WorldWideScience

Sample records for absorption low-coherence interferometry

  1. Chromatic dispersion effects in ultra-low coherence interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Lychagov, V V; Ryabukho, V P [N.G.Chernyshevsky Saratov State University (Russian Federation)

    2015-06-30

    We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that is an order of magnitude greater than the pulse width. (interferometry)

  2. Biometric parameters in different stages of primary angle closure using low-coherence interferometry.

    Science.gov (United States)

    Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen

    2015-03-01

    To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.

  3. Development of angle-resolved low coherence interferometry for clinical detection of dysplasia

    Directory of Open Access Journals (Sweden)

    Yizheng Zhu

    2011-01-01

    Full Text Available This review covers the development of angle-resolved low coherence interferometry (a/LCI from initial development through clinical application. In the first applications, the approach used a time-domain interferometry scheme and was validated using animal models of carcinogenesis to assess the feasibility of detecting dysplasia in situ. Further development of the approach led to Fourier-domain interferometry schemes with higher throughput and endoscope-compatible probes to enable clinical application. These later implementations have been applied to clinical studies of dysplasia in Barrett′s esophagus tissues, a metaplastic tissue type that is associated with an increased risk of esophageal adenocarcinoma. As an alternative to systematic biopsy, the a/LCI approach offers high sensitivity and specificity for detecting dysplasia in these tissues while avoiding the need for tissue removal or exogenous contrast agents. Here, the various implementations of a/LCI are discussed and the results of the preliminary animal experiments and ex vivo human tissue studies are reviewed. A review of a recent in vivo clinical study is also presented.

  4. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    Science.gov (United States)

    Zhang, Kang; Kang, Jin U.

    2011-09-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.

  5. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  6. Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia

    Science.gov (United States)

    Terry, Neil G.; Zhu, Yizheng; Wax, Adam

    2010-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.

  7. Detection techniques in low-coherence interferometry and their impact on overall measurement accuracy

    Czech Academy of Sciences Publication Activity Database

    Pikálek, Tomáš; Fořt, Tomáš; Buchta, Zdeněk

    2014-01-01

    Roč. 53, č. 36 (2014), s. 8463-8470 ISSN 1559-128X R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : interferometry * fringe analysis * surface measurements, figure * optical data processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.784, year: 2014

  8. method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands

    NARCIS (Netherlands)

    Boer, JF De; Tearney, G. J.; Bouma, BE

    2008-01-01

    Apparatus and method for increasing the sensitivity in the detection of optical coherence tomography and loW coher ence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source is split

  9. Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED

    Science.gov (United States)

    Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian

    2017-11-01

    Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.

  10. Local characterization of fiber-Bragg gratings through combined use of low-coherence interferometry and a layer-peeling algorithm

    International Nuclear Information System (INIS)

    Chapeleau, Xavier; Leduc, Dominique; Lupi, Cyril; Lopez-Gejo, Francisco; Douay, Marc; Le Ny, Roger; Boisrobert, Christian

    2006-01-01

    The technique presented here allows us to obtain an accurate determination of the refractive index modulation amplitude, the mean effective index, and the chirp of fiber-Bragg gratings. A layer-peeling algorithm is used to extract this information from low-coherence interferometry measurements. Finally, we present a systematic study over 10 uniform and chirped gratings to proof the reliability and accuracy of this technique

  11. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    Science.gov (United States)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  12. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    Science.gov (United States)

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  13. Analysis of pulsatile retinal movements by spectral-domain low-coherence interferometry: influence of age and glaucoma on the pulse wave.

    Directory of Open Access Journals (Sweden)

    Carolyne Dion

    Full Text Available Recent studies have shown that ocular hemodynamics and eye tissue biomechanical properties play an important role in the pathophysiology of glaucoma. Nevertheless, better, non-invasive methods to assess these characteristics in vivo are essential for a thorough understanding of degenerative mechanisms. Here, we propose to measure ocular tissue movements induced by cardiac pulsations and study the ocular pulse waveform as an indicator of tissue compliance. Using a novel, low-cost and non-invasive device based on spectral-domain low coherence interferometry (SD-LCI, we demonstrate the potential of this technique to differentiate ocular hemodynamic and biomechanical properties. We measured the axial movement of the retina driven by the pulsatile ocular blood flow in 11 young healthy individuals, 12 older healthy individuals and 15 older treated glaucoma patients using our custom-made SD-OCT apparatus. The cardiac pulse was simultaneously measured through the use of an oximeter to allow comparison. Spectral components up to the second harmonic were obtained and analyzed. For the different cohorts, we computed a few parameters that characterize the three groups of individuals by analyzing the movement of the retinal tissue at two locations, using this simple, low-cost interferometric device. Our pilot study indicates that spectral analysis of the fundus pulsation has potential for the study of ocular biomechanical and vascular properties, as well as for the study of ocular disease.

  14. Interferometry

    Science.gov (United States)

    Totzeck, Michael

    The intention of this chapter is to provide a fast and comprehensive overview of the principles of interferometry and the various types of interferometer, including interferogram evaluation and applications. Due to the age and the importance of the subject, you can find a number of monographs [16.1,2,3,4] and book chapters [16.5] in the literature. The number of original papers on optical interferometry is far too large to even attempt complete coverage in this chapter. Whenever possible, review papers are cited. Original papers are cited according to their aptness as starting points into the subject. This, however, reflects my personal judgment. Even if you do not share my opinion, you should find the references therein useful.

  15. Interferometry

    Science.gov (United States)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  16. Air refractive index measurement using low-coherence interferometry

    Czech Academy of Sciences Publication Activity Database

    Pikálek, Tomáš; Buchta, Zdeněk

    2015-01-01

    Roč. 54, č. 16 (2015), s. 5024-5020 ISSN 1559-128X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212; GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : updated edlen equantion * frequency combs * laser * refractometry Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.598, year: 2015

  17. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning

    International Nuclear Information System (INIS)

    Watanabe, Kaho; Ohshima, Masashi; Nomura, Takanori

    2014-01-01

    The simultaneous measurement method of a refractive index distribution and a thickness distribution using low-coherence digital holography with a vertical scanning is proposed. The proposed method consists of a combination of digital holography and low-coherence interferometry. The introduction of a datum plane enables the measurement of both a refractive index distribution and a thickness distribution. By the optical experiment, the potential of the proposed method is confirmed. (paper)

  18. Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.

    Science.gov (United States)

    Trimborn, Barbara; Meyer, Pascal; Kunka, Danays; Zuber, Marcus; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Baumbach, Tilo; Koenig, Thomas

    2016-01-21

    X-ray grating interferometry is one among various methods that allow extracting the so-called phase and visibility contrasts in addition to the well-known transmission images. Crucial to achieving a high image quality are the absorption gratings employed. Here, we present an in-depth analysis of how the grating type and lamella heights influence the final images. Benchmarking gratings of two different designs, we show that a frequently used proxy for image quality, a grating's so-called visibility, is insufficient to predict contrast-to-noise ratios (CNRs). Presenting scans from an excised rat lung, we demonstrate that the CNRs obtained for transmission and visibility images anti-correlate. This is explained by the stronger attenuation implied by gratings that are engineered to provide high visibilities by means of an increased lamella height. We show that even the visibility contrast can suffer from this effect when the associated reduced photon flux on the detector is not outweighed by a corresponding gain in visibility. Resulting in an inevitable trade-off between the quality of the two contrasts, the question of how an optimal grating should be designed can hence only be answered in terms of Pareto optimality.

  19. Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer

    Science.gov (United States)

    Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz

    2015-12-01

    In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.

  20. Using refraction in thick glass plates for optical path length modulation in low coherence interferometry.

    Science.gov (United States)

    Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard

    2017-09-01

    In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.

  1. Měření indexu lomu vzduchu pomocí interferometrie nízké koherence

    Czech Academy of Sciences Publication Activity Database

    Pikálek, Tomáš; Buchta, Zdeněk

    2017-01-01

    Roč. 62, č. 10 (2017), s. 253-256 ISSN 0447-6441 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : air refractive index * laser interferometry * low-coherence interferometry Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics)

  2. Kaon interferometry

    International Nuclear Information System (INIS)

    Roldao, C.G.; Padula, S.S.

    1994-01-01

    Preliminary results of the χ 2 analysis where data on kaon interferometry, obtained from the E859 Collaboration of the AGS/Brookhaven Nat.Lab., are compared with results of a hadronic resonance production model are presented. The main goal is to test the resolution power of the method here discussed when applied to the two-dimensional kaon interferometry

  3. Optical phase nanoscopy in red blood cells using low-coherence spectroscopy.

    Science.gov (United States)

    Shock, Itay; Barbul, Alexander; Girshovitz, Pinhas; Nevo, Uri; Korenstein, Rafi; Shaked, Natan T

    2012-10-01

    We propose a low-coherence spectral-domain phase microscopy (SDPM) system for accurate quantitative phase measurements in red blood cells (RBCs) for the prognosis and monitoring of disease conditions that affect the visco-elastic properties of RBCs. Using the system, we performed time-recordings of cell membrane fluctuations, and compared the nano-scale fluctuation dynamics of healthy and glutaraldehyde-treated RBCs. Glutaraldehyde-treated RBCs possess lower amplitudes of fluctuations, reflecting an increased membrane stiffness. To demonstrate the ability of our system to measure fluctuations of lower amplitudes than those measured by the commonly used holographic phase microscopy techniques, we also constructed wide-field digital interferometry (WFDI) system and compared the performances of both systems. Due to its common-path geometry, the optical-path-delay stability of SDPM was found to be less than 0.3 nm in liquid environment, at least three times better than WFDI under the same conditions. In addition, due to the compactness of SDPM and its inexpensive and robust design, the system possesses a high potential for clinical applications.

  4. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  5. Group Frames With Few Distinct Inner Products and Low Coherence

    KAUST Repository

    Thill, Matthew

    2015-10-01

    Frame theory has been a popular subject in the design of structured signals and codes in recent years, with applications ranging from the design of measurement matrices in compressive sensing, to spherical codes for data compression and data transmission, to spacetime codes for MIMO communications, and to measurement operators in quantum sensing. High-performance codes usually arise from designing frames whose elements have mutually low coherence. Building off the original “group frame” design of Slepian which has since been elaborated in the works of Vale and Waldron, we present several new frame constructions based on cyclic and generalized dihedral groups. Slepian\\'s original construction was based on the premise that group structure allows one to reduce the number of distinct inner pairwise inner products in a frame with n elements from [(n(n-1))/2] to n-1. All of our constructions further utilize the group structure to produce tight frames with even fewer distinct inner product values between the frame elements. When n is prime, for example, we use cyclic groups to construct m-dimensional frame vectors with at most [(n-1)/m] distinct inner products. We use this behavior to bound the coherence of our frames via arguments based on the frame potential, and derive even tighter bounds from combinatorial and algebraic arguments using the group structure alone. In certain cases, we recover well-known Welch bound achieving frames. In cases where the Welch bound has not been achieved, and is not known to be achievable, we obtain frames with close to Welch bound performance.

  6. Speckle interferometry

    Science.gov (United States)

    Sirohi, Rajpal S.

    2002-03-01

    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  7. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    Science.gov (United States)

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  8. Speckle Interferometry

    Science.gov (United States)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  9. Active feedback wide-field optical low-coherence interferometry for ultrahigh-speed three-dimensional morphometry

    International Nuclear Information System (INIS)

    Choi, Woo June; Choi, Hae Young; Lee, Byeong Ha; Na, Jihoon; Eom, Jonghyun

    2010-01-01

    A novel optical interferometric scheme for ultrahigh-speed three-dimensional morphometry is proposed. The system is based on wide-field optical coherence tomography (WF-OCT) but with optically chopped illumination. The chopping frequency is feedback-controlled to be always matched with the Doppler frequency of the OCT interferometer, which provides an efficient page-wide demodulation suitable for ultrahigh-speed volumetric imaging. To compensate the unwanted variation in the OCT Doppler frequency of the system, the illumination frequency is phase-locked with an auxiliary laser interferometer which shares the reference arm with the OCT interferometer. The two-dimensional (2D) interference signals projected on the 2D array pixels of a 200 Hz CCD are accumulated during one imaging frame of the CCD. Then, each pixel of the CCD demodulates the OCT signal automatically. Owing to the proposed active frequency-locked illumination scheme, the demodulation does not depend on the variation in the axial scanning speed. Volumetric topograms or/and tomograms of several samples were achieved and rendered with a sensitivity of 58 dB at an axial scan speed of 0.805 mm s −1

  10. Interferometry with polarised neutrons

    International Nuclear Information System (INIS)

    Badurek, G.

    1978-01-01

    This paper aimed to give an outline of what might be expected from an extension of polarized beam techniques in neutron interferometry and how it could be achieved properly and what is the present state of this special field of interferometry

  11. Optical interferometry in astronomy

    International Nuclear Information System (INIS)

    Monnier, John D

    2003-01-01

    Here I review the current state of the field of optical stellar interferometry, concentrating on ground-based work although a brief report of space interferometry missions is included. We pause both to reflect on decades of immense progress in the field as well as to prepare for a new generation of large interferometers just now being commissioned (most notably, the CHARA, Keck and VLT Interferometers). First, this review summarizes the basic principles behind stellar interferometry needed by the lay-physicist and general astronomer to understand the scientific potential as well as technical challenges of interferometry. Next, the basic design principles of practical interferometers are discussed, using the experience of past and existing facilities to illustrate important points. Here there is significant discussion of current trends in the field, including the new facilities under construction and advanced technologies being debuted. This decade has seen the influence of stellar interferometry extend beyond classical regimes of stellar diameters and binary orbits to new areas such as mapping the accretion discs around young stars, novel calibration of the cepheid period-luminosity relation, and imaging of stellar surfaces. The third section is devoted to the major scientific results from interferometry, grouped into natural categories reflecting these current developments. Lastly, I consider the future of interferometry, highlighting the kinds of new science promised by the interferometers coming on-line in the next few years. I also discuss the longer-term future of optical interferometry, including the prospects for space interferometry and the possibilities of large-scale ground-based projects. Critical technological developments are still needed to make these projects attractive and affordable

  12. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  13. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    Science.gov (United States)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  14. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope

    Science.gov (United States)

    Krauter, Johann; Osten, Wolfgang

    2018-03-01

    There are a wide range of applications for micro-electro-mechanical systems (MEMS). The automotive and consumer market is the strongest driver for the growing MEMS industry. A 100 % test of MEMS is particularly necessary since these are often used for safety-related purposes such as the ESP (Electronic Stability Program) system. The production of MEMS is a fully automated process that generates 90 % of the costs during the packaging and dicing steps. Nowadays, an electrical test is carried out on each individual MEMS component before these steps. However, after encapsulation, MEMS are opaque to visible light and other defects cannot be detected. Therefore, we apply an infrared low-coherence interferometer for the topography measurement of those hidden structures. A lock-in algorithm-based method is shown to calculate the object height and to reduce ghost steps due to the 2π -unambiguity. Finally, measurements of different MEMS-based sensors are presented.

  15. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  16. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    Science.gov (United States)

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  17. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Mandrosov, V I [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  18. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  19. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  20. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-10-15

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  1. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu

    2014-01-01

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  2. Adjustable supercontinuum laser source with low coherence length and low timing jitter

    Science.gov (United States)

    Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe

    2010-04-01

    This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.

  3. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  4. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  5. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing

    2017-10-24

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  6. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing; Hanafy, Sherif; Schuster, Gerard T.

    2017-01-01

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  7. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  8. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola; Hanafy, Sherif M.; Schuster, Gerard T.

    2014-01-01

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  9. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.

    1978-01-01

    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  10. Space Interferometry Science Working Group

    Science.gov (United States)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  11. Optimization of phase-variation measurements in low-coherence methods: implications for OCE

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexandr L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Alexander A.; Vitkin, Alex

    2016-04-01

    Phase-resolved measurements found numerous applications in low-coherence methods, in particular in OCT-based compressional elastography, where phase-variation gradients are used for estimating strains produced by the OCT probe pressed onto the tissue. Conventionally, for the reference and deformed pixelated OCT scans, one performs comparison of phases taken from pixels with the same coordinates. This is reasonable in regions of sufficiently small sub-pixel displacements, for which the so-compared pixels contain the same scatterers. Furthermore, to avoid error-prone multiple phase unwrapping for reconstructing displacements, one have to ensure even smaller sub-wavelength displacements. This limits the allowable strains to less than ~10-4-10-3, although such weak phase gradients can be strongly corrupted by measurement noises. Here, we discuss how creation of an order of magnitude greater strains can be used for increasing the signal-to noise ratio in estimating phase gradients by obviating the phase-unwrapping procedures and reducing the influence of decorrelation noise for supra-pixel displacements. This optimized phase-variation measurement makes it possible to perform strain mapping in optical coherence elastography with exceptionally high tolerance to noises due to possibility of using significantly increased strains. We also discuss the effect of "frozen-phase zones" associated with displaced strong scatterers. This effect can result in appearance of artifacts in the form of false stiff inclusions in elastograms in the vicinity of bright scatterers in OCT scans. We present analytical arguments, numerical simulations and experimental examples illustrating the above-mentioned features of the "frozen-phase" effect and advantages of using the proposed optimized phase-variation measurement with pixel-scale displacement compensation in the compared OCT scans.

  12. Transportable and vibration-free full-field low-coherent quantitative phase microscope

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.

  13. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  14. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  15. Basics of interferometry

    CERN Document Server

    Hariharan, P

    1992-01-01

    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  16. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  17. Measurement of dispersion of nanoparticles in a dense suspension by high-sensitivity low-coherence dynamic light scattering

    Science.gov (United States)

    Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki

    2014-08-01

    High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.

  18. Speckle interferometry of asteroids

    International Nuclear Information System (INIS)

    Drummond, J.

    1988-01-01

    By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated

  19. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto

    2014-08-01

    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  20. Precision measurement with atom interferometry

    International Nuclear Information System (INIS)

    Wang Jin

    2015-01-01

    Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. (topical review)

  1. Soft x-ray interferometry

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument's components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200 angstrom wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency

  2. Parsimonious refraction interferometry

    KAUST Repository

    Hanafy, Sherif

    2016-09-06

    We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.

  3. Interferometry with Vortices

    Directory of Open Access Journals (Sweden)

    P. Senthilkumaran

    2012-01-01

    Full Text Available Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of measurements. In an optical vortex interferometer (OVI, a lattice of vortices is formed, and the movement of the cores of these vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them is illustrated by the superposition of these beams.

  4. Parsimonious refraction interferometry

    KAUST Repository

    Hanafy, Sherif; Schuster, Gerard T.

    2016-01-01

    We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.

  5. Interferometry using undulator sources

    International Nuclear Information System (INIS)

    Beguiristain, R.; Goldberg, K.A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D.T.; Jackson, K.

    1996-01-01

    Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in Soft X-Ray Projection Lithography, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), 18, 1089, and D. Attwood et al., Appl. Opt. 32, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg et al., in Extreme Ultra Lithography, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg et al., Proc. SPIE 2437, to be published, and K. Goldberg et al., J. Vac. Sci. Technol. B 13, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown. copyright 1996 American Institute of Physics

  6. Parsimonious Refraction Interferometry and Tomography

    KAUST Repository

    Hanafy, Sherif; Schuster, Gerard T.

    2017-01-01

    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves

  7. Phase Referencing in Optical Interferometry

    OpenAIRE

    Filho, Mercedes E.; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie

    2008-01-01

    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  8. Extreme ultraviolet interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-12-01

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  9. Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood

    Directory of Open Access Journals (Sweden)

    Małgorzata Jędrzejewska-Szczerska

    2014-04-01

    Full Text Available In this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing interferometer. The first step in the research on such sensor is the assessment of its performance under favorable conditions, i.e., using blood samples from healthy volunteers tested in vitro. Such an experiment was conducted using a sensor comprising a superluminescent diode source, an optical spectrum analyzer working as the detection setup and a sensing Fabry-Perot interferometer providing high interference contrast. The response of this sensor was recorded for several samples and compared with the reference laboratory method. The coefficient of determination (R2 for a linear relationship between the results given by both methods was 0.978 and the difference between these results was less than 1%. The presented results suggest that further research into the performance of the sensor is merited.

  10. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)

    2010-07-15

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  11. Landau-Zener-Stueckelberg interferometry

    International Nuclear Information System (INIS)

    Shevchenko, S.N.; Ashhab, S.; Nori, Franco

    2010-01-01

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  12. Kaon interferometry; Interferometria de kaons

    Energy Technology Data Exchange (ETDEWEB)

    Roldao, C.G.; Padula, S.S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1994-06-01

    Preliminary results of the {chi}{sup 2} analysis where data on kaon interferometry, obtained from the E859 Collaboration of the AGS/Brookhaven Nat.Lab., are compared with results of a hadronic resonance production model are presented. The main goal is to test the resolution power of the method here discussed when applied to the two-dimensional kaon interferometry. 11 refs., 2 figs.; e-mail: roldao at axp.ift.unesp.br; padula at axp.ift.unesp.br.

  13. Phase estimation in optical interferometry

    CERN Document Server

    Rastogi, Pramod

    2014-01-01

    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  14. Complete positivity and neutron interferometry

    International Nuclear Information System (INIS)

    Benatti, F.; Floreanini, R.

    1999-01-01

    We analyze the dynamics of neutron beams in interferometry experiments using quantum dynamical semigroups. We show that these experiments could provide stringent limits on the non-standard, dissipative terms appearing in the extended evolution equations. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Precision Geodesy via Radio Interferometry.

    Science.gov (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  16. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.

    1995-12-31

    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  17. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.

    1987-01-01

    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  18. Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films

    Science.gov (United States)

    Hirsch, Marzena; Listewnik, Paulina; Jedrzejewska-Szczerska, Małgorzata

    2018-04-01

    In this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes, using wavelengths of 1300 nm and 1500 nm. The measurements with the air cavity showed the best performance in terms of a visibility of the interference signal can be achieved for small cavity lengths ( 50μm) in both configurations. Combined with the enhancement of reflectance of the interferometer mirrors due to the ALD film, proposed construction could be successfully applied in refractive index (RI) sensor that can operate with improved visibility of the signal even in 1.3-1.5 RI range as well as with small volume samples, as shown by the modeling.

  19. Principles and methods of neutron interferometry

    International Nuclear Information System (INIS)

    Bonse, U.

    1978-01-01

    The merits of Angstrom range interferometry with neutrons are briefly outlined. The energy (wavelength) range which is accessible with the triple Laue case (LLL) crystal interferometer is estimated, assuming a neutron source with flux characteristics similar to that of the HFR at Grenoble. It appears that a range in E from roughly 2.3 meV to 8.2eV (lambda approximatly equal to 6A to 0.1A) can be covered with LLL interferometers manufactured with presently available perfect crystals of silicon. Within this range there exists a number of scattering resonances that it seems worth while to investigate interferometrically. The attainable resolution ΔE/E is estimated to be at least 10 -3 for E -2 above. The essentials of zero absorption Bragg diffraction optics of the neutron LLL interferometer are described. Virtues and weaknesses of different LLL geometries are discussed. The influence of geometrical abberrations, strain and position instabilities are surveyed. Aspects of coherent scattering length measurements and of neutron phase topography are discussed

  20. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    Science.gov (United States)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  1. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  2. Investigations of mechanism of laser radiation absorption at PALS

    Czech Academy of Sciences Publication Activity Database

    Kalinowska, Z.; Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří

    2012-01-01

    Roč. 57, č. 2 (2012), s. 227-230 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA)2011. Warsaw, 12.09.2011-16.09.2011] R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : collisional absorption * crater volume * electron density distribution * interferometry * iodine laser * resonance absorption * Laser radiation * inverse bremsstrahlung * laser interferometry * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012 http://www.nukleonika.pl/www/back/full/vol57_2012/v57n2p227f.pdf

  3. Space Interferometry Mission Instrument Mechanical Layout

    Science.gov (United States)

    Aaron, K.; Stubbs, D.; Kroening, K.

    2000-01-01

    The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

  4. Some applications of holographic interferometry in biomechanics

    Science.gov (United States)

    Ebbeni, Jean P. L.

    1992-03-01

    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  5. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  6. Analytic approximations for inside-outside interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S.; Gyulassy, M. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1990-07-30

    Analytical expressions for pion interferometry are derived illustrating the competing effects of various non-ideal aspects of inside-outside cascade dynamics at energies {proportional to}200 AGeV. (orig.).

  7. High-contrast Nulling Interferometry Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  8. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  9. Novel Polarimetric SAR Interferometry Algorithms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  10. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  11. 2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Okajima, Shigeki

    2000-01-01

    Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)

  12. Theory of supervirtual refraction interferometry

    KAUST Repository

    Bharadwaj, Pawan; Schuster, Gerard T.; Mallinson, Ian; Dai, Wei

    2012-01-01

    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the

  13. Spectral Interferometry with Electron Microscopes

    Science.gov (United States)

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  14. Parsimonious Refraction Interferometry and Tomography

    KAUST Repository

    Hanafy, Sherif

    2017-02-04

    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.

  15. Reduction of chromatic aberration influences in vertical scanning white-light interferometry

    International Nuclear Information System (INIS)

    Lehmann, Peter; Kühnhold, Peter; Xie, Weichang

    2014-01-01

    Vertical scanning white-light interferometry (SWLI) is a well-established method that is widely used in high precision surface topography measurement. However, SWLI results show characteristic slope-dependent errors due to dispersion effects and lateral chromatic aberrations of the optical imaging system. In this paper, we present methods to characterize these systematic errors related to dispersion and lateral colour. Lateral colour leads to field-dependent systematic discrepancies of the topography data obtained from the envelope position of a low-coherence interference signal and the data resulting from its interference phase. Hence, an erroneous fringe order obtained from the envelope position leads to a 2π phase jump and thus to a so-called ghost step in the measured topography. Our first approach to solve this problem is based on the measurement of a surface standard of well-known geometry. By comparison of measurement results related to the envelope position and the phase of SWLI signals, the systematic error is estimated and a numerical error compensation method is proposed. Both experimental and simulation results confirm the validity of this numerical method. In addition, using an improved design of a white-light Michelson interferometer we demonstrate experimentally that lateral chromatic aberrations and dispersion influences can be reduced also in a physical way. In this context, a conventional long working distance microscope objective is used which was not originally designed for a Michelson interference microscope. (paper)

  16. The Lindley paradox in optical interferometry

    International Nuclear Information System (INIS)

    Mauri, Camillo; Paris, Matteo G.A.

    2016-01-01

    The so-called Lindley paradox is a counterintuitive statistical effect where the Bayesian and frequentist approaches to hypothesis testing give radically different answers, depending on the choice of the prior distribution. In this paper we address the occurrence of the Lindley paradox in optical interferometry and discuss its implications for high-precision measurements. In particular, we focus on phase estimation by Mach–Zehnder interferometers and show how to mitigate the conflict between the two approaches by using suitable priors. - Highlights: • We address the occurence of Lindley paradox in interferometry and discuss its implications for high-precision measurements. • We show how to mitigate the conflict between Bayesian and frequentist approach to interferometry using suitable priors. • Our results apply to calibration of homodyne detectors for quantum tomography.

  17. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets......) the status of the airborne interferometry activities at DCRS, including the present system configuration, recent results, and some scientific applications of the system....

  18. Samuel A. Werner Pioneer of Neutron Interferometry

    International Nuclear Information System (INIS)

    Klein, Anthony

    2005-01-01

    Full text: In 1975, Sam Werner and his collaborators on the staff of the Scientific Laboratory of the Ford Motor Company carried out one of the pioneering experiments in neutron interferometry at the 2MW University of Michigan research reactor. It was the famous COW Experiment on gravitationally induced quantum interference. Shortly thereafter he moved to the University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. The Interferometry and Coherence session at this conference has been organized in his honour and the collected papers presented by his friends, collaborators and former students form his Festschrift. (author)

  19. Global astrometry with the space interferometry mission

    Science.gov (United States)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  20. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  1. Precision measurements with atom interferometry

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.

    2017-04-01

    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601

  2. Green's function representations for seismic interferometry

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Fokkema, J.T.

    2006-01-01

    The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered

  3. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  4. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  5. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai; AlTheyab, Abdullah; Schuster, Gerard T.

    2014-01-01

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place

  6. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.

    2010-01-01

    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers http://onlinelibrary.wiley.com/doi/10.1002/masy.200900093/pdf

  7. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  8. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  9. Future Looks Bright for Interferometry

    Science.gov (United States)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  10. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  11. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  12. X-ray phase radiography and tomography with grating interferometry and the reverse projection technique

    International Nuclear Information System (INIS)

    Wang, Zhili; Gao, Kun; Ge, Xin; Wu, Zhao; Chen, Heng; Wang, Shenghao; Wu, Ziyu; Zhu, Peiping; Yuan, Qingxi; Huang, Wanxia; Zhang, Kai

    2013-01-01

    X-ray grating interferometry provides substantially increased contrast over conventional absorption-based imaging methods, and therefore new and complementary information. Compared with other phase-contrast imaging techniques, x-ray grating interferometry can overcome some of the problems that have impaired the applications of x-ray phase-contrast radiography and phase tomography. Recently, special attention has been paid to the development of quantitative phase retrieval methods, which is mandatory to perform x-ray phase tomography, to achieve material identification, to differentiate distinct tissues, etc. Typically, the phase-stepping approach has been utilized for phase retrieval in grating interferometry. This method requires a grating scanning and acquisition of multiple radiographic projections, and therefore is disadvantageous in terms of imaging speed and radiation damage. Here we present an innovative, highly sensitive approach, dubbed ‘reverse projection’ (RP), for quantitative phase retrieval. Compared with the phase-stepping approach, the present RP method abandons grating scanning completely, and thus is advantageous due to its much higher efficiency and the reduced radiation dose, without the degradation of reconstruction quality. This review presents a detailed explanation of the principle of the RP method. Both radiography and phase tomography experiments are performed to validate the RP method. We believe that this new technique will find widespread applications in biomedical imaging and in vivo studies. (paper)

  13. Kinetic Titration Series with Biolayer Interferometry

    Science.gov (United States)

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  14. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D

    2012-01-01

    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  15. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  16. Enhanced Interferometry with Programmable Spatial Light Modulator

    Science.gov (United States)

    2010-06-07

    Interferometry, Spatial Light Modulator, Surface Accuracy, Optics, Mirror, Zernike , Freeform Optics, Null Testing, Hartman, Wavefront 16. SECURITY...S L M P ix e l- c a m Tilted Flat Mirror L a s e r PV. ± 3.4 λ -Tilt by the flat mirror, ~7 waves ~ 14 fringes Interferogram 3D view (Various...Interferogram ( 3D view) x- profile y- profile (Various waveplates and telescopes not shown) SLM can compensate tilted wavefronts with an accuracy of

  17. Laser interferometry for the Big Bang Observer

    OpenAIRE

    Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl

    2006-01-01

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  18. Laser interferometry for the Big Bang Observer

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)

    2006-08-07

    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  19. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W

    2017-01-01

    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  20. Development of Speckle Interferometry Algorithm and System

    International Nuclear Information System (INIS)

    Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.

    2011-01-01

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.

  1. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  2. Reproducibility of the measurement of central corneal thickness in healthy subjects obtained with the optical low coherence reflectometry pachymeter and comparison with the ultrasonic pachymetry.

    Science.gov (United States)

    Garza-Leon, Manuel; Plancarte-Lozano, Eduardo; Valle-Penella, Agustín Del; Guzmán-Martínez, María de Lourdes; Villarreal-González, Andrés

    2018-01-01

    Corneal pachymetry is widely used for refractive surgery and follow up in keratoconus, accurate measurement is essential for a safe surgery. To assess intraobserver reliability of central corneal thickness (CCT) measurements using optical low-coherence reflectometry (OLCR) technology and its agreement with ultrasonic pachymeter (US). Randomized and prospective comparative evaluation of diagnostic technology. One randomly healthy eye of subjects was scanned three times with both devices. Intraobserver within-subject standard deviation (Sw), coefficient of variation (CVw) and intraclass correlation coefficient (ICC) were obtained for reliability analysis; for study agreement, data were analyzed using the paired-sample t test and the Bland-Altman LoA method. The mean of three scans of each equipment was used to assess the LoA. The study enrolled 30 eyes of 30 subjects with average age of 28.70 ± 8.06 years. For repeatability, the Sw were 3.41 and 5.96 µ, the intraobserver CVw was 2 and 4% and ICC 0.991 and 0.988, for OLCR and US respectively. The mean CCT difference between OLCR and US was 8.90 ± 9.03 µ (95% confidence interval: 5.52-2.27 µ), and the LoA was 35.40 µ. OLCR technology provided reliable intraobserver CCT measurements. Both pachymetry measurements may be used interchangeably with minimum calibration adjustment. Copyright: © 2018 Permanyer.

  3. Distributed gas sensing with optical fibre photothermal interferometry.

    Science.gov (United States)

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  4. Phase-shift interferometry with a digital photocamera

    International Nuclear Information System (INIS)

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses

  5. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  6. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. No...

  7. Studies on electrodeposited silver sulphide thin films by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Prabhune, V.B.; Shinde, N.S.; Fulari, V.J.

    2008-01-01

    Silver sulphide (Ag 2 S) thin films have been deposited on to stainless steel and fluorine doped tin oxide (FTO) glass substrates by the electrodeposition process, in potentiostatic mode using silver nitrate (AgNO 3 ), sodium thiosulphate (Na 2 S 2 O 3 ) as a precursor sources and Ethylene Diamine Tetra Acetic Acid (EDTA) was used as a complexing agent. The deposition potential of the compound was investigated by cyclic voltammetry. The structural and optical properties of the deposited films have been studied using X-ray diffraction (XRD) and optical absorption techniques, respectively. XRD studies reveal that the films are polycrystalline with monoclinic crystal structure. Optical absorption study shows the presence of direct transition with bandgap energy 1.1 eV. The determination of thickness and stress of the Ag 2 S thin films was carried out by Double Exposure Holographic Interferometry (DEHI) technique.

  8. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  9. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  10. Baseline-dependent averaging in radio interferometry

    Science.gov (United States)

    Wijnholds, S. J.; Willis, A. G.; Salvini, S.

    2018-05-01

    This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.

  11. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  12. Balanced detection for self-mixing interferometry.

    Science.gov (United States)

    Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele

    2017-01-15

    We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.

  13. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Buchelt, R.J.

    2000-05-01

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  14. Novel crystalline-waveguide broadband light sources for interferometry

    NARCIS (Netherlands)

    Pollnau, Markus

    In recent years, broadband fiber interferometers have become very popular as basic instruments used in optical low-coherence reflectometry for diagnostics of fiber and integrated optics devices or in optical coherence tomography (OCT) for imaging applications in the biomedical field. The

  15. Absorptive products

    International Nuclear Information System (INIS)

    Assarsson, P.G.; King, P.A.

    1976-01-01

    Applications for hydrophile gels produced by the radiation induced cross-linking in aqueous solution of polyethylene oxide and starch, as described in Norwegian patent 133501 (INIS RN 281494), such as sanitary napkins (diapers) and sanitary towels, are discussed. The process itself is also discussed and results, expressed as the percentage of insoluble gel and its absorptive capacity for saline solution as functions of the ratio of polyethylene oxide to starch and the radiation dose, are presented. (JIW)

  16. Persistent Scatterer Interferometry using Sentinel-1 Data

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Devanthery, Nuria; Cuevas-Gonzalez, Maria; Qihuan, Huang; Barra, Anna; Crippa, Bruno

    2016-04-01

    This work will be focused on the deformation measurement and monitoring using SAR imagery from the C-band Sentinel-1, a space mission funded by the European Union and carried out by the European Space Agency (ESA) within the Copernicus Programme. The work will firstly address the data processing and analysis procedure implemented by the authors. This includes both Persistent Scatterer Interferometry (PSI) tools to analyse large stacks of SAR images (say, typically more than 20 images), and Differential SAR Interferometry (DInSAR) tools to analyse short SAR image stacks. The work will discuss the characteristics of the main products derived by using Sentinel-1 DInSAR and PSI: deformation maps, deformation velocity maps, deformation time series, residual topographic error, etc. The analysis will be carried out over different types of land use area, e.g. urban, peri-urban and rural areas. The deformation monitoring based on Sentinel-1 data will be compared with the monitoring based on data from pre-existing missions, e.g. C-band ERS and Envisat, X-band TerraSAR-X and CosmoSkyMed, etc. The comparison will concern different study areas, mainly located in Italy and Spain.

  17. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  18. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  19. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  20. Spaceborne intensity interferometry via spacecraft formation flight

    Science.gov (United States)

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral

    2012-07-01

    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  1. Isotope Analysis of Uranium by Interferometry; Analyse isotopique de l'uranium par interferometrie

    Energy Technology Data Exchange (ETDEWEB)

    Leicknam, J P [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    Among the optical methods which may be used to make isotopic measurements of {sup 235}U interferometry gives promising results. An apparatus is described which has a photomultiplier as receiver; the source must therefore have characteristics (intensity, stability, fineness of emitted rays) which have led to the use of electrode-less discharge tubes whose methods of production and excitation are given. An example of calibration is given. (author) [French] Parmi les methodes optiques permettant le dosage isotopique de l'uranium 235, l'interferometrie est une technique qui donne des resultats prometteurs. On decrit ici un appareil ayant un photo-multiplicateur comme recepteur; la source doit donc avoir des caracteristiques (intensite, stabilite, finesse des raies emises) qui ont conduit a utiliser des tubes a decharge sans electrode dont on indique la fabrication et le mode d'excitation. Un exemple d'etalonnage est enfin donne. (auteur)

  2. Resolving power test of 2-D K+ K+ interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Roldao, Christiane G.

    1999-01-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry 1 , an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)

  3. Generalized interferometry - I: theory for interstation correlations

    Science.gov (United States)

    Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian

    2017-02-01

    We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on

  4. Multi-Axis Heterodyne Interferometry (MAHI)

    Science.gov (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  5. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  6. Real time processor for array speckle interferometry

    International Nuclear Information System (INIS)

    Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.

    1989-01-01

    With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods

  7. Unification of nonclassicality measures in interferometry

    Science.gov (United States)

    Yuan, Xiao; Zhou, Hongyi; Gu, Mile; Ma, Xiongfeng

    2018-01-01

    From an operational perspective, nonclassicality characterizes the exotic behavior in a physical process which cannot be explained with Newtonian physics. There are several widely used measures of nonclassicality, including coherence, discord, and entanglement, each proven to be essential resources in particular situations. There exists evidence of fundamental connections among the three measures. However, the sources of nonclassicality are still regarded differently and such connections are yet to be elucidated. Here, we introduce a general framework of defining a unified nonclassicality with an operational motivation founded on the capability of interferometry. Nonclassicality appears differently as coherence, discord, and entanglement in different scenarios with local measurement, weak basis-independent measurement, and strong basis-independent measurement, respectively. Our results elaborate how these three measures are related and how they can be transformed from each other. Experimental schemes are proposed to test the results.

  8. Compressed-sensing wavenumber-scanning interferometry

    Science.gov (United States)

    Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli

    2018-01-01

    The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.

  9. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  10. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)

    GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.

    2014-01-01

    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  11. Investigation of surface deformations by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Ecevit, F.N.; Guven, H.; Aydin, R.

    1990-01-01

    Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs

  12. Two-dimensional χ2 analysis in kaon interferometry

    International Nuclear Information System (INIS)

    Roldao, C.G.; Padula, S.S.

    1997-01-01

    This work presents preliminary results obtained from the χ 2 analysis performed on the E 859 Joint Work data. The work objective is to quantify the resolution power of the kaon two-dimension interferometry

  13. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  14. Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    Science.gov (United States)

    Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.

    2018-05-01

    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.

  15. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  16. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  17. On marginally resolved objects in optical interferometry

    Science.gov (United States)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  18. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  19. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  20. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  1. Bounding the Higgs boson width through interferometry.

    Science.gov (United States)

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  2. Experimental demonstration of deep frequency modulation interferometry.

    Science.gov (United States)

    Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán

    2016-01-25

    Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used.

  3. Quasar Astrophysics with the Space Interferometry Mission

    Science.gov (United States)

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

    2007-01-01

    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  4. Geometric phase modulation for stellar interferometry

    International Nuclear Information System (INIS)

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  5. From master slave interferometry to complex master slave interferometry: theoretical work

    Science.gov (United States)

    Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2018-03-01

    A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.

  6. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    H.J. Tiziani

    1996-01-01

    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  7. Absolute marine gravimetry with matter-wave interferometry.

    Science.gov (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  8. Threshold secret sharing scheme based on phase-shifting interferometry.

    Science.gov (United States)

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  9. A publication database for optical long baseline interferometry

    Science.gov (United States)

    Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain

    2010-07-01

    Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.

  10. Pipeline monitoring with interferometry in non-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)

    2005-07-01

    Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)

  11. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F

    2015-01-01

    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  12. Deghosting, Demultiple, and Deblurring in Controlled-Source Seismic Interferometry

    Directory of Open Access Journals (Sweden)

    Joost van der Neut

    2011-01-01

    Full Text Available With controlled-source seismic interferometry we aim to redatum sources to downhole receiver locations without requiring a velocity model. Interferometry is generally based on a source integral over cross-correlation (CC pairs of full, perturbed (time-gated, or decomposed wavefields. We provide an overview of ghosts, multiples, and spatial blurring effects that can occur for different types of interferometry. We show that replacing cross-correlation by multidimensional deconvolution (MDD can deghost, demultiple, and deblur retrieved data. We derive and analyze MDD for perturbed and decomposed wavefields. An interferometric point spread function (PSF is introduced that can be obtained directly from downhole data. Ghosts, multiples, and blurring effects that may populate the retrieved gathers can be locally diagnosed with the PSF. MDD of perturbed fields can remove ghosts and deblur retrieved data, but it leaves particular multiples in place. To remove all overburden-related effects, MDD of decomposed fields should be applied.

  13. Progress in electron- and ion-interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, Franz [Institut fuer Angewandte Physik der Universitaet Tuebingen, Auf der Morgenstelle 10, D-72076 Tuebingen (Germany)], E-mail: franz.hasselbach@uni-tuebingen.de

    2010-01-15

    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  14. Progress in electron- and ion-interferometry

    International Nuclear Information System (INIS)

    Hasselbach, Franz

    2010-01-01

    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  15. Atmospheric Phase Delay in Sentinel SAR Interferometry

    Science.gov (United States)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation

  16. ATMOSPHERIC PHASE DELAY IN SENTINEL SAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    V. Krishnakumar

    2018-04-01

    Full Text Available The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR Interferometry (InSAR has been a widely used geodetic technique for observing the Earth’s surface, especially for mapping the Earth’s topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth’s atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR. To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate

  17. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  18. Super-virtual refraction interferometry: Theory

    KAUST Repository

    Bharadwaj, Pawan

    2011-01-01

    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.

  19. Photon exchange and decoherence in neutron interferometry

    International Nuclear Information System (INIS)

    Sulyok, G.

    2011-01-01

    The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de

  20. Interferometry correlations in central p+Pb collisions

    Science.gov (United States)

    Bożek, Piotr; Bysiak, Sebastian

    2018-01-01

    We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.

  1. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  2. Interferometry correlations in central p+Pb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, Piotr; Bysiak, Sebastian [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow (Poland)

    2018-01-15

    We present results on interferometry correlations for pions emitted in central p+Pb collisions at √(s{sub NN}) = 5.02 TeV in a 3 + 1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration. (orig.)

  3. The compact and inexpensive arrowhead setup for holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)

    2011-07-15

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.

  4. Mechanical Strain Measurement from Coda Wave Interferometry

    Science.gov (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.

    2017-12-01

    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  5. Time-delay interferometry for LISA

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2002-01-01

    LISA (Laser Interferometer Space Antenna) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases or frequencies of laser beams exchanged between three remote spacecraft. We previously showed how, with lasers of identical frequencies on stationary spacecraft, the measurement of twelve time series of Doppler shifts could be combined to cancel exactly the phase noise of the lasers and the Doppler fluctuations due to noninertial motions of the six optical benches, while preserving gravitational wave signals. Here we generalize those results on gravitational wave detection with time-delay interferometry to the expected LISA instrument. The six lasers have different center frequencies (in the nominal LISA configuration these center frequencies may well differ by several hundred megahertz) and the distances between spacecraft pairs will change with time (these slowly varying orbital Doppler shifts are expected to be up to tens of megahertz). We develop time-delay data combinations which, as previously, preserve gravitational waves and exactly cancel the leading noise source (phase fluctuations of the six lasers); these data combinations then imply transfer functions for the remaining system noises. Using these, we plot frequency and phase power spectra for modeled system noises in the unequal Michelson combination X and the symmetric Sagnac combination ζ. Although optical bench noise can no longer be cancelled exactly, with the current LISA specifications it is suppressed to negligible levels. It is known that the presently anticipated laser center frequency differences and the orbital Doppler drifts introduce another source of phase noise, arising from the onboard oscillators required to track the photodetector fringes. For the presently planned mission, our analysis indeed demonstrates that noise from current-generation ultrastable oscillators would, if uncorrected, dominate the LISA noise budget. To meet the

  6. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  7. Theoretical trends in interferometry of ultrarelativistic nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    A review is made of the main concepts of interferometry, since its discovery in the mid 50's as the HBT effect, until recently, where some new approaches to the field were suggested. A few modifications on the correlation function in the case of high energy collisions are discussed and illustrated. (author)

  8. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  9. Matter wave interferometry in the light of Schroedinger's wave mechanics

    International Nuclear Information System (INIS)

    1987-01-01

    This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)

  10. Deformation measurement of a pressure vessel flange by holographic interferometry

    International Nuclear Information System (INIS)

    Goncalves Junior, Armando A.; Schneider, C.A.

    1984-01-01

    An automatic metodology used for the measurement of displacement through the holographic interferometry is presented. In order to shown its performance and potentiality, the displacement field from a pipe's and flange, when submited to an internal pressure, is experimentally found. Holography's results are compared with other technique's results. (Author) [pt

  11. Time-lapse controlled-source electromagnetics using interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.

  12. Generation of Bell, NOON and W states via atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Rameez-ul; Saif, Farhan [Department of Electronics, Quaid-i-Azam University, Islamabad (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-02-14

    We propose atom interferometric techniques for the generation of Bell, NOON and W states of an electromagnetic field in high-Q cavities. The fundamental constituent of these techniques is off-resonant Bragg diffraction of atomic de Broglie waves. We show good success probabilities for these schemes under the currently available experimental environment of atom interferometry.

  13. Radio astronomical interferometry and x-ray's computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1982-01-01

    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science.

  14. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.

    2005-01-01

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  15. Back scattering interferometry revisited – A theoretical and experimental investigation

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Martini; Jepsen, S. T.; Sørensen, Henrik Schiøtt

    2015-01-01

    A refractive index based detector based on so called back scattering interferometry (BSI) has been described in the literature as a unique optical method for measuring biomolecular binding interactions in solution. In this paper, we take a detailed look at the optical principle underlying this te...

  16. Global-scale seismic interferometry : Theory and numerical examples

    NARCIS (Netherlands)

    Ruigrok, E.N.; Draganov, D.S.; Wapenaar, K.

    2008-01-01

    Progress in the imaging of the mantle and core is partially limited by the sparse distribution of natural sources; the earthquake hypocenters are mainly along the active lithospheric plate boundaries. This problem can be approached with seismic interferometry. In recent years, there has been

  17. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1986-01-01

    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  18. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices

    Science.gov (United States)

    Uehara, Masato; Yashiro, Wataru; Momose, Atsushi

    2013-10-01

    It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.

  19. D-xylose absorption

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  20. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    Energy Technology Data Exchange (ETDEWEB)

    Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)

    2010-04-21

    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  1. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.

    1988-01-01

    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  2. A novel plasmonic interferometry and the potential applications

    Science.gov (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.

    2018-03-01

    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  3. A recent history of science cases for optical interferometry

    Science.gov (United States)

    Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre

    2018-04-01

    Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.

  4. Phase and fringe order determination in wavelength scanning interferometry.

    Science.gov (United States)

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel

    2016-04-18

    A method to obtain unambiguous surface height measurements using wavelength scanning interferometry with an improved repeatability, comparable to that obtainable using phase shifting interferometry, is reported. Rather than determining the conventional fringe frequency-derived z height directly, the method uses the frequency to resolve the fringe order ambiguity, and combine this information with the more accurate and repeatable fringe phase derived z height. A theoretical model to evaluate the method's performance in the presence of additive noise is derived and shown to be in good agreement with experiments. The measurement repeatability is improved by a factor of ten over that achieved when using frequency information alone, reaching the sub-nanometre range. Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced by a factor of ten. These order of magnitude improvements in measurement performance are demonstrated through a number of practical measurement examples.

  5. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  6. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    International Nuclear Information System (INIS)

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M

    2003-01-01

    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy

  7. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...... depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order...

  8. Demystifying back scatter interferometry: a sensitive refractive index detector

    DEFF Research Database (Denmark)

    Jepsen, Søren Terpager; Jørgensen, Thomas Martini; Trydal, Torleif

    2014-01-01

    BACKGROUND: Back Scatter Interferometry (BSI) is a sensitive method for detecting changes of the refractive index (RI) in small capillaries. The method was originally developed as an off-axial column detector for use in Liquid Chromatography or Capillary Electrophoresis systems, but it has been...... acting like a common-path interferometer. METHODS: A HeNe laser is directed at a glass capillary with inner diameter of 1.4 mm and reflected light from air/glass and liquid/glass interfaces interfere to form an RI dependent intensity fringe pattern at a CCD detector. The fringe shift relative...... a common-path interferometer. The sensitivity of the BSI system is given by twice the inner diameter of the capillary times the wavenumber of the light source. Our results suggest that Back Scatter Interferometry does not provide a unique measurement principle for sensing biochemical bindings compared...

  9. Neutron interferometry: The pioneering contributions of Samuel A. Werner

    International Nuclear Information System (INIS)

    Klein, A.G.

    2006-01-01

    In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2 MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34 (1975) 1472] on gravitationally induced quantum interference. Shortly thereafter he moved to University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. This work and its history are briefly reviewed in this paper

  10. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    Science.gov (United States)

    Abramson, Nils H

    2014-04-10

    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  11. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  12. Application of synchrotron radiation to X-ray interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M [King' s Coll., London (UK). Wheatstone Physics Lab.

    1980-05-01

    X-ray interferometry has been attempted with synchrotron radiation at Hamburg and at Orsay. Experiments will start this year at the Storage Ring Source at Daresbury. This review covers work which has already been completed and outlines the likely trends in phase sensitive X-ray polarimetry, high resolution spectroscopy (including real and imaginary-part EXAFS) and novel experiments with many-beam-case interferometers.

  13. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  14. Using Atom Interferometry to Search for New Forces

    International Nuclear Information System (INIS)

    Wacker, Jay G.

    2009-01-01

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances will be able to rewrite the limits for forces with ranges from 100 (micro)m to 1km.

  15. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.

    1986-05-01

    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  16. Using atom interferometry to search for new forces

    International Nuclear Information System (INIS)

    Wacker, Jay G.

    2010-01-01

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances may be able to rewrite the limits for forces with ranges from 1 mm to 100 m.

  17. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  18. HBT interferometry and the parton-hadron phase transition

    International Nuclear Information System (INIS)

    Soff, S.

    2002-01-01

    We discuss predictions for the pion and kaon interferometry measurements in relativistic heavy ion collisions at SPS and RHIC energies. In particular, we confront relativistic transport model calculations that include explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas with recent data from the RHIC experiments. We critically examine the HBT puzzle both from the theoretical as well as from the experimental point of view. Alternative scenarios are briefly explained. (orig.)

  19. Pion interferometry and resonances in pp and AA collisions

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S. (UNESP, Inst. de Fisica Teorica, Sao Paulo (Brazil)); Gyulassy, M. (Lawrence Berkeley Lab., Nuclear Science Div., CA (United States))

    1992-07-20

    We study the sensitivity of pion interferometry in pp and anti pp collisions at ISR energies to the resonance abundance. We show that those data are not compatible with the full resonance fractions predicted by the Lund model. The preliminary S+S and O+Au data at 200 A GeV are, however, not incompatible with the Lund predictions, although their sensitivity to resonances is significantly weaker than in the pp/anti pp case. (orig.).

  20. Pion interferometry and resonances in pp and AA collisions

    International Nuclear Information System (INIS)

    Padula, S.S.; Gyulassy, M.

    1992-01-01

    We study the sensitivity of pion interferometry in pp and anti pp collisions at ISR energies to the resonance abundance. We show that those data are not compatible with the full resonance fractions predicted by the Lund model. The preliminary S+S and O+Au data at 200 A GeV are, however, not incompatible with the Lund predictions, although their sensitivity to resonances is significantly weaker than in the pp/anti pp case. (orig.)

  1. Pion interferometry and resonances in pp and AA collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1991-01-01

    We study the sensitivity of pion interferometry in bar pp and bar pp collisions at ISR energies to the resonance abundance. We show that those data are not compatible with the full resonance fractions predicted by the Lund model. The preliminary S+S and O+Au data at 200 GeV are, however, not incompatible with the Lund predictions, although their sensitivity to resonances is significantly weaker than in the pp/bar pp case

  2. Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry

    Science.gov (United States)

    Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo

    1988-01-01

    The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.

  3. Special topics in infrared interferometry. [Michelson interferometer development

    Science.gov (United States)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  4. Real-time laser holographic interferometry for aerodynamics

    International Nuclear Information System (INIS)

    Lee, G.

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references

  5. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  6. Use of the shearing interferometry for dense inhomogeneous plasma diagnostics

    International Nuclear Information System (INIS)

    Zakharenkov, Yu.A.; Sklizkov, G.V.; Shikanov, A.S.

    1980-01-01

    Investigated is a possibility of applying the shearing interferometry for diagnostics of a dense inhomogeneous laser plasma which makes it possible to measure the electron density without losses in accuracy near the critical surface. A shearing interferogram is formed upon interference of two identical images of the object under study shifted at some fixed distance. The value of the interference band deflection inside phase inhomogeneity depends on the gradient of the index of refraction in the direction of shift. It has been found that for studying the inner region of the laser plasma a small shift should be used, and for the external one - a large one. The version of a radial shift interferometry is shown to be optimum. For the inner region of the interferogram the error of the electron density restoration does not exceed 10%, and for the external one the error is comparable with that for the version of standard interferometry. A systematic analysis of the optimum type interferometers shows advantages of shearing interferometers. The maximum electron density recorded in experiments makes up approximately equal to 10 20 cm -3 , which is 3-5 times higher than the corresponding value obtained by a standard double-slit type interferometer at equal limiting parameters of the optical system applied

  7. PNO-apparatus and its test use for neutron interferometry

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi; Aizawa, Kazuya; Hasegawa, Yuji; Kikuta, Seishi.

    1993-01-01

    Special apparatus 'PNO' of multiutility in the so-called precise neutron optics, such as double or triple crystal diffractometry, interferometry, etc., including neutron diffraction topography, was settled at 3G beam hole in the JRR-3M. In the symposium, several applications of the PNO apparatus are presented as 1) very small angle neutron scattering tool with double crystal arrangement, 2) the characterization of the quality of artificial multilayer lattices made of Ti-Ni by a triple crystal arrangement, 3) the characterization of Ni-base superalloy single crystals by the diffraction topography, which are presented in individual sessions. Preliminary test of the neutron interferometry was also tried with the PNO apparatus. Usual monolithic Si LLL- type interferometer was used with an Al phase shifter in the neutron beam paths. The periodicity of the measured intensity curve was well corresponded to the expected one. The best contrast of the intensity curve was measured as high as 43%. The utility of the PNO-apparatus for neutron interferometry was, thus, approved. (author)

  8. Neutron Interferometry at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.

    2015-01-01

    Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research

  9. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  10. The D18 diffractometer for neutron interferometry at the I.L.L

    International Nuclear Information System (INIS)

    Bauspiess, W.

    1978-01-01

    Three things are needed for neutron interferometry: an interferometer (a crystal in the case of Bragg diffraction interferometry), a neutron source, and a device to select and handle the neutrons that shall be used. It is this last technical aspect of neutron interferometry which is discussed in the paper, using as an example the new diffractometer for neutron interferometry that is being built at the I.L.L. Results of performance tests are not presently available but its characteristics are visible from the design. The experimental figures given in the paper refer to experiments performed with the prototype machine, or are extrapolated from said experiments

  11. Application of super-virtual seismic refraction interferometry to enhance first arrivals: A case study from Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman Abdullatif Abdulrahman

    2012-01-01

    Complex near-surface anomalies are one of the main onshore challenges facing seismic data processors. Refraction tomography is becoming a common technology to estimate an accurate near-surface velocity model. This process involves picking the first arrivals of refracted waves. One of the main challenges with refraction tomography is the low signal-to-noise ratio characterizing the first-break waveform arrivals, especially for the far-offset receivers. This is especially evident in data recorded using reflection acquisition geometry. This low signal-to-noise ratio is caused by signal attenuation due to geometrical spreading of the seismic wavefield, near-surface-generated noise, and amplitude absorption. Super-virtual refraction interferometry improves the quality of the first-break picks by enhancing the amplitude of the refracted waves and attenuating the amplitude of the random noise.

  12. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  13. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  14. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  15. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Rizzi, Julien

    2013-01-01

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  16. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.

    Science.gov (United States)

    Peggs, G N; Yacoot, A

    2002-05-15

    This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.

  17. Electromagnetic interferometry in wavenumber and space domains in a layered earth

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Fan, Y.; Snieder, R.; Wapenaar, C.P.A.

    2013-01-01

    With interferometry applied to controlled-source electromagnetic data, the direct field and the airwave and all other effects related to the air-water interface can be suppressed in a data-driven way. Interferometry allows for retreival of the scattered field Green’s function of the subsurface or,

  18. Visualization and direct comparison of large displacements using difference holographic interferometry

    International Nuclear Information System (INIS)

    Necati Ecevit, F.; Aydin, R.

    1994-01-01

    The difference holographic interferometry provides the possibility of direct comparison of large displacements and deformations of two similar but different objects by application of a special kind of illumination. In this work, the principles of the difference holographic interferometry and the experimental results obtained by applying the single beam technique to large displacements is presented. (author). 10 refs, 4 figs

  19. New developments in NDT through electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Mohan, S.; Murugesan, P; Mas, R.H.

    2007-01-01

    Full text: Optical holography and speckle interferometry are the emerging optical techniques that can be used for the measurements of microscopic parameters such as displacement, strain, stress and slope. These techniques are applied in various fields such as surface studies, non destructive testing, speckle metrology and steller interferometry. Even though many new NDT methods are available, the suitability for a specific application is based on the material property, nature of defects and sensitivity of detection. Difficulty in radiographic technique is that it fails in detecting tight cracks, planar defects and debonds. Microwave techniques has limited sensitivity for the defect detection and it is not suitable for the objects with metallic cases since the metals are perfect reflectors for the microwaves. Low modulus material attenuates the acoustic energy completely, making ultrasonic testing techniques not feasible. The recently evolved optoelectronic technique namely Electronic Speckle Pattern interferometry (ESPI) is a fast developing optical technique widely used for measuring displacement components, their derivatives, surface roughness, surface contours, shape and others. Due to non contact nature and high sensitivity, this technique has been used as a powerful on line inspection tool for non destructive pattern of materials in industrial environment. The salient feature of ESPI is its capability to display the correlation fringes in a real time on a monitor without the need of photographic processing or optical filtering. ESPI is an alternate non destructive technique suitable for propellant grains and other low modulus materials used in space vehicle systems. The optoelectronic technique can be used to detect cracks, voids and residual stresses etc.., in the components in the industrial environment. In the present investigation, speckle non destructive testing has been carried out on some selected low modulus materials used in space vehicles. The

  20. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  1. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  2. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  3. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    Science.gov (United States)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  4. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.

    Science.gov (United States)

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K

    2011-06-10

    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  5. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  6. Sandwich Hologram Interferometry For Determination Of Sacroiliac Joint Movements

    Science.gov (United States)

    Vukicevic, S.; Vinter, I.; Vukicevic, D.

    1983-12-01

    Investigations were carried out on embalmed and fresh specimens of human pelvisis with preserved lumbar spines, hip joints and all the ligaments. Specimens were tested under static vertical loading by pulsed laser interferometry. The deformations and behaviour of particular pelvic parts were interpreted by providing computer interferogram models. Results indicate rotation and tilting of the sacrum in the dorso-ventral direction and small but significant movements in the cranio-caudal direction. Sandwich holography proved to be the only applicable method when there is a combination of translation and tilt in the range of 200 μm to 1.5 mm.

  7. Precision Gravity Tests with Atom Interferometry in Space

    Energy Technology Data Exchange (ETDEWEB)

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others

    2013-10-15

    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  8. Weld evaluation on spherical pressure vessels using holographic interferometry

    International Nuclear Information System (INIS)

    Boyd, D.M.; Wilcox, W.W.

    1980-01-01

    Waist welds on spherical experimental pressure vessels have been evaluated under pressure using holographic interferometry. A coincident viewing and illumination optical configuration coupled with a parabolic mirror was used so that the entire weld region could be examined with a single hologram. Positioning the pressure vessel at the focal point of the parabolic mirror provides a relatively undistorted 360 degree view of the waist weld. Double exposure and real time holography were used to obtain displacement information on the weld region. Results are compared with radiographic and ultrasonic inspections

  9. Holographic interferometry using a digital photo-camera

    International Nuclear Information System (INIS)

    Sekanina, H.; Hledik, S.

    2001-01-01

    The possibilities of running digital holographic interferometry using commonly available compact digital zoom photo-cameras are studied. The recently developed holographic setup, suitable especially for digital photo-cameras equipped with an un detachable object lens, is used. The method described enables a simple and straightforward way of both recording and reconstructing of a digital holographic interferograms. The feasibility of the new method is verified by digital reconstruction of the interferograms acquired, using a numerical code based on the fast Fourier transform. Experimental results obtained are presented and discussed. (authors)

  10. Mapping small elevation changes over large areas - Differential radar interferometry

    Science.gov (United States)

    Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.

    1989-01-01

    A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.

  11. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    Science.gov (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  12. Model-based multi-fringe interferometry using Zernike polynomials

    Science.gov (United States)

    Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan

    2018-06-01

    In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.

  13. Self-calibration in optical/infrared interferometry

    Science.gov (United States)

    Millour, Florentin; Dalla Vedova, Gaetan

    2015-08-01

    Optical interferometry produces nowadays images of the observed stars. However, the image quality of the current facilities (VLTI, CHARA) is impaired by the lack of phases measurements. We will describe here a method used to improve the image reconstruction that takes profit of a badly used observable: the wavelength differential phase. This phase shares some properties with the interferometric phase. That method is parent to the self-calibration which was developed in the 80's for radio astronomy to get rid of calibratioon artifacts, and produces a significant improvement on image quality over the current available methods.

  14. Theory of decoherence in Bose-Einstein condensate interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B J [ARC Centre for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia)

    2007-05-15

    A full treatment of decoherence and dephasing effects in BEC interferometry has been developed based on using quantum correlation functions for treating interferometric effects. The BEC is described via a phase space distribution functional of the Wigner type for the condensate modes and the positive P type for the non-condensate modes. Ito equations for stochastic condensate and non-condensate field functions replace the functional Fokker-Planck equation for the distribution functional and stochastic averages of field function products determine the quantum correlation functions.

  15. Rapid prototyping of versatile atom chips for atom interferometry applications.

    Science.gov (United States)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  16. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  17. From linear optical quantum computing to Heisenberg-limited interferometry

    International Nuclear Information System (INIS)

    Lee, Hwang; Kok, Pieter; Williams, Colin P; Dowling, Jonathan P

    2004-01-01

    The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum non-demolition measurements can now be carried out easily at the single-photon level

  18. Speckle Interferometry with the OCA Kuhn 22" Telescope

    Science.gov (United States)

    Wasson, Rick

    2018-04-01

    Speckle interferometry measurements of double stars were made in 2015 and 2016, using the Kuhn 22-inch classical Cassegrain telescope of the Orange County Astronomers, a Point Grey Blackfly CMOS camera, and three interference filters. 272 observations are reported for 177 systems, with separations ranging from 0.29" to 2.9". Data reduction was by means of the REDUC and Speckle Tool Box programs. Equipment, observing procedures, calibration, data reduction, and analysis are described, and unusual results for 11 stars are discussed in detail.

  19. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  20. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...... front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise....

  1. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Czech Academy of Sciences Publication Activity Database

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Číp, Ondřej

    2013-01-01

    Roč. 13, č. 2 (2013), s. 2206-2219 ISSN 1424-8220 R&D Projects: GA ČR GPP102/11/P820; GA ČR GA102/09/1276; GA AV ČR KAN311610701; GA MŠk ED0017/01/01; GA MŠk(CZ) LC06007 Institutional support: RVO:68081731 Keywords : nanometrology * laser noise * interferometry * nanopositioning * AFM Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.048, year: 2013

  2. Meson interferometry and the quest for quark-gluon matter

    International Nuclear Information System (INIS)

    Soff, Sven

    2001-01-01

    We point out what we may learn from the investigation of identical two-particle interferometry in ultrarelativistic heavy ion collisions if we assume a particular model scenario by the formation of a thermalized quark-gluon plasma hadronizing via a first-order phase transition to an interacting hadron gas. The bulk properties of the two-pion correlation functions are dominated by these late and soft resonance gas rescattering processes. However, we show that kaons at large transverse momenta have several advantages and a bigger sensitivity to the QCD phase transition parameters

  3. Refractometry and interferometry in chemical analysis; Refractometrie et interferometrie en analyse chimique

    Energy Technology Data Exchange (ETDEWEB)

    Veret, C [Faculte des Sciences de Paris, 75 (France)

    2000-03-01

    In vacuum, an electromagnetic radiation is propagated at a constant velocity. But, when it has to pass through a physical medium, it is submitted to different interactions (for instance: absorption, diffusion, refraction, polarization, dispersion, fluorescence) which lead to a modification of its propagation. In the frequency ranges of the radiation for which the absorption is not very important, the modifications of the propagation velocity of a radiation can bring data on the nature and/or the physical conditions (pressure, temperature) of a medium, whatever its state be: gas, liquid or solid. Thus, the absolute refractive index of a medium in relation to vacuum is defined as the ratio c/v of the propagation velocity c of a monochromatic electromagnetic radiation in vacuum at its velocity v in this medium. The photonic refractometry (field of ultraviolet, visible and infrared radiations) is the set of the measure techniques of the refractive indexes having a role in chemical analysis. The refractometry measures can only be applied to media which are optically transparent. After having described these techniques, the author presents their uses in chemical analysis. (O.M.)

  4. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  5. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  6. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-06-01

    The present discussion is limited to a presentation of the most recent total photonuclear absorption experiments performed with real photons at intermediate energy, and more precisely in the region of nucleon resonances. The main sources of real photons are briefly reviewed and the experimental procedures used for total photonuclear absorption cross section measurements. The main results obtained below 140 MeV photon energy as well as above 2 GeV are recalled. The experimental study of total photonuclear absorption in the nuclear resonance region (140 MeV< E<2 GeV) is still at its beginning and some results are presented

  7. Vibration Analysis Of Automotive Structures Using Holographic Interferometry

    Science.gov (United States)

    Brown, G. M.; Wales, R. R.

    1983-10-01

    Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.

  8. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    Science.gov (United States)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  9. Atomic interactions in precision interferometry using Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jamison, Alan O.; Gupta, Subhadeep; Kutz, J. Nathan

    2011-01-01

    We present theoretical tools for predicting and reducing the effects of atomic interactions in Bose-Einstein condensate (BEC) interferometry experiments. To address mean-field shifts during free propagation, we derive a robust scaling solution that reduces the three-dimensional Gross-Pitaevskii equation to a set of three simple differential equations valid for any interaction strength. To model the other common components of a BEC interferometer--condensate splitting, manipulation, and recombination--we generalize the slowly varying envelope reduction, providing both analytic handles and dramatically improved simulations. Applying these tools to a BEC interferometer to measure the fine structure constant, α[S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002)], we find agreement with the results of the original experiment and demonstrate that atomic interactions do not preclude measurement to better than part-per-billion accuracy, even for atomic species with relatively large scattering lengths. These tools help make BEC interferometry a viable choice for a broad class of precision measurements.

  10. A novel plasmonic interferometry and the potential applications

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-03-01

    Full Text Available In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  11. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  12. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    Science.gov (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  13. Controlled-source seismic interferometry with one way wave fields

    Science.gov (United States)

    van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.

    2008-12-01

    In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.

  14. Real-time trichromatic holographic interferometry: preliminary study

    Science.gov (United States)

    Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.

    1998-08-01

    In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.

  15. Interferometry in the era of time-domain astronomy

    Science.gov (United States)

    Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean

    2018-04-01

    The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.

  16. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  18. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  19. Comment on resonant absorption

    International Nuclear Information System (INIS)

    Hammerling, P.

    1977-01-01

    An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)

  20. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  1. Resolving power test of 2-D K{sup +} K{sup +} interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S.; Roldao, Christiane G. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1999-07-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry {sup 1} , an equivalent 2-D X{sup 2} analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K{sup +}K{sup +} interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)

  2. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Liang Mei

    2014-02-01

    Full Text Available Gas in scattering media absorption spectroscopy (GASMAS has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor, the pathlength of which can then be obtained and used for the target gas (e.g., oxygen to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique.

  3. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  4. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  5. Super-virtual refraction interferometry: an engineering field data example

    KAUST Repository

    Hanafy, Sherif M.

    2012-10-01

    The theory of super-virtual refraction interferometry (SVI) was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of the SNR is proportional to √N and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the SNR enhancement of super-virtual refraction traces for one engineering-scale synthetic data and two field seismic data sets. The field data are collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival traveltime picks are significantly increased. © 2012 European Association of Geoscientists & Engineers.

  6. Vegetation Parameter Extraction Using Dual Baseline Polarimetric SAR Interferometry Data

    Science.gov (United States)

    Zhang, H.; Wang, C.; Chen, X.; Tang, Y.

    2009-04-01

    For vegetation parameter inversion, the single baseline polarimetric SAR interferometry (POLinSAR) technique, such as the three-stage method and the ESPRIT algorithm, is limited by the observed data with the minimum ground to volume amplitude ration, which effects the estimation of the effective phase center for the vegetation canopy or the surface, and thus results in the underestimated vegetation height. In order to remove this effect of the single baseline inversion techniques in some extend, another baseline POLinSAR data is added on vegetation parameter estimation in this paper, and a dual baseline POLinSAR technique for the extraction of the vegetation parameter is investigated and improved to reduce the dynamic bias for the vegetation parameter estimation. Finally, the simulated data and real data are used to validate this dual baseline technique.

  7. Very Long Baseline Interferometry: Dependencies on Frequency Stability

    Science.gov (United States)

    Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald

    2018-04-01

    Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

  8. Space beam combiner for long-baseline interferometry

    Science.gov (United States)

    Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.

    1999-04-01

    An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.

  9. Speckle interferometry application for erosion measurements in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E.; Roupillard, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    In order to measure erosion/redeposition in fusion devices, a new diagnostic based on speckle interferometry is investigated. First experiments performed on carbon fibre composite (CFC) materials have shown that this technique is able to measure a modification of the surface in the range of 1 {mu}m. Further experiments have been performed on different materials using a second wavelength in order to carry out 3-dimensional measurements of the surface and to increase the dynamic range of the depth measurement. A diagnostic, based on two-wavelength TV-holography to measure in situ erosion/redeposition during long duration discharges on the CIEL limiter in Tore Supra, is under development at CEA Cadarache. (authors)

  10. Damage monitoring in historical murals by speckle interferometry

    Science.gov (United States)

    Hinsch, Klaus D.; Gulker, Gerd; Joost, Holger

    2003-11-01

    In the conservation of historical murals it is important to identify loose plaster sections that threaten to fall off. Electronic speckle interferometry in combination with acoustic excitation of the object has been employed to monitor loose areas. To avoid disadvantages of high sound irradiation of the complete building a novel directional audio-sound source based on nonlinear mixing of ultrasound has been introduced. The optical system was revised for optimum performance in the new environment. Emphasis is placed on noise suppression to increase sensitivity. Furthermore, amplitude and phase data of object response over the frequency-range inspected are employed to gain additional information on the state of the plaster or paint. Laboratory studies on sample specimen supplement field campaigns at historical sites.

  11. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  12. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail: gregory.hoth@nist.gov; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-08-15

    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  13. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    Science.gov (United States)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  14. Laboratory demonstration of Stellar Intensity Interferometry using a software correlator

    Science.gov (United States)

    Matthews, Nolan; Kieda, David

    2017-06-01

    In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.

  15. AMiBA: BROADBAND HETERODYNE COSMIC MICROWAVE BACKGROUND INTERFEROMETRY

    International Nuclear Information System (INIS)

    Chen, M.-T.; Li, C.-T.; Hwang, Y.-J.; Jiang Homin; Altamirano, Pablo; Chang, C.-H.; Chang, S.-H.; Chang, S.-W.; Han, C.-C.; Huang, Y.-D.; Kubo, Derek; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei Tashun; Chiueh, T.-D.; Chu, T.-H.; Wang Huei; Kesteven, Michael; Wilson, Warwick

    2009-01-01

    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first results on the detection of galaxy clusters via the Sunyaev-Zel'dovich effect. The objectives required small reflectors in order to sample large-scale structures (20'), while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102 GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. Monolithic millimeter-wave integrated circuit technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operation since 2006, and we are in the process to expand the array from seven to 13 elements.

  16. All-optical optoacoustic microscope based on wideband pulse interferometry.

    Science.gov (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis

    2016-05-01

    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.

  17. Interferometry and MHD turbulence measurements in toroidal pinches

    International Nuclear Information System (INIS)

    Dutt, T.L.; Evans, D.E.; Wilcock, P.D.

    1976-01-01

    A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)

  18. Intensity interferometry at the X13A undulator beamline

    International Nuclear Information System (INIS)

    Gluskin, E.; McNulty, I.; Yang, L.; Randall, K.J.; Johnson, E.D.

    1993-01-01

    We are constructing a soft x-ray intensity interferometer and an undulator based beamline to demonstrate intensity interferometry in the x-ray region. The 10-period soft x-ray undulator at the NSLS provides the necessary coherent flux; the X13A beamline is designed to preserve the spatial coherence of the bright x-ray beam and provide sufficient temporal coherence using a horizontally deflecting spherical grating monochromator. Using the interferometer, which consists of an array of small slits, a wedge-shaped beamsplitter and two fast microchannel plate detectors, we expect to measure the spatial coherence of the undulator beam and therefore the size of the source in the vertical plane. Details of the bean-dine design and the interferometer experiment are discussed

  19. Rapid microcantilever-thickness determination by optical interferometry

    International Nuclear Information System (INIS)

    Salmon, Andrew R; Capener, Matthew J; Elliott, Stephen R; Baumberg, Jeremy J

    2014-01-01

    Silicon microcantilevers are widely used in scanning-probe microscopy and in cantilever-sensing applications. However, the cantilever thickness is not well controlled in conventional lithography and, since it is also difficult to measure, it is the most important undefined factor in mechanical variability. An accurate method to measure this parameter is thus essential. We demonstrate the capability to measure microcantilever thicknesses rapidly (>1 Hz) and accurately (±2 nm) by optical interferometry. This is achieved with standard microscopy equipment and so can be implemented as a standard technique in both research and in batch control for commercial microfabrication. In addition, we show how spatial variations in the thickness of individual microcantilevers can be mapped, which has applications in the precise mechanical calibration of cantilevers for force spectroscopy. (paper)

  20. Optical transition radiation interferometry for the A0 photoinjector

    International Nuclear Information System (INIS)

    Kazakevich, G.; Novosibirsk, IYF; Edwards, H.; Fliller, R.; Nagaitsev, S.; Ruan, J.; Thurman-Keup, R.; Fermilab

    2008-01-01

    Optical Transition Radiation Interferometry (OTRI) is a promising diagnostic technique and has been successfully developed and used for investigation of relativistic beams. For mid-energy accelerators the technique is traditionally based on thin polymer films (the first one is being transparent for visible light), which causes beam multiple scattering of about 1 mrad. A disadvantage of those films is unacceptable vacuum properties for photoinjectors and accelerators using superconducting cavities. We have studied the application of thin mica sheets for the OTRI diagnostics at the A0 Photoinjector in comparison with 2.5 (micro)m thick Mylar films. This diagnostic is also applicable for the ILCTA-NML accelerator test facility that is planned at Fermilab. This report discusses the experimental setups of the OTR interferometer for the A0 Photoinjector and presents comparisons of simulations and measurements obtained using Mylar and mica-based interferometers

  1. Super-virtual refraction interferometry: an engineering field data example

    KAUST Repository

    Hanafy, Sherif M.; Alhagan, Ola

    2012-01-01

    The theory of super-virtual refraction interferometry (SVI) was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of the SNR is proportional to √N and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the SNR enhancement of super-virtual refraction traces for one engineering-scale synthetic data and two field seismic data sets. The field data are collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival traveltime picks are significantly increased. © 2012 European Association of Geoscientists & Engineers.

  2. Thermal strain measurements in graphite using electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Tamulevicius, S.; Augulis, L.; Augulis, R.; Zabarskas, V.; Levinskas, R.; Poskas, P.

    2001-01-01

    Two 1500 MW(e) RBMK Units are operated at Ignalina NPP in Lithuania. Due to recent decision of the Parliament on the earlier closure of Unit 1, preparatory work for decommissioning have been initiated. Preferred decommissioning strategy is based on delayed dismantling after rather long safe enclosure period. Since graphite is one of the basic and probably the most voluminous components of the reactor internals, a sufficient information on status and behaviour of graphite moderator and reflector during long time safe enclosure period is of special significance. In this context, thermal strain in graphite is one of the parameters requiring particular interest. Electronic speckle pattern interferometry has been proposed and successfully tested to control this parameter using the real samples of graphite from Ignalina NPP Units. (author)

  3. Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment

    Science.gov (United States)

    Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.

    2017-12-01

    Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.

  4. Self-mixing interferometry: a novel yardstick for mechanical metrology

    Science.gov (United States)

    Donati, Silvano

    2016-11-01

    A novel configuration of interferometry, SMI (self-mixing interferometry), is described in this paper. SMI is attractive because it doesn't require any optical part external to the laser and can be employed in a variety of measurements - indeed it is sometimes indicated as the "interferometer for measuring without an interferometer". On processing the phase carried by the optical field upon propagation to the target under test, a number of applications have been developed, including traditional measurements related to metrology and mechanical engineering - like displacement, distance, small-amplitude vibrations, attitude angles, velocity, as well as new measurements, like mechanical stress-strain hysterisis and microstructure/MEMS electro-mechanical response. In another field, sensing of motility finds direct application in a variety of biophysical measurements, like blood pulsation, respiratory sounds, chest acoustical impedance, and blood velocity profile. And, we may also look at the amplitude of the returning signal in a SMI, and we can measure weak optical echoes - for return loss and isolation factor measurements, CD readout and scroll sensing, and THz-wave detection. Last, the fine details of the SMI waveform reveal physical parameters of the laser like the laser linewidth, coherence length, and alpha factor. Worth to be noted, SMI is also a coherent detection scheme, and measurement close to the quantum limit of received field with minimum detectable displacements of 100 pm/√Hz are currently achieved upon operation on diffusive targets, whereas in detection mode returning signal can be sensed down to attenuations of -80dB.

  5. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  6. Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry

    Science.gov (United States)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    2015-12-01

    The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia

  7. Implementation of time-delay interferometry for LISA

    International Nuclear Information System (INIS)

    Tinto, Massimo; Shaddock, Daniel A.; Sylvestre, Julien; Armstrong, J.W.

    2003-01-01

    We discuss the baseline optical configuration for the Laser Interferometer Space Antenna (LISA) mission, in which the lasers are not free-running, but rather one of them is used as the main frequency reference generator (the master) and the remaining five as slaves, these being phase-locked to the master (the master-slave configuration). Under the condition that the frequency fluctuations due to the optical transponders can be made negligible with respect to the secondary LISA noise sources (mainly proof-mass and shot noises), we show that the entire space of interferometric combinations LISA can generate when operated with six independent lasers (the one-way method) can also be constructed with the master-slave system design. The corresponding hardware trade-off analysis for these two optical designs is presented, which indicates that the two sets of systems needed for implementing the one-way method, and the master-slave configuration, are essentially identical. Either operational mode could therefore be implemented without major implications on the hardware configuration. We then derive the required accuracies of armlength knowledge, time synchronization of the onboard clocks, sampling times and time-shifts needed for effectively implementing time-delay interferometry for LISA. We find that an armlength accuracy of about 16 meters, a synchronization accuracy of about 50 ns, and the time jitter due to a presently existing space qualified clock will allow the suppression of the frequency fluctuations of the lasers below to the level identified by the secondary noise sources. A new procedure for sampling the data in such a way to avoid the problem of having time shifts that are not integer multiples of the sampling time is also introduced, addressing one of the concerns about the implementation of time-delay interferometry

  8. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut

    2015-01-01

    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  9. Kaon versus pion interferometry signatures of quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gyulassy, M.; Padula, S.S.

    1990-01-01

    The advantages of kaon versus pion interferometry as a probe of quark-gluon plasma formation in high energy nuclear collisions are studied by comparing predictions of Lund resonance gas and plasma hydrodynamic models

  10. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.; Pegoraro, V.; Shankar, S.; McCormick, Patrick S.; Hansen, C. D.

    2011-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry

  11. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  12. Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph.D. thesis

    International Nuclear Information System (INIS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described

  13. Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform

    International Nuclear Information System (INIS)

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-01-01

    A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures

  14. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, M.; Kálal, M.; Dostál, Jan; Dudžák, Roman; Juha, Libor

    2017-01-01

    Roč. 12, Aug (2017), s. 1-6, č. článku C08012. ISSN 1748-0221 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : magnetic-field measurements * fully automated-analysis * laser-produced plasmas * image processing * interferometry * plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  15. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry

    Science.gov (United States)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell

    2015-09-01

    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  16. Beam-modulation methods in quantitative and flow-visualization holographic interferometry

    Science.gov (United States)

    Decker, Arthur J.

    1986-01-01

    Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  17. Beam-modulation methods in quantitative and flow visualization holographic interferometry

    Science.gov (United States)

    Decker, A.

    1986-01-01

    This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  18. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    Science.gov (United States)

    2016-09-01

    respectively. A length of dispersive fiber and a computer are used to first “decode” the optical interference signal into dispersed optical wave-packet...AWARD NUMBER: W81XWH-15-1-0008 TITLE: Cost-Effective Magnetoencephalography Based on Time-Encoded Optical Fiber Interferometry for Epilepsy...10 Dec 2014 - 9 Jun 2016 4. TITLE AND SUBTITLE 5a.16 CONTRACT NUMBER Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus Diagnosis 5b

  19. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.

    1991-11-01

    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  20. Noble gas absorption process

    International Nuclear Information System (INIS)

    Thomas, J.W.

    1975-01-01

    A method of removing a noble gas from air comprising the use of activated carbon filters in stages in which absorption and desorption steps in succession are conducted in order to increase the capacity of the filters is described. (U.S.)

  1. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-01-01

    Experimental methods using real photon beams for measurements of total photonuclear absorption cross section σ(Tot : E/sub γ/) are recalled. Most recent σ(Tot : E/sub γ/)results for complex nuclei and in the nucleon resonance region are presented

  2. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  3. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  4. Seeing Stars - Intensity Interferometry in the Laboratory & on the Ground

    Science.gov (United States)

    Carlile, Colin; Dravins, Dainis

    2018-04-01

    In many ways it is a golden age for astronomy. Spectacular new discoveries, for example the detection of gravitational waves, are very dependent upon instrumental development. The specific instrument development we propose, Intensity Interferometry (II), aims toimprove the spatial resolution of optical telescopes by 100x to 50µas [1]. This is impractical to achieve by increasing the size of telescopes or by extending the capabilities of phase interferometry. II, if implemented on the Cherenkov Telescope Array (CTA) currently being installed in La Palma and Paranal, would record the light intensity – the photon train - from many different telescopes, up to 2 km apart, on a nanosecond timescale and compare them. The signal from the many pairs of telescopes would quantify the degree of correlation by extracting the second-order correlation function, and thus create an image. This is not a real space image. However we can invert the data by Fourier Transform and create a real image. The more telescopes, the better resolved and more physical is the image, enabling the study of sunspots on nearby stars; orbiting binary stars; or exoplanets traversing the disc of their own star. We understand the Sun well but we have little experimental knowledge of how representative it is of main sequence stars. To test the II method, at Lund Observatory we have set up a laboratory analogue comprising ten small telescopes observing an artificial star created by light from a laser. The method has been shown to work [2] and the telescope array has now been extended to two dimensions. We are in discussion with other groups to explore the possibility of implementing this method on real telescopes observing actual stars. We plan to do this with the prototype Small Size Telescopes being built by groups in Europe, and ultimately with the CTA itself. A Science Working Group for II has now been set up within the CTA Consortium, of which Lund University is an integral part. A Letter of Intent

  5. Novel methods for matter interferometry with nanosized objects

    Science.gov (United States)

    Arndt, Markus

    2005-05-01

    We discuss the current status and prospects for novel experimental methods for coherence^1,2 and decoherence^3 experiments with large molecules. Quantum interferometry with nanosized objects is interesting for the exploration of the quantum-classical transition. The same experimental setup is also promising for metrology applications and molecular nanolithography. Our coherence experiments with macromolecules employ a Talbot-Lau interferometer. We discuss some modifications to this scheme, which are required to extend it to particles with masses in excess of several thousand mass units. In particular, the detection in all previous interference experiments with large clusters and molecules, was based on either laser ionization^1 (e.g. Fullerenes) or electron impact ionization^2 (e.g. Porphyrins etc.). However, most ionization schemes run into efficiency limits when the mass and complexity of the target particle increases. Here we present experimental results for an interference detector which is truly scalable, i.e. one which will even improve with increasing particle size and complexity. ``Mechanically magnified fluorescence imaging'' (MMFI), combines the high spatial resolution, which is intrinsic to Talbot Lau interferometry with the high detection efficiency of fluorophores adsorbed onto a substrate. In the Talbot Lau setup a molecular interference pattern is revealed by scanning the 3^rd grating across the molecular beam^1. The number of transmitted molecules is a function of the relative position between the mask and the molecular density pattern. Both the particle interference pattern and the mechanical mask structure may be far smaller than any optical resolution limit. After mechanical magnification by an arbitrary factor, in our case a factor 5000, the interference pattern can still be inspected in fluorescence microscopy. The fluorescent molecules are collected on a surface which is scanned collinearly and synchronously behind the 3rd grating. The

  6. Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Theppakuttaikomaraswamy, Senthil P. [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 μm and the spacing between holes (the distance between the centers) is 100 μm. Michelson interferometer is integrated with a laser machining system to control the depth of machining. An excimer laser of 308 nm wavelength is used for micromachining. A He-Ne laser of 632.8 nm wavelength is used as the light source for the interferometer. Interference patterns are created due to the change in the path length between the two interferometer arms. The machined depth information is obtained from the interference patterns on an oscilloscope detected by a photodiode. To compare the predicted depth by the interferometer with the true machining depth, a surface profilometer is used to measure the actual machining depth on the silicon. It is observed that the depths of machining obtained by the surface profile measurement are in accordance with the interferometer

  7. Nonlinear Kalman filters for calibration in radio interferometry

    Science.gov (United States)

    Tasse, C.

    2014-06-01

    The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that

  8. Fast sub-electron detectors review for interferometry

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe

    2016-08-01

    New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA

  9. Applications of atom interferometry - from ground to space

    Science.gov (United States)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  10. Prosthetic clone and natural human tooth comparison by speckle interferometry

    Science.gov (United States)

    Slangen, Pierre; Corn, Stephane; Fages, Michel; Raynal, Jacques; Cuisinier, Frederic J. G.

    2010-09-01

    New trends in dental prosthodontic interventions tend to preserve the maximum of "body" structure. With the evolution of CAD-CAM techniques, it is now possible to measure "in mouth" the remaining dental tissues. The prosthetic crown is then designed using this shape on which it will be glued on, and also by taking into account the contact surface of the opposite jaw tooth. Several theories discuss on the glue thickness and formulation, but also on the way to evolve to a more biocompatible crown and also new biomechanical concepts. In order to validate these new concepts and materials, and to study the mechanical properties and mechanical integrity of the prosthesis, high resolution optical measurements of the deformations of the glue and the crown are needed. Samples are two intact premolars extracted for orthodontics reasons. The reference sample has no modifications on the tooth while the second sample tooth is shaped to receive a feldspathic ceramic monoblock crown which will be glued. This crown was manufactured with a chairside CAD-CAM system from an intra-oral optical print. The software allows to realize a nearly perfect clone of the reference sample. The necessary space for the glue is also entered with ideal values. This duplication process yields to obtain two samples with identical anatomy for further processing. The glue joint thickness can also be modified if required. The purpose is to compare the behaviour of a natural tooth and its prosthetic clone manufactured with "biomechanical" concepts. Vertical cut samples have been used to deal with planar object observation, and also to look "inside" the tooth. We have developed a complete apparatus enabling the study of the compressive mechanical behaviour of the concerned tooth by speckle interferometry. Because in plane displacements are of great interest for orthodontic measurements1, an optical fiber in-plane sensitive interferometer has been designed. The fibers are wrapped around piezoelectric

  11. Linear absorptive dielectrics

    Science.gov (United States)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  12. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.

    1976-01-01

    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  13. Gamma absorption meter

    International Nuclear Information System (INIS)

    Dincklage, R.D. von.

    1984-01-01

    The absorption meter consists of a radiation source, a trough for the absorbing liquid and a detector. It is characterized by the fact that there is a foil between the detector and the trough, made of a material whose binding energy of the K electrons is a little greater than the energy of the photons emitted by the radiation source. The source of radiation and foil are replaceable. (orig./HP) [de

  14. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  15. Precision displacement interferometry with stabilization of wavelength on air

    Directory of Open Access Journals (Sweden)

    Buchta Z.

    2013-05-01

    Full Text Available We present an interferometric technique based on differential interferometry setup for measurement in the subnanometer scale in atmospheric conditions. The motivation for development of this ultraprecise technique is coming from the field of nanometrology. The key limiting factor in any optical measurement are fluctuations of the refractive index of air representing a source of uncertainty on the 10-6level when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of overdetermined interferometric setup where a reference length is derived from a mechanical frame made from a material with very low thermal coefficient on the 10-8level. The technique allows to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third represents a reference for stabilization of the wavelength of the laser source. The principle is demonstrated on an experimental setup and a set of measurements describing the performance is presented.

  16. Atom interferometry in space: Thermal management and magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman, E-mail: norman.guerlebeck@zarm.uni-bremen.de; Rievers, Benny; Herrmann, Sven [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); Schuldt, Thilo [DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany)

    2014-08-15

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10{sup −4} % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  17. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jilek, Brook Anton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.

  18. Multi - band Persistent Scatterer Interferometry data integration for landslide analysis

    Science.gov (United States)

    Bianchini, Silvia; Mateos, Rosa; Mora, Oscar; García, Inma; Sánchez, Ciscu; Sanabria, Margarita; López, Maite; Mulas, Joaquin; Hernández, Mario; Herrera, Gerardo

    2013-04-01

    We present a methodology to perform a geomorphological assessment of ground movements over wide areas, by improving Persistent Scatterer Interferometry (PSI) analysis for landslide studies. The procedure relies on the integrated use of multi-band EO data acquired by different satellite sensors in different time intervals, to provide a detailed investigation of ground displacements. The methodology, throughout the cross-comparison and integration of PS data in different microwave bands (ALOS in L-band, ERS1/2 and ENVISAT in C-band, COSMOSKY-MED in X-band), is applied on the Tramontana Range in the northwestern part of Mallorca island (Spain), extensively affected by mass movements across time, especially during the last years. We increase the confidence degree of the available interferometric data and we homogenize all PS targets by implementing and classifying them through common criteria. Therefore, PSI results are combined with geo-thematic data and pre-existing landslide inventories of the study area, in order to improve the landslide database, providing additional information on the detected ground displacements. The results of this methodology are used to elaborate landslide activity maps, permitting to jointly exploit heterogeneous PS data for analyzing landslides at regional scale. Moreover, from a geomorphological perspective, the proposed approach exploits the implemented PS data to achieve a reliable spatial analysis of movement rates, whatever referred to certain landslide phenomena or to other natural processes, in order to perform ground motion activity maps within a wide area.

  19. Spaceborne Differential SAR Interferometry: Data Analysis Tools for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Michele Crosetto

    2011-02-01

    Full Text Available This paper is focused on spaceborne Differential Interferometric SAR (DInSAR for land deformation measurement and monitoring. In the last two decades several DInSAR data analysis procedures have been proposed. The objective of this paper is to describe the DInSAR data processing and analysis tools developed at the Institute of Geomatics in almost ten years of research activities. Four main DInSAR analysis procedures are described, which range from the standard DInSAR analysis based on a single interferogram to more advanced Persistent Scatterer Interferometry (PSI approaches. These different procedures guarantee a sufficient flexibility in DInSAR data processing. In order to provide a technical insight into these analysis procedures, a whole section discusses their main data processing and analysis steps, especially those needed in PSI analyses. A specific section is devoted to the core of our PSI analysis tools: the so-called 2+1D phase unwrapping procedure, which couples a 2D phase unwrapping, performed interferogram-wise, with a kind of 1D phase unwrapping along time, performed pixel-wise. In the last part of the paper, some examples of DInSAR results are discussed, which were derived by standard DInSAR or PSI analyses. Most of these results were derived from X-band SAR data coming from the TerraSAR-X and CosmoSkyMed sensors.

  20. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  1. Enhancing core-diffracted arrivals by supervirtual interferometry

    KAUST Repository

    Bharadwaj, P.

    2013-12-03

    A supervirtual interferometry (SVI) method is presented that can enhance the signal-to-noise ratio (SNR) of core diffracted waveforms by as much as O( √ N), where N is the number of inline receivers that record the core-mantle boundary (CMB) diffractions from more than one event. Here, the events are chosen to be approximately inline with the receivers along the same great circle. Results with synthetic and teleseismic data recorded by USArray stations demonstrate that formerly unusable records with low SNR can be transformed to high SNR records with clearly visible CMB diffractions. Another benefit is that SVI allows for the recording of a virtual earthquake at stations not deployed during the time of the earthquake. This means that portable arrays such as USArray can extend the aperture of one recorded earthquake from the West coast to the East coast, even though the teleseism might have only been recorded during theWest coast deployment. In summary, SVI applied to teleseismic data can significantly enlarge the catalogue of usable records both in SNR and available aperture for analysing CMB diffractions. A potential drawback of this method is that it generally provides the correct kinematics of CMB diffractions, but does not necessarily preserve correct amplitude information. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  2. Synthetic LISA: Simulating time delay interferometry in a model LISA

    International Nuclear Information System (INIS)

    Vallisneri, Michele

    2005-01-01

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA

  3. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Directory of Open Access Journals (Sweden)

    A. J. Spargo

    2017-06-01

    Full Text Available Mesospheric gravity wave (GW momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E experiments (conducted from July 1997 to June 1998 are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions. The received beams were analysed with hybrid Doppler interferometry (HDI (Holdsworth and Reid, 1998, principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997, later re-introduced by Hocking (2005 and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010 of the accuracy of the meteor radar technique.

  4. Multiwavelength interferometry system for the Orion laser facility.

    Science.gov (United States)

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A

    2015-12-20

    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber.

  5. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Science.gov (United States)

    Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.

    2017-06-01

    Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.

  6. Multi-static MIMO along track interferometry (ATI)

    Science.gov (United States)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  7. X-ray laser interferometry: A new tool for AGEX

    International Nuclear Information System (INIS)

    Wan, A.S.; Moreno, J.C.; Libby, S.B.

    1995-10-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4--40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. By employing a shorter wavelength x-ray laser, as compared to using conventional optical laser as the probe source, we can access a much higher density regime while reducing refractive effects which limit the spatial resolution and data interpretation. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 mn, we have performed a series of soft x-ray laser interferometry experiments, operated in the skewed Mach-Zehnder configuration, to characterize plasmas relevant to both weapons and inertial confinement fusion. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics in the high-energy density regime, relevant to both weapons and inertial confinement fusion

  8. Temporal intensity interferometry: photon bunching in three bright stars

    Science.gov (United States)

    Guerin, W.; Dussaux, A.; Fouché, M.; Labeyrie, G.; Rivet, J.-P.; Vernet, D.; Vakili, F.; Kaiser, R.

    2017-12-01

    We report the first intensity correlation measured with starlight since the historical experiments of Hanbury Brown and Twiss. The photon bunching g(2)(τ, r = 0), obtained in the photon-counting regime, was measured for three bright stars: α Boo, α CMi and β Gem. The light was collected at the focal plane of a 1-m optical telescope, transported by a multi-mode optical fibre, split into two avalanche photodiodes and correlated digitally in real time. For total exposure times of a few hours, we obtained contrast values around 2 × 10-3, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our set-up. Comparing our results with the measurement of Hanbury Brown et al. for α CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometres. This would enable microarcsec long-baseline interferometry in the optical, especially in the visible wavelengths, with a limiting magnitude of 10.

  9. Symmetric large momentum transfer for atom interferometry with BECs

    Science.gov (United States)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  10. Design of multichannel laser interferometry for W7-X

    International Nuclear Information System (INIS)

    Kornejew, P.; Hirsch, M.; Bindemann, T.; Dinklage, A.; Dreier, H.; Hartfuss, H.-J.

    2006-01-01

    An eight channel interferometer is developed for density feedback control and the continuous measurement of electron density profiles in the stellarator W7-X. An additional sightline is launched in the geometry of the Thomson scattering for cross calibration. Due to the W7-X coil geometry access is strongly restricted. This motivates the optimization of the sightline geometry and design studies for supplementary chords. In-vessel retroreflectors will be used and inserted in the first wall elements. To cope with associated mechanical vibrations and thermal drifts during the discharges with envisaged duration of 30 min either two-color or second harmonic interferometry techniques must be applied. Optimum wavelengths are found to be about 10 and 5 μm. A CO 2 /CO interferometer (10 μm/5 μm) will be tested and compared with an existing CO 2 /HeNe test interferometer. A special difficulty of remotely operated diagnostics is the need of long transmission lines with a path length of about 60 m required from the diagnostics location to the torus hall and back. Different arrangements will be compared

  11. On the resolving power of 2-D interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1996-12-31

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D {sub X}{sup 2} analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean {sub X}{sup 2} per degrees of freedom with respect to the range of the analysis in the ({sub qT}, {sub qL}) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high {omega}, {eta} resonance formation yields. (author) 24 refs., 5 figs.

  12. On the resolving power of 2-D interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    1996-01-01

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D X 2 analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean X 2 per degrees of freedom with respect to the range of the analysis in the ( qT , qL ) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high ω, η resonance formation yields. (author)

  13. Research on long-range grating interferometry with nanometer resolution

    International Nuclear Information System (INIS)

    Chu, Xingchun; Zhao, Shanghong; Lü, Haibao

    2008-01-01

    Grating interferometry that features long range and nanometer resolution is presented. The optical system was established based on a single long metrology grating. The large fringe multiplication was achieved by properly selecting two high-order diffraction beams to form a fringe pattern. The fringe pattern collected by a linear array was first tailored to a few multiples of fringes in order to suppress the effect of the energy leakage on phase-extracting precision when the fast Fourier transform (FFT) algorithm was used to calculate its phase. Thus, the phase-extracting precision of a tailored fringe pattern by FFT was greatly improved. Based on this, a novel subdividing method, which exploited the time-shift property of FFT, was developed to subdivide the fringe with large multiple and high accuracy. Numerical results show that the system resolution reaches 1 nm. The experimental results obtained against a capacitive sensor in the sub-mm range show that the measurement precision of the system is less than 10 nm. (technical design note)

  14. Mapping Arctic Bottomfast Sea Ice Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Dyre O. Dammann

    2018-05-01

    Full Text Available Bottomfast sea ice is an integral part of many near-coastal Arctic ecosystems with implications for subsea permafrost, coastal stability and morphology. Bottomfast sea ice is also of great relevance to over-ice travel by coastal communities, industrial ice roads, and marine habitats. There are currently large uncertainties around where and how much bottomfast ice is present in the Arctic due to the lack of effective approaches for detecting bottomfast sea ice on large spatial scales. Here, we suggest a robust method capable of detecting bottomfast sea ice using spaceborne synthetic aperture radar interferometry. This approach is used to discriminate between slowly deforming floating ice and completely stationary bottomfast ice based on the interferometric phase. We validate the approach over freshwater ice in the Mackenzie Delta, Canada, and over sea ice in the Colville Delta and Elson Lagoon, Alaska. For these areas, bottomfast ice, as interpreted from the interferometric phase, shows high correlation with local bathymetry and in-situ ice auger and ground penetrating radar measurements. The technique is further used to track the seasonal evolution of bottomfast ice in the Kasegaluk Lagoon, Alaska, by identifying freeze-up progression and areas of liquid water throughout winter.

  15. Distortion of two-pion interferometry by multipion correlations

    International Nuclear Information System (INIS)

    Zhang, W.N.; Liu, Y.M.; Wang, S.; Liu, Q.J.; Jiang, J.; Keane, D.; Shao, Y.; Chu, S.Y.; Fung, S.Y.

    1993-01-01

    Multipion correlations arising from the symmetrization of the n-pion wave function affect the extracted information from two-pion correlation measurements. The influence of multipion correlations on a sample of like-pion pairs can be expressed as a multipion correlation factor, the distribution of which offers good sensitivity to the multipion correlation effect. Analyses of the multipion correlation factor for two Bevalac streamer chamber data samples of 2.1A GeV Ne+Pb and 1.8A GeV Ar+Pb collisions show that the multipion correlation effect in the former sample is greater than in the latter. This result mainly arises from the fact that the pion source for Ne projectiles is smaller than for Ar projectiles. The residual correlations in the reference sample are related to the multipion correlation factor in multipion events, which can be expressed as a residual correlation factor. The influence of multipion correlations on two-pion interferometry analyses arises from the ratio of the residual correlation factor to the multipion correlation factor

  16. Disentangling stellar activity from exoplanetary signals with interferometry

    Directory of Open Access Journals (Sweden)

    Ligi Roxanne

    2015-01-01

    Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, affecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.

  17. Gravity sensing using Very Long Baseline Atom Interferometry

    Science.gov (United States)

    Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.

    2017-12-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.

  18. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    International Nuclear Information System (INIS)

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P

    2006-01-01

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio

  19. Wave-particle dualism in matter wave interferometry

    International Nuclear Information System (INIS)

    Rauch, H.

    1984-01-01

    Neutron interferometry is a unique tool for investigations in the field of particle-wave dualism because massive elementary particles behave like waves within the interferometer. The invention of perfect crystal neutron interferometers providing widely separated coherent beams stimulated a great variety of experiments with matter waves in the field of basic quantum mechanics. The phase of the spatial and spinor wave function become a measurable quantity and can be influenced individually. High degrees of coherence and high order interferences have been observed by this technique. The 4π-symmetry of a spinor wave function and the mutual modulation of nuclear and magnetic phase shifts have been measured in the past. Recent experiments dealt with polarized neutron beams, which are handled to realize the spin-superposition of two oppositionally polarized subbeams resulting in final polarization perpendicular to both initial beam polarizations. The different action on the coherent beams of static and dynamic flippers have been visualized. Monolithic multicrystal arrangements in Laue position can also be used to achieve an extremely high energy (10 -9 eV) or angular resolution (0.001 sec of arc). This feature is based on the Pendelloesung interference within the perfect crystal. A transverse coherence length up to 6.5 mm is deduced from single slit diffraction experiments. (Auth.)

  20. Sensitivity analysis of periodic errors in heterodyne interferometry

    International Nuclear Information System (INIS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-01-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors

  1. Sensitivity analysis of periodic errors in heterodyne interferometry

    Science.gov (United States)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  2. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Shane R. Cloude

    2005-12-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  3. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.Richard [Canadian Inst. Theor. Astrophys.; Sigurdson, Kris [British Columbia U.; Pen, Ue-Li [Canadian Inst. Theor. Astrophys.; Stebbins, Albert [Fermilab; Sitwell, Michael [British Columbia U.

    2013-02-01

    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.

  4. Application of deconvolution interferometry with both Hi-net and KiK-net data

    Science.gov (United States)

    Nakata, N.

    2013-12-01

    Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.

  5. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    International Nuclear Information System (INIS)

    Nunzi, Dominique Jean-Michel

    1990-01-01

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author) [fr

  6. Optical absorption in dendrimers

    International Nuclear Information System (INIS)

    Supritz, C.; Engelmann, A.; Reineker, P.

    2004-01-01

    Dendrimers are highly branched molecules, which are expected to be useful, for example, as efficient artificial light harvesting systems in nano-technological applications. There are two different classes of dendrimers: compact dendrimers with constant distance between neighboring branching points throughout the macromolecule and extended dendrimers, where this distance increases from the system periphery to the center. We investigate the linear absorption spectra of these dendrimer types using the Frenkel exciton concept. The electron-phonon interaction is taken into account by introducing a heat bath that interacts with the exciton in a stochastic manner

  7. Rapidly variable relatvistic absorption

    Science.gov (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  8. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  9. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  10. A portable magneto-optical trap with prospects for atom interferometry in civil engineering

    Science.gov (United States)

    Hinton, A.; Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.

    2017-06-01

    The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue 'Quantum technology for the 21st century'.

  11. Testing the resolving power of 2-D K+ K+ interferometry at Ags energies

    International Nuclear Information System (INIS)

    Roldao, Cristiane G.; Padula, Sandra S.

    1998-01-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry, an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, i.e., when non significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. The possible compatibility of the data with zero decoupling proper time interval, suggested by the experimental fit, is also investigated and seems to be ruled out when considering dynamical models with expanding sources. (author)

  12. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Science.gov (United States)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  13. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  14. Interferometry with particles of non-zero rest mass: topological experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1994-01-01

    Interferometry as a space-time process is described, together with its topology. Starting from this viewpoint, a convenient unified formalism for the phase shifts which arise in particle interferometry is developed. This formalism is based on a covariant form of Hamilton's action principle and Lagrange's equations of motion. It will be shown that this Lorentz invariant formalism yields a simple perturbation theoretic expression for the general phase shift that arises in matter-wave interferometry. The Lagrangian formalism is compared with the more usual formalism based on the wave propagation vector and frequency. The resulting formalism will be used to analyse the Sagnac effect, gravitational field measurements, and several Aharonov-Bohm-like topological phase shifts. Several topological interferometric experiments using particles of non-zero rest mass are discussed. These experiments involve the use of electrons, neutrons and neutral atoms. Neutron experiments will be emphasised. 45 refs., 15 figs

  15. Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Goudemand, Nicolas

    2006-01-01

    Contrary to what is found in most of the existing scientific literature,where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wave fronts, the degree of approximation of the leading formulas, the loss of fringe contrast,the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand

  16. Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry

    Science.gov (United States)

    Goudemand, Nicolas

    2006-07-01

    Contrary to what is found in most of the existing scientific literature, where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wavefronts, the degree of approximation of the leading formulas, the loss of fringe contrast, the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand.

  17. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  18. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    Science.gov (United States)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  19. Geodesy and astrometry by transatlantic long base line interferometry

    International Nuclear Information System (INIS)

    Cannon, W.H.; Langley, R.B.; Petrachenko, W.T.; Kouba, J.

    1979-01-01

    We report geodetic and astrometric results from the analysis of fringe frequency observations from a series of three long base line interferometry (LBI) experiments carried out in 1973 between the 46-m antenna of the Algonquin Radio Observatory, Lake Traverse, Canada, and the 25-m antenna at Chilbolton Field Station, Chilbolton, England. The rms deviation from the mean of the estimates of the length and orientation of the 5251-km equatorial component of the base line from all three experiments is 1.05-m and 0.015'', respectively. The experiments also yielded positions of five extragalactic radio sources. The reported positions, each of which is from only a single experiment, have uncertainties of about 0.2'' in declination (except for low declination sources) and about 0.01 s in right ascension. The LBI determination of the length and orientation of the equatorial component of the base line is compared to the corresponding values derived from Naval Weapons Laboratory 9D (NWL-9D) coorinates for the antennae. The two length measurements agree in scale within quoted experimental errors; however, the NWL-9D coordinate frame is found to be rotated 0.867'' +- 0.1'' to the east relative to the average terrestrial frame of the Bureau Internationale de l'Heure (BIH),(LBI coordinate frame). This is in good agreement with the expected misalignment of 0.65'' +- 0.2''. The differences in the rates of the clocks used at each end of the base line were also determined and compared to Loran-C observations

  20. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces

    Science.gov (United States)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda

    2018-04-01

    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  1. The effects of orbital motion on LISA time delay interferometry

    International Nuclear Information System (INIS)

    Cornish, Neil J; Hellings, Ronald W

    2003-01-01

    In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be cancelled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables α (t), β (t) and γ (t) will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable ζ (t). The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Δ Sagnac variables, one of which accomplishes the same goal as ζ (t) to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, X(t), Y(t) and Z(t), which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of ∼5 Hz Hz -1/2

  2. MULTI-TEMPORAL SAR INTERFEROMETRY FOR LANDSLIDE MONITORING

    Directory of Open Access Journals (Sweden)

    R. Dwivedi

    2016-06-01

    Full Text Available In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS and Small Baseline (SB methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS based PS-InSAR and the Small Baselines Subset (SBAS techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  3. Sensor influence in digital 3λ holographic interferometry

    International Nuclear Information System (INIS)

    Desse, J M; Picart, P; Tankam, P

    2011-01-01

    In digital holographic interferometry, the resolution of the reconstructed hologram depends on the pixel size and pixel number of the sensor used for recording. When different wavelengths are simultaneously used as a luminous source for the interferometer, the shape and the overlapping of three filters of a color sensor strongly influence the three reconstructed images. This problem can be directly visualized in 2D Fourier planes on red, green and blue channels. To better understand this problem and to avoid parasitic images generated at the reconstruction, three different sensors have been tested: a CCD sensor equipped with a Bayer filter, a Foveon sensor and a 3CCD sensor. The first one is a Bayer mosaic where one half of the pixels detect the green color and only one-quarter detect the red or blue color. As the missing data are interpolated among color detection positions, offsets and artifacts are generated. The second one is a specific sensor constituted with three stacked photodiode layers. Its technology is different from that of the classical color mosaic sensor because each pixel location detects the three colors simultaneously. So, the three colors are recorded simultaneously with identical spatial resolution, which corresponds to the spatial resolution of the sensor. However, the spectral curve of the sensor is large along each wavelength since the color segmentation is based on the penetration depth of the photons in silicon. Finally, with a 3CCD sensor, each image is recorded on three different sensors with the same resolution. In order to test the sensor influence, we have developed a specific optical bench which allows the near wake flow around a circular cylinder at Mach 0.45 to be characterized. Finally, best results have been obtained with the 3CDD sensor

  4. Quantum interferometry with multiports: entangled photons in optical fibres

    International Nuclear Information System (INIS)

    Reck, M. H. A.

    1996-07-01

    This thesis is the result of theoretical and experimental work on the physics of optical multiports, which are the logical generalization of the beam splitter in classical and quantum optics. The experimental results are discussed in the context of Bell's inequalities and the physics of entanglement. The theoretical results show that multiport interferometers can be used to realize any discrete unitary transformation operating on modes of a classical or a quantum radiation field. Tests of a Bell-type inequality for higher-dimensional entangled states are thus possible using entangled photon pairs from a parametric downconversion source. The experimental work measured the nonclassical interferences at the fiber-optical three-way beam splitters (tritters) and three-path fiber interferometers. An experiment with a three-path all-fiber interferometer with HeNe laser light revealed the typical features of multipath interferometry. In another experiment, entangled photon pairs from the spontaneous parametric downconversion process were used to demonstrate a purely quantum effect, the antibunching of photon pairs at the output of an integrated fiber multiport. In the main experiment, time-energy entanglement of photon pairs from a parametric downconversion source in two threepath interferometers was used to built the first realization of an entangled three-state system. The interferences measured in this experiment are the first demonstration of two-photon three-path interferences. The quantum and classical pictures of the experiment are discussed giving an outlook to new experiments. Technical details about the experiments, a MATHEMATICA program for the design of unitary interferometers, some calculations, and photographs of type-II downconversion light are included in the appendices. (author)

  5. Ka-band SAR interferometry studies for the SWOT mission

    Science.gov (United States)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  6. Landslide Activity Maps Generation by Means of Persistent Scatterer Interferometry

    Directory of Open Access Journals (Sweden)

    Silvia Bianchini

    2013-11-01

    Full Text Available In this paper a methodology is proposed to elaborate landslide activity maps through the use of PS (Persistent Scatterer data. This is illustrated through the case study of Tramuntana Range in the island of Majorca (Spain, where ALOS (Advanced Land Observing Satellite images have been processed through a Persistent Scatterer Interferometry (PSI technique during the period of 2007–2010. The landslide activity map provides, for every monitored landslide, an assessment of the PS visibility according to the relief, land use, and satellite acquisition parameters. Landslide displacement measurements are projected along the steepest slope, in order to compare landslide velocities with different slope orientations. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any known landslide phenomenon, but even moving, potentially referred to unmapped landslides or triggered by other kinds of geomorphological processes. In the Tramuntana range, 42 landslides were identified as active, four as being potential to produce moderate damage, intersecting the road Ma-10, which represents the most important road of the island and, thus, the main element at risk. In order to attest the reliability of measured displacements to represent landslide dynamics, a confidence degree evaluation is proposed. In this test site, seven landslides exhibit a high confidence degree, medium for 93 of them, and low for 51. A low confidence degree was also attributed to 615 detected active clusters with a potential to cause moderate damage, as their mechanism of the triggering cause is unknown. From this total amount, 18 of them intersect the Ma-10, representing further potentially hazardous areas. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities, being exportable to other radar data and different geomorphological settings.

  7. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, Michal; Kálal, Milan; Dostál, Jan; Dudžák, Roman; Juha, Libor

    2017-01-01

    Roč. 12, August (2017), č. článku C08012. ISSN 1748-0221. [European Conference on Plasma Diagnostics (ECPD2017)/2./. Bordeaux, 18.04.2017-21.04.2017] R&D Projects: GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Image processing * Interferometry * Plasma diagnostics - interferometry * Spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016

  8. Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies

    Science.gov (United States)

    Gay, J.; Rabbia, Y.

    2014-04-01

    We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.

  9. Heisenberg-limited interferometry with pair coherent states and parity measurements

    International Nuclear Information System (INIS)

    Gerry, Christopher C.; Mimih, Jihane

    2010-01-01

    After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.

  10. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  11. Atomic absorption spectrophotometer

    International Nuclear Information System (INIS)

    Stockdale, T. J.

    1985-01-01

    In atomic absorption spectrophotometer, a reference path may be provided for radiation which excludes the flame. This radiation provides a signal from a detector which varies only with the instrumental drift produced by variations in the radiation source brightness and by variations in detector gain. The signal can be used to compensate for drift in other signals received through a sample path including the flame. In the present invention, radiation passes through the sample path continuously during measurement, and only through the reference path between sample measurements. Movable mirrors shift the radiation between the paths upon externally applied commands. Conveniently, the reference path measurement is made while the flame is stabilized during the change between samples. The reference path measurements are stored and used to correct for drift

  12. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  13. Characterization of hidden defects of an original XVI century painting on wood by Electronic Speckle Pattern Interferometry (Electronic Speckle Pattern Interferometry survey on a wooden painting)

    International Nuclear Information System (INIS)

    Arena, G.

    2015-01-01

    Electronic Speckle Pattern Interferometry, a non-contact and nondestructive optical diagnostic technique, was employed for evaluating the conservation state of a XVI century painting on wood. The whole structure alterations, induced by the laboratory temperature and relative humidity variations, were evaluated. Long-term analysis, by sequential recording and subsequent off-line processing of the fringes progression, was carried out. Local flaws and hidden detachments of pictorial layers from the support, which could not be recognized by traditional art-restorer survey methods, were also easily revealed. In such a case, a simple measurement approach was utilized, with the aim to get a user-friendly method for art conservators. The results demonstrate that the interferometry method can largely improve the traditional art conservation survey techniques.

  14. Optical interferometry for measurement of the geometric dimensions of industrial parts

    International Nuclear Information System (INIS)

    Groot, Peter de; Biegen, Jim; Clark, Jack; Lega, Xavier Colonna de; Grigg, David

    2002-01-01

    We describe an instrument for the measurement of surface flatness, parallelism, and size (thickness) of plane-parallel parts in a single measurement to 1σ gauge capability of 0.02, 0.03, and 0.06 μm, respectively. A low-coherence IR profiler viewing both sides of the part simultaneously, believed to be novel, accommodates a wide variety of industrial surface finishes, including machined, ground, or lapped parts, with a 75-mm field of view and 15,000 pixels per side. A heterodyne laser displacement gauge together with an integrated zeroing system allows for a range of part sizes from 0 to 100 mm

  15. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  16. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  17. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  18. Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets

    Science.gov (United States)

    Becek, K.; Borkowski, A.

    2012-07-01

    In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The

  19. SOURCES OF ARTEFACTS IN SYNTHETIC APERTURE RADAR INTERFEROMETRY DATA SETS

    Directory of Open Access Journals (Sweden)

    K. Becek

    2012-07-01

    Full Text Available In recent years, much attention has been devoted to digital elevation models (DEMs produced using Synthetic Aperture Radar Interferometry (InSAR. This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space

  20. Analysis of error functions in speckle shearing interferometry

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah

    2001-01-01

    Electronic Speckle Pattern Shearing Interferometry (ESPSI) or shearography has successfully been used in NDT for slope (∂w/ (∂x and / or (∂w/ (∂y) measurement while strain measurement (∂u/ ∂x, ∂v/ ∂y, ∂u/ ∂y and (∂v/ (∂x) is still under investigation. This method is well accepted in industrial applications especially in the aerospace industry. Demand of this method is increasing due to complexity of the test materials and objects. ESPSI has successfully performed in NDT only for qualitative measurement whilst quantitative measurement is the current aim of many manufacturers. Industrial use of such equipment is being completed without considering the errors arising from numerous sources, including wavefront divergence. The majority of commercial systems are operated with diverging object illumination wave fronts without considering the curvature of the object illumination wavefront or the object geometry, when calculating the interferometer fringe function and quantifying data. This thesis reports the novel approach in quantified maximum phase change difference analysis for derivative out-of-plane (OOP) and in-plane (IP) cases that propagate from the divergent illumination wavefront compared to collimated illumination. The theoretical of maximum phase difference is formulated by means of three dependent variables, these being the object distance, illuminated diameter, center of illuminated area and camera distance and illumination angle. The relative maximum phase change difference that may contributed to the error in the measurement analysis in this scope of research is defined by the difference of maximum phase difference value measured by divergent illumination wavefront relative to the maximum phase difference value of collimated illumination wavefront, taken at the edge of illuminated area. Experimental validation using test objects for derivative out-of-plane and derivative in-plane deformation, using a single illumination wavefront

  1. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  2. On the focusing conditions in time-reversed acoustics, seismic interferometry, and Marchenko imaging

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Van der Neut, J.R.; Thorbecke, J.W.; Vasconcelos, I.; Van Manen, D.J.; Ravasi, M.

    2014-01-01

    Despite the close links between the fields of time-reversed acoustics, seismic interferometry and Marchenko imaging, a number of subtle differences exist. This paper reviews the various focusing conditions of these methods, the causality/acausality aspects of the corresponding focusing wavefields,

  3. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  4. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    International Nuclear Information System (INIS)

    Walz, Dieter R

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor

  5. Inter-source seismic interferometry by multidimensional deconvolution (MDD) for borehole sources

    NARCIS (Netherlands)

    Liu, Y.; Wapenaar, C.P.A.; Romdhane, A.

    2014-01-01

    Seismic interferometry (SI) is usually implemented by crosscorrelation (CC) to retrieve the impulse response between pairs of receiver positions. An alternative approach by multidimensional deconvolution (MDD) has been developed and shown in various studies the potential to suppress artifacts due to

  6. Azimuthally sensitive Hanbury Brown-Twiss interferometry measured with the ALICE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gramling, Johanna Lena

    2011-07-01

    Bose-Einstein correlations of identical pions emitted in high-energy particle collisions provide information about the size of the source region in space-time. If analyzed via HBT Interferometry in several directions with respect to the reaction plane, the shape of the source can be extracted. Hence, HBT Interferometry provides an excellent tool to probe the characteristics of the quark-gluon plasma possibly created in high-energy heavy-ion collisions. This thesis introduces the main theoretical concepts of particle physics, the quark gluon plasma and the technique of HBT interferometry. The ALICE experiment at the CERN Large Hadron Collider (LHC) is explained and the first azimuthallyintegrated results measured in Pb-Pb collisions at √(s{sub NN})=2.76 TeV with ALICE are presented. A detailed two-track resolution study leading to a global pair cut for HBT analyses has been performed, and a framework for the event plane determination has been developed. The results from azimuthally sensitive HBT interferometry are compared to theoretical models and previous measurements at lower energies. Oscillations of the transverse radii in dependence on the pair emission angle are observed, consistent with a source that is extended out-of-plane.

  7. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry

    Science.gov (United States)

    Yacoot, Andrew; Cross, Nigel

    2003-01-01

    X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.

  8. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry

    NARCIS (Netherlands)

    van der Veen, Roeland; Tran, Tuan; Lohse, Detlef; Sun, Chao

    2012-01-01

    A drop impacting on a solid surface deforms before the liquid makes contact with the surface. We directly measure the time evolution of the air layer profile under the droplet using high-speed color interferometry, obtaining the air layer thickness before and during the wetting process. Based on the

  9. Thermo-mechanical analysis of retro-reflectors for interferometry and polarimetry in W7-X

    NARCIS (Netherlands)

    Köppen, M.; Hirsch, M.; Ernst, J.; Vliegenthart, W.A.; Ye, M.Y.; Bykov, V.; Schauer, F.

    2011-01-01

    The stellarator Wendelstein 7-X (W7-X) is presently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The plasma density profile will be measured by two-colour interferometry where for each line of sight through the plasma the phase shifts of two far-infrared

  10. Preliminary interferometry measurements of a flow field around fluttering NACA0015 profile

    Czech Academy of Sciences Publication Activity Database

    Vlček, Václav; Kozánek, Jan

    2011-01-01

    Roč. 56, č. 4 (2011), s. 379-387 ISSN 0001-7043 R&D Projects: GA ČR GA101/09/1522 Institutional research plan: CEZ:AV0Z20760514 Keywords : self-excited vibration * airfoil * aerodynamic tunnel * interferometry Subject RIV: BI - Acoustics http://journal.it.cas.cz

  11. On seismic interferometry, the generalized optical theorem, and the scattering matrix of a point scatterer

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Slob, E.C.; Snieder, R.

    2010-01-01

    We have analyzed the far-field approximation of the Green's function representation for seismic interferometry. By writing each of the Green's functions involved in the correlation process as a superposition of a direct wave and a scattered wave, the Green's function representation is rewritten as a

  12. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NARCIS (Netherlands)

    Nishitsuji, Y.; Rowe, CA; Wapenaar, C.P.A.; Draganov, D.S.

    2016-01-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection

  13. Measurement of the influence of dispersion on white-light interferometry

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Soubusta, Jan

    2004-01-01

    Roč. 43, č. 4 (2004), s. 766-770 ISSN 0003-6935 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : white-light interferometry * height profile * smooth surface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.799, year: 2004

  14. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Jürg; Slob, Evert; Thorbecke, Jan; Snieder, Roel

    2011-06-01

    Seismic interferometry, also known as Green's function retrieval by crosscorrelation, has a wide range of applications, ranging from surface-wave tomography using ambient noise, to creating virtual sources for improved reflection seismology. Despite its successful applications, the crosscorrelation approach also has its limitations. The main underlying assumptions are that the medium is lossless and that the wavefield is equipartitioned. These assumptions are in practice often violated: the medium of interest is often illuminated from one side only, the sources may be irregularly distributed, and losses may be significant. These limitations may partly be overcome by reformulating seismic interferometry as a multidimensional deconvolution (MDD) process. We present a systematic analysis of seismic interferometry by crosscorrelation and by MDD. We show that for the non-ideal situations mentioned above, the correlation function is proportional to a Green's function with a blurred source. The source blurring is quantified by a so-called interferometric point-spread function which, like the correlation function, can be derived from the observed data (i.e. without the need to know the sources and the medium). The source of the Green's function obtained by the correlation method can be deblurred by deconvolving the correlation function for the point-spread function. This is the essence of seismic interferometry by MDD. We illustrate the crosscorrelation and MDD methods for controlled-source and passive-data applications with numerical examples and discuss the advantages and limitations of both methods.

  15. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...... with GPS data and calibrated laser data....

  16. Speckle Interferometry with the McMath-Pierce East Auxiliary Telescope

    Science.gov (United States)

    Harshaw, Richard; Ray, Jimmy; Douglass, David; Prause, Lori; Genet, Russell

    2015-09-01

    Engineering runs and tests on the McMath-Pierce 0.8 meter East Auxiliary telescope successfully configured the telescope for speckle interferometry observations of close visual double stars. This paper reports the procedure and results of the speckle analysis of four double stars.

  17. Electronic speckle pattern interferometry observation of brick–mortar interface behaviour under compression

    NARCIS (Netherlands)

    Vermeltfoort, A.T.; Martens, D.R.W; Zijl, van G.P.A.G.

    2007-01-01

    The brick–mortar interaction is important in the mechanical behaviour of masonry. It affects the load transfer considerably, as shown by detailed deformation measurements taken using electronic speckle pattern interferometry (ESPI), a laser speckle interference technique. A companion paper [Canadian

  18. Development of IR single mode optical fibers for DARWIN-nulling interferometry

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Cheng, L.K.; Bosch, B. van den; Dijkhuizen, N.; Nieuwland, R.A.; Gielesen, W.L.M.; Lucas, J.; Boussard-Plédel, C.; Conseil, C.; Bureau, B.; Carmo, J.P. do

    2014-01-01

    The DARWIN mission aims to detect weak infra-red emission lines from distant orbiting earth-like planets using nulling interferometry. This requires filtering of wavefront errors using single mode waveguides operating at a wavelength range of 6.5-20 μm. This article describes the optical design of

  19. Quantification of the neutron dark-field imaging signal in grating interferometry

    Czech Academy of Sciences Publication Activity Database

    Grünzweig, C.; Kopeček, Jaromír; Betz, B.; Kaestner, A.; Jefimovs, K.; Kohlbrecher, J.; Gasser, U.; Bunk, O.; David, C.; Lehmann, E.; Donath, T.; Pfeiffer, F.

    2012-01-01

    Roč. 88, č. 12 (2012), "125104-1"-"125104-6" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : neutron scattering (including small-angle scattering) * atom and neutron interferometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  20. Time-Lapse Monitoring of Subsurface Fluid Flow using Parsimonious Seismic Interferometry

    KAUST Repository

    Hanafy, Sherif; Li, Jing; Schuster, Gerard T.

    2017-01-01

    of parsimonious seismic interferometry with the time-lapse mentoring idea with field examples, where we were able to record 30 different data sets within a 2-hour period. The recorded data are then processed to generate 30 snapshots that shows the spread of water

  1. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  2. Tutorial on seismic interferometry : Part 1 — Basic principles and applications

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Draganov, D.S.; Snieder, R.; Campman, X.; Verdel, A.

    2010-01-01

    Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain the Green's function between these receivers. For the simple situation of an impulsive plane wave propagating along the x-axis, the crosscorrelation of the responses at two receivers along the x-axis

  3. Evaluation of back scatter interferometry, a method for detecting protein binding in solution

    DEFF Research Database (Denmark)

    Jepsen, S. T.; Jørgensen, Thomas Martini; Zong, Weiyong

    2015-01-01

    Back Scatter Interferometry (BSI) has been proposed to be a highly sensitive and versatile refractive index sensor usable for analytical detection of biomarker and protein interactions in solution. However the existing literature on BSI lacks a physical explanation of why protein interactions in ...

  4. Monitoring Line-Infrastructure With Multisensor SAR Interferometry : Products and Performance Assessment Metrics

    NARCIS (Netherlands)

    Chang, L.; Dollevoet, R.P.B.J.; Hanssen, R.F.

    2018-01-01

    Satellite radar interferometry (InSAR) is an emerging technique to monitor the stability and health of line-infrastructure assets, such as railways, dams, and pipelines. However, InSAR is an opportunistic approach as the location and occurrence of its measurements (coherent scatterers) cannot be

  5. Landau-Zener-Stückelberg Interferometry of a Single Electronic Spin in a Noisy Environment

    Directory of Open Access Journals (Sweden)

    Pu Huang

    2011-08-01

    Full Text Available We demonstrate quantum coherent control of single electronic spins in a nitron-vacancy center in diamond by exploiting and implementing the general concept of Landau-Zener-Stückelberg interferometry at room temperature. The interferometry manipulates an effective two-level system of electronic spins which are coupled to the nearby ^{14}N nuclear spin in the nitron-vacancy center as well as the nuclear spin bath in the diamond. With a microwave field to control the energy gap between the two levels and an AC field as the time-dependent driving field in Landau-Zener-Stückelberg interferometry, the interference pattern can be generated and controlled by controlling a number of parameters in the fields, corresponding to coherent control of the state of the electronic spins. In particular, the interference pattern is observed oscillating as a function of the frequency of the microwave field. Decays in the visibility of the interference pattern are also observed and well explained by numerical simulation which takes into account the thermal fluctuations arising from the nuclear bath. Therefore, our work also demonstrates that Landau-Zener-Stückelberg interferometry can be used for probing decoherence processes of electronic spins.

  6. Tracking changes in volcanic systems with seismic Interferometry

    Science.gov (United States)

    Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    use ambient noise tomography (ANT) to map the 3D structure of a volcanic interior (at Piton de la Fournaise). Subsequent studies have imaged volcanoes with ANT at Okmok (Masterlark et al. 2010), Toba (Stankiewicz et al. 2010), Katmai (Thurber et al. 2012), Asama (Nagaoka et al. 2012), Uturuncu (Jay et al. 2012), and Kilauea (Ballmer et al. 2013b). In addition, Ma et al. (2013) have imaged a scatterer in the volcanic region of southern Peru by applying array techniques to ambient noise correlations. Prior to and in tandem with the development of ANT, researchers discovered that repeating earthquakes, which often occur at volcanoes, could be used to monitor subtle time-dependent changes with a technique known as the doublet method or coda wave interferometry (CWI) (Poupinet et al. 1984; Roberts et al. 1992; Ratdomopurbo and Poupinet 1995; Snieder et al. 2002; Pandolfi et al. 2006; Wegler et al. 2006; Martini et al. 2009; Haney et al. 2009; De Angelis 2009; Nagaoka et al. 2010; Battaglia et al. 2012; Erdem and Waite 2005; Hotovec-Ellis et al. 2014). Chaput et al. (2012) have also used scattered waves from Strombolian eruption coda at Erebus volcano to image the reflectivity of the volcanic interior with body wave interferometry. However, CWI in its original form was limited in that repeating earthquakes, or doublets, were not always guaranteed to occur. With the widespread use of noise correlations in seismology following the groundbreaking work by Campillo and Paul (2003) and Shapiro et al. (2005), it became evident that the nature of the ambient seismic field, due to its oceanic origin, enabled the continuous monitoring of subtle, time-dependent changes at both fault zones (Wegler and Sens-Schönfelder 2007; Brenguier et al. 2008b; Wegler et al. 2009; Sawazaki et al. 2009; Tatagi et al. 2012) and volcanoes (Sens-Schönfelder and Wegler 2006; Brenguier et al. 2008a) without the need for repeating earthquakes. Seismic precursors to eruptions based on ambient noise we

  7. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  8. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  9. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  10. Sublinear absorption in OCS gas

    International Nuclear Information System (INIS)

    Bogani, F.; Querzoli, R.; Ernst, K.

    1988-01-01

    Sublinear absorption in OCS gas has been experimentally studied in detail by means of an optoacustic technique and transmission measurements. The best fit of the results is obtained by a phenomenological model, that considers the process as the sum of one-and two-photon absorptions

  11. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.

    1994-01-01

    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  12. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  13. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  14. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  15. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  16. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  17. Bezkontaktní systém pro kalibrace koncových měrek

    Czech Academy of Sciences Publication Activity Database

    Dvořáčková, Š.; Dvořáček, F.; Konečný, P.; Kůr, J.; Buchta, Zdeněk; Čížek, Martin; Šarbort, Martin; Řeřucha, Šimon; Hucl, Václav; Pikálek, Tomáš; Lazar, Josef; Číp, Ondřej

    -, č. 4 (2016), s. 2-6 ISSN 1210-3543 Institutional support: RVO:68081731 Keywords : laser interferometry * low-coherence interferometry * gauge block * metrology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Jak měřit délky koncových měrek - nové možnosti

    Czech Academy of Sciences Publication Activity Database

    Dvořáčková, Š.; Dvořáček, F.; Konečný, P.; Buchta, Zdeněk; Čížek, Martin; Šarbort, Martin; Řeřucha, Šimon; Hucl, Václav; Pikálek, Tomáš; Lazar, Josef; Číp, Ondřej

    2016-01-01

    Roč. 64, č. 23 (2016), s. 38 ISSN 0040-1064 Institutional support: RVO:68081731 Keywords : laser interferometry * low-coherence interferometry * gauge block * metrology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  20. Application of virtual phase-shifting speckle-interferometry for detection of polymorphism in the Chlamydia trachomatis omp1 gene

    Science.gov (United States)

    Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.

    2018-04-01

    Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.

  1. Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential

    International Nuclear Information System (INIS)

    Berrada, T.

    2014-01-01

    Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential Particle-wave duality has enabled the construction of interferometers for massive particles such as electrons, neutrons, atoms or molecules. Implementing atom interferometry has required the development of analogues to the optical beam-splitters, phase shifters or recombiners to enable the coherent, i.e. phase-preserving manipulation of quantum superpositions. While initially demonstrating the wave nature of particles, atom interferometers have evolved into some of the most advanced devices for precision measurement, both for technological applications and tests of the fundamental laws of nature. Bose- Einstein condensates (BEC) of ultracold atoms are particular matter waves: they exhibit a collective many-body wave function and macroscopic coherence properties. As such, they have often been considered as an analogue to optical laser elds and it is natural to wonder whether BECs can provide to atom interferometry a similar boost as the laser brought to optical interferometry. One fundamental dierence between atomic BECs and lasers elds is the presence of atomic interactions, yielding an intrinsic non-linearity. On one hand, interactions can lead to eects destroying the phase coherence and limiting the interrogation time of trapped BEC interferometers. On the other hand, they can be used to generate nonclassical (e.g. squeezed) states to improve the sensitivity of interferometric measurements beyond the standard quantum limit (SQL). In this thesis, we present the realization of a full Mach-Zehnder interferometric sequence with trapped, interacting BECs con ned on an atom chip. Our interferometer relies on the coherent manipulation of a BEC in a magnetic double-well potential. For this purpose, we developed a novel type of matter-wave recombiner, an element which so far was missing in BEC atom optics. We have been able to exploit interactions to generate a squeezed

  2. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  3. Microwaves absorption in superconducting materials

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Fernandes, A.A.R.; Pereira, R.F.R.

    1989-01-01

    Microwaves absorption measures in two superconductors ceramics systems, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O are compared with similars datas obtained in the same band of temperature by a conventional method, mutual inductance. The results suggest that the microwaves absorption can be used as single and non-destructive method for investigating the properties of ceramics superconductors. (C.G.C.) [pt

  4. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.

    1996-01-01

    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  5. Height Resolution of Antibody Spots Measured by Spinning-Disk Interferometry on the BioCD

    Directory of Open Access Journals (Sweden)

    Kevin O’Brien

    2016-02-01

    Full Text Available Spinning-disc interferometry (SDI is a high-speed laser scanning approach to surface metrology that uses common-path interferometry to measure protein spots on a BioCD disk. The measurement sensitivity depends on the scanning pitch and on the time-base. Based on high-resolution laser scanning images of printed antibody spots, we quantify the protein sensitivity as a function of the scan parameters. For smoothly printed antibody spots scanned with a transverse spatial resolution of 1 μm, the surface height precision for a single 100 μm diameter protein spot is approximately 1 pm. This detection sensitivity sets the fundamental limit of detection for label-free BioCD biosensors performing immunoassays.

  6. Crest Factor Reduction in MC-CDMA Employing Carrier Interferometry Codes

    Directory of Open Access Journals (Sweden)

    Natarajan Balasubramaniam

    2004-01-01

    Full Text Available This paper addresses signal compactness issues in MC-CDMA employing carrier interferometry codes using the measure of crest factor (CF. Carrier interferometry codes, applied to N -carrier MC-CDMA systems, enable 2N users to simultaneously share the system bandwidth with minimal degradation in performance (relative to the N -orthogonal-user case. First, for a fully loaded ( K=N and K=2N users MC-CDMA system with practical values of N , it is shown that the CF in downlink transmission demonstrates desirable properties of low mean and low variance. The downlink CF degrades when the number of users in the system decreases. Next, the high CF observed in the uplink is characterized and the poor CF in a partially loaded downlink as well as uplink is effectively combated using Schroeder's analytical CF reduction techniques.

  7. Digital Moiré based transient interferometry and its application in optical surface measurement

    Science.gov (United States)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  8. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    International Nuclear Information System (INIS)

    Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.; Broderick, Avery E.; Wardle, John F. C.; Marrone, Daniel P.

    2014-01-01

    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.

  9. Holographic interferometry applied to the measurement of displacements of the interior points of transparent bodies.

    Science.gov (United States)

    Sciammarella, C A; Gilbert, J A

    1976-09-01

    Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.

  10. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement

    International Nuclear Information System (INIS)

    Wang Kaiwei; Martin, Haydn; Jiang Xiangqian

    2008-01-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm

  11. Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)

    International Nuclear Information System (INIS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-01-01

    A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity (∼15–50 km/s), jet length (∼20–100 cm), and 3D expansion.

  12. Application of SAR interferometry to low-rate crustal deformation fields

    Science.gov (United States)

    Vincent, Paul

    Differential SAR interferometry is applied to the study of low-rate interseismic crustal deformation fields along three regions of the San Adreas fault system: Salton Sea (southernmost region), Pinto Mountain fault (south-central region), and San Francisco Bay (northern region). New techniques are developed to analyze and model these low-rate deformation fields including constrained horizontal-vertical component deconvolution, deformation phase pattern analysis and strain field evolution modeling. Several new active faults were discovered as well as unmeasured activity on existing faults in the process of this SAR interferometry study. The feasibility and limitations of InSAR as a tool to study low-rate deformation fields is also addressed.

  13. Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry

    Science.gov (United States)

    2008-03-01

    mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S

  14. A new method for building an atomic matter-wave interferometry

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Chen Min; Xu Zhizhan; Xiao Tiqiao; Zhu Peiping

    2002-01-01

    A new method for building an atomic matter-wave interferometry is proposed. A Fresnel zone-plate is used for restricting the linewidth of atomic beams, then a quasi-monochromatic atomic beam is obtained to illuminate four slits on a copper foil. The phenomenon of atomic interference and holograph can be observed, which is used to measure the coherent length of atomic beams

  15. Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts

    Science.gov (United States)

    Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno

    2010-07-01

    While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.

  16. Attosecond Two-Photon Interferometry for Doubly Excited States of Helium

    International Nuclear Information System (INIS)

    Feist, J.; Nagele, S.; Burgdoerfer, J.; Ticknor, C.; Collins, L. A.; Schneider, B. I.

    2011-01-01

    We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible noncoincident single-electron spectra. We analyze the interferometric signal in terms of a semianalytical model which is validated by a numerical solution of the time-dependent two-electron Schroedinger equation in its full dimensionality.

  17. Holographic interferometry - a nondestructive inspection technique for early detection of construction element damages

    International Nuclear Information System (INIS)

    Wachutka, H.; Fritzsch, W.; Gruenewald, K.

    1977-01-01

    After a short introduction into the fundamentals of holographic interferometry, the application of this process to non-destructive material testing is explained. Practical examples of qualitative and quantitative deformation measurements carried out on building elements of different materials as well as on metallic and nonmetallic combinations show the possibilities of early recognition of manufacturing flaws and weak points due to the construction and also the determination of construction material characteristic coefficients. (orig.) [de

  18. Single particle measurements and two particle interferometry results from CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1994-01-01

    CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented

  19. Holographic interferometry of isolated deuterium plasmas produced by a CO2 laser

    International Nuclear Information System (INIS)

    Gatenby, P.V.; Walker, A.C.

    1978-10-01

    The application of double exposure fractional fringe holographic interferometry to measurements of electron density in a plasma generated by irradiation of a freely falling pellet of solid deuterium with a focused CO 2 laser pulse is discussed. A particularly simple technique is used for processing and reconstructing the holograms and this is described in detail. A summary and discussion of the results is included with the emphasis on the observed evolution of the deuterium plasma over the duration of the laser irradiation. (author)

  20. Recovery of the Earth's Gravity Field Based on Spaceborne Atom-interferometry and Its Accuracy Estimation

    Directory of Open Access Journals (Sweden)

    ZHU Zhu

    2017-09-01

    Full Text Available The electrostatic gravity gradiometer has been successfully applied as a core sensor in satellite gravity gradiometric mission GOCE, and its observations are used to recover the Earth's static gravity field with a degree and order above 200. The lifetime of GOCE has been over, and the next generation satellite gravity gradiometry with higher resolution is urgently required in order to recover the global steady-state gravity field with a degree and order of 200~360. High potential precision can be obtained in space by atom-interferometry gravity gradiometer due to its long interference time, and thus the atom-interferometry-based satellite gravity gradiometry has been proposed as one of the candidate techniques for the next satellite gravity gradiometric mission. In order to achieve the science goal for high resolution gravity field measurement in the future, a feasible scheme of atom-interferometry gravity gradiometry in micro-gravity environment is given in this paper, and the gravity gradient measurement can be achieved with a noise of 0.85mE/Hz1/2. Comparison and estimation of the Earth's gravity field recovery precision for different types of satellite gravity gradiometry is discussed, and the results show that the satellite gravity gradiometry based on atom-interferometry is expected to provide the global gravity field model with an improved accuracy of 7~8cm in terms of geoid height and 3×10-5 m/s2 in terms of gravity anomaly respectively at a degree and order of 252~290.

  1. Ultrafast spectral interferometry of resonant secondary emmission from semiconductor quantum wells

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons follwing resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve the coherent...... field associated with the Rayleigh component using ultrafast spectral interferometry, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our findings demonstrate that Rayleigh scattering from static disorder is inherently a non-ergodic process invalidating...

  2. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    Science.gov (United States)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  3. The radius and mass of the close solar twin 18 Scorpii derived from asteroseismology and interferometry

    DEFF Research Database (Denmark)

    Bazot, M.; Ireland, M.J.; Huber, D.

    2011-01-01

    Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4 ± 0.3 μHz and angular and linear radiuses of 0.6759 ± 0.0062 mas and 1.010 ± 0.009 Rsun were estimated. We used these values...

  4. Contribution of the Refractive Index Fluctuations to the Length Noise in Displacement Interferometry

    Czech Academy of Sciences Publication Activity Database

    Holá, Miroslava; Hrabina, Jan; Šarbort, Martin; Oulehla, Jindřich; Číp, Ondřej; Lazar, Josef

    2015-01-01

    Roč. 15, č. 5 (2015), s. 263-267 ISSN 1335-8871 R&D Projects: GA ČR GB14-36681G; GA TA ČR TA02010711; GA TA ČR TE01020233; GA MŠk(CZ) LO1212; GA MŠk EE2.3.30.0054 Institutional support: RVO:68081731 Keywords : nanometrology * interferometry * refractive index of air Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.969, year: 2015

  5. Application Of Holographic Interferometry For Investigation Of Microroughness Of Engineering Surfaces

    Science.gov (United States)

    Lech, Marek; Mruk, Irena; Stupnicki, Jacek

    1985-01-01

    The paper describes an improved immersion method of holographic interferometry /IMHI/ adjusted for studies of roughness of engineering surfaces. Special optical arrangement, with two types of immersion cells and adequate technique of preparing transparent replicas reproducting with high fidelity details of differently machined surfaces was elaborated. It permits to obtain the contour maps of the surface asperities with intervals between the planes of succesive contour lines within a range of 1 μm. The results obtained for some engineering surfaces are given.

  6. Systematic comparison between line integrated densities measured with interferometry and polarimetry at JET

    International Nuclear Information System (INIS)

    Brombin, M.; Zilli, E.; Giudicotti, L.; Boboc, A.; Murari, A.

    2009-01-01

    A systematic comparison between the line integrated electron density derived from interferometry and polarimetry at JET has been carried out. For the first time the reliability of the measurements of the Cotton-Mouton effect has been analyzed for a wide range of main plasma parameters and the possibility to evaluate the electron density directly from polarimetric data has been studied. The purpose of this work is to recover the interferometric data with the density derived from the measured Cotton-Mouton effect, when the fringe jump phenomena occur. The results show that the difference between the line integrated electron density from interferometry and polarimetry is with one fringe (1.143x10 19 m -2 ) for more than 90% of the cases. It is possible to consider polarimetry as a satisfactory alternative method to interferometry to measure the electron density and it could be used to recover interferometric signal when a fringe jumps occurs, preventing difficulties for the real-time control of many experiments at the JET machine.

  7. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    International Nuclear Information System (INIS)

    Yang, F.; Shao, Y.; Guichen, M.

    2010-01-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  8. Beam shaping optics to enhance performance of interferometry techniques in grating manufacture

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2018-02-01

    Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.

  9. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    Science.gov (United States)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  10. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  11. Studies of Bagley Icefield during surge and Black Rapids Glacier, Alaska, using spaceborne SAR interferometry

    Science.gov (United States)

    Fatland, Dennis Robert

    1998-12-01

    This thesis presents studies of two temperate valley glaciers---Bering Glacier in the Chugach-St.Elias Mountains, South Central Alaska, and Black Rapids Glacier in the Alaska Range, Interior Alaska---using differential spaceborne radar interferometry. The first study was centered on the 1993--95 surge of Bering Glacier and the resultant ice dynamics on its accumulation area, the Bagley Icefield. The second study site was chosen for purposes of comparison of the interferometry results with conventional field measurements, particularly camera survey data and airborne laser altimetry. A comprehensive suite of software was written to interferometrically process synthetic aperture radar (SAR) data in order to derive estimates of surface elevation and surface velocity on these subject glaciers. In addition to these results, the data revealed unexpected but fairly common concentric rings called 'phase bull's-eyes', image features typically 0.5 to 4 km in diameter located over the central part of various glaciers. These bull's-eyes led to a hypothetical model in which they were interpreted to indicate transitory instances of high subglacial water pressure that locally lift the glacier from its bed by several centimeters. This model is associated with previous findings about the nature of glacier bed hydrology and glacier surging. In addition to the dynamical analysis presented herein, this work is submitted as a contribution to the ongoing development of spaceborne radar interferometry as a glaciological tool.

  12. A portable magneto-optical trap with prospects for atom interferometry in civil engineering.

    Science.gov (United States)

    Hinton, A; Perea-Ortiz, M; Winch, J; Briggs, J; Freer, S; Moustoukas, D; Powell-Gill, S; Squire, C; Lamb, A; Rammeloo, C; Stray, B; Voulazeris, G; Zhu, L; Kaushik, A; Lien, Y-H; Niggebaum, A; Rodgers, A; Stabrawa, A; Boddice, D; Plant, S R; Tuckwell, G W; Bongs, K; Metje, N; Holynski, M

    2017-08-06

    The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 10 7 atoms within a system package of 20 l and 10 kg, consuming 80 W of power.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  13. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors

    International Nuclear Information System (INIS)

    Ince, R.; Narayanaswamy, R.

    2006-01-01

    Sensitivity, dynamic range and resolution have been calculated and compared from a range of analytes sensed in the literature using the techniques of interferometry, surface plasmon resonance (SPR) and luminescence. A detailed explanation of the physical and chemical/biological properties required of optical sensors is included along with the principle of operation of the sensors. Theoretical sensitivities of interferometry and SPR are also detailed along with parameters affecting these sensitivities. In the literature discussed in this review paper, the technique of luminescence, which relies intrinsically on 'labelling', offers the best resolutions for sensing of biomolecules (protein and DNA). Interference techniques offer the best resolutions for low molecular weight chemical liquids/vapours. Techniques which are 'label-free' are often desirable and it is demonstrated here that by combining the techniques of SPR with interferometry, it is possible to sense proteins with a resolution similar to that of luminescence. The future of chemo- and bio-sensing is discussed in terms of potential for multi-channel analysis, their continuous miniaturisation and their impending nanotechnology revolution

  14. An investigation of CO2 laser scleral buckling using moiré interferometry.

    Science.gov (United States)

    Maswadi, Saher M; Dyer, Peter E; Verma, Dinesh; Jalabi, Wadah; Dave, Dinesh

    2002-01-01

    To demonstrate suitability of moiré interferometry to assess and quantify laser-induced shrinkage of scleral collagen for buckling procedures. Scleral buckling of human cadaver eyes was investigated using a Coherent Ultrapulse CO2 laser. Projection moiré interferometry was employed to determine the out-of plane displacement produced by laser exposure, and in-situ optical microscopy of reference markers on the eye was used to measure in-plane shrinkage. Measurements based on moiré interferometry allow a three dimensional view of shape changes in the eye surface as laser treatment proceeds. Out-of-plane displacement reaches up to 1.5 mm with a single laser spot exposure. In-plane shrinkage reached a maximum of around 30%, which is similar to that reported by Sasoh et al (Ophthalmic Surg Lasers. 1998;29:410) for a Tm:YAG laser. The moiré technique is found to be suitable for quantifying the effects of CO2 laser scleral shrinkage and buckling. This can be further developed to provide a standardized method for experimental investigations of other laser sources for scleral shrinkage.

  15. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2014-08-01

    Full Text Available Surface plasmon resonance (SPR is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  16. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Liaoning Technical Univ., Fuxin (China). School of Geomatics; Shao, Y. [Liaoning Technical Univ., Fuxin (China). Dept. of Foreign Language; Guichen, M. [Gifu Univ., Yanagido, Gifu (Japan). Dept. of Civil Engineering

    2010-07-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  17. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.

    2011-11-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. © 2011 IEEE.

  18. Absorption and Metabolism of Xanthophylls

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2011-06-01

    Full Text Available Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  19. Absorption and metabolism of xanthophylls.

    Science.gov (United States)

    Kotake-Nara, Eiichi; Nagao, Akihiko

    2011-01-01

    Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  20. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Science.gov (United States)

    Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.

    2017-08-01

    Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer

  1. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  2. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  3. Architecture for Absorption Based Heaters

    Science.gov (United States)

    Moghaddam, Saeed; Chugh, Devesh

    2018-04-24

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. The absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.

  4. Mercury absorption in aqueous hypochlorite

    International Nuclear Information System (INIS)

    Zhao, L.L.; Rochelle, G.T.

    1999-01-01

    The absorption of elemental Hg vapor into aqueous hypochlorite was measured in a stirred tank reactor at 25 and 55C. NaOCl strongly absorbs Hg even at high pH. Low pH, high Cl - and high-temperature favor mercury absorption. Aqueous free Cl 2 was the active species that reacted with mercury. However, chlorine desorption was evident at high Cl - and pH 15 M -1 s -1 at 25C and 1.4x10 17 M -1 s -1 at 55C. Gas-phase reaction was observed between Hg and Cl 2 on apparatus surfaces. Strong mercury absorption in water was also detected with Cl 2 present. Results indicate that the chlorine concentration, moisture, and surface area contribute positively to mercury removal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains......, where it serves as a storage molecule for phosphorous. Phytic acid is also associated with minerals. The minerals are bound by chelation to the negatively charged phosphate groups in phytic acid. Phytases catalyse the dephosphorylation of phytic acid, thus releasing bound minerals to make them available...... for absorption. This article presents research on phytase catalysis in gastric conditions and considers potential benefits and drawbacks for using phytases as a food supplement....

  6. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  8. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  9. Dense plasmas interferometry using an X-UV laser. Development of an X-UV Michelson interferometer at 13.9 nm

    International Nuclear Information System (INIS)

    Hubert, S.

    2001-01-01

    After having recalled some aspects related to the physics of plasmas produced by interaction between laser and matter, and related to inertial confinement fusion or ICF (discussion of laser energy absorption, X conversion, parametric and hydrodynamic instabilities, and so on), this research thesis presents various techniques used for plasma diagnosis in order to justify the use of interferometry for the investigation of the electronic density distribution of these plasmas. The physical principle of this diagnosis technique is described and two types of X-UV interferometer are presented, one of them being chosen as more suitable for the study of ICF-type plasmas. The author then describes and reports the experimental investigation performed with a two-mirror Fresnel interferometer and a 21.2 nm zinc X-UV laser: description of the interferometer operation and characteristics, of the specifically designed image system, discussion of plasma interferogram simulations. Then, he reports the development of a Michelson-type X-UV interferometer at 13.9 nm. The operation principle is recalled, and the preliminary modelling phase is reported. The imaging system is presented and results of the interferogram modelling phase are presented [fr

  10. Konference Distillation and Absorption 2010

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena

    2009-01-01

    Roč. 103, č. 10 (2009), s. 862 ISSN 0009-2770 R&D Projects: GA MŠk LA320 Institutional research plan: CEZ:AV0Z40720504 Keywords : conference * announcement * distillation and absorption Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Gamm-ray absorption techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    In this chapter the principles of gamma-ray absorption are described and important applications in plant and process techniques such as measurement of thickness of deposits on pipes, checking for voids in concrete, metal corrosion, measurement of the density of materials inside vessels in industrial radiography are discussed. (U.K.)

  12. Emission and absorption of radiation

    International Nuclear Information System (INIS)

    Fetter, S.

    1992-01-01

    A full understanding of fissile-material detection requires a solid knowledge of nuclear physics, especially the emission and absorption of radiation. The purpose of this paper is therefore to give a brief explanation of these processes so that the reader can better understand the assumptions leading to the results in the main text

  13. Absorptive capacity and smart companies

    Directory of Open Access Journals (Sweden)

    Patricia Moro González

    2014-12-01

    Full Text Available Purpose: The current competitive environment is substantially modifying the organizations’ learning processes due to a global increase of available information allowing this to be transformed into knowledge. This opportunity has been exploited since the nineties by the tools of “Business Analytics” and “Business Intelligence” but, nevertheless, being integrated in the study of new organizational capacities engaged in the process of creating intelligence inside organizations is still an outstanding task. The review of the concept of absorptive capacity and a detailed study from the perspective of this new reality will be the main objective of study of this paper.Design/methodology/approach: By comparing classical absorptive capacity and absorptive capacity from the point of view of information management tools in each one of the three stages of the organizational learning cycle, some gaps of the former are overcome/fulfilled. The academic/bibliographical references provided in this paper have been obtained from ISI web of knowledge, Scopus and Dialnet data bases, supporting the state of affairs on absorptive capacity and thereafter filtering by "Business Intelligence" and "Business Analytics". Specialized websites and Business Schools` Publications there have also been included, crowning the content on information management tools used that are currently used in the strategic consulting.Findings: Our contribution to the literature is the development of "smart absorptive capacity". This is a new capacity emerging from the reformulation of the classical concept of absorptive capacity wherein some aspects of its definition that might have been omitted are emphasized. The result of this new approach is the creation of a new Theoretical Model of Organizational Intelligence, which aims to explain, within the framework of the Resources and Capabilities Theory, the competitive advantage achieved by the so-called smart companies

  14. Evaluación del equipo de interferometría óptica de coherencia parcial Lenstar en la biometría ocular Evaluation of Lenstar partial coherente optical interferometry device in the ocular biometry

    Directory of Open Access Journals (Sweden)

    Iramis Miranda Hernández

    2010-01-01

    Full Text Available OBJETIVOS: Comparar y evaluar la biometría ocular con el nuevo equipo de interferometría óptica de coherencia parcial (Lenstar con el equipo de interferometría óptica de baja coherencia IOL Master y también con los sistemas topográficos Galilei y Pentacam. MÉTODOS: Se realizó un estudio descriptivo, transversal, en 120 ojos de 60 pacientes. Para el cálculo del lente intraocular se tomaron mediciones con un nuevo biómetro Lenstar LS 900 (Haag Streit AG y con el IOL Master V.5 (Carl Zeiss Meditec AG. Se compararon mediante el análisis de regresión lineal y correlación de Pearson. También se compararon las medidas con las obtenidas por los equipos topógrafos Galilei y Pentacam. RESULTADOS: Existe una alta correspondencia en los valores biómetricos de longitud axial, queratometría y profundidad de la cámara anterior entre los equipos Lenstar e IOL Master. También se encontró una buena correspondencia entre las medidas de profundidad de cámara posterior y queratometría entre Lenstar y los topógrafos Galilei y Pentacam. CONCLUSIONES: El nuevo biómetro Lenstar, provee resultados que se correlacionan muy bien con aquellos obtenidos con los equipos IOL Master, Pentacam y Galilei. El equipo Lenstar es un equipo preciso que brinda información adicional por lo que es útil en la cirugía de catarata y la cirugía refractiva.OBJECTIVES: To compare and to evaluate the ocular biometry taken by a new optical partial coherence interferometry device (Lenstar,the low coherence optical interferometry equipment (ILO Master and the topographic systems Pentacam y Galilei. METHODS: A descriptive cross-sectional study was conducted in 120 eyes from 60 patients. For the IOL calculation, the necessary measurements were taken with the new optical biometer Lenstar LS 900 (Haig Streit AG and with the IOL Master V5 (Carl Zeiss Meditec AG. The results were evaluated using the linear regression analysis and Pearson´s correlation. The measures were

  15. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  16. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  17. Testing the resolving power of 2-D K{sup +} K{sup +} interferometry at Ags energies

    Energy Technology Data Exchange (ETDEWEB)

    Roldao, Cristiane G.; Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1998-12-31

    Adopting a procedure previously proposed to quantitatively study pion interferometry, an equivalent 2-D {sub X}{sup 2} analysis was performed to test the resolving power of that method when applied to less favorable conditions, i.e., when non significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K{sup +} K{sup +} interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. The possible compatibility of the data with zero decoupling proper time interval, suggested by the experimental fit, is also investigated and seems to be ruled out when considering dynamical models with expanding sources. (author) 10 refs., 2 figs., 1 tab.

  18. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    Directory of Open Access Journals (Sweden)

    Guochao Wang

    2018-02-01

    Full Text Available We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  19. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    Science.gov (United States)

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  20. Group Frames With Few Distinct Inner Products and Low Coherence

    KAUST Repository

    Thill, Matthew; Hassibi, Babak

    2015-01-01

    Frame theory has been a popular subject in the design of structured signals and codes in recent years, with applications ranging from the design of measurement matrices in compressive sensing, to spherical codes for data compression and data