algorithm for estimation of RUL because it can easily process small training sets and multi-dimensional data. Many SVM based methods have been proposed to predict RUL of some key components. We did a literature review related to SVM based RUL estimation within a decade. The references reviewed are classified into two categories: improved SVM algorithms and their applications to RUL estimation. The latter category can be further divided into two types: one, to predict the condition state in the future and then build a relationship between state and RUL; two, to establish a direct relationship between current state and RUL. However, SVM is seldom used to track the degradation process and build an accurate relationship between the current health condition state and RUL. Based on the above review and summary, this paper points out that the ability to continually improve SVM, and obtain a novel idea for RUL prediction using SVM will be future works.

  19. BADMINTON TRAINING MACHINE WITH IMPACT MECHANISM

    Directory of Open Access Journals (Sweden)

    B. F. YOUSIF

    2011-02-01

    Full Text Available In the current work, a newly machine was designed and fabricated for badminton training purpose. In the designing process, CATIA software was used to design and simulate the machine components. The design was based on direct impact method to launch the shuttle using spring as the source of the impact. Hook’s law was used theoretically to determine the initial and the maximum lengths of the springs. The main feature of the machine is that can move in two axes (up and down, left and right. For the control system, infra-red sensor and touch switch were adapted in microcontroller. The final product was locally fabricated and proved that the machine can operate properly.

  20. Cosmic String Detection with Tree-Based Machine Learning

    Science.gov (United States)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-05-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  1. Investigation of High-Speed Cryogenic Machining Based on Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashaki

    Full Text Available Abstract The simulation of cryogenic machining process because of using a three-dimensional model and high process duration time in the finite element method, have been studied rarely. In this study, to overcome this limitation, a 2.5D finite element model using the commercial finite element software ABAQUS has been developed for the cryogenic machining process and by considering more realistic assumptions, the chip formation procedure investigated. In the proposed method, the liquid nitrogen has been used as a coolant. At the modeling of friction during the interaction of tools - chip, the Coulomb law has been used. In order to simulate the behavior of plasticity and failure criterion, Johnson-Cook model was used, and unlike previous investigations, thermal and mechanical properties of materials as a function of temperature were applied to the software. After examining accuracy of the model with present experimental data, the effect of parameters such as rake angle and the cutting speed as well as dry machining of aluminum alloy by the use of coupled dynamic temperature solution has been studied. Results indicated that at the cutting velocity of 10 m/s, cryogenic cooling has caused into decreasing 60 percent of tools temperature in comparison with the dry cooling. Furthermore, a chip which has been made by cryogenic machining were connected and without fracture in contrast to dry machining.

  2. Man-machine dialogue design and challenges

    CERN Document Server

    Landragin, Frederic

    2013-01-01

    This book summarizes the main problems posed by the design of a man-machine dialogue system and offers ideas on how to continue along the path towards efficient, realistic and fluid communication between humans and machines. A culmination of ten years of research, it is based on the author's development, investigation and experimentation covering a multitude of fields, including artificial intelligence, automated language processing, man-machine interfaces and notably multimodal or multimedia interfaces. Contents Part 1. Historical and Methodological Landmarks 1. An Assessment of the Evolution

  3. Design of full body workout machine

    OpenAIRE

    Pathak, Suman

    2017-01-01

    The purpose of this thesis was to design a full body workout machine. The main goal was to make a workout machine that was inexpensive, covered a small area and light in weight. This thesis was commissioned by HAMK University of Applied Sciences. This topic was proposed by the author himself after realizing the need for an ideal workout machine that would fulfil all one´s requirements. He had been going to gym regularly for two years. Based on his experience, gyms were overcrowded with eq...

  4. Coal demand prediction based on a support vector machine model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Cun-liang; Wu, Hai-shan; Gong, Dun-wei [China University of Mining & Technology, Xuzhou (China). School of Information and Electronic Engineering

    2007-01-15

    A forecasting model for coal demand of China using a support vector regression was constructed. With the selected embedding dimension, the output vectors and input vectors were constructed based on the coal demand of China from 1980 to 2002. After compared with lineal kernel and Sigmoid kernel, a radial basis function(RBF) was adopted as the kernel function. By analyzing the relationship between the error margin of prediction and the model parameters, the proper parameters were chosen. The support vector machines (SVM) model with multi-input and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM predictor has higher precision and greater generalization ability. In the end, the coal demand from 2003 to 2006 is accurately forecasted. l0 refs., 2 figs., 4 tabs.

  5. A self-calibrating robot based upon a virtual machine model of parallel kinematics

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Eiríksson, Eyþór Rúnar; Hansen, Hans Nørgaard

    2016-01-01

    A delta-type parallel kinematics system for Additive Manufacturing has been created, which through a probing system can recognise its geometrical deviations from nominal and compensate for these in the driving inverse kinematic model of the machine. Novelty is that this model is derived from...... a virtual machine of the kinematics system, built on principles from geometrical metrology. Relevant mathematically non-trivial deviations to the ideal machine are identified and decomposed into elemental deviations. From these deviations, a routine is added to a physical machine tool, which allows...

  6. Human-Machine Communication

    International Nuclear Information System (INIS)

    Farbrot, J.E.; Nihlwing, Ch.; Svengren, H.

    2005-01-01

    New requirements for enhanced safety and design changes in process systems often leads to a step-wise installation of new information and control equipment in the control room of older nuclear power plants, where nowadays modern digital I and C solutions with screen-based human-machine interfaces (HMI) most often are introduced. Human factors (HF) expertise is then required to assist in specifying a unified, integrated HMI, where the entire integration of information is addressed to ensure an optimal and effective interplay between human (operators) and machine (process). Following a controlled design process is the best insurance for ending up with good solutions. This paper addresses the approach taken when introducing modern human-machine communication in the Oskarshamn 1 NPP, the results, and the lessons learned from this work with high operator involvement seen from an HF point of view. Examples of possibilities modern technology might offer for the operators are also addressed. (orig.)

  7. Deep learning: Using machine learning to study biological vision

    OpenAIRE

    Majaj, Najib; Pelli, Denis

    2017-01-01

    Today most vision-science presentations mention machine learning. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand recognition by living organisms. To them, machine learning offers a reference of attainable performance based on learned stimuli. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions.

  8. Settlement Prediction of Road Soft Foundation Using a Support Vector Machine (SVM Based on Measured Data

    Directory of Open Access Journals (Sweden)

    Yu Huiling

    2016-01-01

    Full Text Available The suppor1t vector machine (SVM is a relatively new artificial intelligence technique which is increasingly being applied to geotechnical problems and is yielding encouraging results. SVM is a new machine learning method based on the statistical learning theory. A case study based on road foundation engineering project shows that the forecast results are in good agreement with the measured data. The SVM model is also compared with BP artificial neural network model and traditional hyperbola method. The prediction results indicate that the SVM model has a better prediction ability than BP neural network model and hyperbola method. Therefore, settlement prediction based on SVM model can reflect actual settlement process more correctly. The results indicate that it is effective and feasible to use this method and the nonlinear mapping relation between foundation settlement and its influence factor can be expressed well. It will provide a new method to predict foundation settlement.

  9. Use of machine learning methods to classify Universities based on the income structure

    Science.gov (United States)

    Terlyga, Alexandra; Balk, Igor

    2017-10-01

    In this paper we discuss use of machine learning methods such as self organizing maps, k-means and Ward’s clustering to perform classification of universities based on their income. This classification will allow us to quantitate classification of universities as teaching, research, entrepreneur, etc. which is important tool for government, corporations and general public alike in setting expectation and selecting universities to achieve different goals.

  10. Mastering the non-equilibrium assembly and operation of molecular machines.

    Science.gov (United States)

    Pezzato, Cristian; Cheng, Chuyang; Stoddart, J Fraser; Astumian, R Dean

    2017-09-18

    In mechanically interlocked compounds, such as rotaxanes and catenanes, the molecules are held together by mechanical rather than chemical bonds. These compounds can be engineered to have several well-defined mechanical states by incorporating recognition sites between the different components. The rates of the transitions between the recognition sites can be controlled by introducing steric "speed bumps" or electrostatically switchable gates. A mechanism for the absorption of energy can also be included by adding photoactive, catalytically active, or redox-active recognition sites, or even charges and dipoles. At equilibrium, these Mechanically Interlocked Molecules (MIMs) undergo thermally activated transitions continuously between their different mechanical states where every transition is as likely as its microscopic reverse. External energy, for example, light, external modulation of the chemical and/or physical environment or catalysis of an exergonic reaction, drives the system away from equilibrium. The absorption of energy from these processes can be used to favour some, and suppress other, transitions so that completion of a mechanical cycle in a direction in which work is done on the environment - the requisite of a molecular machine - is more likely than completion in a direction in which work is absorbed from the environment. In this Tutorial Review, we discuss the different design principles by which molecular machines can be engineered to use different sources of energy to carry out self-organization and the performance of work in their environments.

  11. Machine interlock and protection system based on PLC for the SSRF linac

    International Nuclear Information System (INIS)

    Chou Wenjun; Zhou Dayong; Chen Jianfeng; Shen Liren; Liu Yajuan

    2008-01-01

    This paper describes a machine interlock and protection system used for accelerators based on EPICS (Experimental physics and industrial control system). The system is composed of a front-end computer and an FM-3R logic controller PLC. The alarm signal is passed by the hardware directly, and would be deal with PLC. The reporting, recording and analyst of the event are accomplished by EPICS control software. And PLC is linked to the EPICS by Internet. (authors)

  12. JACOS: AI-based simulation system for man-machine system behavior in NPP

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Yokobayashi, Masao; Tanabe, Fumiya; Komiya, Akitoshi

    2001-08-01

    A prototype of a computer simulation system named JACOS (JAERI COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of a nuclear power plant. The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also taken into account. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. This report is prepared as User's Manual for JACOS. The first chapter of this report describes both operator and plant models in detail. The second chapter includes instructive descriptions for program installation, building of a knowledge base for operator model, execution of simulation and analysis of simulation results. The examples of simulation with JACOS are shown in the third chapter. (author)

  13. Automated Classification of Radiology Reports for Acute Lung Injury: Comparison of Keyword and Machine Learning Based Natural Language Processing Approaches.

    Science.gov (United States)

    Solti, Imre; Cooke, Colin R; Xia, Fei; Wurfel, Mark M

    2009-11-01

    This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators.

  14. Concept Representation Analysis in the Context of Human-Machine Interactions

    DEFF Research Database (Denmark)

    Badie, Farshad

    2016-01-01

    an inductive machine learning paradigm). The results will support figuring out the most significant key points for constructing a conceptual linkage between a human learning theory and a machine learning paradigm. Accordingly, I will construct a conceptual ground for expressing and analysing concepts......This article attempts to make a conceptual and epistemological junction between human learning and machine learning. I will be concerned with specifying and analysing the structure of concepts in the common ground between a concept-based human learning theory and a concept-based machine learning...... in the common ground of human and informatics sciences and in the context of human-machine interplays....

  15. Design and Development of a tomato Slicing Machine

    OpenAIRE

    Kamaldeen Oladimeji Salaudeen; Awagu E. F.

    2012-01-01

    Principle of slicing was reviewed and tomato slicing machine was developed based on appropriate technology. Locally available materials like wood, stainless steel and mild steel were used in the fabrication. The machine was made to cut tomatoes in 2cm thickness. The capacity of the machine is 540.09g per minute and its performance efficiency is 70%.

  16. Novel nonlinear knowledge-based mean force potentials based on machine learning.

    Science.gov (United States)

    Dong, Qiwen; Zhou, Shuigeng

    2011-01-01

    The prediction of 3D structures of proteins from amino acid sequences is one of the most challenging problems in molecular biology. An essential task for solving this problem with coarse-grained models is to deduce effective interaction potentials. The development and evaluation of new energy functions is critical to accurately modeling the properties of biological macromolecules. Knowledge-based mean force potentials are derived from statistical analysis of proteins of known structures. Current knowledge-based potentials are almost in the form of weighted linear sum of interaction pairs. In this study, a class of novel nonlinear knowledge-based mean force potentials is presented. The potential parameters are obtained by nonlinear classifiers, instead of relative frequencies of interaction pairs against a reference state or linear classifiers. The support vector machine is used to derive the potential parameters on data sets that contain both native structures and decoy structures. Five knowledge-based mean force Boltzmann-based or linear potentials are introduced and their corresponding nonlinear potentials are implemented. They are the DIH potential (single-body residue-level Boltzmann-based potential), the DFIRE-SCM potential (two-body residue-level Boltzmann-based potential), the FS potential (two-body atom-level Boltzmann-based potential), the HR potential (two-body residue-level linear potential), and the T32S3 potential (two-body atom-level linear potential). Experiments are performed on well-established decoy sets, including the LKF data set, the CASP7 data set, and the Decoys “R”Us data set. The evaluation metrics include the energy Z score and the ability of each potential to discriminate native structures from a set of decoy structures. Experimental results show that all nonlinear potentials significantly outperform the corresponding Boltzmann-based or linear potentials, and the proposed discriminative framework is effective in developing knowledge-based

  17. Product Quality Modelling Based on Incremental Support Vector Machine

    International Nuclear Information System (INIS)

    Wang, J; Zhang, W; Qin, B; Shi, W

    2012-01-01

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  18. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  19. Improved water and sodium absorption from oral rehydration solutions based on rice syrup in a rat model of osmotic diarrhea.

    Science.gov (United States)

    Wapnir, R A; Litov, R E; Zdanowicz, M M; Lifshitz, F

    1991-04-01

    Rice syrup solids, rice protein, and casein hydrolysate were added to experimental oral rehydration solutions in various combinations and tested in a rat intestinal perfusion system. Chronic osmotic diarrhea was induced in juvenile rats by supplying the cathartic agents, magnesium citrate and phenolphthalein, in their drinking water for 1 week. The experimental oral rehydration solutions were compared with standard oral rehydration solutions containing 20 gm/L or 30 gm/L of glucose and with each other to determine if there were significant differences in net water, sodium, or potassium absorption. An oral rehydration solution containing 30 gm/L of rice syrup solids had a net water absorption rate significantly higher than that of the standard 20 gm/L glucose-based oral rehydration solution (2.1 +/- 0.62 versus 1.5 +/- 0.48 microliters/[min x cm], p less than 0.05). Casein hydrolysate did not significantly affect net water absorption. However, combinations of 30 gm/L rice syrup solids and 5 gm/L casein hydrolysate significantly increased (p less than 0.05) net sodium and potassium absorption compared with the 20 gm/L glucose-based oral rehydration solution but not versus rice syrup solids alone. Oral rehydration solutions containing 30 gm/L rice syrup solids plus 5 gm/L rice protein, and 30 gm/L rice syrup solids plus 5 gm/L casein hydrolysate, had net water absorption rates significantly higher than the rate of a 30 gm/L glucose-based oral rehydration solution (2.5 +/- 0.36 and 2.4 +/- 0.38, respectively, versus 0.87 +/- 0.40 microliters/[min x cm], p less than 0.05). Rice protein and casein hydrolysate, however, did not significantly affect net water, sodium, or potassium absorption when added to rice protein glucose-based oral rehydration solutions. An inverse correlation between osmolality and net water absorption was observed (r = -0.653, p less than 0.02). The data suggest that substitution of rice syrup solids for glucose in oral rehydration solutions will

  20. Photonometers for coating and sputtering machines

    Science.gov (United States)

    Oupický, P.; Jareš, D.; Václavík, J.; Vápenka, D.

    2013-04-01

    The concept of photonometers (alternative name of optical monitor of a vacuum deposition process) for coating and sputtering machines is based on photonometers produced by companies like SATIS or HV Dresden. Photometers were developed in the TOPTEC centre and its predecessor VOD (Optical Development Workshop of Institut of Plasma Physics AS CR) for more than 10 years. The article describes current status of the technology and ideas which will be incorporated in next development steps. Hardware and software used on coating machines B63D, VNA600 and sputtering machine UPM810 is presented.

  1. Development of a low energy micro sheet forming machine

    Science.gov (United States)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  2. Addressing uncertainty in atomistic machine learning

    DEFF Research Database (Denmark)

    Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza

    2017-01-01

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predi......Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility...... of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We...... suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate...

  3. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  4. Fingerprint-Based Machine Learning Approach to Identify Potent and Selective 5-HT2BR Ligands

    Directory of Open Access Journals (Sweden)

    Krzysztof Rataj

    2018-05-01

    Full Text Available The identification of subtype-selective GPCR (G-protein coupled receptor ligands is a challenging task. In this study, we developed a computational protocol to find compounds with 5-HT2BR versus 5-HT1BR selectivity. Our approach employs the hierarchical combination of machine learning methods, docking, and multiple scoring methods. First, we applied machine learning tools to filter a large database of druglike compounds by the new Neighbouring Substructures Fingerprint (NSFP. This two-dimensional fingerprint contains information on the connectivity of the substructural features of a compound. Preselected subsets of the database were then subjected to docking calculations. The main indicators of compounds’ selectivity were their different interactions with the secondary binding pockets of both target proteins, while binding modes within the orthosteric binding pocket were preserved. The combined methodology of ligand-based and structure-based methods was validated prospectively, resulting in the identification of hits with nanomolar affinity and ten-fold to ten thousand-fold selectivities.

  5. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.

    Science.gov (United States)

    Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean

    2017-12-04

    Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further

  6. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  7. Development of a speech-based dialogue system for report dictation and machine control in the endoscopic laboratory.

    Science.gov (United States)

    Molnar, B; Gergely, J; Toth, G; Pronai, L; Zagoni, T; Papik, K; Tulassay, Z

    2000-01-01

    Reporting and machine control based on speech technology can enhance work efficiency in the gastrointestinal endoscopy laboratory. The status and activation of endoscopy laboratory equipment were described as a multivariate parameter and function system. Speech recognition, text evaluation and action definition engines were installed. Special programs were developed for the grammatical analysis of command sentences, and a rule-based expert system for the definition of machine answers. A speech backup engine provides feedback to the user. Techniques were applied based on the "Hidden Markov" model of discrete word, user-independent speech recognition and on phoneme-based speech synthesis. Speech samples were collected from three male low-tone investigators. The dictation module and machine control modules were incorporated in a personal computer (PC) simulation program. Altogether 100 unidentified patient records were analyzed. The sentences were grouped according to keywords, which indicate the main topics of a gastrointestinal endoscopy report. They were: "endoscope", "esophagus", "cardia", "fundus", "corpus", "antrum", "pylorus", "bulbus", and "postbulbar section", in addition to the major pathological findings: "erosion", "ulceration", and "malignancy". "Biopsy" and "diagnosis" were also included. We implemented wireless speech communication control commands for equipment including an endoscopy unit, video, monitor, printer, and PC. The recognition rate was 95%. Speech technology may soon become an integrated part of our daily routine in the endoscopy laboratory. A central speech and laboratory computer could be the most efficient alternative to having separate speech recognition units in all items of equipment.

  8. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  9. A machine learning approach to the accurate prediction of monitor units for a compact proton machine.

    Science.gov (United States)

    Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu

    2018-05-01

    Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution

  10. A Novel Approach for Multi Class Fault Diagnosis in Induction Machine Based on Statistical Time Features and Random Forest Classifier

    Science.gov (United States)

    Sonje, M. Deepak; Kundu, P.; Chowdhury, A.

    2017-08-01

    Fault diagnosis and detection is the important area in health monitoring of electrical machines. This paper proposes the recently developed machine learning classifier for multi class fault diagnosis in induction machine. The classification is based on random forest (RF) algorithm. Initially, stator currents are acquired from the induction machine under various conditions. After preprocessing the currents, fourteen statistical time features are estimated for each phase of the current. These parameters are considered as inputs to the classifier. The main scope of the paper is to evaluate effectiveness of RF classifier for individual and mixed fault diagnosis in induction machine. The stator, rotor and mixed faults (stator and rotor faults) are classified using the proposed classifier. The obtained performance measures are compared with the multilayer perceptron neural network (MLPNN) classifier. The results show the much better performance measures and more accurate than MLPNN classifier. For demonstration of planned fault diagnosis algorithm, experimentally obtained results are considered to build the classifier more practical.

  11. Some relations between quantum Turing machines and Turing machines

    OpenAIRE

    Sicard, Andrés; Vélez, Mario

    1999-01-01

    For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.

  12. The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-01-01

    Full Text Available Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR. According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO, which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability.

  13. Using machine learning to accelerate sampling-based inversion

    Science.gov (United States)

    Valentine, A. P.; Sambridge, M.

    2017-12-01

    In most cases, a complete solution to a geophysical inverse problem (including robust understanding of the uncertainties associated with the result) requires a sampling-based approach. However, the computational burden is high, and proves intractable for many problems of interest. There is therefore considerable value in developing techniques that can accelerate sampling procedures.The main computational cost lies in evaluation of the forward operator (e.g. calculation of synthetic seismograms) for each candidate model. Modern machine learning techniques-such as Gaussian Processes-offer a route for constructing a computationally-cheap approximation to this calculation, which can replace the accurate solution during sampling. Importantly, the accuracy of the approximation can be refined as inversion proceeds, to ensure high-quality results.In this presentation, we describe and demonstrate this approach-which can be seen as an extension of popular current methods, such as the Neighbourhood Algorithm, and bridges the gap between prior- and posterior-sampling frameworks.

  14. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  15. Machining NiTi micro-parts by micro-milling

    International Nuclear Information System (INIS)

    Weinert, K.; Petzoldt, V.

    2008-01-01

    The machinability of NiTi by milling has been examined using solid carbide end milling cutters. First results were obtained from machining simple slots applying TiAlN-coated tools with a diameter of 0.4 mm. The machining process was evaluated in terms of tool wear, cutting forces and machining quality. The tool wear and work piece quality was analysed with a scanning electron microscope and a white-light confocal microscope. Despite the poor machinability of NiTi good results concerning tool wear and shape accuracy of the milled slots were achieved. Essential for a good machining result is the application of minimum quantity lubrication. This clearly reduces NiTi adherences compared to dry machining. Work piece quality is improved and tool life is extended. Based on these results different structures could be produced by micro-milling

  16. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  17. A data-based technique for monitoring of wound rotor induction machines: A simulation study

    KAUST Repository

    Harrou, Fouzi; Ramahaleomiarantsoa, Jacques F.; Nounou, Mohamed N.; Nounou, Hazem N.

    2016-01-01

    Detecting faults induction machines is crucial for a safe operation of these machines. The aim of this paper is to present a statistical fault detection methodology for the detection of faults in three-phase wound rotor induction machines (WRIM

  18. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  19. Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.

    Science.gov (United States)

    Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong

    2017-12-01

    Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.

  20. Two-colour mid-infrared absorption in an InAs/GaSb-based type II and broken-gap quantum well

    International Nuclear Information System (INIS)

    Wei, X F; Xu, W; Zeng, Z

    2007-01-01

    We examine contributions from different transition channels to optical absorption in an InAs/GaSb-based type II and broken-gap quantum well (QW). In such a structure, because both electron and hole subbands are occupied by the conducting carriers, new channels open up for electronic transition via intra- and inter-layer scattering mechanisms. We find that two absorption peaks can be observed through inter-subband transitions within the same material layer. The absorption induced by the inter-layer transition is rather weak due to a small overlap of electron and hole wavefunctions. The results suggest that InAs/GaSb-based type II and broken-gap QWs can be employed as two-colour photodetectors working at mid-infrared bandwidth at relatively high temperatures up to room-temperature