WorldWideScience

Sample records for absorption edge shifts

  1. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L.; Broer, R.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the

  2. Chemical shift of Mn and Cr K-edges in X-ray absorption

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation. D Joseph A K Yadav S N Jha D Bhattacharyya. Volume 36 Issue 6 November 2013 pp ...

  3. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Joseph, D.; Jha, S.N.; Nayak, C.; Bhattacharyya, D.; Babu, P. Venu

    2014-01-01

    Uranium L 3 X-ray absorption edge was measured in various compounds containing uranium in U 4+ , U 5+ and U 5+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2-3 eV were observed for U L 3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds. (author)

  4. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be. (Auth.)

  5. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be by Crisp (1977). (Auth.)

  6. X-ray absorption near edge structure (XANES) study of some hydroxamic mixed ligand copper complexes

    International Nuclear Information System (INIS)

    Mishra, A; Parsai, N; Shrivastava, B D; Soni, N

    2012-01-01

    With the advent of modern bright synchrotron radiation sources, X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of four hydroxamic mixed ligand copper complexes have been performed at the recently developed BL-8 Dispersive EXAFS beamline at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the complexes have been determined. The values of the chemical shift suggest that copper is in oxidation state +2 in all of the complexes. The chemical shift data has been utilized to estimate effective nuclear charge on copper atom. The order of the chemical shifts has been correlated to the relative ionic character of the bonding in these complexes.

  7. Fundamental absorption edge of CdP2 single crystals

    International Nuclear Information System (INIS)

    Bondar', G.I.; Koval', V.S.; Kurik, M.V.

    1986-01-01

    Fundamental absorption edge of tetragonal CdP 2 crystals is investigated within the temperature range of 4.2-293 K. The crystals are grown by the Bridgman methods and resublimation methods and possess different degree of perfection and purity. In perfect CdP 2 crystals with small concentration of impurities in the region of K > 20 cm -1 the shape of the absorption edge spectrum is described by the Urbach rule. The Urbach rule parameters are defined. The electron-phonon interaction is shown to be the determinant at K > 20 cm -1 and the direct vertical transition is observed. A slight additional absorption with maximum at 2.163 eV within the range of K -1 and at T ≤ 50 is associated with transition from shallow acceptor level to the conduction zone. The impurity leads to the shift of the fundamental absorption edge to the long-wavelength side and diffusion of electrons on impurities is resulted

  8. Doping and bond length contributions to Mn K-edge shift in La1 ...

    Indian Academy of Sciences (India)

    ... corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, ...

  9. Red photoluminescence and band edge shift from ZnO thin films

    International Nuclear Information System (INIS)

    Marotti, Ricardo E.; Badan, Juan A.; Quagliata, Eduardo; Dalchiele, Enrique A.

    2007-01-01

    The red photoluminescence (PL) band (peaked between 610 and 640 nm) from electrochemically deposited ZnO thin films is studied. The absorption coefficient is obtained from diffuse reflectance measurements. The absorption band edge depends on deposition conditions. The PL peak follows the shift of the band edge. A similar correlation appears when cooling down to 20 K. This suggests that PL is due to a transition from an intrinsic shallow state to an intrinsic deep state. Comparing against ZnO samples showing green PL, the shallow nature of the state is confirmed

  10. Chemical shift of U L3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Administrator

    by X-ray absorption spectroscopy with synchrotron radiation. D JOSEPH†, C NAYAK††, ... Bhabha Atomic Research Centre, Mumbai 400 085, India. MS received 28 .... As has been discussed in the 'Introduction' section, the above edge shift ...

  11. Fundamental optical absorption edge in MnGa2Te4 single crystals

    International Nuclear Information System (INIS)

    Medvedkin, G.A.; Rud, Yu.V.; Tairov, M.A.

    1988-01-01

    A study is made of the optical properties of oriented MnGa 2 Te 4 crystals in the region of the fundamental absorption edge. The energy gap width for the temperatures 77, 300, and 370 K is determined to be E G = 1.635, 1.52, and 1.50 eV. The spectral response α(ℎω/2π) is found to follow Urbach's rule thoughout the temperature range studied, the slope of the absorption edge remaining constant (α = 10 2 cm -1 ). Crystal annealing with subsequent rapid cooling results in a shift of the absorption edge longward by 25 meV with the exponential form of α(ℎω/2π) prevailing over the range T = 77 to 370 K. An analysis shows the optical absorption in the region of the fundamental edge to be a sum of the effects coming from the density-of-states tails, local scattering centers associated with a high vacancy concentration, and electron-phonon interaction. Optical linear dichroism of the absorption edge of MnGa 2 Te 4 single crystals with pseudotetragonal structure is revealed and studied. The single crystals are established to be optically uniaxial, their optical transmission dichroism being negative. It is shown that the minimal direct optical transitions in MnGa 2 Te 4 are allowed in the E parallel c polarization in the temperature range 77 to 370 K, the crystal-field splitting of the valence band increasing with temperature. (author)

  12. X-ray K-absorption edge of zirconium in some perovskite type zirconates

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, B K; Patil, R N [Shivaji Univ., Kolhapur (India). Dept. of Physics

    1979-01-01

    The chemical shifts in the X-ray K-absorption edges of zirconium in the zirconates of calcium, strontium, barium and lead and zirconium oxide have been investigated employing a 400 mm bent crystal X-ray spectrograph. It has been found that the discontinuity shifts towards the high energy side with respect to that in the pure metal and that the chemical shift depends upon the size of the next nearest cation. The larger the size of the cation, smaller is the chemical shift. Dependence of the shift on the crystal structure and the packing factor of the perovskite is also reported.

  13. Study of X-ray L2 absorption edges of Gd, Dy, Ho and Er in metals and compounds

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The positions and shapes of L2 X-ray absorption edges of Gd, Dy, Ho and Er have been studied in metals and in oxides and chlorides, using a forty centimetre bent mica crystal spectrograph. It has been found that the L2 edge shifts towards the high energy side in the compounds and that the chemical shift ΔE depends on the degree of covalency involved. The white line structure at the edge has been analysed in terms of transitions of L2 shell electron to optical nd (n >= 5) states. (author)

  14. Studies on absorption coefficient near edge of multi elements

    International Nuclear Information System (INIS)

    Eisa, M.H.; Shen, H.; Yao, H.Y.; Mi, Y.; Zhou, Z.Y.; Hu, T.D.; Xie, Y.N.

    2005-01-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained

  15. Studies on absorption coefficient near edge of multi elements

    Science.gov (United States)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  16. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    Science.gov (United States)

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption- Edge -Modulated Transmission Spectra for Water Contaminant...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption- Edge -Modulated Transmission Spectra for Water Contaminant Monitoring...contaminants, within a volume of sampled solution, requires sufficient sensitivity. The present study examines the sensitivity of absorption- edge

  17. The P K-near edge absorption spectra of phosphates

    Science.gov (United States)

    Franke, R.; Hormes, J.

    1995-12-01

    The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.

  18. Attenuation studies near K-absorption edges using Compton ...

    Indian Academy of Sciences (India)

    The results are consistent with theoretical values derived from the XCOM package. Keywords. Photon interaction; 241Am; gamma ray attenuation; Compton scattering; absorption edge; rare earth elements. PACS Nos 32.80.-t; 32.90.+a. 1. Introduction. Photon interaction studies at energies around the absorption edge have ...

  19. High-resolution Al L2,3-edge x-ray absorption near edge structure spectra of Al-containing crystals and glasses: coordination number and bonding information from edge components

    International Nuclear Information System (INIS)

    Weigel, C; Calas, G; Cormier, L; Galoisy, L; Henderson, G S

    2008-01-01

    High-resolution Al L 2,3 -edge x-ray absorption near edge structure (XANES) spectra have been measured in selected materials containing aluminium in 4-, 5- and 6-coordination. A shift of 1.5 eV is observed between the onset of [4] Al and [6] Al L 2,3 -edge XANES, in agreement with the magnitude of the shift observed at the Al K-edge. The differences in the position and shape of low-energy components of Al L 2,3 -edge XANES spectra provide a unique fingerprint of the geometry of the Al site and of the nature of Al-O chemical bond. The high resolution allows the calculation of electronic parameters such as the spin-orbit coupling and exchange energy using intermediate coupling theory. The electron-hole exchange energy decreases in tetrahedral as compared to octahedral symmetry, in relation with the increased screening of the core hole in the former. Al L 2,3 -edge XANES spectra confirm a major structural difference between glassy and crystalline NaAlSi 2 O 6 , with Al in 4- and 6-coordination, respectively, Al coordination remaining unchanged in NaAl 1-x Fe x Si 2 O 6 glasses, as Fe is substituted for Al

  20. Fundamental absorption edge of NiO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V.I., E-mail: visokolov@imp.uran.ru [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation); Druzhinin, A.V. [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation); Kim, G.A. [Institute of Organic Synthesis Ural Branch of RAS, S. Kovalevskaya Street 20, 620990 Yekaterinburg (Russian Federation); Gruzdev, N.B.; Yermakov, A.Ye.; Uimin, M.A.; Byzov, I.V.; Shchegoleva, N.N.; Vykhodets, V.B.; Kurennykh, T.E. [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation)

    2013-12-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5–4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p—d charge transfer transitions form the fundamental absorption edge.

  1. Fundamental absorption edge of NiO nanocrystals

    International Nuclear Information System (INIS)

    Sokolov, V.I.; Druzhinin, A.V.; Kim, G.A.; Gruzdev, N.B.; Yermakov, A.Ye.; Uimin, M.A.; Byzov, I.V.; Shchegoleva, N.N.; Vykhodets, V.B.; Kurennykh, T.E.

    2013-01-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5–4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p—d charge transfer transitions form the fundamental absorption edge

  2. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    International Nuclear Information System (INIS)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.

    2004-01-01

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2 Ge 0.8 Cr 0.2 O 4 , Ba 2 Ge 0.1 Cr 0.9 O 4 , Sr 2 CrO 4 , Ca 2 (PO 4 ) x (CrO 4 ) 1-x Cl (x=0.25,0.5), Ca 5 (CrO 4 ) 3 Cl, CrO 3 , the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3 , CrF 3 , Cr 2 O 3 , KCr(SO 4 ) 2 · 12H 2 O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code

  3. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    Science.gov (United States)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.

    2004-05-01

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2Ge 0.8Cr 0.2O 4, Ba 2Ge 0.1Cr 0.9O 4, Sr 2CrO 4, Ca 2(PO 4) x(CrO 4) 1- xCl ( x=0.25,0.5), Ca 5(CrO 4) 3Cl, CrO 3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3, CrF 3, Cr 2O 3, KCr(SO 4) 2 · 12H 2O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.

  4. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  5. Red shift of near band edge emission in cerium implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar

    2009-01-01

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  6. Red shift of near band edge emission in cerium implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan)

    2009-02-21

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  7. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D

    2004-05-10

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca{sub 2}Ge{sub 0.8}Cr{sub 0.2}O{sub 4}, Ba{sub 2}Ge{sub 0.1}Cr{sub 0.9}O{sub 4}, Sr{sub 2}CrO{sub 4}, Ca{sub 2}(PO{sub 4}){sub x}(CrO{sub 4}){sub 1-x}Cl (x=0.25,0.5), Ca{sub 5}(CrO{sub 4}){sub 3}Cl, CrO{sub 3}, the octahedrally coordinated compounds Cr(II)-acetate, CrCl{sub 3}, CrF{sub 3}, Cr{sub 2}O{sub 3}, KCr(SO{sub 4}){sub 2} {center_dot} 12H{sub 2}O, CrO{sub 2} and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.

  8. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  9. Enhanced electroabsorption in strained-layer InxGa1-xAs-InP quantum wells via absorption edge merging

    International Nuclear Information System (INIS)

    Gomatam, B.N.; Anderson, N.G.

    1990-01-01

    Optoelectronic modulators are useful for optical communications, optical computing and other applications which require the electronic control of guided light. Considerable research has recently been devoted to multiple quantum well (MQW) modulators which use an electroabsorption effect unique to quantum wells: the quantum confined Stark effect (QCSE). Voltage controlled optical modulation can be achieved by Stark-shifting the absorption edge above and below the incident photon energy. This paper reports that, to obtain increased optical on-off ratios at decreased drive voltages, the authors are investigating a novel approach which exploits characteristics of MQWs under biaxial tension. The light hole band edge lies at a higher energy than the heavy hole band edge in these structures, which is opposite the case for unstrained or biaxially compressed structures. Since the absorption edge associated with the heavy holes decreases more rapidly with applied field than that for the light holes, merging of the two edges can be expected at some value of the applied field. This effect here called absorption edge merging (AEM), can be expected to give rise to a significant improvement in modulator design. We have theoretically investigated the AEM effect in In x Ga 1-x As/InP quantum well structures with x x Ga 1-x As quantum wells are under tension in such structures, hence the required light hole up band configuration can be achieved

  10. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. X-ray speckle contrast variation at a sample-specific absorption edges

    International Nuclear Information System (INIS)

    Retsch, C. C.; Wang, Y.; Frigo, S. P.; Stephenson, G. B.; McNulty, I.

    2000-01-01

    The authors measured static x-ray speckle contrast variation with the incident photon energy across sample-specific absorption edges. They propose that the variation depends strongly on the spectral response function of the monochromator. Speckle techniques have been introduced to the x-ray regime during recent years. Most of these experiments, however, were done at photon energies above 5 keV. They are working on this technique in the 1 to 4 keV range, an energy range that includes many important x-ray absorption edges, e.g., in Al, Si, P, S, the rare-earths, and others. To their knowledge, the effect of absorption edges on speckle contrast has not yet been studied. In this paper, they present their initial measurements and understanding of the observed phenomena

  12. Two-photon spectroscopy study of edge absorption peculiarities in oxygen-octahedric ferroelectrics

    International Nuclear Information System (INIS)

    Shablaev, S.I.; Danishevskij, A.M.; Subashiev, V.K.

    1984-01-01

    Two-photon absorption (TPA) spectra of ferroelectric crystals with BaTiO 3 , KTaO 3 and SrTiO 3 perovskite strUcture Were obtained. The detailed investigation of temperature dependence of edge spectrum regions was conducted and on the basis of their analysis the indirect character of edge absorption was concluded for all mentioned crystals. TPA spectra of BaTiO 3 and KTaO 3 are characterized by the regions corresponding to one indirect edge TPA spectra of SrTiO 3 - to two indirect edges. The corresponding inter-zone gaps were determined for all investigated crystals, the energy of phonons, participating in indirect two photon transitions, inter-zone gaps, corresponding to direct transitions were determined as well

  13. A study of the Nb3Ge system by Ge K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy

    International Nuclear Information System (INIS)

    Saini, N L; Filippi, M; Wu Ziyu; Oyanagi, H; Ihara, H; Iyo, A; Agrestini, S; Bianconi, A

    2002-01-01

    The local structure of Nb 3 Ge intermetallic superconductor has been studied by Ge K-edge absorption spectroscopy. Extended x-ray absorption fine structure (EXAFS) experiments show two Ge-Nb distances. In addition to the crystallographic distance of ∼2.87 A, there exists a second Ge-Nb distance, shorter than the first by ∼0.2 A, assigned to a phase with short-range symmetry related to local displacements in the Nb-Nb chains. The x-ray absorption near-edge structure (XANES) spectrum has been simulated by full multiple-scattering calculations considering the local displacements determined by the EXAFS analysis. The XANES spectrum has been well reproduced by considering a cluster of 99 atoms within a radius of about 7 A from the central Ge atom and introducing determined local displacements

  14. X-ray absorption near-edge spectroscopic study of nickel catalysts

    International Nuclear Information System (INIS)

    Soldatov, Alexander V.; Smolentsev, Grigory; Kravtsova, Antonina; Yalovega, Galina; Feiters, Martin C.; Metselaar, Gerald A.; Joly, Yves

    2006-01-01

    Ni-isocyanide and Ni-acac complexes have been studied by X-ray absorption spectroscopy. Theoretical analysis has been done using self-consistent full multiple scattering (MS) approach within both muffin-tin (MT) model of the potential and non-MT finite deference method. For the isocyanide complex, it was shown that MS theoretical spectra reproduce all structural details of the X-ray absorption near-edge structure (XANES), but also that it is important to consider the non-MT effects in the potential for a correct simulation of the shape of the pre-edge structures. The contribution of a non-constant potential in the interstitial regions is extremely important for the interpretation of the XANES of Ni(acac) 2

  15. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Myhre, Rolf H.; Cryan, J. P.

    2017-01-01

    -edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ...

  16. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    Science.gov (United States)

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  17. Edge effects in phase-shifting masks for 0.25-µm lithography

    Science.gov (United States)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  18. Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1993-01-01

    The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)

  19. Resonance absorption of ICRF wave in edge plasma

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Yamanaka, Kaoru.

    1987-07-01

    An edge plasma is shown to significantly absorb ICRF wave when a resonant triplet, a cutoff-resonance-cutoff triplet, is constructed in the evanescent region. Two-ion-component plasmas in a torus are considered though the plasmas are modeled by a slab in which the density changes linearly along the x-axis. The resonance is a perpendicular-ion-cyclotron resonance, i.e., an Alfven resonance, and is formed when the applied frequency ω is smaller than the local cyclotron frequency, at the edge of the antenna side, of the lighter species of ions. Roughly the absorption rate A b is given by M 2 for M 2 >> S 2 and S 4 for S 2 >> M 2 where M = k y l and S ≅ k z l and l is a scale length of the order of the plasma minor radius and k y and k z are the perpendicular and the parallel components of the wave vector. It is noted that the both quantities, M and S, readily become of the order of unity. Since A b is not very sensitive to the density ratio of the two ion species, a few percent of impurities may cause a significant absorption. As the mass ratio of the two ion species comes close to unity the triplet forms readily. Therefore a D-T plasma seems to suffer more easily this kind of resonance absorption than a D-H plasma. (author)

  20. Femtosecond Near Edge X-ray Absorption Measurement of the VO2 Phase Transition

    International Nuclear Information System (INIS)

    Cavalleri, A.; Chong, H.H.W.; Fourmaux, S.; Glover, T.E.; Heimann, P.A; Kieffer, J.C.; Padmore, H.A.; Schoenlein, R.W.

    2004-01-01

    The authors measure the insulator-to-metal transition in VO 2 using femtosecond Near-Edge X-ray Absorption. Sliced pulses of synchrotron radiation are used to detect the photo-induced dynamics at the 516-eV Vanadium L 3 edge

  1. Communication: Systematic shifts of the lowest unoccupied molecular orbital peak in x-ray absorption for a series of 3d metal porphyrins

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Cook, P. L.; Himpsel, F. J.

    2010-01-01

    Porphyrins are widely used as dye molecules in solar cells. Knowing the energies of their frontier orbitals is crucial for optimizing the energy level structure of solar cells. We use near edge x-ray absorption fine structure (NEXAFS) spectroscopy to obtain the energy of the lowest unoccupied...... molecular orbital (LUMO) with respect to the N-1s core level of the molecule. A systematic energy shift of the N-1s to LUMO transition is found along a series of 3d metal octaethylporphyrins and explained by density functional theory. It is mainly due to a shift of the N-1s level rather than a shift...

  2. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    International Nuclear Information System (INIS)

    Ildefonse, P.; Calas, G.; Flank, A.M.; Lagarde, P.

    1995-01-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaO-MgO-2SiO 2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mg-O distances of 2.01 A. In aluminosilicate gels, Al-K XANES has been used to investigate the [4]Al/Al total ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Si-K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si=1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels. (orig.)

  3. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    Science.gov (United States)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  4. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  5. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  6. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  7. Optical band-edge absorption of oxide compound SnO2

    International Nuclear Information System (INIS)

    Roman, L.S.; Valaski, R.; Canestraro, C.D.; Magalhaes, E.C.S.; Persson, C.; Ahuja, R.; Silva, E.F. da; Pepe, I.; Silva, A. Ferreira da

    2006-01-01

    Tin oxide (SnO 2 ) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO 2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO 2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption α(ω) of intrinsic SnO 2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO 2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results

  8. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  9. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    Science.gov (United States)

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments.

  10. Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to measure atomic, molecular and electronic cross-section; the effective atomic number, density of electron and absorption jump factor, we have first measured μ t values of compounds which are determined by mixture rule using transmission method. In order to measure experimentally the effective atomic number within absorption jump factors of compounds with Ce, the X-ray source used Am-241 whose gamma rays were stopped at secondary source (Sm), thus producing Kα and Kβ X-ray emission. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near to the absorption edge and the effective atomic number is affected by near to the absorption edge. The results obtained have been compared with theoretical values.

  11. Determination of uranium in bench test by L_Ⅲ-absorption edge method

    International Nuclear Information System (INIS)

    Song You; Zheng Weiming; Liu Guijiao; Chen Chen

    2014-01-01

    By independent research L_Ⅲ--absorption edge densimeter, an analytical method for uranium sample with the concentration from 20 g/L to 200 g/L was developed. The fitting area for uranium measurement was determined through experiment. The left fitting area was 1659-1856 channel, and the right one was 2063-2280 channel. The uranium L_Ⅲ--absorption edge was at 1995 channel. The results show that the influence of HNO_3 concentration lower than 9 mol/L, Al and Fe concentration lower than 10 g/L was negligibly small. The uranium measurement precision is better than 0.5%, and the instrument stability is good. Some samples in bench test of uranium recovery were determined. The results are satisfactory. (authors)

  12. Theoretical approaches to x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Rehr, J. J.; Albers, R. C.

    2000-01-01

    Dramatic advances in the understanding of x-ray absorption fine structure (XAFS) have been made over the past few decades, which have led ultimately to a highly quantitative theory. This review covers these developments from a unified multiple-scattering viewpoint. The authors focus on extended x-ray absorption fine structure (EXAFS) well above an x-ray edge, and, to a lesser extent, on x-ray absorption near-edge structure (XANES) closer to an edge. The discussion includes both formal considerations, derived from a many-electron formulation, and practical computational methods based on independent-electron models, with many-body effects lumped into various inelastic losses and energy shifts. The main conceptual issues in XAFS theory are identified and their relative importance is assessed; these include the convergence of the multiple-scattering expansion, curved-wave effects, the scattering potential, inelastic losses, self-energy shifts, and vibrations and structural disorder. The advantages and limitations of current computational approaches are addressed, with particular regard to quantitative experimental comparisons. (c) 2000 The American Physical Society

  13. Blue shift of the plasma edge of a ferromagnetic semimetal

    International Nuclear Information System (INIS)

    Wachter, P.; Bommeli, F.; Degiorgi, L.; Burlet, P.; Bourdarot, F.

    1998-01-01

    Full text: In general rare earth pnictides are semimetals and antiferromagnets. Only some nitrides are quoted as ferri or ferromagnetic. However, it has been shown when prepared stoichiometrically and in single crystalline form the free carrier concentration is only in the percent per cation range, thus they are typical low carrier systems. Under these conditions the nitrides are all canted antiferromagnets and metamagnets, i.e. they show Abstract only. The full magnetic moment only with an applied magnetic field. However, when prepared as single crystals but with excess of the rare earths they become spontaneously ferromagnets due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in addition to the superexchange mechanisms. On such ferromagnetic compositions of TbN and GdN and also in EuB 6 a new magneto-optic effect has been discovered, a spontaneous blue shift of the plasma edge upon magnetic order. The plasma edge is measured with optical reflectivity and it depends on the free carrier concentration. In other words the free carrier concentration increases upon ferromagnetic order. This effect can be understood with the spontaneous exchange splitting of mainly the 5d conduction band, lowering the bottom of the spin up 5d band, thus increasing the indirect overlap with the valence p band of the anions and thus enhancing the carrier concentration. This blue shift of the plasma edge follows a spin correlation function. An external magnetic field applied near TC enhances the blue shift since the magnetization is not yet saturated. For T→0 a magnetic field has no effect since the magnetization is spontaneously saturated

  14. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    Science.gov (United States)

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  15. Nuclear safeguards applications of energy-dispersive absorption edge densitometry

    International Nuclear Information System (INIS)

    Russo, P.A.; Hsue, S.T.; Langner, D.G.; Sprinkle, J.K. Jr.

    1980-01-01

    The principles and techniques of absorption edge densitometry in the energy-dispersive mode are summarized as they apply to the nondestructive assay of special nuclear materials. Five existing field instruments, designed for special nuclear materials accounting measurements, are described. Results of the testing of these instruments as well as recent laboratory results are used to define the capabilities of the technique for special nuclear materials accounting. Possibilities for future applications are reviewed. 14 figures

  16. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    International Nuclear Information System (INIS)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A; Martinez-Criado, G; Salome, M; Susini, J; Olguin, D; Dhar, S

    2009-01-01

    By means of x-ray absorption near-edge structure (XANES) several Ga 1-x Mn x N (0.03 2 ↑ band localized in the gap region, and the corresponding anti-bonding state t 2 ↓, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  17. X-ray absorption near-edge spectroscopy of plutonium solid species

    International Nuclear Information System (INIS)

    Kropf, A. J.

    1998-01-01

    We present XANES at the L III edge for four plutonium solid phases: Pu(III)F 3 , Pu(IV)O 2 , NaPu(V)O 2 CO 3 , and Ba 3 Pu(VI)O 6 . These correspond to the four important oxidation states in the process chemistry and environmental chemistry of plutonium. By a fitting method that uses an arc tangent function and gaussian curves, it was possible to reproducibly determine the edge energy and distinguish among the four oxidation states. These data demonstrate a 1.85 ± 0.20 eV shift per oxidation state

  18. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    Science.gov (United States)

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  19. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  20. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  1. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    Science.gov (United States)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  2. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Nonlinear refraction at the absorption edge in InAs.

    Science.gov (United States)

    Poole, C D; Garmire, E

    1984-08-01

    The results of measurements of nonlinear refraction at the absorption edge in InAs between 68 and 90 K taken with an HF laser are compared with those of a band-gap resonant model in which the contribution of the light-hole band is included and found to account for more than 40% of the observed nonlinear refraction. A generalized expression for the nonlinear index is derived by using the complete Fermi-Dirac distribution function. Good agreement between theory and experiment is obtained, with no free parameters.

  4. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  5. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    International Nuclear Information System (INIS)

    Hannukainen, A; Hyvönen, N; Majander, H; Harhanen, L

    2016-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged object is composed of an approximately homogeneous background with clearly distinguishable embedded inhomogeneities. An algorithm for finding the maximum a posteriori estimate for the absorption and diffusion coefficients is introduced assuming an edge-preferring prior and an additive Gaussian measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments with simulated data. (paper)

  6. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new term 'Jzeff' derived from measured total attenuation coefficients of photons near the absorption edges of some compounds

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to determine the effect of XAFS (X-ray absorption fine structure) on J zeff , we have measured μ/ρ values of compounds, which are determined by the mixture rule or the independent atomic model. Also, we want to obtain both XAFS effect and non-applicability or applicability of mixture rule. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near the absorption edge and the effective atomic number is affected by near the absorption edge. The results obtained have been compared with theoretical values. Also, the objective of this study is to show that there is a term 'J zeff ' between effective atomic numbers and absorption jump factor.

  8. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Science.gov (United States)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  9. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  10. Debris of potassium–magnesium silicate glass generated by femtosecond laser-induced ablation in air: An analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy

    International Nuclear Information System (INIS)

    Grehn, M.; Seuthe, T.; Reinhardt, F.; Höfner, M.; Griga, N.; Eberstein, M.; Bonse, J.

    2014-01-01

    The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium K-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (μ-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process.

  11. Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage.

    Science.gov (United States)

    Gray, Victor; Lennartson, Anders; Ratanalert, Phasin; Börjesson, Karl; Moth-Poulsen, Kasper

    2014-05-25

    Red-shifting the absorption of norbornadienes (NBDs), into the visible region, enables the photo-isomerization of NBDs to quadricyclanes (QCs) to be driven by sunlight. This is necessary in order to utilize the NBD-QC system for molecular solar thermal (MOST) energy storage. Reported here is a study on five diaryl-substituted norbornadienes. The introduced aryl-groups induce a significant red-shift of the UV/vis absorption spectrum of the norbornadienes, and device experiments using a solar-simulator set-up demonstrate the potential use of these compounds for MOST energy storage.

  12. Sulfur K-edge absorption spectroscopy on selected biological systems

    International Nuclear Information System (INIS)

    Lichtenberg, Henning

    2008-07-01

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H 2 S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  13. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    Science.gov (United States)

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  14. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Kabir, Humayun [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Rahman, M. Mahbubur, E-mail: M.Rahman@Murdoch.edu.au [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia); Hasan, Kamrul [Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates); Bashar, Muhammad Shahriar; Rahman, Mashudur [Institute of Fuel and Research Development, Bangladesh Council for Scientific and Industrial Research, Dhanmondi, Dhaka (Bangladesh); Gafur, Md. Abdul [Pilot Plant and Process Development Center, Bangladesh Council for Scientific and Industrial Research, Dhanmondi, Dhaka (Bangladesh); Islam, Shariful [Department of Physics, Comilla University, Comilla (Bangladesh); Amri, Amun [Department of Chemical Engineering, Universitas Riau, Pekanbaru (Indonesia); Jiang, Zhong-Tao [Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia); Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z. [School of Engineering & Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2017-01-15

    Highlights: • Cd-Zn sulphide films synthesized via chemical bath deposition technique. • Nanocrystalline phase of Cd-Zn sulphide films were seen in XRD studies. • Nanocrystalline structures of the films were also confirmed by the SEM. • The band gap of these films is a combination of composition and size. • E{sub U} and σ studies ascribed the shrinkage of absorption edges around the optical band-gaps. - Abstract: In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV–vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.

  15. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A [Materials Science Institute, University of Valencia, PO Box 22085, E46071 Valencia (Spain); Martinez-Criado, G; Salome, M; Susini, J [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble (France); Olguin, D [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D F (Mexico); Dhar, S [Experimentalphysik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany)

    2009-07-22

    By means of x-ray absorption near-edge structure (XANES) several Ga{sub 1-x}Mn{sub x}N (0.03edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding t{sub 2}arrow up band localized in the gap region, and the corresponding anti-bonding state t{sub 2}arrow down, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  16. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.

    Science.gov (United States)

    Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George

    2002-09-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  17. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect

    International Nuclear Information System (INIS)

    Napolitano, Mary E.; Trueblood, Jon H.; Hertel, Nolan E.; David, George

    2002-01-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within ±1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  18. Influence of two-photon absorption on soliton self-frequency shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Agger, Christian; Bang, Ole

    2012-01-01

    In this paper we develop an analytical model for the soliton self-frequency shift, which includes second- and thirdorder dispersion, self-steepening, the full Raman term, and, for the first time to our best knowledge, the effect of two-photon absorption (TPA). We show that TPA can have a signific...

  19. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  20. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    International Nuclear Information System (INIS)

    Zhao, W.; Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y.; Zhou, D.W.; Shi, N.; Marcelli, A.; Niu, L.W.; Teng, M.K.; Gong, W.M.; Benfatto, M.; Wu, Z.Y.

    2007-01-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations

  1. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    International Nuclear Information System (INIS)

    Khatri, Sunil; Kekre, Pravin A; Mishra, Ashutosh

    2016-01-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically. (paper)

  2. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  3. Electric field influence on exciton absorption of Er doped and undoped InSe single crystals

    International Nuclear Information System (INIS)

    Guerbulak, B; Kundakci, M; Ates, A; Yildirim, M

    2007-01-01

    Undoped InSe and Er doped InSe (InSe:Er) single crystals were grown by using the Stockbarger method. Ingots had no cracks and voids on the surface. The absorption measurements were carried out in InSe and InSe:Er samples for U=0 and U=30 V in the temperature range 10-320 K with a step of 10 K. Electric field effects on excitons are observed in InSe and InSe:Er single crystals. The absorption edge shifted towards longer wavelengths and decreased intensity in absorption spectra under an electric field E≅5.9 kV cm -1 . The applied electric field caused a shifting and a decreasing of intensity in the absorption spectra. The shifting of the absorption edge can be explained on the basis of the Franz-Keldysh effect (FKE) or thermal heating of the sample under the electric field. At 10 and 320 K, the first exciton energies for InSe were calculated as 1.336 and 1.291 eV for zero voltage and 1.331 and 1.280 eV for electric field and InSe:Er as 1.329 and 1.251 eV for zero voltage and 1.318 and 1.248 eV for electric field, respectively

  4. Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films

    Directory of Open Access Journals (Sweden)

    Emerson Aparecido Floriano

    2010-12-01

    Full Text Available The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110 and (101 surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110 and (101 surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101 surface, which presents direct bandgap transition.

  5. Sulfur K-edge X-ray absorption spectroscopy as an experimental probe for S-nitroso proteins

    International Nuclear Information System (INIS)

    Szilagyi, Robert K.; Schwab, David E.

    2005-01-01

    X-ray absorption spectroscopy at the sulfur K-edge (2.4-2.6 keV) provides a sensitive and specific technique to identify S-nitroso compounds, which have significance in nitric oxide-based cell signaling. Unique spectral features clearly distinguish the S-nitroso-form of a cysteine residue from the sulfhydryl-form or from a methionine thioether. Comparison of the sulfur K-edge spectra of thiolate, thiol, thioether, and S-nitroso thiolate compounds indicates high sensitivity of energy positions and intensities of XAS pre-edge features as determined by the electronic environment of the sulfur absorber. A new experimental setup is being developed for reaching the in vivo concentration range of S-nitroso thiol levels in biological samples

  6. Genesis of Co/SiO2 catalysts : XAS study at the cobalt L-III,L- II absorption edges

    NARCIS (Netherlands)

    Bazin, D.; Kovacs, I.; Guczi, L.; Parent, P.; Laffon, C.; De Groot, F.; Ducreux, O.; Lynch, J.

    2000-01-01

    Silica-supported cobalt catalysts have been investigated by soft X-ray absorption techniques. Soft X-ray absorption spectra were collected at the Co LII,III edge during in situ reduction of calcined samples in a stream of hydrogen in the temperature range between 300 and 650°C. Using reference

  7. X-ray reflectivity of cobalt and titanium in the vicinity of the Lsub(2,3) absorption edges

    International Nuclear Information System (INIS)

    Bremer, J.; Kaihola, L.; Keski-Kuha, R.

    1980-01-01

    X-ray reflectivity across cobalt and titanium Lsub(2,3) absorption edges was measured as a function of energy by means of continuous radiation from a tungsten anode in a grating spectrometer. The real and imaginary parts of the refractive index were obtained from the absorption curves and an exact Kramers-Kronig analysis. A measured fine structure in the reflected intensities was interpreted as an effect of white lines in the absorption spectra. The x-ray intensity was calculated as a function of energy by means of the Fresnel formula. (author)

  8. The dispersion of the refractive index of semiconductors at the edge of their intrinsic absorption

    International Nuclear Information System (INIS)

    Kudykina, T.A.; Lisitsa, M.P.

    1986-01-01

    The authors discuss the frequency dependence of the refractive index of various semiconductors near the edge of their intrinsic absorption in both theory and experiment. Beginning with random phase approximation, equations are presented which include all possible excitations and result in values for the width of the forbidden energy gap, the oscillator strengths, and spectral functions for the absorption coefficients. Data are presented for the following materials: CdS, CdSe, CdTe, GaSb, InP, GaAs, ZnTe, PbTe, InAs, InSb, and ZnSe

  9. White line structure in the x-ray Lsub(III) absorption edge of holmium

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The white line at the Ho Lsub(III) absorption edge has been recorded in Ho metal, Ho 2 O 3 and HoCl 3 . The white line structure in Ho 2 O 3 has been analysed by regarding it as due to the transition into bound states of the Lsub(III) excited ion. The extended fine structure has been used to obtain information on the bond lengths in the compounds. (author)

  10. Electronic Structure from Iron L-edge Spectroscopy : An Example of Spin Transition Evidenced by Soft X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Cartier dit Moulin, Ch.; Flank, A.M.; Rudolf, P.; Chen, C.T.

    1993-01-01

    Soft X-ray Absorption Spectroscopy at the transition metal L2,3 edges provides information about the 3d unoccupied states by dipole allowed transitions. We have recorded iron L2,3 edges in order to follow the reversible thermal spin interconversion (S=2 S=0) of the Fe(II)(o-phenantroline)2(NCS)2.

  11. Study of non-validity of mixture rule near K-absorption edges by X-ray spectrometric technique

    International Nuclear Information System (INIS)

    Sharanabasappa; Chitralekha, A.; Kerur, B.R.; Anilkumar, S.

    2012-01-01

    X-ray spectrometric technique has been described to determine the X-ray mass attenuation coefficient, μ/ρ, of X-rays employing HPGe X-ray detector and radioactive sources. The photon intensity is measured by gating the channel of the spectrometer at FWHM/photo peak. Using the technique the 'best value' values of μ/ρ were obtained for those thicknesses which lie in the transmission (T) range 0.5 ≥ T ≥ 0.02. Total attenuation cross sections for other elements and lead compounds were measured at photon energies from 17 to 88 keV to study the Bragg's additivity law near the absorption edge of the lead. The measured values of mass attenuation coefficient values are compared with theoretical values obtained using Winxcom (programme). This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 17-23%. (author)

  12. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  13. Anomalous x-ray attenuation coefficients around the absorption edges using Mn Ksub(α) and Cu Ksub(α) x-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1994-01-01

    The x-ray attenuation coefficients for three elements and for eight compounds are determined, adopting the method developed by employing a proportional counter, with a view to study the effect of fine structure on the mass attenuation coefficient values using Mn K α and Cu K α x-rays derived from K x-ray emitters, 55 Fe and 65 Zn radioactive sources, by a differential absorption technique. It is experimentally established that a small difference in energy between K α1 and K α2 (11 eV in the case of Mn K α and 24 eV in the case of the Cu K α x-ray) is inconsequential by comparing the measured and theoretical values of μ/ρ for standard elements, aluminium, copper and tantalum. The effect of fine structure on μ/ρ values is studied using the compounds containing one element with its absorption edge close to the incident photon energy. Results obtained in the present investigation show the nonvalidity of the mixture rule above the edge and also below the edge, ranging from about 600 eV below the edge to about 1500 eV about the edge. The contribution of resonance Raman scattering to the attenuation coefficient and indications to the presence of pre-edge structure similar to EXAFS are discussed. (author)

  14. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    Science.gov (United States)

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  15. Pressure and solvent shifts of charge transfer absorption band of iodine complexes

    International Nuclear Information System (INIS)

    Sawamura, Seiji; Taniguchi, Yoshihiro; Suzuki, Keizo

    1979-01-01

    Absorption spectra of the CT band of I 2 complexes were observed in several nonpolar solvents at 1 bar, and in heptane up to 4400 bar. All solvent shifts were red with an increase in (n 2 - 1)/(2n 2 + 1), the refractive index (n) function of solvents, consistent with the solvent shift theory. On the other hand pressure caused a variety of shifts, that is, red shifts in benzene-, toluene-, and mesitylene-I 2 complexes, an inversion shift from red to blue in HMB-I 2 complex, and blue shifts in Et 3 N-, n-Pr 3 N-, and n-Bu 3 N-I 2 complexes, though increase in pressure invariably raises the (n 2 - 1)/(2n 2 + 1) value of solvent. The pressure shifts of I 2 complexes seem to be interpreted by a sum of two effects. One is the increased polarity of the solvent, which causes a red shift. The other is the decrease in the bond distance between a donor and an acceptor, which contributes to a blue shift in a strong CT complex and to a red shift in a week one. The pressure and solvent shifts of I 2 complexes were compared with those of π-donor-TCNE complexes. (author)

  16. Infrared absorption in pseudobinary InSb1-xBix compounds

    International Nuclear Information System (INIS)

    El-Den, M.B.; Mina, N.K.; Samy, A.M.; El-Mously, M.K.

    1988-08-01

    The group III-V pseudobinary InSb 1-x Bi x compounds, with x = 0, 0.2 and 0.04, were prepared in thin ribbon forms (30 μ) by splat cooling in air. The optical absorption α(λ) was measured in the wavelength range from 4 to 15 μm. The optical energy gap E opt. , was calculated for the three compounds. A shift of the absorption edge towards longer wavelengths with increasing Bi content was observed. (author). 7 refs, 4 figs

  17. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Wassaf, Joseph; Khoury, Antonio; Simon, Marc

    2013-01-01

    Highlights: ► We measured the X-ray absorption spectrum of C 2 H 3 Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C 2 H 3 Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account

  18. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: elie.kawerk@etu.upmc.fr [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Carniato, Stéphane [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Iwayama, Hiroshi; Shigemasa, Eiji [Ultraviolet Synchrotron Orbital Radiation Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Piancastelli, Maria Novella [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Wassaf, Joseph; Khoury, Antonio [Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Simon, Marc [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2013-02-15

    Highlights: ► We measured the X-ray absorption spectrum of C{sub 2}H{sub 3}Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C{sub 2}H{sub 3}Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account.

  19. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    Science.gov (United States)

    Pérez-Caro, M.; Rodríguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>1019 cm-3), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  20. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    International Nuclear Information System (INIS)

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-01-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>10 19 cm -3 ), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  1. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  2. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    Science.gov (United States)

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  3. Calculations of Energy Shift of the Conduction Band-Edge in Doped and Compensated GaP

    OpenAIRE

    Endo, Tamio; Itoh, Nobuhiko; Okino, Yasushi; 遠藤, 民生; 伊藤, 伸彦; 沖野, 祥[他

    1989-01-01

    The energy shifts of the parabolic conduction band-edge at 77 and 300K with doping the Te-donor in GaP were calculated in the nondegenerate system for the two cases ; unintentional and intentional compensations, using the two models proposed by Hwang abd by Mahan. The total parabolic shift △EM(△EH), and the contributions of the exchangeinteraction △μex(△Ee) and of the Coulomb interaction △μed(△Ec) calculated by the Mahan's model (Hwang's model), increase with increasing donor concentration in...

  4. Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory

    International Nuclear Information System (INIS)

    Bolognesi, P.; O'Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K. C.; Zhang, W.; Carravetta, V.

    2010-01-01

    The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.

  5. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water

    International Nuclear Information System (INIS)

    Hetenyi, Balazs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-01-01

    We calculate the near-edge x-ray-absorption fine structure of H 2 O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken

  6. White lines at the Lsub(I), Lsub(II), and Lsub(III) absorption edges of some rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K B; Sharma, B K; Jain, D C [Rajasthan Univ., Jaipur (India). Dept. of Physics; Sinha, A I.P. [Banasthali Vidyapeeth (India). Dept. of Chemistry

    1980-11-01

    The paper reports the appearance of white lines (WLS) at all the three L-absorption edges of the sulfur coordinated thiosalicylic acid compounds of Sm, Tb, and Dy. The profiles of the observed WLS are presented and discussed.

  7. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  8. Studies of selected transuranium and lanthanide tri-iodides under pressure using absorption spectrophotometry

    International Nuclear Information System (INIS)

    Haire, R.G.; Young, J.P.; Peterson, J.R.; Tennessee Univ., Knoxville; Benedict, U.

    1987-01-01

    The anhydrous tri-iodides of plutonium, americium and curium under pressure have been investigated using absorption spectrophotometry. These initial studies on plutonium and curium tri-iodides together with the published data for americium tri-iodide show that the rhombohedral form of these compounds (BiI 3 -type structure) can be converted to the orthorhombic form (PuBr 3 -type structure) by applying pressure at room temperature. Absorption spectrophotometry can often differentiate between two crystallographic forms of a material and has been used in the present high-pressure studies to monitor the effects of pressure on the tri-iodides. A complication in these studies of the tri-iodides is a significant shift of their absorption edges with pressure from the near UV to the visible spectral region. With curium tri-iodide this shift causes interference with the major f-f absorption peaks and precludes identification by absorption spectrophotometry of the high pressure phase of CmI 3 . (orig.)

  9. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Science.gov (United States)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  10. Luminescence properties of KCl:Ag{sup -} crystals excited near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hirai, Takeshi [Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu, Shiga 525-8577 (Japan)

    2012-02-15

    Luminescence properties of KCl single crystals doped with Ag{sup -} centers have been investigated under various excitation energies around the fundamental absorption edge at low temperatures. Under the excitation at 6.89 eV, which is lower than the intrinsic exciton energy by 0.87 eV, the A Prime luminescence band due to the intraionic transition in the Ag{sup -} ion is dominantly observed at 2.91 eV. On the other hand, the excitation at 6.66 eV induces a broad luminescence band at 2.60 eV in addition to the A Prime luminescence band. From the comparison with the localized excitons in KCl:I crystals, the 2.60 eV luminescence band is attributed to the two-center type localized exciton related with the Ag{sup -} ion. The adiabatic potential energy surfaces of the excited states in the Ag{sup -} center and the localized exciton in KCl:Ag{sup -} are discussed. - Highlights: Black-Right-Pointing-Pointer We study the luminescence properties of KCl single crystals doped with Ag{sup -} ions. Black-Right-Pointing-Pointer The excitation around the absorption edge induces a broad luminescence at 2.60 eV. Black-Right-Pointing-Pointer The 2.60 eV luminescence is attributed to the exciton localized at the Ag{sup -} ion. Black-Right-Pointing-Pointer The localized exciton has the two-center type configuration of the relaxed exciton.

  11. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  12. Constraining Primordial Black Holes with the EDGES 21-cm Absorption Signal arXiv

    CERN Document Server

    Hektor, Andi; Marzola, Luca; Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi

    The EDGES experiment has recently measured an anomalous global 21-cm spectrum due to hydrogen absorptions at redshifts of about $z\\sim 17$. Model independently, the unusually low temperature of baryons probed by this observable sets strong constraints on any physical process that transfers energy into the baryonic environment at such redshifts. Here we make use of the 21-cm spectrum to derive bounds on the energy injection due to a possible population of ${\\cal O}(1-100) M_\\odot$ primordial black holes, which induce a wide spectrum of radiation during the accretion of the surrounding gas. After calculating the total radiative intensity of a primordial black hole population, we estimate the amount of heat and ionisations produced in the baryonic gas and compute the resulting thermal history of the Universe with a modified version of RECFAST code. Finally, by imposing that the temperature of the gas at $z\\sim 17$ does not exceed the indications of EDGES, we constrain the possible abundance of primordial black h...

  13. Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Botti, Silvana, E-mail: silvana.botti@univ-lyon1.fr [Institut Lumière Matière and ETSF, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Schnohr, Claudia S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lauermann, Iver [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Centro de Física de Materiales CSIC-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastián (Spain); Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Johnson, Benjamin, E-mail: benjamin.johnson@alumni.tu-berlin.de [Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-09-07

    Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.

  14. Influence of defects on the absorption edge of InN thin films: The band gap value

    Science.gov (United States)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  15. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    International Nuclear Information System (INIS)

    Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources

  16. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    CERN Document Server

    Tamura, M; Aoki, Y; Ikeda, J; Sato, K; Fujita, F; Homma, A; Sawamura, T; Narita, M

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.

  17. Structural study of glasses in the binary system NaPO{sub 3}-MoO{sub 3} by X-ray absorption spectroscopy at the Mo K and L{sub 3} edges

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Gael, E-mail: gael@unifal-mg.edu.br [Department of Science and Technology, UNIFAL-MG, Rua Corumba 72, CEP 37701-100, Pocos de Caldas, MG (Brazil); Cassanjes, Fabia C. [Department of Science and Technology, UNIFAL-MG, Rua Corumba 72, CEP 37701-100, Pocos de Caldas, MG (Brazil)

    2010-04-15

    Glasses were prepared in the binary system (100 - x)NaPO{sub 3}-xMoO{sub 3} with x varying from 0 to 50 mol%. An increase in the MoO{sub 3} concentration promotes a strong absorption in the visible and near infrared attributed to Mo reduction during glass synthesis. X-ray absorption measurements were performed at the Mo K and L{sub 3} edges to investigate both the coordination number and oxidation state of Mo in these glasses. The evolution of the pre-peak observed at the K edge suggests that Mo atoms are six-fold coordinated in these glasses. This hypothesis was confirmed by data obtained at the Mo-L{sub 3}-absorption edge. Since the final electronic states at the L{sub 3}-absorption edge are mostly orbitals of d-character which are splitted by the ligand field, the amplitude of the d-orbital splitting could be estimated and the related coordination number of Mo obtained. Finally, the oxidation state of Mo could be related with a change of the white line intensity at the Mo-L{sub 3} edge. These results confirm that the optical absorption in the visible is due to Mo reduction and that transparent samples prepared by slow cooling contain less reduced Mo species.

  18. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  19. Study of the L2,3 edges of 3d transition metals by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akguel, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luening, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band

  20. Study of the L2,3 Edges of 3d Transition Metals By X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Akgul, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luning, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band.

  1. Shifted knife-edge aperture digital in-line holography for fluid velocimetry.

    Science.gov (United States)

    Palero, Virginia; Lobera, Julia; Andrés, Nieves; Arroyo, M Pilar

    2014-06-01

    We describe a digital holography technique that, with the simplicity of an in-line configuration, produces holograms where the real and virtual images are completely separated, as in an off-axis configuration. An in-line setup, in which the object is imaged near the sensor, is modified by placing a shifted knife-edge aperture that blocks half the frequency spectrum at the focal plane of the imaging lens. This simple modification of the in-line holographic configuration allows discriminating the virtual and real images. As a fluid velocimetry technique, the use of this aperture removes the minimum defocusing distance requisite and reduces the out-of-plane velocity measurement errors of classical in-line holography. Results with different test objects are shown.

  2. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  3. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    Science.gov (United States)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  4. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, MS-6, 60 Garden Street, Cambridge, MA 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bautista, M. A.; Gorczyca, T. W., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@head.cfa.harvard.edu, E-mail: manuel.bautista@wmich.edu, E-mail: thomas.gorczyca@wmich.edu, E-mail: timothy.r.kallman@nasa.gov [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  5. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    Science.gov (United States)

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  6. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    International Nuclear Information System (INIS)

    Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.

    2008-01-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)

  7. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  8. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    Energy Technology Data Exchange (ETDEWEB)

    Grush, M.M.; Chen, J.; George, S.J. [Univ. of California, Davis, CA (United States)] [and others

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compound spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.

  9. Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy

    International Nuclear Information System (INIS)

    Hamad, K.S.; Hamad, K.S.; Roth, R.; Roth, R.; Rockenberger, J.; Rockenberger, J.; Alivisatos, A.P.; Alivisatos, A.P.; Buuren, T. van

    1999-01-01

    We report the observation of size dependent structural disorder by x-ray absorption near-edge spectroscopy (XANES) in InAs and CdSe nanocrystals 17 - 80 Angstrom in diameter. XANES of the In and Cd M 4,5 edges yields features that are sharp for the bulk solid but broaden considerably as the size of the particle decreases. FEFF7 multiple-scattering simulations reproduce the size dependent broadening of the spectra if a bulklike surface reconstruction of a spherical nanocrystal model is included. This illustrates that XANES is sensitive to the structure of the entire nanocrystal including the surface. copyright 1999 The American Physical Society

  10. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  11. Hopping absorption edge in silicon inversion layers

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1983-09-01

    The low frequency gap observed in the absorption spectrum of silicon inversion layers is related to the AC variable range hopping. The frequency dependence of the absorption coefficient is calculated. (author)

  12. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  13. Defects and the optical absorption in nanocrystalline ZnO

    International Nuclear Information System (INIS)

    Dutta, Sreetama; Chattopadhyay, Sanjay; Sutradhar, Manas; Sarkar, Anindya; Chakrabarti, Mahuya; Sanyal, Dirtha; Jana, Debnarayan

    2007-01-01

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO

  14. Defects and the optical absorption in nanocrystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sreetama [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chattopadhyay, Sanjay [Department of Physics, Taki Government College, Taki 743429 (India); Sutradhar, Manas [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sarkar, Anindya [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Chakrabarti, Mahuya [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Jana, Debnarayan [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India)

    2007-06-13

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO.

  15. Investigation into short-range order, electric conductivity and optical absorption edge of indium selenide thin amorphous films

    International Nuclear Information System (INIS)

    Bilyj, M.N.; Didyk, G.V.; Stetsiv, Ya.I.; Yurechko, R.Ya.

    1980-01-01

    Thin amorphous films of InSe have been obtained by the method of discrete vacuum evaporation of about 10 -2 Pa. The short-range order is investigated according to the radial distribution curves. The temperature and film thickness are shown to affect the character of conductivity. The width of the forbidden band determined by the fundamental absorption edge is found to depend on the time of film annealing

  16. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  17. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  18. In situ time-resolved X-ray near-edge absorption spectroscopy of selenite reduction by siderite

    International Nuclear Information System (INIS)

    Badaut, V.; Schlegel, M.L.; Descostes, M.; Moutiers, G.

    2012-01-01

    The reduction oxidation-reaction between aqueous selenite (SeO 3 2- ) and siderite (FeCO 3 (s)) was monitored by in situ, time-resolved X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K edge in a controlled electrochemical environment. Spectral evolutions showed that more than 60% of selenite was reduced at the siderite surface after 20 h of experiment, at which time the reaction was still incomplete. Fitting of XANES spectra by linear combination of reference spectra showed that selenite reaction with siderite is essentially a two-step process, selenite ions being immobilized on siderite surface prior to their reduction. A kinetic model of the reduction step is proposed, allowing to identify the specific contribution of surface reduction. These results have strong implications for the retention of selenite by corrosion products in nuclear waste repositories and in a larger extent for the fate of selenium in the environment. (authors)

  19. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  20. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    Science.gov (United States)

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. © 2015 Wiley Periodicals, Inc.

  1. Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Kim, Myung Soo; Cho, Sung Ho

    2000-01-01

    The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0 .deg. ,45 .deg. ,90 .deg. ,and 135 .deg. . Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe

  2. Active control of an edge-mode-based plasmon-induced absorption sensor.

    Science.gov (United States)

    Li, Yong; Su, Yi; Lin, Qi; Zhai, Xiang; Wang, Ling-Ling

    2018-04-01

    We investigate the formation and evolution of plasmon-induced absorption (PIA) effect in a three-dimensional graphene waveguide structure. The PIA window is formed by near-field coupling of the graphene edge mode, the extremely destructive interference between the radiative mode and sub-radiative mode of graphene nanoribbons. The resonance intensity has a significant dependence on the coupling distance between the graphene nanoribbons. At the same time, it is particularly sensitive to the refractive index of the environment, which is promising for sensing devices. In addition, the resonant wavelength can be actively controlled by changing the Fermi energy of graphene. Moreover, it can be seen that the group time delay of the PIA window reaches -0.28   ps , which is a good candidate for ultrafast light application. Finally, additional graphene nanoribbons can also form a double-channel PIA window. Our work may provide an excellent platform for controlling the optical transmission of highly integrated plasmonic components.

  3. K-edge x-ray-absorption spectroscopy of laser-generated Kr+ and Kr2+

    International Nuclear Information System (INIS)

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Kraessig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-01-01

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr + and Kr 2+ produced by laser ionization of Kr. Prominent 1s→4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr + 1s→4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr + 4p 3/2 and 4p 1/2 quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling

  4. Experimental investigation on electron cyclotron absorption at down-shifted frequency in the PLT tokamak

    International Nuclear Information System (INIS)

    Mazzucato, E.; Fidone, I.; Cavallo, A.; von Goeler, S.; Hsuan, H.

    1986-05-01

    The absorption of 60 GHz electron cyclotron waves, with the extraordinary mode and an oblique angle of propagation, has been investigated in the PLT tokamak in the regime of down-shifted frequencies. The production of energetic electrons, with energies of up to 300 to 400 keV, peaks at values of toroidal field (approx. =29 kG) for which the wave frequency is significantly smaller than the electron cyclotron frequency in the whole plasma region. The observations are consistent with the predictions of the relativistic theory of electron cyclotron damping at down-shifted frequency. Existing rf sources make this process a viable method for assisting the current ramp-up, and for heating the plasma of present large tokamaks

  5. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  6. Using Synchrotron-based X-ray Absorption Spectrometry to Identify the Arsenic Chemical Forms in Mine Waste Materials

    International Nuclear Information System (INIS)

    Matanitobua, Vitukawalu P.; Noller, Barry N.; Chiswell, Barry; Ng, Jack C.; Bruce, Scott L.; Huang, Daphne; Riley, Mark; Harris, Hugh H.

    2007-01-01

    X-ray Absorption Near Edge Spectroscopy (XANES) gives arsenic form directly in the solid phase and has lower detection limits than extraction techniques. An important and common application of XANES is to use the shift of the edge position to determine the valence state. XANES speciation analysis is based on fitting linear combinations of known spectra from model compounds to determine the ratios of valence states and/or phases present. As(V)/As(III) ratios were determined for various Australian mine waste samples and dispersed mine waste samples from river/creek sediments in Vatukoula, Fiji

  7. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  8. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  9. Surface structure of alpha-Fe sub 2 O sub 3 nanocrystal observed by O K-edge X-ray absorption spectroscopy

    CERN Document Server

    Zhang, J; Ibrahim, K; Abbas, M I; Ju, X

    2003-01-01

    X-ray absorption near edge structure (XANES) spectra is used as a probe of surface structure of alpha-Fe sub 2 O sub 3 nanocrystal, prepared by sol-gel method. We present O K-edge XANES of alpha-Fe sub 2 O sub 3 in nanocrystal and bulk by total electron yield at the photoemission station of Beijing Synchrotron Radiation Facility. The spectrum of alpha-Fe sub 2 O sub 3 shows a splitting of the pre-edge structure, which is interpreted as two subsets of Fe 3d t sub 2 sub g and e sub g orbitals in oxygen octahedral (O sub h) crystal field, and is also sensitive to long-range order effects. However, no distinguishable splitting of the pre-edge peak of nanocrystal alpha-Fe sub 2 O sub 3 is observed. This suggests that there exists the distorted octahedral coordination around Fe sites and also the long-range disorder due to the surface as compared with bulk alpha-Fe sub 2 O sub 3.

  10. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    International Nuclear Information System (INIS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-01-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  11. Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Gómez-Polo, C.; Larumbe, S.; Monge, M.

    2014-01-01

    Highlights: • N-doped TiO 2 anatase nanoparticles were obtained by sol–gel. • The nanoparticle size, controlled by the N doping, determines lattice parameters. • Correlation between room temperature ferromagnetism and absorption red-shift. • Oxygen vacancies reinforce both phenomena. • Metal transition impurities contribute to the room temperature ferromagnetism. - Abstract: In this work, room-temperature ferromagnetism and the red-shift of the optical absorption is analyzed in nitrogen doped TiO 2 semiconductor nanoparticles. The nanoparticles were synthesized by the sol–gel method using urea as the nitrogen source. Titanium Tetraisopropoxide (TTIP) was employed as the alkoxyde precursor and dissolved in ethanol. The as prepared gels were dried and calcined in air at 300 °C. Additionally, post-annealing treatments under vacuum atmosphere were performed to modify the oxygen stoichiometry of the samples. The anatase lattice parameters, analyzed by means of powder X-ray diffractometry, depend on the nanometer grain size of the nanoparticles (increase and decrease, respectively, of the tetragonal a and c lattice parameters with respect to the bulk values). The diffuse reflectance ultraviolet–visible (UV–Vis) absorbance spectra show a clear red-shift as consequence of the nitrogen and the occurrence of intragap energy levels. The samples display ferromagnetic features at room temperature that are reinforced with the nitrogen content and after the post annealings in vacuum. The results indicate a clear correlation between the room temperature ferromagnetism and the shift of the absorbance spectrum. In both phenomena, oxygen vacancies (either induced by the nitrogen doping or by the post vacuum annealings) play a dominant role. However, we conclude the existence of very low concentration of diluted transition metal impurities that determine the room ferromagnetic response (bound magnetic polaron BMP model). The contraction of the c soft axis of the

  12. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    Science.gov (United States)

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  13. X-ray absorption and emission studies of diamond nanoparticles

    International Nuclear Information System (INIS)

    Van Buuren, T.; Willey, T.; Raty, J.Y.; Galli, G.; Terminello, L.J.; Bostedt, C.

    2004-01-01

    Full text: A new family of carbon nanopaticles produced in detonations, are found to have a core of diamond with a coating fullerene- like carbon. X-ray diffraction and TEM show that the nanodiamond powder is crystalline and approximately 4 nm in diameter. These nano-sized diamonds do not display the characteristic property of other group IV nanoparticles: a strong widening of the energy gap between the conduction and valence bands owing to quantum-confinement effects. For nano-sized diamond with a size distribution of 4 nm, there is no shift of the band energies relative to bulk diamond. Although the C1s core exciton feature clearly observed in the K-edge absorption edge of bulk diamond is shifted and broadening due to increased overlap of the excited electron with the core holein the small particle. Also the depth of the second gap in the nanodiamond spectra is shallower than that of bulk diamond. A feature at lower energy in the X-ray absorption spectra that is not present in the bulk samples is consistent with a fullerene like surface reconstruction. By exposing the diamond nanoparticles to an Argon /Oxygen plasma then annealing in a UHV environment we have obtained a hydrogen free surface. The nanodiamonds processed in this manner show an increase fullerene type contribution in the carbon x-ray absorption pre-edge. High spatial resolution EELS measurements of the empty states of a single nanodiamond particle acquired with a ld emission TEM also show the core of the particle is bulk diamond like where as the surface has a fullerene like structure. Standard density-functional calculations on clusters in which the diamond surface bonds are terminated with hydrogen atoms, show that the bandgap begins to increase above the bulk value only for clusters smaller than 1 nm. Surface hydrogen atoms are found to be about as close as they do in molecular hydrogen and can escape as H 2 , forcing the respective carbon atoms to rearrange. A series of such rearrangements can

  14. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  15. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    International Nuclear Information System (INIS)

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of π* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), π*(CO), and ether C-O-C, σ*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the π*(CO) resonances disappeared while the σ*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the π* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface

  16. The fundamental absorption edge in MnIn{sub 2}Se{sub 4} layer semi-magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail: crincon@ula.ve [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Torrres, T.E. [Laboratorio de Magnetismo, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza 50009, Zaragoza (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza 50009, Zaragoza, Spain. (Spain); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Jiménez-Sandoval, Sergio J.; Mares-Jacinto, E. [CINVESTAV Querétaro, Libramiento Norponiente N° 2000, Frac. Real de Juriquilla, Querétaro, Qro. 76230 (Mexico)

    2015-11-15

    From the study of the optical absorption coefficient and photoluminescence spectra of the layer semi-magnetic semiconductor MnIn{sub 2}Se{sub 4} the nature of its fundamental absorption edge is established. It is found that the lowest-energy-gap of this compound is allowed-indirect between parabolic bands that vary from about 1.55–1.43 eV in the temperature range from 10 K to room temperature. In addition, two allowed direct band-to-band transitions beginning at 1.72 and 1.85 eV at 295 K, and at 1.82 and 1.96 eV at 10 K which are related to optical absorption processes between the uppermost Γ{sub 4}(z) and the middle Γ{sub 5}(x) valence bands and the conduction band respectively, are observed in the high energy range. It is also found that the crystal field splitting parameter (Δ{sub cf}) of MnIn{sub 2}Se{sub 4} is of about 0.15 eV nearly independent of the temperature. At energies around 2.2 eV a photoluminescence band related to internal transitions between d-excited levels of Mn{sup +2} ion to its {sup 6}A{sub 1} ground state is also observed in spectra.

  17. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    Science.gov (United States)

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  18. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    Science.gov (United States)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  19. Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Fahy, S.; Taylor, C.A. II and; Clarke, R.

    1997-01-01

    Experimental and theoretical investigations of the infrared-active, polarization-dependent phonon frequencies of cubic boron nitride films have been performed in light of recent claims that large frequency shifts during initial nucleation are the result of strain caused by highly nonequilibrium growth conditions. We show that the formation of small, separate grains of cubic boron nitride during the initial growth leads to a frequency shift in the infrared-active transverse-optic mode, polarized normal to the substrate, which is opposite in sign and twice the magnitude of the shift for modes polarized parallel to the substrate. In contrast, film strain causes a frequency shift in the mode polarized normal to the substrate, which is much smaller in magnitude than the frequency shift for modes polarized parallel to the substrate. Normal and off-normal incidence absorption measurements, performed at different stages of nucleation and growth, show that large frequency shifts in the transverse-optic-phonon modes during the initial stage of growth are not compatible with the expected effects of strain, but are in large part due to nucleation of small isolated cubic BN grains which coalesce to form a uniform layer. Numerical results from a simple model of island nucleation and growth are in good agreement with experimental results. copyright 1997 The American Physical Society

  20. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  1. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  2. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  3. Temperature dependence of the soft-x-ray emission edges of simple metals

    International Nuclear Information System (INIS)

    Tagle, J.A.; Arakawa, E.T.; Callcott, T.A.

    1980-01-01

    The widths and energy positions of the M/sub 2,3/-emission edge of potassium, K-emission edge of beryllium, and L/sub 2,3/-emission edges of aluminum and magnesium have been measured for temperatures between 80 and 600 0 K. All band edges broaden (ΔGAMMA) and shift in energy (ΔE) with increasing temperatures for these materials. Similar results were reported earlier for the Li K-emission edge and Na L/sub 2,3/ edge. Lattice-relaxation processes and the phonon core-hole interaction are the dominant mechanisms affecting the core-level widths and the experimentally observed edge widths. The edge shifts are found to be proportional to the thermal expansion of the lattice, and are discussed in terms of the electron energy-level shifts which occur as the lattice dilates

  4. Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Polo, C., E-mail: gpolo@unavarra.es [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Larumbe, S. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Monge, M. [Departamento de Química, Universidad de la Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26006 Logroño (Spain)

    2014-11-05

    Highlights: • N-doped TiO{sub 2} anatase nanoparticles were obtained by sol–gel. • The nanoparticle size, controlled by the N doping, determines lattice parameters. • Correlation between room temperature ferromagnetism and absorption red-shift. • Oxygen vacancies reinforce both phenomena. • Metal transition impurities contribute to the room temperature ferromagnetism. - Abstract: In this work, room-temperature ferromagnetism and the red-shift of the optical absorption is analyzed in nitrogen doped TiO{sub 2} semiconductor nanoparticles. The nanoparticles were synthesized by the sol–gel method using urea as the nitrogen source. Titanium Tetraisopropoxide (TTIP) was employed as the alkoxyde precursor and dissolved in ethanol. The as prepared gels were dried and calcined in air at 300 °C. Additionally, post-annealing treatments under vacuum atmosphere were performed to modify the oxygen stoichiometry of the samples. The anatase lattice parameters, analyzed by means of powder X-ray diffractometry, depend on the nanometer grain size of the nanoparticles (increase and decrease, respectively, of the tetragonal a and c lattice parameters with respect to the bulk values). The diffuse reflectance ultraviolet–visible (UV–Vis) absorbance spectra show a clear red-shift as consequence of the nitrogen and the occurrence of intragap energy levels. The samples display ferromagnetic features at room temperature that are reinforced with the nitrogen content and after the post annealings in vacuum. The results indicate a clear correlation between the room temperature ferromagnetism and the shift of the absorbance spectrum. In both phenomena, oxygen vacancies (either induced by the nitrogen doping or by the post vacuum annealings) play a dominant role. However, we conclude the existence of very low concentration of diluted transition metal impurities that determine the room ferromagnetic response (bound magnetic polaron BMP model). The contraction of the c soft axis

  5. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  6. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    Energy Technology Data Exchange (ETDEWEB)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033 (India); Yadav, A. K. [Atomic and molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  7. Mn L2,3-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li2MnO3

    International Nuclear Information System (INIS)

    Kubobuchi, Kei; Mogi, Masato; Imai, Hideto; Ikeno, Hidekazu; Tanaka, Isao; Mizoguchi, Teruyasu

    2014-01-01

    The redox reaction of Mn in Li 2 MnO 3 was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L 2,3 X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L 2,3 XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn 4+ to Mn 5+ but can be explained well by the changes of local atomic structures around Mn 4+ due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li 2 MnO 3

  8. Influence of the core-hole effect on optical properties of magnesium oxide (MgO) near the Mg L-edge region.

    Science.gov (United States)

    Sinha, Mangalika; Modi, Mohammed H; Ghosh, Haranath; Yadav, P K; Gupta, R K

    2018-05-01

    The influence of the core-hole effect on optical properties of magnesium oxide (MgO) is established through experimental determination of optical constants and first-principles density functional theory studies. Optical constants (δ and β) of MgO thin film are measured in the spectral region 40-300 eV using reflectance spectroscopy techniques at the Indus-1 synchrotron radiation source. The obtained optical constants show strong core exciton features near the Mg L-edge region, causing significant mismatch with Henke's tabulated values. On comparing the experimentally obtained optical constants with Henke's tabulated values, an edge shift of ∼3.0 eV is also observed. Distinct evidence of effects of core exciton on optical constants (δ and β) in the near Mg L-edge absorption spectra are confirmed through first-principles simulations.

  9. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    Science.gov (United States)

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  10. Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films

    International Nuclear Information System (INIS)

    Nemes, Coleen T.; Vijapurapu, Divya K.; Petoukhoff, Christopher E.; Cheung, Gary Z.; O’Carroll, Deirdre M.

    2013-01-01

    We experimentally and theoretically characterize back-scattering and extinction of Ag nanoparticle (AgNP) arrays on both Si wafer substrates and optically-thick Ag substrates with and without organic poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction thin film coatings. A strong red-shift in back-scattered light wavelength occurs from AgNP arrays on Si as a function of increasing mean nanoparticle diameter (ranging from 30 to 90 nm). Back-scattering from the AgNP array is notably quenched in the wavelength range of strong P3HT absorption when the organic layer is applied. However, back-scattering is enhanced to a degree relative to the uncoated AgNP array on Si at wavelengths greater than the absorption band edge of P3HT. For comparison, the optical properties of AgNPs on an optically-thick Ag substrate are reported with and without P3HT:PCBM thin film coatings. On the reflective Ag substrates, a significant enhancement (by a factor of 7.5) and red-shift of back-scattered light occurred upon coating of the AgNPs with the P3HT:PCBM layer. Additionally, red-edge extinction was enhanced in the P3HT:PCBM layer with the presence of the AgNPs compared to the planar case. Theoretical electromagnetic simulations were carried out to help validate and explain the scattering and extinction changes observed in experiment. Both increasing nanoparticle size and an increasing degree of contact with the Si substrate (i.e., effective index of the nanoparticle environment) are shown to play a role in increasing back- and forward-scattering intensity and wavelength, and in increasing absorption enhancements in both the organic and Si layers. AgNPs placed at the P3HT:PCBM/Si interface give rise to absorption increases in P3HT of up to 18 %, and only enhance Si absorption at wavelengths longer than the absorption band edge of P3HT (by almost 90 % in the 660–1,200 nm wavelength range). These results provide insight into how metal

  11. Sulfur K-edge absorption spectroscopy on selected biological systems; Schwefel-K-Kanten-Absorptionsspektroskopie an ausgewaehlten biologischen Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, Henning

    2008-07-15

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H{sub 2}S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  12. The radiation effects of aspergillus oryzae spores with soft x-rays near the K shell absorption edges of C, N, O elements from synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Liang; Jiang Shiping; Wan Libiao; Ma Xiaodong; Li Meifang

    2007-01-01

    The dose deposition of different parts of Aspergillus oryzae spores were analyzed with soft X-ray energies near the K-shell absorption edges of C, N, O elements (4.4nm, 3.2nm and 2.3nm), respectively. At the same time, the spores were irradiated with the three wavelengths of soft X-rays on the soft X-ray microscopy from synchrotron radiation at NSRL, and the survivals were compared. The theoretical analyses showed that the deposition doses of different parts of the spore were varying with X-ray energies because of the effects of C, N, O K-shell absorption edges and elemental contents of the different parts of spore. The experimental studies proved three wavelengths of soft X-rays all had high killing abilities. Among these, 2.3nm wavelength X-rays had higher radiation damage to spore than that of 3.2nm, 4.4nm. (authors)

  13. F K-edge soft X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugimura, Tetsuro; Kawai, Jun; Maeda, Kuniko; Fukushima, Akiko; Shin, S.; Motoyama, Muneyuki; Nakajima Tsuyoshi

    2001-01-01

    We measured F X-ray absorption spectra of various fluorine compounds using a synchrotron radiation at KEK-PF. The absorption spectra were measured using X-ray fluorescence yield (XFY) and total electron yield (TEY) methods. Change of the spectral shape has a relation to the metal-fluorine bond distance. By comparing with the experimental spectrum and calculated spectrum, F 2p state density is divined into up and down states. (author)

  14. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  15. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  16. Excited State s-cis Rotamers Produced by Extreme Red Edge Excitation of all-trans-1,4-Diphenyl-1,3-butadiene

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Møller, Søren; Goldbeck, Robert A.

    1993-01-01

    with the wavelength independence observed for the excited singlet-state absorption and fluorescence emission spectra of 1,5-diphenyl-2,3,4,6,7,8- hexahydronaphthalene and for the fluorescence emission spectra of 1,4diphenyl-1,3-cyclopentadiene, s-trans and s-cis structural analogs of DPB, respectively. The spectral...... changes in DPB can be explained in terms of an excitation wavelength-dependent production of s-cis and s-trans rotamer populations in the excited state. The DPB fluorescence emission spectrum was resolved into s-cis and s-trans components. The vibronic structure of the s-cis fluorescence spectrum...... is similar to that of s-trans, but the band origin is red-shifted and there is a slightly larger amplitude on the red edge. The excited-state absorption spectrum of s-cis DPB appears to be red-shifted relative to that of s-trans DPB as well....

  17. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  18. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  19. Intrinsic defect oriented visible region absorption in zinc oxide films

    Science.gov (United States)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  20. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    Science.gov (United States)

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  2. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  3. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  4. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  5. Quantifying the blue shift in the light absorption of small gold nanoparticles

    International Nuclear Information System (INIS)

    Tsekov, Roumen; Georgiev, Peter; Simeonova, Silviya; Balashev, Konstantin

    2017-01-01

    The dependence of the surface plasmons resonance (SPR) frequency on the size of gold nanoparticles (GNPs) is experimentally studied. The measured data for the SPR frequency by UV-Vis spectroscopy and GNPs diameter by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) are collected in the course of classical citrate GNPs synthesis. The relationship between the GNPs size and the blue shift of the light absorption is presented. They are fitted by an equation with a single free parameter, the dielectric permittivity of the surrounding media. Thus, the refractive index of the surrounding media is determined, which characterizes the GNPs surface shell. Key words: Gold nanoparticles (GNPs), Surface plasmon resonance (SPR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM)

  6. Mortality after percutaneous edge-to-edge mitral valve repair: a contemporary review.

    Science.gov (United States)

    Kortlandt, Friso A; de Beenhouwer, Thomas; Swaans, Martin J; Post, Marco C; van der Heyden, Jan A S; Eefting, Frank D; Rensing, Benno J W M

    2016-04-01

    Percutaneous edge-to-edge mitral valve (MV) repair is a relatively new treatment option for mitral regurgitation (MR). After the feasibility and safety having been proved in low-surgical-risk patients, the use of this procedure has shifted more to the treatment of high-risk patients. With the absence of randomized controlled trials (RCT) for this particular subgroup, observational studies try to add evidence to the safety aspect of this procedure. These also provide short- and mid-term mortality figures. Several mortality predictors have been identified, which may help the optimal selection of patients who will benefit most from this technique. In this article we provide an overview of the literature about mortality and its predictors in patients treated with the percutaneous edge-to-edge device.

  7. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  8. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  9. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3.

    Science.gov (United States)

    Ricci, F; Boschi, F; Baraldi, A; Filippetti, A; Higashiwaki, M; Kuramata, A; Fiorentini, V; Fornari, R

    2016-06-08

    The question of optical bandgap anisotropy in the monoclinic semiconductor β-Ga2O3 was revisited by combining accurate optical absorption measurements with theoretical analysis, performed using different advanced computation methods. As expected, the bandgap edge of bulk β-Ga2O3 was found to be a function of light polarization and crystal orientation, with the lowest onset occurring at polarization in the ac crystal plane around 4.5-4.6 eV; polarization along b unambiguously shifts the onset up by 0.2 eV. The theoretical analysis clearly indicates that the shift in the b onset is due to a suppression of the transition matrix elements of the three top valence bands at Γ point.

  10. Optical properties of SrTiO3 films

    International Nuclear Information System (INIS)

    Agasiyev, A.A.; Magerramov, E.M.; Mammadov, M.Z.; Sarmasov, S.M.

    2010-01-01

    The spectrums of optical absorption of amorphous and single crystalline films SrTiO 3 at temperatures : 105 K, 300 K, 400 K are investigated. The temperature dependences of slope absorption edge, forbidden gap and characteristic constant of Urbah rule are obtained. The forbidden gap of single crystalline film SrTiO 3 and average shift shift of absorption edge degree are defined. It is established that edge of optical absorption of SrTiO 3 film is obeyed to Urbah rule and the absorption in the investigated region is caused by the transition of electron interacting with phonon

  11. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  12. X-ray absorption edges and E.X.A.F.S.: application to the study of electronic and atomic structures of titanium and vanadium carbides TiC(1-x) and VC(1-x)

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1980-09-01

    This text presents a systematic study of the X-ray absorption fine structures evolution, at the K edge of titanium, with vacancy concentration in TiC(1-x). The absorption edges are situated in the 50 eV following the coefficient discontinuity: from the evaluation of their general aspect, it is deduced that the positive charge of titanium atoms decreases when vacancy concentration increases in TiC(1-x). This allowed us to determine the best band structure calculation model. The interpretation of EXAFS spectra (modulation of the absorption coefficient until 1500 eV above the edge) gives indications about the local atomic structure. Here, the contraction of the average titanium-carbon interatomic distances compared to the distances between crystallographic sites is of the order of the experimental resolution 0.02 A for Ti C(0.8). The study of the damping of the spectra in terms of Debye-Waller factors gave an evaluation of the relative static atomic mean square displacements between first neighbours. Last, it has been established that the disordering of vacancies in the order-disorder transition of V 8 C 7 is an atomic scale phenomenon [fr

  13. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    International Nuclear Information System (INIS)

    Lichtenberg, H; Prange, A; Hormes, J; Steiner, U; Oerke, E-C

    2009-01-01

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  14. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, H; Prange, A; Hormes, J [CAMD, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Steiner, U; Oerke, E-C, E-mail: lichtenberg@lsu.ed [INRES-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn (Germany)

    2009-11-15

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  15. Sn-L3 EDGE and Fe K edge XANES spectra of the surface layer of ancient Chinese black mirror Heiqigu

    International Nuclear Information System (INIS)

    Gaowei Mengjia; Liu Yuzhen; Chu Wangsheng; Wu Ziyu; Wang Changsui

    2009-01-01

    The Chinese ancient black mirror known as Heiqigu was studied by x-ray-absorption near-edge structure spectroscopy and results were reported. The Sn-L 3 edge and Fe K edge spectra further confirmed the Schottky-type defect model in the Heiqigu surface system. And it was suggested that the surface layer of the mirror was a combined structure of oxidation of Sn(IV) and Sn(II). (authors)

  16. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    Science.gov (United States)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  17. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Rizzuto, Anthony M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  18. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  19. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  20. Photoabsorption of the molecular IH cation at the iodine 3 d absorption edge

    Science.gov (United States)

    Klumpp, Stephan; Guda, Alexander A.; Schubert, Kaja; Mertens, Karolin; Hellhund, Jonas; Müller, Alfred; Schippers, Stefan; Bari, Sadia; Martins, Michael

    2018-03-01

    Yields of atomic iodine Iq + (q ≥2 ) fragments resulting from photoexcitation and photoionization of the target ions IH+ and I+ have been measured in the photon-energy range 610-680 eV, which comprises the thresholds for iodine 3 d ionization. The measured ion-yield spectra show two strong and broad resonance features due to the excitation of the 3 d3 /2 ,5 /2 electrons into ɛ f states rather similar for both parent ions. In the 3 d pre-edge range, excitations into (n p π ) -like orbitals and into an additional σ* orbital are found for IH+, which have been identified by comparison of the atomic I+ and molecular IH+ data and with the help of (time-dependent) density functional theory (DFT) and atomic Hartree-Fock calculations. The (5 p π ) orbital is almost atomlike, whereas all other resonances of the IH+ primary ion show a more pronounced molecular character, which is deduced from the chemical shifts of the resonances and the theoretical analysis.

  1. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  2. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    Science.gov (United States)

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  3. K-edge Radiography and applications to Cultural Heritage

    OpenAIRE

    Albertin, Fauzia

    2011-01-01

    The present work of thesis is focused on application of X-ray K-edge technique to paintings. This technique allows one to achieve a topographic map of a pigment on the whole surface of the painting. The digital acquisition of radiographic images by using monochromatic X-ray beams allows to take advantage of the sharp rise of X-ray absorption coefficient of the elements, the K-edge discontinuity. Working at different energies, bracketing the K-edge peak, allows recognition ...

  4. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    International Nuclear Information System (INIS)

    Zhao Wei; Chu Wangsheng; Li Shujun; Liu Yiwei; Gao Bin; Niu Liwen; Teng Maikun; Benfatto, Maurizio; Hu Tiandou; Wu Ziyu

    2007-01-01

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase

  5. Theoretical Mn K-edge XANES for Li2MnO3: DFT + U study

    International Nuclear Information System (INIS)

    Tamura, Tomoyuki; Ohwaki, Tsukuru; Ito, Atsushi; Ohsawa, Yasuhiko; Kobayashi, Ryo; Ogata, Shuji

    2012-01-01

    Spectral features of Mn K-edge x-ray absorption near-edge structure (XANES) for Li 2 MnO 3 were calculated using the first-principles full projector augmented wave method with the general gradient approximation plus U method. We demonstrated that the U parameter affects the spectral features in the pre-edge region while it does not affect those in the major absorption region. From the comparison with the experimental spectra and those of reference compounds, we showed that the spectral features of Mn K-edge XANES and the differences in the valence state can be reproduced well. (paper)

  6. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    Science.gov (United States)

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  7. Unexpected covalency from actinide 5f orbital interactions (An = Th, U, Np, Pu) determined from chlorine K-edge X-ray absorption spectroscopy and electronic structure theory

    International Nuclear Information System (INIS)

    Clark, D.L.; Batista, E.R.; Boland, K.S.

    2010-01-01

    We have employed Cl K-edge XAS and multiple levels of sophisticated electronic structure calculations on a series of simple octahedral light actinide (Th, U, Np, Pu) chloride salts, AnCl 6 n- in order to assess the relative roles of the valence 5f and 6d orbitals in chemical bonding. Chlorine K-edge X-ray absorption spectroscopy on AnCl 6 n- (An = Th, U, Np, Pu) systems indicates the presence of covalent interactions between both Cl 3p and An 5f and 6d orbitals, with the relative contributions changing across the series. Electronic structure calculations indicate the predominant covalent interactions are expected to occur through An-Cl bonding via t 1u and t 2u interactions with the An 5f orbitals, and through t 2g and e g interactions with An 6d orbitals. For the Cl K-edge data therefore, we expect bound state transitions from Cl 1s → e g (σ), t 2g (π), and t 1u (σ + π) orbitals. Qualitatively, the Cl K-edge data fulfills these expectations

  8. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  9. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    Science.gov (United States)

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  10. K- and L-edge X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) Determination of Differential Orbital Covalency (DOC) of Transition Metal Sites.

    Science.gov (United States)

    Baker, Michael L; Mara, Michael W; Yan, James J; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2017-08-15

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as K resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3d orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of and donor bonding and back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. The application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.

  11. K-XANES study of YBa2Cu3O6.96 system

    International Nuclear Information System (INIS)

    Mishra, A.; Varshney, D.; Shivkumar, K.M.; Pandey, D.

    1998-01-01

    The copper K-edge x-ray absorption near edge structure (XANES) has been recorded in both CuO and YBaCuO samples on Cauchois type spectrograph with 0.4 m radius of curvature and a laboratory source of x-rays. The sample of YBa 2 Cu 3 ) 6.96 (T c =91K) were prepared by solid state route. The Cu K-XANES measurements were made on the powdered sample. The x-ray parameters, e.g., K-edge shift (ΔE k ), shift of principal absorption maximum (δE K ) and edge-width (δE A ) with reference to metal K-edge have been reported. The value of edge-shift of YBaCuO is larger than parent CuO. Also the smaller value of edge-width in YBaCuO is indicative of its ionic character. (author)

  12. Local shifts in floral biotic interactions in habitat edges and their effect on quantity and quality of plant offspring

    Science.gov (United States)

    Fenu, Giuseppe; Bernardo, Liliana

    2017-01-01

    Abstract Spatial shifts in insect fauna due to ecological heterogeneity can severely constrain plant reproduction. Nonetheless, data showing effects of insect visit patterns and intensity of mutualistic and/or antagonistic plant–insect interactions on plant reproduction over structured ecological gradients remain scarce. We investigated how changes in flower-visitor abundance, identity and behaviour over a forest-open habitat gradient affect plant biotic interactions, and quantitative and qualitative fitness in the edge-specialist Dianthus balbisii. Composition and behaviour of the insects visiting flowers of D. balbisii strongly varied over the study gradient, influencing strength and patterns of plant biotic interactions (i.e. herbivory and pollination likelihood). Seed set comparison in free- and manually pollinated flowers suggested spatial variations in the extent of quantitative pollen limitation, which appeared more pronounced at the gradient extremes. Such variations were congruent to patterns of flower visit and plant biotic interactions. The analyses on seed and seedling viability evidenced that spatial variation in amount and type of pollinators, and frequency of herbivory affected qualitative fitness of D. balbisii by influencing selfing and outcrossing rates. Our work emphasizes the role of plant biotic interactions as a fine-scale mediator of plant fitness in ecotones, highlighting that optimal plant reproduction can take place into a restricted interval of the ecological gradients occurring at forest edges. Reducing the habitat complexity typical of such transition contexts can threat edge-adapted plants. PMID:28775831

  13. Si K-edge XANES study of SiOxCyHz amorphous polymeric materials

    International Nuclear Information System (INIS)

    Chaboy, J.; Barranco, A.; Yanguas-Gil, A.; Yubero, F.; Gonzalez-Elipe, A. R.

    2007-01-01

    This work reports on x-ray absorption spectroscopy study at the Si K edge of several amorphous SiO x C y H z polymers prepared by plasma-enhanced chemical-vapor deposition with different C/O ratios. SiO 2 and SiC have been used as reference materials. The comparison of the experimental Si K-edge x-ray absorption near-edge structure spectra with theoretical computations based on multiple scattering theory has allowed us to monitor the modification of the local coordination around Si as a function of the overall C/O ratio in this kind of materials

  14. Extended x-ray absorption fine structure study of MnFeP0.56Si0.44 compound

    International Nuclear Information System (INIS)

    Li Ying-Jie; Haschaolu W; Wurentuya; Song Zhi-Qiang; Ou Zhi-Qiang; Tegus O; Nakai Ikuo

    2015-01-01

    The MnFeP 0.56 Si 0.44 compound is investigated by x-ray diffraction, magnetic measurements, and x-ray absorption fine structure spectroscopy. It crystallizes in Fe 2 P-type structure with the lattice parameters a = b = 5.9823(0) Å and c = 3.4551(1) Å and undergoes a first-order phase transition at the Curie temperature of 255 K. The Fe K edge and Mn K edge x-ray absorption fine structure spectra show that Mn atoms mainly reside at 3g sites, while 3f sites are occupied by Fe atoms. The distances between the absorbing Fe atom and the first and second nearest neighbor Fe atoms in a 3f-layer shift from 2.65 Å and 4.01 Å in the ferromagnetic state to 2.61 Å and 3.96 Å in the paramagnetic phase. On the other hand, the distance between the 3g-layer and 3f-layer changes a little as 2.66 Å–2.73 Å below the Curie temperature and 2.68 Å–2.75 Å above it. (paper)

  15. Mn L{sub 2,3}-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li{sub 2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubobuchi, Kei, E-mail: kubobuchi@nissan-arc.co.jp [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan); Mogi, Masato; Imai, Hideto [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Ikeno, Hidekazu [Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Tanaka, Isao [Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan)

    2014-02-03

    The redox reaction of Mn in Li{sub 2}MnO{sub 3} was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L{sub 2,3} X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L{sub 2,3} XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn{sup 4+} to Mn{sup 5+} but can be explained well by the changes of local atomic structures around Mn{sup 4+} due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li{sub 2}MnO{sub 3}.

  16. X-ray absorption spectroscopic studies of the blue copper site: Metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin

    International Nuclear Information System (INIS)

    Shadle, S.E.; Penner-Hahn, J.E.; Schugar, H.J.; Hedman, B.; Hodgson, K.O.; Solomon, E.I.

    1993-01-01

    X-ray absorption spectra for the oxidized blue copper protein plastocyanin and several Cu(II) model complexes have been measured at both the Cu K-edge and the ligand K-edges (Cl and S) in order to elucidate the source of the small parallel hyperfine splitting in the EPR spectra of blue copper centers. Assignment and analysis of a feature in the Cu K-edge X-ray absorption spectrum at ∼8,987 eV as the Cu 1s → 4p + ligand-to-metal charge-transfer shakedown transition has allowed for quantitation of 4p mixing into the ground-state wave function as reflected in the 1s →3d (+4p) intensity at ∼8,979 eV. The results show that distorted tetrahedral (D 2d )CuCl 4 2- is characterized by z mixing, while plastocyanin has only Cu 4p xy mixing. Thus, the small parallel hyperfine splitting in the EPR spectra of D 2d CuCl 4 2- and of oxidized plastocyanin cannot be explained by 12% 4p z mixing into the 3d x 2 -y 2 orbital as had been previously postulated. Data collected at the Cl K-edge for CuCl 4 2- show that the intensity of the ligand pre-edge feature at ∼2,820 eV reflects the degree of covalency between the metal half-occupied orbital and the ligands. The data show that D 2d CuCl 4 2- is not unusually covalent. The source of the small parallel splitting in the EPR of D 2d CuCl 4 2- is discussed. Experiments at the S K-edge (∼2,470 eV) show that plastocyanin is characterized by a highly covalent Cu-S(cysteine) bond relative to the cupric-thiolate model complex [Cu(tet b)(o-SC 6 H 4 CO 2 )]·H 2 O. The XAS results demonstrate that the small parallel hyperfine splitting in the EPR spectra of blue copper sites reflects the high degree of covalency of the copper-thiolate bond. 34 refs., 12 figs., 3 tabs

  17. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  18. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roemelt, Michael; Maganas, Dimitrios; Neese, Frank [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); DeBeer, Serena [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2013-05-28

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S Prime = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with M{sub S}= S, Horizontal-Ellipsis , -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row

  19. Feedback control of edge turbulence in a tokamak

    International Nuclear Information System (INIS)

    Kan, Zhai; Yi-zhi, Wen; Chang-xuan, Yu; Wan-dong, Liu; Chao, Wang; Ge, Zhuang; Kan, Zhai; Zhi-Zhan, Yu

    1997-01-01

    An experiment on feedback control of edge turbulence has been undertaken on the KT-5C tokamak. The results indicate that the edge turbulence could be suppressed or enhanced depending on the phase shift of the feedback network. In a typical case of 90 degree phase shift feedback, the turbulence amplitudes of both T e and n e were reduced by about 25% when the gain of the feedback network was 15. Correspondingly the radial particle flux decreased to about 75% level of the background. Through bispectral analysis it is found that there exists a substantial nonlinear coupling between various modes comprised in edge turbulence, especially in the frequency range from about 10 kHz to 100 kHz, which contains the large part of the edge turbulence energy in KT-5C tokamak. In particular, by actively controlling the turbulence amplitude using feedback, a direct experimental evidence of the link between the nonlinear wave-wave coupling over the whole spectrum in turbulence, the saturated turbulence amplitude, and the radial particle flux was provided. copyright 1997 The American Physical Society

  20. Simulation and evaluation of the absorption edge subtraction technique in energy-resolved X-ray radiography applied to the cultural heritage studies

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana E.; Pinnera Hernandez, Ibrahin; Leyva Fabelo, Antonio; Abreu Alfonso, Yamiel; Espen, Piet Van

    2011-01-01

    In this work the mathematical simulation of photon transport in the matter was used to evaluate the potentials of a new energy-resolved X-ray radiography system. The system is intended for investigations of cultural heritage object, mainly painting. The radiographic system uses polychromatic radiation from an X-ray tube and measures the spectrum transmitted through the object with an energy-dispersive X-ray detector on a pixel-by-pixel basis. Manipulation of the data-set obtained allows constructing images with enhanced contrast for certain elements. Here the use of the absorption edge subtraction technique was emphasized. The simulated results were in good agreement with the experimental data.(author)

  1. Soft x-ray absorption spectra of ilmenite family.

    Science.gov (United States)

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  2. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.

    Science.gov (United States)

    Bai, Yu; Zhang, Jing; Wang, Yinghui; Zhang, Min; Wang, Peng

    2011-04-19

    Lithium ions are known for their potent function in modulating the energy alignment at the oxide semiconductor/dye/electrolyte interface in dye-sensitized solar cells (DSCs), offering the opportunity to control the associated multichannel charge-transfer dynamics. Herein, by optimizing the lithium iodide content in 1-ethyl-3-methylimidazolium dicyanamide-based ionic liquid electrolytes, we present a solvent-free DSC displaying an impressive 8.4% efficiency at 100 mW cm(-2) AM1.5G conditions. We further scrutinize the origins of evident impacts of lithium ions upon current density-voltage characteristics as well as photocurrent action spectra of DSCs based thereon. It is found that, along with a gradual increase of the lithium content in ionic liquid electrolytes, a consecutive diminishment of the open-circuit photovoltage arises, primarily owing to a noticeable downward movement of the titania conduction band edge. The conduction band edge displacement away from vacuum also assists the formation of a more favorable energy offset at the titania/dye interface, and thereby leads to a faster electron injection rate and a higher exciton dissociation yield as implied by transient emission measurements. We also notice that the adverse influence of the titania conduction band edge downward shift arising from lithium addition upon photovoltage is partly compensated by a concomitant suppression of the triiodide involving interfacial charge recombination. © 2011 American Chemical Society

  4. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    Science.gov (United States)

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  5. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Antonio, M.R.; Soderholm, L.

    1995-01-01

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L 3 -edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl 3 ·6H 2 O in 1 M H 2 SO 4 . The europium L 3 -edge resonances reported here for the Eu III and Eu II ions demonstrate that their 2p 3/2 → 5d electronic transition probabilities are not the same

  6. X-ray absorption fine structure (XAFS) spectroscopy: a tool for structural studies in material sciences (abstract)

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    2011-01-01

    XAFS spectroscopy has revealed itself as a powerful technique for structural characterization of the local atomic environment of individual atomic species, including bond distances, coordination numbers and type of nearest neighbors surrounding the central atom. This technique is particularly useful for materials that show considerable structural and chemical disorder. XAFS spectroscopy has found extensive applications in determining the local atomic and electronic structure of the absorbing centers (atoms) in the materials science, physics, chemistry, biology and geophysics. X-ray absorption edges contain a variety of information on the chemical state and the local structure of the absorbing atom. On the higher energy side of an absorption edge fine structure is observed due to backscattering of the emitted photoelectron. The post-edge region can be divided into two parts. The X-ray Absorption Near Edge Structure (XANES) which extends up to 50 eV of an absorption edge, the spectrum is interpreted in terms of the appropriate components of the local density of states, which would be expected to be sensitive to the valence state of the atom. The intensity, shape and location of the absorption edge features provide information on the valence state, electronic structure and coordination geometry of the absorbing atom.The Extended X-ray Absorption Fine Structure (EXAFS) region is dominated by the single scattering processes and extends up to 1000 eV above the edge and provides information on the radial distribution (coordination number, radial distance and type of neighboring atoms) around the central atom. The results on perovskite based and spinel ferrites systems will be presented, where valence state and cation distributions are determined; the present study will show focus on SrFeO/sub 3/, MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/ materials. (author)

  7. Simulating Ru L3-edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers.

    Science.gov (United States)

    Van Kuiken, Benjamin E; Valiev, Marat; Daifuku, Stephanie L; Bannan, Caitlin; Strader, Matthew L; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  8. Effect of exciton polaritons of absorption edge of GaTe

    International Nuclear Information System (INIS)

    Kurbatov, L.N.; Dirochka, A.I.; Sosin, V.A.

    1979-01-01

    The experimental results, pointing to the dependence of spectral and integral coefficients of exciton absorption as well as to the exciton relaxation parameter γsub(0) over the exciton zone on the sample thickness, are presented. It is tried to explain the inverse dependences of absorption intensity in the maximum of αsub(max) and γsub(0) exciton line within the limits of polariton theory. The values of polariton free path length in GaTe at various temperatures, as well as the volume γsub(vol.) and surface γsub(surf.) parameters of exciton relaxation over the exciton zone are discussed

  9. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    Science.gov (United States)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, D-66123 Saarbruecken (Germany); Hübner, R.; Lehmann, J.; Munnik, F. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Redondo-Cubero, A. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2686-953 Sacavém (Portugal); Endrino, J.L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Abengoa Research S.L., c/Energía Solar 1, Palmas Altas, E-41014 Seville (Spain)

    2013-06-05

    Highlights: ► Growth of ternary TiAlN films with nearly single-phase wurzite structure. ► Soft X-rays XANES measurements of ternary TiAlN films with wurzite structure. ► Identification of ternary TiAlN hexagonal phases by XANES. ► Correlation of XANES measurements with reported theoretical calculations. -- Abstract: Titanium aluminium nitride (TiAlN) coatings have been grown by reactive (Ar/N{sub 2}) direct-current magnetron sputtering from a Ti{sub 50}Al{sub 50} compound target. The film composition has been quantified by ion beam analysis showing the formation of Al-rich nitrides (Ti/Al ∼ 0.3), with stoichiometric films for N{sub 2} contents in the gas mixture equal or above ∼25%. The surface morphology of the films has been imaged by atomic force microscopy, showing very smooth surfaces with roughness values below 2 nm. X-ray and electron diffraction patterns reveal that the films are nanocrystalline with a wurzite (w) structure of lattice parameters larger (∼2.5%) than those for w-AlN. The lattice expansion correlates with the Ti/Al ratio in stoichiometric films, which suggests the incorporation of Ti into w-AlN. The atomic environments around Ti, Al and N sites have been extracted from the X-ray absorption near-edge structure (XANES) by recording the Ti2p, Al1s and N1s edges, respectively. The analysis of the XANES spectral lineshape and comparison with reported theoretical calculations confirm the formation of a ternary hexagonal phase.

  11. Hydrogen bonding interaction of small acetaldehyde clusters studied with core-electron excitation spectroscopy in the oxygen K-edge region

    Science.gov (United States)

    Tabayashi, K.; Chohda, M.; Yamanaka, T.; Tsutsumi, Y.; Takahashi, O.; Yoshida, H.; Taniguchi, M.

    2010-06-01

    In order to examine inner-shell electron excitation spectra of molecular clusters with strong multipole interactions, excitation spectra and time-of-flight (TOF) fragment-mass spectra of small acetaldehyde (AA) clusters have been studied under the beam conditions. The TOF spectra at the oxygen K-edge region showed an intense growth of the protonated clusters, MnH+ (M=CH3CHO) in the cluster beams. "cluster-specific" excitation spectra could be generated by monitoring partial-ion-yields of the protonated clusters. The most intense band of O1s→π*CO was found to shift to a higher energy by 0.15 eV relative to the monomer band upon clusterization. X-ray absorption spectra (XAS) were also calculated for the representative dimer configurations using a computer modelling program based on the density functional theory. The XAS prediction for the most stable (non-planar) configuration was found to give a close comparison with the cluster-band shift observed. The band shift was interpreted as being due to the HOMO-LUMO interaction within the complex where a contribution of vibrationally blue-shifting hydrogen bonding could be identified.

  12. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  13. Edge turbulence control on the KT-5C tokamak by feedback using electrostatic probes

    International Nuclear Information System (INIS)

    Zhai Kan; Wang Cheng; Wen Yizi; Yu Changxuan; Wan Shude; Liu Wandong; Xu Zhizhan

    1998-01-01

    Experiments on edge turbulence control have been performed on the KT-5C tokamak by feedback using two sets of electrostatic probes as the driving probe and detective probe. The results indicate that the feedback can enhance or reduce the turbulence amplitude depending upon the phase shift and gain of the feedback network. When the feedback with 90 degree phase shift and with certain loop gain is applied, the spectrum component of turbulence is reduced obviously and the fluctuation amplitude of the electron density and electron temperature become lower by about 25%. consistently the particle flux across the magnetic field induced by the electrostatic fluctuation also decreases by about 25%. On the other hand, the feedback with 0 degree or 180 degree or -90 degree phase shift can enhance the amplitude of the edge turbulence. These results indicate a nonlinear mechanism of the influence of feedback on the edge turbulence, which to some extent also reflect a specific nonlinear characteristic of the edge turbulence

  14. Ca 3d unoccupied states in Bi2Sr2CaCu2O8 investigated by Ca L2,3 x-ray-absorption near-edge structure

    International Nuclear Information System (INIS)

    Borg, A.; King, P.L.; Pianetta, P.; Lindau, I.; Mitzi, D.B.; Kapitulnik, A.; Soldatov, A.V.; Della Longa, S.; Bianconi, A.

    1992-01-01

    The high-resolution Ca L 2,3 x-ray-absorption near-edge-structure (XANES) spectrum of a Bi 2 Sr 2 CaCu 2 O 8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200x200 μm 2 . The Ca L 2,3 XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF 2 . Good agreement between the calculated and experimental crystal-field splitting Δ f of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O(in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, we have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO 2 planes separated by the Ca ions

  15. Ca 3d unoccupied states in Bi2Sr2CaCu2O8 investigated by Ca L2,3 x-ray-absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Borg, A; King, P L; Pianetta, P; Lindau, I; Mitzi, D B

    1992-01-01

    The high-resolution Ca L(2,3) x-ray-absorption near-edge-structure (XANES) spectrum of a Bi2Sr2CaCu2O8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200x200 micrometers square. The Ca L(2,3) XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF2. Good agreement between the calculated and experimental crystal-field splitting Delta f of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O (in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, the authors have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO2 planes separated by the Ca ions.

  16. Information theoretic analysis of canny edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  17. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Science.gov (United States)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  18. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  19. Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm

    Science.gov (United States)

    Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An

    1999-07-01

    Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.

  20. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    International Nuclear Information System (INIS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I.J.; George, G.N.; Gupta, M.; Chapman, D.

    2008-01-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a 'background' image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor

  1. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  2. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  3. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianqing, E-mail: lxq@gxu.edu.cn [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Deyou; Lao, Ming; Liang, Shuiying [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Huang, Dan; Zhou, Wenzheng; Guo, Jin [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-05-15

    Highlights: • Structural evolution of FG during the molten-alkali treatment was studied. • XANES results reveal the transformation of surface functional groups of HFG. • The local and electronic structure of HFG can be tuned by varying the alkali-FG ratio. - Abstract: The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  4. Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sakr, M.R., E-mail: msakr@alexu.edu.eg

    2016-09-16

    We study the directional dependence of the absorption spectrum of ballistic nanowires in the presence of gate-controlled Rashba spin–orbit interaction and an in-plane magnetic field. In the weak Rashba regime, our analytical and numerical results show that the absorption peaks associated with the first and third intersubband transitions exhibit frequency shifts and strong amplitude modulations as the direction of the magnetic field changes. If the field is parallel to the nanowire axis, these peaks disappear and the resonance frequencies of the whole absorption spectrum are given merely in terms of the Zeeman splitting and the energy scale characterizing the confinement potential. The second transition has an absorption peak that suffers an opposite frequency shift with amplitude that is largely direction independent. The amplitude modulation and frequency shift of the absorption spectrum is periodic in the angle that the magnetic field makes with the nanowire axis. - Highlights: • Absorption spectrum of the nanowire is calculated in the weak Rashba regime. • First and third absorption peaks show amplitude and frequency modulation. • They disappear if the magnetic field is along the wire axis, forbidden transitions. • The second transition peak shows frequency shift with minor amplitude modulation. • The frequency and amplitude modulations are periodic in the direction of the field.

  5. Goos-Haenchen shift in complex crystals

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, Stefano; Della Valle, Giuseppe; Staliunas, Kestutis [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Departament de Fisica i Enginyeria Nuclear, Instituci Catalana de Recerca i Estudis Avanats (ICREA), Universitat Politcnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona (Spain)

    2011-10-15

    The Goos-Haenchen (GH) effect for wave scattering from complex PT-symmetric periodic potentials (complex crystals) is theoretically investigated, with specific reference to optical GH shift in photonic crystal slabs with a sinusoidal periodic modulation of both real and imaginary parts of the dielectric constant. The analysis highlights some distinct and rather unique features as compared to the GH shift found in ordinary crystals. In particular, as opposed to GH shift in ordinary crystals, which is large at the band gap edges, in complex crystals the GH shift can be large inside the reflection (amplification) band and becomes extremely large as the PT symmetry-breaking threshold is approached.

  6. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    Science.gov (United States)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  7. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    International Nuclear Information System (INIS)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here

  8. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  9. Characterization of local chemistry and disorder in synthetic and natural α-Al2O3 materials by X-ray absorption near edge structure spectroscopy

    International Nuclear Information System (INIS)

    Mottana, A.; Murata, T.

    1997-11-01

    X-ray absorption fine spectra at the Al K-edge were measured experimentally on and calculated theoretically via the multiple-scattering formalism for a chemically pure and physically perfect synthetic α-Al 2 O 3 (α-alumina), a natural 'ruby/sapphire' (corundum) and a series of artificial 'corundum' produced for technical purposes and used as geochemical standards. The Al K-edge spectra differ despite of the identical coordination (short-range arrangement) assumed by O around Al, and vary slightly in relation to the slightly different chemistries of the materials (substitutional defects) as well as on account of the location taken by foreign atoms in the structural lattices (positional defects). A quantitative treatment of the observed changes is made in terms of short-range modification of the coordination polyhedron and of medium- to long-range modifications in the overall structure; both of them induced by substitutions. In some technical 'corundums', the impurities of admixed 'β-alumina', where Al is both in four- and six-fold coordination, produce another small but detectable effect on Al K-edges. Therefore, XAFS spectroscopy proves its potentials for both measuring a light element such as Al, and detecting minor coordination changes and substitutions (ca. 1∼3 wt.% as oxide) of the absorber by dilute other atoms, at least under favorable conditions as those occurring in this system are

  10. Determination of Cr(VI) in wood specimen: A XANES study at the Cr K edge

    International Nuclear Information System (INIS)

    Strub, E.; Plarre, R.; Radtke, M.; Reinholz, U.; Riesemeier, H.; Schoknecht, U.; Urban, K.; Juengel, P.

    2008-01-01

    The content of chromium in different oxidation states in chromium-treated wood was studied with XANES (X-ray absorption near-edge structure) measurements at the Cr K absorption edge. It could be shown that wood samples treated with Cr(VI) (pine and beech) did still contain a measurable content of Cr(VI) after four weeks conditioning. If such wood samples were heat exposed for 2 h with 135 deg. C prior conditioning, Cr(VI) was no longer detected by XANES, indicating a complete reduction to chromium (III)

  11. Photoabsorption spectra of potassium and rubidium near the K-edge

    International Nuclear Information System (INIS)

    Azuma, Y.; Berry, H.G.; Cowan, P.L.

    1995-01-01

    We have used a high-temperature circulating heat-pipe absorption cell together with monochromatized X-ray beams at the X24A and X23A2 beam lines at the NSLS to obtain photoabsorption spectra of potassium and rubidium at their K- and KM-edges. The photon-energy ranges lay near 3600 eV and 15200 eV, respectively. We have also obtained first measurements of the LII and LIII edges in cesium. Although the K-edge photoabsorptions of the rare gases have been studied, there is little previous work on other atomic vapors. Most of the edges and resonance peaks that we observed have now been identified using Dirac Hartree-Fock calculations. As a check, we have compared these results with those obtained previously in closed-shell rare-gas absorption spectra. The absolute energies were obtained through a calibration of the X24A systems using measurements of several metal L-edges in the 3200-5000 eV energy range. We found that the 4p resonance in potassium is significantly enhanced compared with the corresponding situation in argon. Likewise, the 5p resonance in krypton is unresolved from the background ionization cross section, whereas it is well resolved in rubidium. As suggested by Amusia, these enhancements may be due to the enhanced potential seen in the excited state of the alkali systems as a result of the presence of an s-electron which reduces the nuclear shielding

  12. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k∼20A-1

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k∼20A -1 ) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  13. Urbach tails in the absorption spectra of semiconducting molybdenum-borate glasses

    International Nuclear Information System (INIS)

    Jamel Basha Adlan, M.; Wan Yusri Wan Yusuff; Tan, C.W.; Yam, F.K.

    1991-01-01

    The absorption curve of many amorphous compound semiconductors may be divided into three regions: (1) the high absorption region (α(w)≥10 4 cm -1 ), (2) an exponential region (1cm -1 ≤(w)≤10 4 cm -1 ) which obeys Urbach's rule and (3) a weak absorption tail (α(w)≤1cm -1 ). In this paper we will present the absorption edge of binary Molybdenum-Borate glasses at the exponential region of the spectra

  14. Soft x-ray absorption spectroscopy on Co doped ZnO: structural distortions and electronic structure

    International Nuclear Information System (INIS)

    Kowalik, I A; Guziewicz, E; Godlewski, M; Arvanitis, D

    2016-01-01

    We present soft x-ray absorption spectra from a series of Co doped ZnO films. We discuss systematic variations of the Co L-edge white line intensity and multiplet features for this series of samples. We document sizeable differences in the electronic state of the Co ionic cores, as well as in the local environment of the host lattice atoms, characterised by means of x-ray absorption spectra at the O K-edge and Zn L-edges. Model calculations allow to correlate the observed effects to small structural distortions of the ZnO lattice. (paper)

  15. Material Discrimination Based on K-edge Characteristics

    Directory of Open Access Journals (Sweden)

    Peng He

    2013-01-01

    Full Text Available Spectral/multienergy CT employing the state-of-the-art energy-discriminative photon-counting detector can identify absorption features in the multiple ranges of photon energies and has the potential to distinguish different materials based on K-edge characteristics. K-edge characteristics involve the sudden attenuation increase in the attenuation profile of a relatively high atomic number material. Hence, spectral CT can utilize material K-edge characteristics (sudden attenuation increase to capture images in available energy bins (levels/windows to distinguish different material components. In this paper, we propose an imaging model based on K-edge characteristics for maximum material discrimination with spectral CT. The wider the energy bin width is, the lower the noise level is, but the poorer the reconstructed image contrast is. Here, we introduce the contrast-to-noise ratio (CNR criterion to optimize the energy bin width after the K-edge jump for the maximum CNR. In the simulation, we analyze the reconstructed image quality in different energy bins and demonstrate that our proposed optimization approach can maximize CNR between target region and background region in reconstructed image.

  16. K-edge resonant x-ray magnetic scattering from a transition-metal oxide: NiO

    DEFF Research Database (Denmark)

    Hill, J.P.; Kao, C.C.; McMorrow, D.F.

    1997-01-01

    We report the observation of resonant x-ray magnetic scattering in the vicinity of the Ni K edge in the antiferromagnet NiO. An approximately twofold increase in the scattering is observed as the incident photon energy is tuned through a pre-edge feature in the absorption spectrum, associated...

  17. Preposition stranding versus pied-piping: Negative Shift of prepositional complements in dialects of Faroese

    Directory of Open Access Journals (Sweden)

    Eva Engels

    2009-01-01

             These asymmetries will be accounted for within Fox and Pesetsky's (2003, 2005 cyclic linearization model, which requires non-string-vacuous movement to proceed through the left edge of Spell-out domains, deriving cross-linguistic variation as to Negative Shift from differences in the availability of these left-edge positions. Thereby, pied-piping is considered a last resort strategy, possible only if the prepositional complement cannot undergo Negative Shift on its own due to the unavailability of the relevant left-edge position.

  18. Multiple scattering approach to X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Benfatto, M.; Wu Ziyu

    2003-01-01

    In this paper authors present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. Authors also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach

  19. Image reconstruction for x-ray K-edge imaging with a photon counting detector

    Science.gov (United States)

    Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2014-09-01

    Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.

  20. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2012-05-01

    This paper describes theoretical and experimental investigations into the sound absorption and transmission properties of micro-perforated panels (MPP) backed by an air cavity and a thin plate. A fully coupled modal approach is proposed to calculate the absorption coefficient and the transmission loss of finite-sized micro-perforated panels-cavity-panel (MPPCP) partitions with conservative boundary conditions. It is validated against infinite partition models and experimental data. A practical methodology is proposed using collocated pressure-velocity sensors to evaluate in an anechoic environment the transmission and absorption properties of conventional MPPCPs. Results show under which conditions edge scattering effects should be accounted for at low frequencies. Coupled mode analysis is also performed and analytical approximations are derived from the resonance frequencies and mode shapes of a flexible MPPCP. It is found that the Helmholtz-type resonance frequency is deduced from the one associated to the rigidly backed MPPCP absorber shifted up by the mass-air mass resonance of the flexible non-perforated double-panel. Moreover, it is shown analytically and experimentally that the absorption mechanisms at the resonances are governed by a large air-frame relative velocity over the MPP surface, with either in-phase or out-of-phase relationships, depending on the MPPCP parameters.

  1. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  2. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru [Russian Academy of Science, Landau Institute for Theoretical Physics (Russian Federation); Semenov, S. V. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  3. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    Science.gov (United States)

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  4. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  5. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

    Science.gov (United States)

    Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P

    2013-02-13

    Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  6. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    Science.gov (United States)

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  7. Electron temperature and pressure at the edge of ASDEX Upgrade plasmas. Estimation via electron cyclotron radiation and investigations on the effect of magnetic perturbations

    International Nuclear Information System (INIS)

    Rathgeber, Sylvia K.

    2013-01-01

    Understanding and control of the plasma edge behaviour are essential for the success of ITER and future fusion plants. This requires the availability of suitable methods for assessing the edge parameters and reliable techniques to handle edge phenomena, e.g. to mitigate 'Edge Localized Modes' (ELMs) - a potentially harmful plasma edge instability. This thesis introduces a new method for the estimation of accurate edge electron temperature profiles by forward modelling of the electron cyclotron radiation transport and demonstrates its successful application to investigate the impact of Magnetic Perturbation (MP) fields used for ELM mitigation on the edge kinetic data. While for ASDEX Upgrade bulk plasmas, straightforward analysis of the measured electron cyclotron intensity spectrum based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin edge region relies on full treatment of the radiation transport considering broadened emission and absorption profiles. This is realized in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different independent and complementary diagnostics. The method reveals that in regimes with improved confinement ('High-confinement modes' (H-modes)) the edge gradient of the electron temperature can be several times higher than that of the radiation temperature. Furthermore, the model is able to reproduce the 'shine-through' peak - the observation of increased radiation temperatures at frequencies with cold resonance outside the confined plasma region. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. The accurate knowledge about the edge profiles and gradients of the electron temperature and - including the

  8. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.; Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Mack, M. [Institut fuer Technische Mikrobiologie, Hochschule Mannheim, Paul-Wittsack-Str. 10, D-68163 Mannheim (Germany); Ghisla, S. [Universitaet Konstanz, Fakultaet fuer Biologie, P.O. Box 5560-M644, D-78457 Konstanz (Germany)

    2009-10-16

    The flavin dye 8-amino-8-demethyl-D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  9. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Science.gov (United States)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  10. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    International Nuclear Information System (INIS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-01-01

    The flavin dye 8-amino-8-demethyl-D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  11. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  12. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  13. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k{approx}20A{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-07-21

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k{approx}20A{sup -1}) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  14. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking.

    Directory of Open Access Journals (Sweden)

    Yuki Tsukada

    2008-11-01

    Full Text Available Advances in time-lapse fluorescence microscopy have enabled us to directly observe dynamic cellular phenomena. Although the techniques themselves have promoted the understanding of dynamic cellular functions, the vast number of images acquired has generated a need for automated processing tools to extract statistical information. A problem underlying the analysis of time-lapse cell images is the lack of rigorous methods to extract morphodynamic properties. Here, we propose an algorithm called edge evolution tracking (EET to quantify the relationship between local morphological changes and local fluorescence intensities around a cell edge using time-lapse microscopy images. This algorithm enables us to trace the local edge extension and contraction by defining subdivided edges and their corresponding positions in successive frames. Thus, this algorithm enables the investigation of cross-correlations between local morphological changes and local intensity of fluorescent signals by considering the time shifts. By applying EET to fluorescence resonance energy transfer images of the Rho-family GTPases Rac1, Cdc42, and RhoA, we examined the cross-correlation between the local area difference and GTPase activity. The calculated correlations changed with time-shifts as expected, but surprisingly, the peak of the correlation coefficients appeared with a 6-8 min time shift of morphological changes and preceded the Rac1 or Cdc42 activities. Our method enables the quantification of the dynamics of local morphological change and local protein activity and statistical investigation of the relationship between them by considering time shifts in the relationship. Thus, this algorithm extends the value of time-lapse imaging data to better understand dynamics of cellular function.

  15. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  16. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    Science.gov (United States)

    Wolff, T.; Ernst, B.; Seume, J. R.

    2014-06-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.

  17. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    International Nuclear Information System (INIS)

    Wolff, T; Ernst, B; Seume, J R

    2014-01-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated

  18. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  19. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  20. Ge L{sub 3}-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge{sub 2}Sb{sub 2}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. V. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Kolobov, A. V., E-mail: a.kolobov@aist.go.jp; Fons, P. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan and Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Wang, X.; Tominaga, J. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Tamenori, Y.; Uruga, T. [Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Ciocchini, N.; Ielmini, D. [DEIB - Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2014-05-07

    A gradual uncontrollable increase in the resistivity of the amorphous phase of phase-change alloys, such as Ge{sub 2}Sb{sub 2}Te{sub 5}, known as drift, is a serious technological issue for application of phase-change memory. While it has been proposed that drift is related to structural relaxation, no direct structural results have been reported so far. Here, we report the results of Ge L{sub 3}-edge x-ray absorption measurements that suggest that the drift in electrical conductivity is associated with the gradual conversion of tetrahedrally coordinated Ge sites into pyramidal sites, while the system still remains in the amorphous phase. Based on electronic configuration arguments, we propose that during this process, which is governed by the existence of lone-pair electrons, the concentration of free carriers in the system decreases resulting in an increase in resistance despite the structural relaxation towards the crystalline phase.

  1. XUV Absorption by Solid Density Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, C A

    2009-09-21

    An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold, solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV laser applications. The model involves an all-order calculation using a semi-analytical effective electron-ion interaction. The predicted increases in XUV absorption with rising temperature occur via two effects: increased availability of final states from reduced electron degeneracy and a stronger electron-ion interaction from reduced screening. Discrepancies in the temperature dependence as well as other details between the present approach and a recently proposed absorption model are discussed.

  2. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  3. Edge computing technologies for Internet of Things: a primer

    Directory of Open Access Journals (Sweden)

    Yuan Ai

    2018-04-01

    Full Text Available With the rapid development of mobile internet and Internet of Things applications, the conventional centralized cloud computing is encountering severe challenges, such as high latency, low Spectral Efficiency (SE, and non-adaptive machine type of communication. Motivated to solve these challenges, a new technology is driving a trend that shifts the function of centralized cloud computing to edge devices of networks. Several edge computing technologies originating from different backgrounds to decrease latency, improve SE, and support the massive machine type of communication have been emerging. This paper comprehensively presents a tutorial on three typical edge computing technologies, namely mobile edge computing, cloudlets, and fog computing. In particular, the standardization efforts, principles, architectures, and applications of these three technologies are summarized and compared. From the viewpoint of radio access network, the differences between mobile edge computing and fog computing are highlighted, and the characteristics of fog computing-based radio access network are discussed. Finally, open issues and future research directions are identified as well. Keywords: Internet of Things (IoT, Mobile edge computing, Cloudlets, Fog computing

  4. Pressure shift coefficient measurements in an RF discharge for Ar 4s[3/2]2—5p[3/2]3 transition with the help of diodelaser absorption spectroscopy

    Science.gov (United States)

    Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.

    2018-04-01

    Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.

  5. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    International Nuclear Information System (INIS)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan; Lee, Cheul-Ro

    2013-01-01

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se 2 absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se 2 (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10 5 cm −1 for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS, and CGS thin films

  6. The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo

    2011-03-28

    We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

  7. Optical Kerr effect and two-photon absorption in monolayer black phosphorus

    Science.gov (United States)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2018-05-01

    A theoretical treatment of nonlinear refraction and two-photon absorption is presented for a novel two-dimensional material, monolayer black phosphorus (or phosphorene), irradiated by a normally incident and linearly polarized coherent laser beam of frequency ω. It is found that both the nonlinear refractive index n 2(ω) and the two-photon absorption coefficient α 2(ω) of phosphorene depend upon the polarization of the radiation field relative to phosphorene’s crystallographic axes. For the two principal polarization directions considered—viz, the armchair ({ \\mathcal A }{ \\mathcal C }) and zigzag ({ \\mathcal Z }{ \\mathcal Z }), the calculated values of n 2 and α 2 are distinguished by the order of their magnitude, with the n 2 and α 2 values being greater for the { \\mathcal A }{ \\mathcal C } direction. Furthermore, for almost all the incident photon energies below the fundamental absorption edge, except its neighborhood, the signs of n 2 as well as α 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions are opposed to each other. Also, for both the directions, the change of sign of n 2 is predicted to occur in the way between the two-photon absorption edge and the fundamental absorption edge, as well as in the near vicinity of the latter, where the Kerr nonlinearity has a pronounced resonant character and the magnitude of n 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions reaches its largest positive values of the order of 10‑9 and 10‑10 cm2 W‑1, respectively. The implications of the findings for practical all-optical switching applications are discussed.

  8. An effective method for smoothing the staggered dose distribution of multi-leaf collimator field edge

    International Nuclear Information System (INIS)

    Hwang, I.-M.; Lin, S.-Y.; Lee, M.-S.; Wang, C.-J.; Chuang, K.-S.; Ding, H.-J.

    2002-01-01

    Purpose: To smooth the staggered dose distribution that occurs in stepped leaves defined by a multi-leaf collimator (MLC). Materials and methods: The MLC Shaper program controlled the stepped leaves, which were shifted in a traveling range, the pattern of shift was from the position of out-bound to in-bound with a one-segment (cross-bound), three-segment, and five-segment shifts. Film was placed at a depth of 1.5 cm and irradiated with the same irradiation dose used for the cerrobend block experiment. Four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge were performed, respectively, in this study. For the field edge defined by the multi-segment technique, the amplitude of the isodose lines for 50% isodose line and both the 80% and 20% isodose lines were measured. The effective penumbra widths with 90-10% and 80-20% distances for different irradiations were determined at four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge. Results: Use of the five-segment technique for multi-leaf collimation at the 60 deg. angle field edge smoothes each isodose line into an effectively straight line, similar to the pattern achieved using a cerrobend block. The separation of these lines is also important. The 80-20% effective penumbra width with five-segment techniques (8.23 mm) at 60 deg. angle relative to the jaw edge is little wider (1.9 times) than the penumbra of cerrobend block field edge (4.23 mm). We also found that the 90-10% effective penumbra width with five-segment techniques (12.68 mm) at 60 deg. angle relative to the jaw edge is little wider (1.28 times) than the penumbra of cerrobend block field edge (9.89 mm). Conclusion: The multi-segment technique is effective in smoothing the MLC staggered field edge. The effective penumbra width with more segment techniques at larger degree angles relative to the field edge is little wider than the penumbra for a

  9. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    Science.gov (United States)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  10. Chemical shift imaging: a review

    International Nuclear Information System (INIS)

    Brateman, L.

    1986-01-01

    Chemical shift is the phenomenon that is seen when an isotope possessing a nuclear magnetic dipole moment resonates at a spectrum of resonance frequencies in a given magnetic field. These resonance frequencies, or chemical shifts, depend on the chemical environments of particular nuclei. Mapping the spatial distribution of nuclei associated with a particular chemical shift (e.g., hydrogen nuclei associated with water molecules or with lipid groups) is called chemical shift imaging. Several techniques of proton chemical shift imaging that have been applied in vivo are presented, and their clinical findings are reported and summarized. Acquiring high-resolution spectra for large numbers of volume elements in two or three dimensions may be prohibitive because of time constraints, but other methods of imaging lipid of water distributions (i.e., selective excitation, selective saturation, or variations in conventional magnetic resonance imaging pulse sequences) can provide chemical shift information. These techniques require less time, but they lack spectral information. Since fat deposition seen by chemical shift imaging may not be demonstrated by conventional magnetic resonance imaging, certain applications of chemical shift imaging, such as in the determination of fatty liver disease, have greater diagnostic utility than conventional magnetic resonance imaging. Furthermore, edge artifacts caused by chemical shift effects can be eliminated by certain selective methods of data acquisition employed in chemical shift imaging

  11. On the Dynamics of Edge-core Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hahm,T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.

    2005-08-26

    One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling.

  12. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  13. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    particularly on Mn and Cr compounds (Ghatikar et al 1977;. Padalia and Nayak 1977; ... conventional X-ray sources and hence may lack reliability. 2. Experimental ..... with the result obtained by Hinge et al (2011) for Cu com- pounds and is ... Chem. 84 2200. Nietubyc R, Sobczak E and Attenkofer K E 2001 J. Alloys Compd.

  14. Feasibility of photon-counting K-edge imaging in X-ray and computed tomographic systems: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2011-01-01

    Conventional X-ray systems and X-ray computed tomography (CT) systems, which use detectors operated in the integrating mode, are not able to reflect spectral information because the detector output is proportional to the energy fluence integrated over the whole spectrum. Photon-counting detectors have been considered as alternative devices. These detectors can measure the photon energy deposited by each event and improve the image quality. In this study, we investigated the feasibility of K-edge imaging using a photon-counting detector and evaluated the capability of material decomposition in X-ray images. The geometries of X-ray imaging systems equipped with cadmium telluride (CdTe) detectors and phantoms consisting of different materials were designed using Geant4 Application for Tomographic Emission (GATE) version 6.0. To observe the effect of a discontinuity in the attenuation due to the K-edge of a high atomic number material, we chose the energy windows to be one below and one above the K-edge absorption energy of the target material. The contrast-to-noise ratios (CNRs) of the target materials were increased at selective energy levels above the K-edge absorption energy because the attenuation is more dramatically increased at energies above the K-edge absorption energy of the material than at energies below that. The CNRs for the target materials in the K-edge image were proportional to the material concentration. The results of this study show that K-edge imaging can be carried out in conventional X-ray systems and X-ray CT systems using CdTe photon-counting detectors and that the target materials can be separated from background materials by using K-edge imaging. The photon-counting detector has potential to provide improved image quality, and this study will be used as a basis for future studies on photon-counting X-ray imaging.

  15. Changes in forest productivity across Alaska consistent with biome shift

    Science.gov (United States)

    Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz

    2011-01-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...

  16. Frequency up-shift in the stimulated thermal scattering under two-photon absorption in liquids and colloids of metal nanoparticles

    Science.gov (United States)

    Smetanin, I. V.; Erokhin, A. I.; Baranov, A. N.

    2018-07-01

    We report the results of the experimental and theoretical study of stimulated temperature scattering in toluene and hexane solutions of Ag-nanoparticles, as well as in pure toluene in the two-photon absorption regime. A four-wave mixing scheme with two counter-propagating pump waves of the same frequency is utilised to demonstrate the lasing effect and the amplification of the backscattered anti-Stokes signal. For the first time, we have measured anti-Stokes spectral shifts which turn out to appreciably exceed the Rayleigh line widths in those liquids. It is shown that the amplification effect is provided predominantly by thermally induced coherent polarisation oscillations, while the dynamic interference temperature grating causes the formation of a self-induced optical cavity inside the interaction region.

  17. Plutonium isotopic assay of reprocessing product solutions in the KfK K-edge densitometer

    International Nuclear Information System (INIS)

    Eberle, H.; Ottmar, H.; Matussek, P.

    1985-04-01

    The KfK K-edge densiometer, designed for accurate element concentration measurements using the technique of X-ray absorptiometry at the K absorption edge, provides as an additional option the possibility to determine the isotopic composition of freshly separated plutonium from an gamma-spectrometric analysis of its self-radiation. This report describes the underlying methodology and experimental procedures for the isotopic analysis in the K-edge densitometer. The paper also presents and discusses the experimental results so far obtained from routine measurements on reprocessing product solutions. (orig.)

  18. X-ray absorption coefficients of the elements (Li TO Bi, U)

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1990-11-01

    The atomic absorption coefficient, μ a , and the mass absorption coefficient, μ/ρ, have been calculated for the elements Li to Bi and U, based on both photoelectric and scattering effects. Tables include the μ a and μ/ρ values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  19. X-ray absorption spectroscopy of PbMoO 4 single crystals

    Indian Academy of Sciences (India)

    X-ray absorption spectra of PbMoO4 (LMO) crystals have been investigated for the first time in literature. The measurements have been carried out at Mo absorption edge at the dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The optics of the beamline was set to obtain a band of 2000 eV ...

  20. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    Science.gov (United States)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  1. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references

    Science.gov (United States)

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-01

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach.

  2. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    International Nuclear Information System (INIS)

    Branicio, Paulo S; Jhon, Mark H; Gan, Chee Kwan; Srolovitz, David J

    2011-01-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (∼1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes

  3. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe{sub 2}O{sub 3} nanoparticles formed in dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Domracheva, Natalia E., E-mail: ndomracheva@gmail.com; Vorobeva, Valerya E. [Zavoisky Kazan Physical-Technical Institute (Russian Federation); Gruzdev, Matvey S. [Institute of Solution Chemistry (Russian Federation); Pyataev, Andrew V. [Kazan Federal University (Russian Federation)

    2015-02-15

    We are presenting the investigation of the optical, magnetic, and photoinduced superparamagnetic properties of single-domain γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) with diameters of about 2.5 nm formed in second-generation poly(propylene imine) dendrimer. The optical absorption studies indicated direct allowed transition with the band gap (4.5 eV), which is blue shift with respect to the value of the bulk material. Low-temperature blocking of the NPs magnetic moments at 18 K is determined by SQUID measurements. The influence of pulsed laser irradiation on the superparamagnetic properties of γ-Fe{sub 2}O{sub 3} NPs was studied by EPR spectroscopy. It has been shown that irradiation of the sample held in vacuo and cooled in zero magnetic field to 6.9 K leads to the appearance of a new EPR signal, which decays immediately after the irradiation is stopped. The appearance and disappearance of this new signal can be repeated many times at 6.9 K when we turn on/turn off the laser. We suppose that the generation of conduction band electrons by irradiation into the band gap of the γ-Fe{sub 2}O{sub 3} changes the superparamagnetic properties of NPs. Graphical Abstract: Features of the behavior of single-domain γ-Fe{sub 2}O{sub 3} nanoparticles formed in dendrimer were found by UV-Vis and EPR spectroscopy: “blue” shift in optical absorption, a significant increase in the band gap width and variation of superparamagnetic properties under light irradiation.

  4. Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Brennan, Michael C; Herr, John E; Nguyen-Beck, Triet S; Zinna, Jessica; Draguta, Sergiu; Rouvimov, Sergei; Parkhill, John; Kuno, Masaru

    2017-09-06

    The origin of the size-dependent Stokes shift in CsPbBr 3 nanocrystals (NCs) is explained for the first time. Stokes shifts range from 82 to 20 meV for NCs with effective edge lengths varying from ∼4 to 13 nm. We show that the Stokes shift is intrinsic to the NC electronic structure and does not arise from extrinsic effects such as residual ensemble size distributions, impurities, or solvent-related effects. The origin of the Stokes shift is elucidated via first-principles calculations. Corresponding theoretical modeling of the CsPbBr 3 NC density of states and band structure reveals the existence of an intrinsic confined hole state 260 to 70 meV above the valence band edge state for NCs with edge lengths from ∼2 to 5 nm. A size-dependent Stokes shift is therefore predicted and is in quantitative agreement with the experimental data. Comparison between bulk and NC calculations shows that the confined hole state is exclusive to NCs. At a broader level, the distinction between absorbing and emitting states in CsPbBr 3 is likely a general feature of other halide perovskite NCs and can be tuned via NC size to enhance applications involving these materials.

  5. Optical constants and band edge of amorphous zinc oxide thin films

    International Nuclear Information System (INIS)

    Khoshman, Jebreel M.; Kordesch, Martin E.

    2007-01-01

    The optical characteristics of amorphous zinc oxide (a-ZnO) thin films grown by radio frequency reactive magnetron sputtering on various substrates at temperature -8 -0.32, respectively. The band edge of the films on Si (100) and quartz has been determined by spectroscopic ellipsometry (3.39 ± 0.05 eV) and spectrophotometric (3.35 ± 0.05 eV) methods, respectively. From the angle dependence of the p-polarized reflectivity we deduce a Brewster angle of 60.5 deg. Measurement of the polarized optical properties shows a high transmissivity (81%-99%) and low absorptivity (< 5%) in the visible and near infrared regions at different angles of incidence. Also, we found that there was a higher absorptivity for wavelength < 370 nm. This wavelength, ∼ 370 nm, therefore indicated that the band edge for a-ZnO thin films is about 3.35 eV

  6. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-01

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge

  7. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    International Nuclear Information System (INIS)

    Kai, Chen; Ming-Qi, Cui; Fen, Yan; Li-Juan, Sun; Lei, Zheng; Chen-Yan, Ma; Shi-Bo, Xi; Yi-Dong, Zhao; Jia, Zhao

    2008-01-01

    We present magneto-optical (MO) Faraday spectra measured around the M 2,3 edges (60–70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF). A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges. The MO effect becomes resonantly enhanced at the M 2,3 edges, and accordingly large values for the rotation angle β of 1.85 ± 0.19° for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field, the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical. The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured

  8. Ion charge-state production and photoionization near the K edge in argon and potassium

    International Nuclear Information System (INIS)

    Berry, H.G.; Azuma, Y.; Cowan, P.L.; Gemmell, D.S.; LeBrun, T.; Amusia, M.Y.

    1994-01-01

    We have measured the time-of-flight charge distributions of ions of argon and potassium following x-ray absorption at energies near their respective K edges. We confirm previously observed enhancements of the higher charge states at energies up to 100 eV below the K edge in argon. The measurements confirm recent calculations suggesting excitation of a virtual 1s state in this energy range

  9. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  10. X-Ray K Absorption Edge Structures of Ligand Chlorine Ion in Some Cobalt Coordination Compounds

    Science.gov (United States)

    Obashi, Masayoshi; Matsukawa, Tokuo

    1983-03-01

    The X-ray Cl K absorption spectra in [Co(NH3)6]Cl3, [Co(NH3)5Cl]Cl2, trans-[Co(NH3)4Cl2]Cl and Cs2[CoCl4] are measured with a high-resolution vacuum two-crystal spectrometer. The spectra, except that of [Co(NH3)6]Cl3, show an extremely narrow absorption line at the absorption threshold. The result is interpreted on the basis of molecular orbital theory and it is proposed that the intensity of these narrow absorption lines depends on the chemical state between the cobalt and ligand chlorine ions. The narrow absorption line may well be attributed to transitions of the Cl 1s electron into the eg* antibonding orbitals having partially the 3p character of chlorine in [Co(NH3)5Cl]Cl2 and trans-[Co(NH3)4Cl2]Cl. In Cs2[CoCl4] it may be ascribed to the Cl 1s-t2* transitions.

  11. Analytical theory for the nuclear level shift of hadronic atoms

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Lisin, V.I.; Popov, V.S.

    1982-01-01

    The spectrum problem in the Coulomb potential distorted at small distances is considered. Nuclear shifts of 3-levels in p anti p and Σ - p atoms are calculated. The probabilities of radiative transitions from p-states to the shifted s-states in hadronic atom are also given. It is shown that the reconstruction of atomic levels switches to oscillation regime when absorption increases. The limits of applicability of the perturbation theory in terms of the scattering length for different values of absorption is discussed. An exactly solvable model, Coulomb plus Yamaguchi potential, is considered

  12. Photoluminescence and optical absorption spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kranjcec, M. [Department of Geotechnics, University of Zagreb, 7 Hallerova Aleja, Varazdin, 42000 (Croatia); Ruder Boskovic Institute, 54 Bijenicka Cesta, Zagreb, 10000 (Croatia); Studenyak, I.P. [Uzhhorod National University, 46 Pidhirna Str., Uzhhorod, 88000 (Ukraine); Azhniuk, Yu. M. [Institute of Electron Physics, Ukr. Nat. Acad. Sci., 21 Universytetska Str., Uzhhorod, 88000 (Ukraine)

    2005-08-01

    Temperature and compositional studies of photoluminescence and optical absorption edge spectra of {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} mixed crystals with x=0.1-0.4 are performed. Exciton and impurity-related photoluminescence bands are revealed at low temperatures and Urbach shape of the absorption edge is observed in the temperature range 77-300 K. Temperature and compositional dependences of the photoluminescence band spectral positions and halfwidths as well as optical pseudogap and absorption edge energy width are investigated. Mechanisms of radiative recombination and optical absorption as well as crystal lattice disordering processes in {gamma}{sub 1}-(Ga{sub x}In{sub 1-x}){sub 2}Se{sub 3} solid solutions are studied. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Control of Surface and Edge Oxidation on Phosphorene.

    Science.gov (United States)

    Kuntz, Kaci L; Wells, Rebekah A; Hu, Jun; Yang, Teng; Dong, Baojuan; Guo, Huaihong; Woomer, Adam H; Druffel, Daniel L; Alabanza, Anginelle; Tománek, David; Warren, Scott C

    2017-03-15

    Phosphorene is emerging as an important two-dimensional semiconductor, but controlling the surface chemistry of phosphorene remains a significant challenge. Here, we show that controlled oxidation of phosphorene determines the composition and spatial distribution of the resulting oxide. We used X-ray photoemission spectroscopy to measure the binding energy shifts that accompany oxidation. We interpreted these spectra by calculating the binding energy shift for 24 likely bonding configurations, including phosphorus oxides and hydroxides located on the basal surface or edges of flakes. After brief exposure to high-purity oxygen or high-purity water vapor at room temperature, we observed phosphorus in the +1 and +2 oxidation states; longer exposures led to a large population of phosphorus in the +3 oxidation state. To provide insight into the spatial distribution of the oxide, transmission electron microscopy was performed at several stages during the oxidation. We found crucial differences between oxygen and water oxidants: while pure oxygen produced an oxide layer on the van der Waals surface, water oxidized the material at pre-existing defects such as edges or steps. We propose a mechanism based on the thermodynamics of electron transfer to interpret these observations. This work opens a route to functionalize the basal surface or edges of two-dimensional (2D) black phosphorus through site-selective chemical reactions and presents the opportunity to explore the synthesis of 2D phosphorene oxide by oxidation.

  14. Distribution of solute atoms in β- and spinel Si6-zAlzOzN8-z by Al K-edge x-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Tatsumi, Kazuyoshi; Mizoguchi, Teruyasu; Yoshioka, Satoru; Tanaka, Isao; Yamamoto, Tomoyuki; Suga, Takeo; Sekine, Toshimori

    2005-01-01

    Local environments of solutes in β- and spinel Si 6-z Al z O z N 8-z are investigated by means of Al K x-ray absorption near-edge structure. The experimental spectra are found to be the same throughout the wide solubility range. This suggests that the local environments of Al are independent of the solute concentration. First-principles band-structure calculations are systematically made to interpret the experimental spectra. Effect of a core hole was included into the calculation. Theoretical spectra were obtained using variety of different model structures constructed by a set of plane-wave pseudopotentials calculations in our previous study [K. Tatsumi, I. Tanaka, H. Adachi, and M. Yoshiya, Phys. Rev. B 66, 165210 (2002)]. The numbers of models were 51 and 45 for both β and spinel, respectively. They are classified and averaged according to the local atomic structure of Al solutes. The combination of experimental spectra and theoretical results can unambiguously lead to the conclusion that Al atoms are preferentially coordinated by O atoms in both β and spinel phases. This is consistent with the conclusion obtained by the first-principles total-energy calculations. In the spinel phase, Al atoms are found to be located preferentially at the octahedral cationic site. This agrees with the conclusion in a recent report on the nuclear magnetic resonance experiment

  15. Mapping Catalytically Relevant Edge Electronic States of MoS2

    Science.gov (United States)

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  16. Quantitative uranium speciation with U M{sub 4,5}-edge HERFD absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Rossberg, Andre [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    This report gives a brief description of the quantitative uranium speciation performed by iterative transformation factor analysis (ITFA) of High Energy Resolution X-ray Fluorescence Detection (HERFD) data collected at the M{sub 4,5} edge.

  17. Influence of near-edge processes in the elemental analysis using X

    Indian Academy of Sciences (India)

    The near-edge processes, such as X-ray absorption fine structure (XAFS) andresonant ... away from the shell/subshell ionization thresholds of the attenuator element. ... The influence of XAFS to the attenuation coefficient depends upon the ...

  18. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  19. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-01-01

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  20. Use of Debye's series to determine the optimal edge-effect terms for computing the extinction efficiencies of spheroids.

    Science.gov (United States)

    Lin, Wushao; Bi, Lei; Liu, Dong; Zhang, Kejun

    2017-08-21

    The extinction efficiencies of atmospheric particles are essential to determining radiation attenuation and thus are fundamentally related to atmospheric radiative transfer. The extinction efficiencies can also be used to retrieve particle sizes or refractive indices through particle characterization techniques. This study first uses the Debye series to improve the accuracy of high-frequency extinction formulae for spheroids in the context of Complex angular momentum theory by determining an optimal number of edge-effect terms. We show that the optimal edge-effect terms can be accurately obtained by comparing the results from the approximate formula with their counterparts computed from the invariant imbedding Debye series and T-matrix methods. An invariant imbedding T-matrix method is employed for particles with strong absorption, in which case the extinction efficiency is equivalent to two plus the edge-effect efficiency. For weakly absorptive or non-absorptive particles, the T-matrix results contain the interference between the diffraction and higher-order transmitted rays. Therefore, the Debye series was used to compute the edge-effect efficiency by separating the interference from the transmission on the extinction efficiency. We found that the optimal number strongly depends on the refractive index and is relatively insensitive to the particle geometry and size parameter. By building a table of optimal numbers of edge-effect terms, we developed an efficient and accurate extinction simulator that has been fully tested for randomly oriented spheroids with various aspect ratios and a wide range of refractive indices.

  1. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    Science.gov (United States)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  2. Nanoscale Phase Separation and Lattice Complexity in VO2: The Metal–Insulator Transition Investigated by XANES via Auger Electron Yield at the Vanadium L23-Edge and Resonant Photoemission

    Directory of Open Access Journals (Sweden)

    Augusto Marcelli

    2017-12-01

    Full Text Available Among transition metal oxides, VO2 is a particularly interesting and challenging correlated electron material where an insulator to metal transition (MIT occurs near room temperature. Here we investigate a 16 nm thick strained vanadium dioxide film, trying to clarify the dynamic behavior of the insulator/metal transition. We measured (resonant photoemission below and above the MIT transition temperature, focusing on heating and cooling effects at the vanadium L23-edge using X-ray Absorption Near-Edge Structure (XANES. The vanadium L23-edges probe the transitions from the 2p core level to final unoccupied states with 3d orbital symmetry above the Fermi level. The dynamics of the 3d unoccupied states both at the L3- and at the L2-edge are in agreement with the hysteretic behavior of this thin film. In the first stage of the cooling, the 3d unoccupied states do not change while the transition in the insulating phase appears below 60 °C. Finally, Resonant Photoemission Spectra (ResPES point out a shift of the Fermi level of ~0.75 eV, which can be correlated to the dynamics of the 3d// orbitals, the electron–electron correlation, and the stability of the metallic state.

  3. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, April Susan Montoya [Univ.of California, Davis, CA (United States)

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  4. Ab initio calculation of the electronic absorption spectrum of liquid water

    International Nuclear Information System (INIS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-01-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  5. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    Science.gov (United States)

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  6. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    Science.gov (United States)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  7. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  8. Optical absorption and Faraday rotation in spin doped Cd1-xHgxSe : Mn crystals

    NARCIS (Netherlands)

    Savchuk, AI; Paranchich, SY; Paranchich, LD; Romanyuk, OS; Andriychuk, MD; Nikitin, PI; Tomlinson, RD; Hill, AE; Pilkington, RD

    1998-01-01

    Optical absorption spectra and the Faraday effect in crystals of Cd1-xHgxSe : Mn have been studied. The studied samples have been characterized abrupt absorption edge and transparency region with high transmission coefficient. The measured values of Verdet constant were considerably larger than in

  9. Low scatter edge blackening compounds for refractive optical elements

    International Nuclear Information System (INIS)

    Lewis, I.T.; Telkamp, A.R.; Ledebuhr, A.G.

    1989-01-01

    This paper reports on low scatter edge blackening compounds for refractive optical elements. Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric lenses toLawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-match absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflection or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane

  10. Refractive index of ternary and quaternary compound semiconductors below the fundamental absorption edge: Linear and nonlinear effects

    International Nuclear Information System (INIS)

    Jensen, B.; Torabi, A.

    1985-01-01

    The index of refraction n is calculated as a function of frequency and mole fraction x for the following compounds: Hg/sub l-x/Cd/sub x/Te, Al/sub x/Ga/sub l-x/As, and In/sub l-x/Ga/sub x/As/sub y/P/sub l-y/ lattice matched to InP. Lattice matching of In/sub l-x/Ga/sub x/As/sub y/P/sub l-y/ to InP requires that x = 0.466 y. The theoretical result for the refractive index is obtained from a quantum mechanical calculation of the dielectric constant of a compound semiconductor. It is given in terms of the basic material parameters of band gap energy, effective electron mass m/sub n/, effective heavy hole mass m/sub rho/, spin orbit splitting energy, lattice constant, and carrier concentration n/sub e/ or rho for n-type or rho-type materials, respectively. If these quantities are known as functions of mole fraction x, there are no adjustable parameters involved. A negative change in the refractive index near the fundamental absorption edge is predicted on passing radiation through a crystal if the change in carrier concentration of the initially unoccupied conduction band is assumed proportional to internal intensity I. Comparison of theory with experimental data is given

  11. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    Science.gov (United States)

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  12. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Vorwerk, Christian [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Hartmann, Claudia [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Cocchi, Caterina [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Sadoughi, Golnaz [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Habisreutinger, Severin N. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado, United States; Félix, Roberto [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Wilks, Regan G. [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bär, Marcus [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Draxl, Claudia [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L3 and the Pb M5 edges of the methylammonium lead iodide (MAPbI3) hybrid inorganic-organic perovskite and its binary phase PbI2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  13. Multiple scattering theory of X-ray absorption. A review

    International Nuclear Information System (INIS)

    Fonda, L.

    1991-11-01

    We review the basic elements of the theory of X-ray absorption using the tools provided by the theory of multiple scattering. A momentum space approach of clear physical insight is used where the final formulas expressing EXAFS and XANES, i.e. the structures appearing in the absorption coefficient above the edge of a deep core level threshold, are given in terms of eigenstates of the photoelectron momentum. A simple graphic representation is given for the multiple scattering function. (author). 38 refs, 4 figs, 1 tab

  14. Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization

    Energy Technology Data Exchange (ETDEWEB)

    Kang, San; Sharma, Rahul; Sim, Jae-Kwan [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2013-06-25

    Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se{sub 2} absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se{sub 2} (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10{sup 5} cm{sup −1} for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS

  15. A heuristic approach to edge detection in on-line portal imaging

    International Nuclear Information System (INIS)

    McGee, Kiaran P.; Schultheiss, Timothy E.; Martin, Eric E.

    1995-01-01

    Purpose: Portal field edge detection is an essential component of several postprocessing techniques used in on-line portal imaging, including field shape verification, selective contrast enhancement, and treatment setup error detection. Currently edge detection of successive fractions in a multifraction portal image series involves the repetitive application of the same algorithm. As the number of changes in the field is small compared to the total number of fractions, standard edge detection algorithms essentially recalculate the same field shape numerous times. A heuristic approach to portal edge detection has been developed that takes advantage of the relatively few changes in the portal field shape throughout a fractionation series. Methods and Materials: The routine applies a standard edge detection routine to calculate an initial field edge and saves the edge information. Subsequent fractions are processed by applying an edge detection operator over a small region about each point of the previously defined contour, to determine any shifts in the field shape in the new image. Failure of this edge check indicates that a significant change in the field edge has occurred, and the original edge detection routine is applied to the image. Otherwise the modified edge contour is used to define the new edge. Results: Two hundred and eighty-one portal images collected from an electronic portal imaging device were processed by the edge detection routine. The algorithm accurately calculated each portal field edge, as well as reducing processing time in subsequent fractions of an individual portal field by a factor of up to 14. Conclusions: The heuristic edge detection routine is an accurate and fast method for calculating portal field edges and determining field edge setup errors

  16. Studies of the X-ray absorption spectra of some methylcyano esters

    International Nuclear Information System (INIS)

    Takahashi, Osamu; Saito, Ko; Mitani, Masaki; Yoshida, Hiroaki; Tahara, Fumitaka; Sunami, Tetsuji; Waki, Keiichiro; Senba, Yasunori; Hiraya, Atsunari; Pettersson, Lars G.M.

    2005-01-01

    Density functional theory (DFT) has been applied to simulate core-excited photoabsorption spectra for some methylcyano esters within a transition potential (TP) framework. Our calculations for methylcyano formate at the N and O K-edges are consistent with previous experimental spectra. For methylcyano acetate the photoabsorption spectra at the N and O K-edges were reinvestigated experimentally. Contrary to the previous experiment, only one main peak was observed at the N K-edge and this peak was assigned to N(1s) ->π* excitation. This result was supported by our theoretical calculations. The general trends in the X-ray absorption spectra and the site-specific bond scission of methylcyano esters at the N and O K-edges are also discussed

  17. Optical absorption in SrC4H4O6·3H2O crystals

    International Nuclear Information System (INIS)

    Arora, S.K.; Patel, Vipul; Kothari, Anjana; Chudasama, Bhupendra

    2004-01-01

    Study of optical absorption in the gel-grown strontium tartrate trihydrate (STT) single crystals measured in UV-vis range at room temperature reveals transitions involving absorption and emission of phonons. Based on the theory of interband optical absorptions, the electronic transition near the fundamental absorption edge is analysed. Some feeble disorder in the crystal is conceived to be present. The analysis carried out hereunder leads to estimation of energy of the lattice phonons involved

  18. Optical absorption of BaF2 crystals with different prehistory when irradiated by high-energy electrons

    International Nuclear Information System (INIS)

    Chinkov, E P; Stepanov, S A; Shtan'ko, V F; Ivanova, T S

    2016-01-01

    The spectra of stable optical absorption of BaF 2 crystals containing uncontrollable impurities after irradiation with 3 MeV electrons are studied at room temperature. The dependence of the efficiency of stable color accumulation in the region of emerging crossluminescence on the absorption coefficients measured near the fundamental absorption edge in unirradiated crystals of various prehistory is traced. (paper)

  19. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Sigircik, Gokmen, E-mail: gsigircik@cu.edu.tr [Chemistry Department, University of Cukurova, 01330 Adana (Turkey); Erken, Ozge [Department of Physics, Faculty Science and Letters, Adiyaman University, 02040 Adiyaman (Turkey); Tuken, Tunc [Chemistry Department, University of Cukurova, 01330 Adana (Turkey); Gumus, Cebrail [Physics Department, University of Cukurova, 01330 Adana (Turkey); Ozkendir, Osman M. [Department of Energy Systems Engineering Tarsus Technology Faculty, Mersin University, 33400 Tarsus (Turkey); Ufuktepe, Yuksel [Physics Department, University of Cukurova, 01330 Adana (Turkey)

    2015-06-15

    Highlights: • Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. • Uniform and well-defined ZnO nano-towers and rods have been obtained via electrochemical deposition. • The presence of chloride ions altered the nucleation rate of ZnO particles on ITO substrates and resulting crystallographic properties. • Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valance band electrons is different. - Abstract: Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn{sup 2+} and OH{sup −}) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (T{sub c}) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated E{sub g} values are in the range 3.28–3.41 eV and 3.22–3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm{sup 2} V{sup −1} s{sup −1} and 126.2 to 204.7 cm{sup 2} V{sup −1} s{sup −1} for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge

  20. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    International Nuclear Information System (INIS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-01-01

    Highlights: • Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. • Uniform and well-defined ZnO nano-towers and rods have been obtained via electrochemical deposition. • The presence of chloride ions altered the nucleation rate of ZnO particles on ITO substrates and resulting crystallographic properties. • Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valance band electrons is different. - Abstract: Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn 2+ and OH − ) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (T c ) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated E g values are in the range 3.28–3.41 eV and 3.22–3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm 2 V −1 s −1 and 126.2 to 204.7 cm 2 V −1 s −1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core

  1. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Zhang, Ruiqi; Yang, Chao; Yang, Jinlong

    2017-11-01

    Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy. Furthermore, our calculations also predict that the maximum energy conversion efficiency of heterojunction solar cells consisting of different edge-modified PNRs can be as high as 20% for photocatalytic water splitting.

  2. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    International Nuclear Information System (INIS)

    Li, M.; Breizman, B. N.; Zheng, L. J.; Chen, Eugene Y.

    2015-01-01

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeV alpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuum absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode

  3. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Michel [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Bagus, Paul S. [Department; Arenholz, Elke [Advanced; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2017-10-02

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

  4. Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals

    International Nuclear Information System (INIS)

    Leon, M.; Merino, J.M.; Levcenko, S.; Nateprov, A.; Tezlevan, V.; Arushanov, E.; Syrbu, N.N.

    2006-01-01

    Optical absorption spectra of CuIn 5 Se 8 and CuGa 3 Se 5 single crystals have been investigated. The energy gap E g for CuIn 5 Se 8 (CuGa 3 Se 5 ) was found to be varied from 1.27(1.79) to 1.21(1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Paessler model. The Einstein temperature {222(267)K}, the Debye temperature {310(380)K}, a dimensionless constant related to the electron-phonon coupling {1.62(2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35(39) meV} have been estimated for CuIn 5 Se 8 (CuGa 3 Se 5 ). It was also found that the major contribution of phonons to the shift of E g versus temperature in CuIn 5 Se 8 (CuGa 3 Se 5 ) is mainly from optical phonons. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    Science.gov (United States)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    DEFF Research Database (Denmark)

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.

    2015-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged...... measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments...

  7. One-Photon Absorption Properties from a Hybrid Polarizable Density Embedding/Complex Polarization Propagator Approach for Polarizable Solutions

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia

    2018-01-01

    We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...

  8. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B. [Department of Physics, Technion (Israel); Brosch, Noah [The Wise Observatory and School of Physics and Astronomy, Tel Aviv University (Israel); Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University (Netherlands)

    2017-02-20

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  9. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    International Nuclear Information System (INIS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-01-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  10. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.

    Science.gov (United States)

    Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo

    2016-10-01

    Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Lifshitz Tails for the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    In this paper we consider the interband light absorption coefficient (ILAC) for various models. We show that at the lower and upper edges of the spectrum the Lifshitz tails behaviour of the density of states implies similar behaviour for the ILAC at appropriate energies. The Lifshitz tails property is also exhibited at some points ...

  12. Pressure Swing Absorption Device and Process for Separating CO{sub 2} from Shifted Syngas and its Capture for Subsequent Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sirkar, Kamalesh; Jie, Xingming; Chau, John; Obuskovic, Gordana

    2013-03-31

    Using the ionic liquid (IL) 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]) as the absorbent on the shell side of a membrane module containing either a porous hydrophobized ceramic tubule or porous hydrophobized polyether ether ketone (PEEK) hollow fiber membranes, studies for CO{sub 2} removal from hot simulated pre-combustion shifted syngas were carried out by a novel pressure swing membrane absorption (PSMAB) process. Helium was used as a surrogate for H{sub 2} in a simulated shifted syngas with CO{sub 2} around 40% (dry gas basis). In this cyclic separation process, the membrane module was used to achieve non-dispersive gas absorption from a high-pressure feed gas (689-1724 kPag; 100-250 psig) at temperatures between 25-1000C into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by among other cycle steps controlled desorption of the absorbed gases from the liquid in the rest of the cycle. Two product streams were obtained, one He-rich and the other CO{sub 2}-rich. Addition of polyamidoamine (PAMAM) dendrimer of generation 0 to IL [bmim][DCA] improved the system performance at higher temperatures. The solubilities of CO{sub 2} and He were determined in the ionic liquid with or without the dendrimer in solution as well as in the presence or absence of moisture; polyethylene glycol (PEG) 400 was also studied as a replacement for the IL. The solubility selectivity of the ionic liquid containing the dendrimer for CO{sub 2} over helium was considerably larger than that for the pure ionic liquid. The solubility of CO{sub 2} and CO{sub 2}-He solubility selectivity of PEG 400 and a solution of the dendrimer in PEG 400 were higher than the corresponding ones in the IL, [bmim][DCA]. A mathematical model was developed to describe the PSMAB process; a numerical solution of the governing equations described successfully the observed performance of the PSMAB process for the pure ionic liquid-based system.

  13. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    Science.gov (United States)

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Effect of algae and water on water color shift

    Science.gov (United States)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  15. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  16. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  17. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    Science.gov (United States)

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  18. Improved edge charge exchange recombination spectroscopy in DIII-D.

    Science.gov (United States)

    Chrystal, C; Burrell, K H; Grierson, B A; Haskey, S R; Groebner, R J; Kaplan, D H; Briesemeister, A

    2016-11-01

    The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.

  19. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    Science.gov (United States)

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  20. Flap Side Edge Liners for Airframe Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  1. UV absorption by cerium oxide nanoparticles/epoxy composite thin films

    International Nuclear Information System (INIS)

    Dao, Ngoc Nhiem; Luu, Minh Dai; Nguyen, Quang Khuyen; Kim, Byung Sun

    2011-01-01

    Cerium oxide (CeO 2 ) nanoparticles have been used to modify properties of an epoxy matrix in order to improve the ultra-violet (UV) absorption property of epoxy thin films. The interdependence of mechanical properties, UV absorption property and the dispersed concentration of CeO 2 nanoparticles was investigated. Results showed that, by increasing the dispersed concentration of CeO 2 nanoparticles up to 3 wt%, tensile modulus increases while two other mechanical properties, namely tensile strength and elongation, decrease. The UV absorption peak and the absorption edges of the studied thin films were observed in the UV-Vis absorption spectra. By incorporating CeO 2 nanoparticles into the epoxy matrix, an absorption peak appears at around 318 nm in UV-Vis spectra with increasing CeO 2 concentration from 0.1 to 1.0 wt%. Scanning electron microscopy (SEM) images revealed that a good dispersion of nanoparticles in the epoxy matrix by an ultrasonic method was achieved

  2. Resonant photoelectron spectroscopy at the Mo 4p→4d absorption edge in MoS2

    International Nuclear Information System (INIS)

    Lince, J.R.; Didziulis, S.V.; Yarmoff, J.A.

    1991-01-01

    A systematic study has been conducted of the resonant behavior of the valence-band photoelectron spectrum of MoS 2 for hν=26--70 eV, spanning the Mo 4p→4d transition region. A broad Fano-like resonance appears at ∼42 eV in the constant-initial-state (CIS) intensity plot of the d z 2 peak near the valence-band maximum [∼2 eV binding energy (BE)], confirming its predominantly Mo 4d character. A second shoulder on the higher-hν side of the maximum in the d z 2 CIS intensity plot is suggested to result from transitions to unoccupied states in the 5sp band ∼10 eV above E F , by comparison with a partial-yield spectrum and previous inverse-photoemission data. The region of the valence band in the range 3--4.5-eV BE also exhibits resonant behavior, indicating Mo 4d character, although somewhat less than for the d z 2 peak. The 5--7-eV BE range does not exhibit resonance behavior at the Mo 4p edge and, therefore, contains negligible Mo 4d character. A feature at ∼30 eV in the CIS intensity plot for the 5--7-eV BE range could not be definitively assigned in this study, but may be due to a resonance between direct photoemission and a process involving absorption and autoionization of electronic states that contain Mo 5s and 5p character

  3. Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2:Er monoliths grown by sol-gel process

    Science.gov (United States)

    Palomino-Merino, R.; Trejo-Garcia, P.; Portillo-Moreno, O.; Jiménez-Sandoval, S.; Tomás, S. A.; Zelaya-Angel, O.; Lozada-Morales, R.; Castaño, V. M.

    2015-08-01

    Nanocrystalline monoliths of Er doped TiO2 were prepared by the sol-gel technique, by controlling the Er-doping levels into the TiO2 precursor solution. As-prepared and annealed in air samples showed the anatase TiO2 phase. The average diameter of the nanoparticles ranged from 19 to 2.6 nm as the nominal concentration of Er varies from 0% to 7%, as revealed by EDS analysis in an electron microscope. Photo Acoustic Spectroscopy (PAS) allowed calculate the forbidden band gap, evidencing an absorption edge at around 300 nm, attributed to TiO2 and evidence of electronic transitions or Er3+. The Raman spectra, corresponding to the anatase phase, show the main phonon mode Eg(1) band position at 144 cm-1 with a red shift for the annealing samples.

  4. Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.

    Science.gov (United States)

    Schonberger, Peter

    The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.

  5. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K-edge XANES data

    International Nuclear Information System (INIS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D.

    2005-01-01

    Hole-doped perovskites such as La 1-x Ca x MnO 3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO 3 and CaMnO 3 compounds; they are the end compounds of the doped manganite series La x Ca 1-x MnO 3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds

  6. Oxygen K-edge absorption spectra of small molecules in the gas phase

    International Nuclear Information System (INIS)

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O 2 , CO, CO 2 and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs

  7. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  8. The fundamental parameter approach of quantitative XRFA- investigation of photoelectric absorption coefficients

    International Nuclear Information System (INIS)

    Shaltout, A.

    2003-06-01

    The present work describes some actual problems of quantitative x-ray fluorescence analysis by means of the fundamental parameter approach. To perform this task, some of the main parameters are discussed in detail. These parameters are photoelectric cross sections, coherent and incoherent scattering cross sections, mass absorption cross sections and the variation of the x-ray tube voltage. Photoelectric cross sections, coherent and incoherent scattering cross sections and mass absorption cross sections in the energy range from 1 to 300 keV for the elements from Z=1 to 94 considering ten different data bases are studied. These are data bases given by Hubbell, McMaster, Mucall, Scofield, Xcom, Elam, Sasaki, Henke, Cullen and Chantler's data bases. These data bases have been developed also for an application in fundamental parameter programs for quantitative x-ray analysis (Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA), Electron Probe Microanalysis (EPMA), X-Ray Photoelectron Spectroscopy (XPS) and Total Electron Yield (TEY)). In addition a comparison is performed between different data bases. In McMaster's data base, the missing elements (Z=84, 85, 87, 88, 89, 91, and 93) are added by using photoelectric cross sections of Scofield's data base, coherent as well as incoherent scattering cross sections of Elam's data base and the absorption edges of Bearden. Also, the N-fit coefficients of the elements from Z=61 to 69 are wrong in McMaster data base, therefore, linear least squares fits are used to recalculate the N-fit coefficients of these elements. Additionally, in the McMaster tables the positions of the M- and N-edges of all elements with the exception of the M1- and N1- edges are not defined as well as the jump ratio of the edges. In the present work, the M- and N-edges and the related jump ratios are calculated. To include the missing N-edges, Bearden's values of energy edges are used. In Scofield's data base, modifications include check and correction

  9. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    International Nuclear Information System (INIS)

    Chen Xing; Chu Wangsheng; Cai Quan; Xia Dingguo; Wu Zhonghua; Wu Ziyu

    2006-01-01

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L 2,3 edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced

  10. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); University of Science and Technology of China, Hefei, 230036 (China); Cai Quan [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Xia Dingguo [College of Environmental and Energy Engineering, Beijing University of Technology, 100022 Beijing (China); Wu Zhonghua [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for Nanoscience and Technology (China)]. E-mail: wuzy@ihep.ac.cn

    2006-11-15

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L{sub 2,3} edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced.

  11. Oxygen K-edge absorption spectra of small molecules in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  12. Cell thickness of UV absorption by the cell: relation to UV action spectrum shift in mammalian cells in culture

    International Nuclear Information System (INIS)

    Sakharov, V.H.; Voronkova, L.N.; Blokhin, A.V.

    1985-01-01

    By means of reconstruction of series half - thin transverse sections the three - dimensional morphometry of SPEV cells for a series of their specific states in culture is performed: for exponential growth in a monolayer, in a merged monolayer, in the mitosis phase, for giant cells and suspension cells. In the monolayer the cell thickness in its central part depended mainly on the nucleus thickness and in average changed but slightly despite a wide range of changes in volumes of nuclei and cells and their density in culture. The cell thickness has noticeably increased in mitosis. For the above states of cells UV radiation absorption spectra are determined. It is shown that a certain shift of action spectrus of death of mammalian cells as compared with that for bacterial cell can be a seguence of selfshielding and not differences in the nature of active chromophores

  13. Field demonstration of a portable, X-ray, K-edge heavy-metal detector

    International Nuclear Information System (INIS)

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-01-01

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy metal detector that measures the level of heavy metal contamination inside closed containers in a nondestructive, non-invasive way. The device employs a volumetric technique that takes advantage of the X-ray absorption characteristics of heavy elements, and is most suitable for characterization of contamination inside pipes, processing equipment, closed containers, and soil samples. The K-edge detector is a fast, efficient, and cost-effective in situ characterization tool. More importantly, this device will enhance personnel safety while characterizing radioactive and toxic waste. The prototype K-edge system was operated at the Materials and Chemistry Laboratory User Facility at the Oak Ridge K-25 Site during February 1997. Uranium contaminated pipes and valves from a UF 6 feed facility were inspected using the K-edge technique as well as a baseline nondestructive assay method. Operation of the K-edge detector was demonstrated for uranium contamination ranging from 10 to 6,000 mg/cm 2 and results from the K-edge measurements were found to agree very well with nondestructive assay measurements

  14. Full-waveform data for building roof step edge localization

    Science.gov (United States)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  15. Temperature and isotope effects on the shape of the optical absorption spectrum of solvated electrons in water

    International Nuclear Information System (INIS)

    Jou, F.Y.; Freeman, G.R.

    1979-01-01

    The optical absorption spectra of solvated electrons in H 2 O and D 2 O have been measured at 274, 298, 340, and 380 K. All the spectra were fitted very well with the Gaussian and Lorentzian shape functions at the low- and high-energy sides of the absorption maximum, respectively, excluding the high-energy tail. The spectrum does not shift uniformly with temperature. The temperature coefficient of absorption decreases rapidly with increasing energy on the low-energy side of the absorption maximum, while it changes only slightly on the high-energy side. When the temperature increases the Lorentzian width remains constant, the Gaussian width varies proportionally to T/sup 1/2/, and the spectrum becomes more symmetrical. On going from H 2 O to D 2 O we found that the spectrum at a given A/A/sub max/ shows a shift of +0.05 eV in the low-energy wing. The shift decreases with increasing energy, reaching 0.03 eV at the absorption maximum. On the high-energy side of the band the shift becomes negative at hν > 2.2 eV. The shift on the low-energy side seems to be related to the difference of the zero-point energies of the inter- and intramolecular vibrations. The wavelength dependence of the temperature and isotope effects is consistent with the model that different types of excitation occur on the low- and high-energy sides of the absorption band. The temperature and isotopic dependence of the low-energy side are consistent with its width being due to phonon interactions

  16. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    , which has an asymptotically stable periodic solution (u(t), x(t)) = (cos(ωt + θ), sin(ωt + θ)), where ω s is the sawtooth frequency and θ is an arbitrary phase shift. There is a spontaneous reversal of shear flow before the dynamics can settle onto a limit cycle in the negative shear flow domain. We see that a periodic power input can suppress this reversal. In further work to be presented it is shown that inductive and MHD coupling can also modulate the edge dynamics, and examples are given of sawtooth-controlled ELMs and confinement transitions. (author)

  17. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  18. A cutting-edge solution for 1µm laser metal processing

    Science.gov (United States)

    Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.

    2017-02-01

    The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.

  19. Bayesian inversion from sabine absorption coefficients to flow resistivity values for porous absorbers

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2015-01-01

    to determine the flow resistivity of a porous material from the Sabine absorption coefficient was investigated through a reliable model. The model for the flow resistivity estimation is based on an equivalent fluid model, i.e., Miki’s model, together with the most advanced model that accounts for edge...... diffraction, named Thomasson’s finite size correction. As input data, a set of the Sabine absorption coefficients in a recent absorption round robin test in 13 European chambers was used. Finally, the flow resistivity of the test specimen is characterized via the Bayesian framework, together...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Imidazolium ionic liquids; UV-Vis absorption; excitation wavelength-dependent fluorescence; red-edge effect; solvent effect. ... gives rise to the long absorption tail and shifting fluorescence maximum, which appears to be common to most of the imidazolium ionic liquids, is evident from the effect of the conventional solvents.

  1. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    International Nuclear Information System (INIS)

    Püttner, Ralph; Schmidt-Weber, Philipp; Kampen, Thorsten; Kolczewski, Christine; Hermann, Klaus; Horn, Karsten

    2017-01-01

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  2. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Püttner, Ralph [Department of Physics, Freie Universität Berlin, 14195 Berlin (Germany); Schmidt-Weber, Philipp [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Kampen, Thorsten [SPECS Surface Nano Analysis GmbH, 13355 Berlin (Germany); Kolczewski, Christine [Deutsches Museum München, 80538 Munich (Germany); Hermann, Klaus [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Horn, Karsten, E-mail: horn@fhi-berlin.mpg.de [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany)

    2017-02-15

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  3. Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction

    Science.gov (United States)

    Mahalik, S. S.; Kundu, M.

    2018-06-01

    Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.

  4. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  5. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  6. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  7. Optical absorption of carbon-gold core-shell nanoparticles

    Science.gov (United States)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  8. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  9. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  10. Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2008-01-08

    We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.

  11. Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

    International Nuclear Information System (INIS)

    Saykally, Richard J; Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2008-01-01

    We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings

  12. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Science.gov (United States)

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  13. Direct and Versatile Synthesis of Red-Shifted Azobenzenes

    NARCIS (Netherlands)

    Hansen, Mickel J.; Lerch, Michael M.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    A straightforward synthesis of azobenzenes with bathochromically-shifted absorption bands is presented. It employs an ortho-lithiation of aromatic substrates, followed by a coupling reaction with aryldiazonium salts. The products are obtained with good to excellent yields after simple purification.

  14. Effect of chain conformation on micro-mechanical behaviour of MEH ...

    Indian Academy of Sciences (India)

    In contrast with C film, the band-edge absorption and maximum emission for T film shifted to the longer wavelength. An analysis fromTEM photograph, absorption and photoluminescence spectra indicated that different chain conformation presented in these two kinds of films. The nanoindentation test showed that the elastic ...

  15. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique....... Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of nearinfrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  16. Impact of rotating resonant magnetic perturbation fields on plasma edge electron density and temperature

    International Nuclear Information System (INIS)

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Reiser, D.; Unterberg, B.; Lehnen, M.; Reiter, D.; Samm, U.; Jakubowski, M.W.

    2012-01-01

    Rotating resonant magnetic perturbation (RMP) fields impose a characteristic modulation to the edge electron density n e (r, t) and temperature T e (r, t) fields, which depends on the relative rotation f rel between external RMP field and plasma fluid. The n e (r, t) and T e (r, t) fields measured in the edge (r/a = 0.9–1.05) of TEXTOR L-mode plasmas are in close correlation with the local magnetic vacuum topology for low relative rotation f rel = −0.2 kHz. In comparison with the 3D neutral and plasma transport code EMC3-Eirene, this provides substantial experimental evidence that for low relative rotation level and high resonant field amplitudes (normalized radial field strength B r 4/1 /B t =2×10 -3 ), a stochastic edge with a remnant island chain dominated by diffusive transport exists. Radially outside a helical scrape-off layer, the so-called laminar zone embedded into a stochastic domain is found to exist. In contrast for high relative rotation of f rel = 1.8 kHz, the measured modulation of n e is shifted by π/2 toroidally with respect to the modelled vacuum topology. A pronounced flattening in T e (r) and a reduction in n e (r) is measured at the resonant flux surface and represents a clear signature for a magnetic island, which is phase shifted with respect to the vacuum island position. A correlated shift of the laminar zone radially outwards at the very plasma edge is observed suggesting that the actual near-field structure at the perturbation source is determined by the plasma response as well. (paper)

  17. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    Science.gov (United States)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  18. Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas

    Science.gov (United States)

    Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro

    2013-11-01

    Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.

  19. Extended x-ray absorption fine structure studies of amorphous and crystalline Si-Ge alloys with synchrotron radiation

    International Nuclear Information System (INIS)

    Kajiyama, Hiroshi

    1988-01-01

    Extended X-ray absorption fine structure (EXAFS) is a powerful probe to study the local structure around the atom of a specific element. In conventional EXAFS analysis, it has been known that reliable structures are obtained with the different values of absorption edge energy for different neighboring atoms. It is shown in this study that the Ge-K edge EXAFS resulting from the Ge-Ge and Ge-Si bonds in hydrogenated amorphous Si-Ge alloys was able to be excellently explained by a unique absorption edge energy value, provided that a newly developed formula based on the spherical wave function of photoelectrons is used. The microscopic structures of hydrogenated amorphous Si-Ge alloys and crystalline Si-Ge alloys have been determined using the EXAFS method. The lengths of Ge-Ge and Ge-Si bonds were constant throughout their entire composition range, and it was found that the length of Ge-Si bond was close to the average value of the bond lengths of both Ge and Si crystals. In crystalline Si-Ge alloys, it has been shown that the bonds relaxed completely, while the lattice constant varied monotonously with the composition. (Kako, I.)

  20. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    Science.gov (United States)

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  1. Acoustic absorption behaviour of an open-celled aluminium foam

    CERN Document Server

    Han Fu Sheng; Zhao Yu Yuan; Gibbs, B

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, r...

  2. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  3. Two-phonon absorption spectra in CuInSe2

    International Nuclear Information System (INIS)

    Sobotta, H.; Neumann, H.; Kissinger, W.; Riede, V.; Kuehn, G.

    1981-01-01

    An attempt was made to measure and to analyse phonon combination mode spectra of CuInSe 2 and in this way to determine the phonon mode frequencies unknown so far. Considering the absorption coefficient spectra, there are to well-pronounced peaks at 405 and 428 cm -1 at room temperature which are shifted to 412 and 433 cm -1 , respectively, at 105 K. Accounting for the fact that the absorption peaks at 405 and 428 cm -1 show the same temperature shift, it seems to be not unreasonable to assume that all the phonon modes participating in these absorption processes are characterized by the same temperature dependence of the mode frequencies. The corresponding mode Grueneisen parameters have been estimated using the thermal expansion coefficients for CuInSe 2 . Values of 1.7 to 2.0 were obtained being nearly of the same magnitude as the values of the high-energy zone-center modes in CuAlS 2 and CuGaS 2 derived from high-pressure Raman scattering studies

  4. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  5. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    Science.gov (United States)

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  6. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    Science.gov (United States)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  7. Comparative Investigation of Guided Fuzzy Clustering and Mean Shift Clustering for Edge Detection in Electrical Resistivity Tomography Images of Mineral Deposits

    Science.gov (United States)

    Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li

    2014-05-01

    Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods

  8. Absorption band Q model for the earth

    International Nuclear Information System (INIS)

    Anderson, D.L.; Given, J.W.

    1982-01-01

    Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463

  9. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  10. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  11. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  12. Automated generation and ensemble-learned matching of X-ray absorption spectra

    Science.gov (United States)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-03-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  13. A measuring method of photo-electric cross section. Application to high-Z elements between 40 keV and 220 keV. Measurement of K absorption edge energy of Au, Th, U, Pu

    International Nuclear Information System (INIS)

    Chartier, J.-L.

    1977-09-01

    This study first describes a bent crystal monochromator developed for the production of monochromatic beams in a continuous energy range from 30 to 250 keV; it is completed by a metrological application of the device (determination of K absorption edge energy of Au, Th, U, Pu). A method and the associated experimental procedure were developed to measure the photo-electric cross section for high-Z elements; the results are presented with a relative uncertainty ranging between 3 and 6%. Finally, the experimental values are compared with values calculated from theories using self-consistent potential models [fr

  14. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    Science.gov (United States)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  15. Effect of {alpha}-Fe{sub 2}O{sub 3} addition on the morphological, optical and decolorization properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Mirzaie, Rasol, E-mail: mirzai_r@yahoo.com [Dep. of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 167855-163, Tehran (Iran, Islamic Republic of); Kamrani, Firouzeh [Masters Student in Physical Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 167855-163, Tehran (Iran, Islamic Republic of); Anaraki Firooz, Azam [Dep. of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 167855-163, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali [Oil and Gas Processing Center of Excellence, School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Different morphologies of Fe{sub 2}O{sub 3}/ZnO nanocomposites synthesized via simple solid state reaction method. Black-Right-Pointing-Pointer Various Fe{sup 3+}/Zn{sup 2+} ratios affected on morphology, size and optical absorption. Black-Right-Pointing-Pointer addition of Fe{sub 2}O{sub 3} shifted the absorption edge to the visible region. Black-Right-Pointing-Pointer Amount of added Fe{sub 2}O{sub 3} strongly affected the decolorization of azo dye under visible light. - Abstract: Visible light sensitive photocatalysts of Fe{sub 2}O{sub 3}/ZnO nanocomposites were prepared by a simple solid-state reaction method, using zinc acetate, {alpha}-Fe{sub 2}O{sub 3} and sodium hydroxide at room temperature. The products were characterized by scanning electron microscopy, powder X-ray diffraction, N{sub 2} adsorption-desorption measurement, UV-vis absorption, and photoluminescence spectroscopy and used for photodecolorization of Congo red. The characterization results showed that the morphology, crystallite size, BET surface area and optical absorption of the samples varied significantly with the Fe{sup 3+} to Zn{sup 2+} ratios. The nanocomposites show two absorption edges at ultraviolet and visible region. The optical band gap values of these nanocomposites were calculated to be about 3.98-3.81 eV and 2.88-2.98 eV, which show a red shift from that of pure ZnO. These red shifts are related to the formation of Fe s-levels below the conductive band edge of ZnO and effectively extend the absorption edge into the visible region. The growth mechanisms of the samples are proposed. These nanocomposites showed high decolorization ability in visible light with wavelength up to about 400 nm. Among the samples, Fe{sub 2}O{sub 3}/ZnO nanoflower (molar ratio of Fe{sup 3+} to Zn{sup 2+} is 1:100) exhibited higher decolorization efficiency than the other nanocomposites. It could be considered as a promising photocatalyst for dyes treatment.

  16. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  17. The X-ray photoabsorption spectrum of potassium near the K-edge

    International Nuclear Information System (INIS)

    Azuma, Y.; Berry, H.G.; Cowan, P.L.; Gemmell, D.S.; LeBrun, T.

    1996-01-01

    The authors have used a heat-pipe target in an X-ray beam to obtain photoabsorption spectra of potassium at the K- and KM-edges, in the photon energy range 3,600 to 3,650 eV. Preliminary identifications of most of the peaks observed are made using Dirac Hartree-Fock calculations. They compare these results with those obtained previously in closed-shell rare gas absorption spectra

  18. Redshift of the purple membrane absorption band and the deprotonation of tyrosine residues at high pH: Origin of the parallel photocycles of trans-bacteriorhodopsin

    OpenAIRE

    Balashov, S. P.; Govindjee, R.; Ebrey, T. G.

    1991-01-01

    At high pH (> 8) the 570 nm absorption band of all-trans bacteriorhodopsin (bR) in purple membrane undergoes a small (1.5 nm) shift to longer wavelengths, which causes a maximal increase in absorption at 615 nm. The pK of the shift is 9.0 in the presence of 167 mM KCl, and its intrinsic pK is ∼8.3. The red shift of the trans-bR absorption spectrum correlates with the appearance of the fast component in the light-induced L to M transition, and absorption increases at 238 and 297 nm which are a...

  19. Charge-transfer and Mott-Hubbard Excitations in FeBo3: Fe K-edge resonant Inelastic x-ray scattering study

    International Nuclear Information System (INIS)

    Kim, J.; Shvydko, Y.

    2011-01-01

    Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO 3 single crystal reveal a wealth of information on ∼ 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s - -3d) and the main-edge (1s - -4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO 3 based on the experimental data.

  20. Incorporation of chromium into TiO2 nanopowders

    International Nuclear Information System (INIS)

    Kollbek, Kamila; Sikora, Marcin; Kapusta, Czesław; Szlachetko, Jakub; Radecka, Marta; Lyson-Sypien, Barbara; Zakrzewska, Katarzyna

    2015-01-01

    Highlights: • Nanopowders of TiO 2 :Cr with different amount of Cr dopant were obtained by flame spray synthesis, FSS. • Increase in the optical absorption and a shift of the absorption edge were observed upon Cr doping. • HERFD-XANES measurements indicated that the average valence state of titanium ions was preserved. • Increasing magnetic susceptibility of a paramagnetic character was observed upon Cr doping. - Abstract: The paper reports on the results of a study of optical, electronic and magnetic properties of TiO 2 nanopowders doped with Cr ions. Diffused reflectance spectra reveal an increase in the optical absorption and a shift of the absorption edge towards lower energies upon Cr doping. Direct information on the Ti electronic state and the symmetry of its nearest environment is obtained from XANES Ti K-edge spectra. Magnetic behaviour is probed by means of the temperature dependence of DC magnetic susceptibility. Increasing magnetic susceptibility of a paramagnetic character is observed upon increasing chromium doping. The Curie constant of TiO 2 :10 at.% Cr sample (0.12 emu K/mol Oe) is lower than that expected for Cr 3+ (0.1875 emu K/mol Oe) possibly due to the appearance of Cr 4+ or the presence of the orbital contribution to the magnetic moment

  1. Uranium XAFS analysis of kidney from rats exposed to uranium.

    Science.gov (United States)

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Shimada, Yoshiya; Homma-Takeda, Shino

    2017-03-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III -edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.

  2. Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

    CERN Document Server

    Hagenbuck, F; Clawiter, N; Euteneuer, H; Görgen, F; Holl, P; Johann, K; Kiser, K H; Kemmer, J; Kerschner, T; Kettig, O; Koch, H; Kube, G; Lauth, W; Mauhay, H; Schütrumpf, M; Stotter, R; Strüder, L; Walcher, T; Wilms, A; von Zanthier, C; Zemter, M

    2001-01-01

    A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the +or-1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm*10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also the direction of the TR cone. The system has been checked with a phantom consisting of a 2.5- mu m thick molybdenum sample embedded in a 136- or 272- mu m-thick copper bulk foil. A numerical analysis of the energy spectrum for every pixel demonstrates that data as far as +or-0.75 keV away from the K edge of molybdenum at 20 keV still improv...

  3. Optical absorption and photoconductivity in iodine-excess ionic liquids: the case of 1-alkyl-3-methyl imidazolium iodides.

    Science.gov (United States)

    Aono, Masami; Miyazaki, Hisashi; Takekiyo, Takahiro; Tsuzuki, Seiji; Abe, Hiroshi

    2018-02-21

    We investigated the optical absorption and photoconductivity of iodine-excess ionic liquids (ILs) based on 1-alkyl-3-methyl imidazolium iodide ([C n mim][I]; n = 3, 4, and 6). The iodide concentration m was 2 ≦ m ≦ 8, which was determined by the molar fraction [C n mim] +  : [I m ] - = 1 : m. By adding iodine, an absorption edge shifted from 282 nm in the UV region to around 600 nm in the visible-light region. The optical bandgaps E o decreased gradually from 2.3 eV to 1.9 eV with increasing m from 2 to 8. The alkyl-side chain lengths of the cations have little effect on the E o . This experimental result was confirmed by ab initio molecular orbital calculations. The effects were reflected in the photoconductivity of the ILs, as expected. [C 4 mim][I m ] exhibited greater photo-induced electron generation compared with [C 3 mim][I m ] and [C 6 mim][I m ]. The photoconductivity in both [C 3 mim][I m ] and [C 6 mim][I m ] increased slightly with increasing m. The trend of photoconductivity in [C 4 mim][I m ] exhibited an N-shaped form. The highest photoconductivity 1.6 was observed in [C 4 mim][I 8 ].

  4. Crystal structure and electronic states of Co and Gd ions in a Gd0.4Sr0.6CoO2.85 single crystal

    Science.gov (United States)

    Platunov, M. S.; Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Solovyov, L. A.; Zubavichus, Ya. V.; Veligzhanin, A. A.; Dorovatovskii, P. V.; Vereshchagin, S. N.; Shaykhutdinov, K. A.; Ovchinnikov, S. G.

    2016-02-01

    X-ray diffraction and X-ray absorption near edge structure (XANES) spectra have been measured at the Co K-edge and Gd L 3-edge in GdCoO3 and Gd0.4Sr0.6CoO2.85 cobaltites. The effect of Sr substitution on the crystal structure and electronic and magnetic states of Co3+ ions in a Gd0.4Sr0.6CoO2.85 single crystal has been analyzed. The XANES measurements at the Co K-edge have not showed a noticeable shift of the absorption edge with an increase in the concentration of Sr. This indicates that the effective valence of cobalt does not change. An increase in the intensity of absorption at the Gd L 3-edge is due to an increase in the degree of hybridization of the Gd(5 d) and O(2 p) states. The effect of hole doping on the magnetic properties results in the appearance of the ferromagnetic component and in a significant increase in the magnetic moment.

  5. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian, E-mail: jianzhusummer@163.com; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com

    2015-09-15

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature.

  6. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    International Nuclear Information System (INIS)

    Zhu, Jian; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu

    2015-01-01

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature

  7. Origins of Stokes shift in PbS nanocrystals

    KAUST Repository

    Voznyy, Oleksandr

    2017-10-27

    Stokes shift, an energy difference between the excitonic absorption and emission, is a property of colloidal quantum dots (CQDs) typically ascribed to splitting between dark and bright excitons. In some materials, e.g., PbS, CuInS2, CdHgTe, a Stokes shift of up to 200 meV is observed, substantially larger than the estimates of dark-bright state splitting or vibronic relaxations. The shift origin remains highly debated, as contradictory signatures of both surface and bulk character were reported for the Stokes-shifted electronic state. Here we show that the energy transfer among CQDs in a polydispersed ensemble in solution suffices to explain the excess Stokes shift. This energy transfer is primarily due to CQD aggregation, and can be substantially eliminated by extreme dilution, higher-viscosity solvent, or better-dispersed colloids. Our findings highlight that ensemble polydispersity remains the primary source of the Stokes shift in CQDs in solution, propagating into the Stokes shift in films and the open-circuit voltage deficit in CQD solar cells. Improved synthetic control can bring notable advancements in CQD photovoltaics, and the Stokes shift continues to provide a sensitive and significant metric to monitor ensemble size distribution.

  8. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  9. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  10. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    International Nuclear Information System (INIS)

    Menzel, Magnus; Schlifke, Annalena; Falk, Mareike; Janek, Jürgen; Fröba, Michael; Fittschen, Ursula Elisabeth Adriane

    2013-01-01

    The cathode material LiNi 0.5 Mn 1.5 O 4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi 0.5 Mn 1.5 O 4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn 3+ to Mn 4+ only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others

  11. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  12. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  13. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  14. Calculation of relativistic and isotope shifts in Mg I

    International Nuclear Information System (INIS)

    Berengut, J.C.; Flambaum, V.V.; Kozlov, M.G.

    2005-01-01

    We present an ab initio method of calculation of the isotope and relativistic shifts in atoms with a few valence electrons. It is based on an energy calculation involving the combination of the configuration-interaction method and many-body perturbation theory. This work is motivated by analyses of quasar absorption spectra that suggest that the fine-structure constant α was smaller at an early epoch. Relativistic shifts are needed to measure this variation of α, while isotope shifts are needed to resolve systematic effects in this study. The isotope shifts can also be used to measure isotopic abundances in gas clouds in the early universe, which are needed to study nuclear reactions in stars and supernovae and test models of chemical evolution. This paper shows that the isotope shift in magnesium can be calculated to very high precision using our method

  15. Red-edge position of habitable exoplanets around M-dwarfs.

    Science.gov (United States)

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  16. Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics

    International Nuclear Information System (INIS)

    Zhang Yuru; Xu Xiang; Wang Younian; Bogaerts, Annemie

    2012-01-01

    A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56-200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (φ = 0), and the best radial uniformity is obtained at φ = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at φ = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (φ = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at φ = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition P z in the centre and the decreasing power density P r at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density

  17. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    International Nuclear Information System (INIS)

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d 10 4f n → 3d- 9 4f n+1 transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO 4 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations

  18. Electronic structure analysis of UO2 by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ozkendir, O.M.

    2009-01-01

    Full text: Due to the essential role of Actinides in nuclear science and technology, electronic and structural investigations of actinide compounds attract major interest in science. Electronic structure of actinide compounds have important properties due to narrow 5f states which play key role in bonding with anions. The properties of Uranium has been a subject of enduring interest due to its being a major importance as a nuclear fuel and is the highest numbered element which can be found naturally on earth. UO 2 forms as a secondary uranyl group occurred during metamictization of uranium oxide compounds [1].Uranium oxide thin films have been investigated by X-ray Absorption Fine Structure spectroscopy (XAFS) [2]. The full multiple scattering approach has been applied to the calculation of U L3 edge spectra of UO 2 . The calculations are based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code [3,4]. U L3-edge absorption spectrum in UO 2 is compared with U L3-edges in USiO 4 and UTe which are chosen due to their different electronic and chemical structures.We have found prominent changes in the XANES spectra of Uranium oxide thin films due to valency properties. Such observed changes are explained by considering the structural, electronic and spectroscopic properties. (author)

  19. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  20. Test and evaluation of the in-line plutonium solution K-absorption-edge densitometer at the Savannah River Plant. Phase I. Off-line testing results

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Marks, T.; Johnson, S.S.

    1982-04-01

    An in-line, plutonium-solution, K-edge absorption densitometer has been developed at Los Alamos and is currently undergoing test and evaluation at the Savannah River Plant (SRP). The first phase of the test and evaluation (off-line instrument calibration and solution assays) was completed, and preparations are under way to install the instrument in-line, as soon as process schedules permit. Calibration data in the design concentration range of 25 to 40 g Pu/L demonstrate routine achievement of densitometry assay precisions of 0.5% or better in 40 min. Plutonium assays at concentrations outside the calibration range were investigated in an effort to define better the limitations of the instrument and address other possible assay situations at SRP. Densitometry precisions obtained for 40-min assays range from 3% to 5 g Pu/L down to 0.4% at 70 g Pu/L. At higher plutonium concentrations, the precision deteriorated due to increasing gamma-ray absorption by the solution. In addition, with actinide concentrations above approximately 100 g/L, the assay accuracy also suffered because of enhanced small-angle scattering effects in the large sample cell. Measurements on mixed U/Pu solutions demonstrated the feasibility of accurate plutonium assays with correction for the large uranium matrix contributions being determined from the measurement data. The 239 240 Pu weight fractions and 241 Pu/ 239 Pu and 238 Pu/ 239 Pu isotopic ratios can be determined. In a mockup of the in-line solution plumbing system, all assay sequences, error conditions, and interlock criteria were exercised and verified to be working properly

  1. The dispersion surface of X-rays very near the absorption edge

    International Nuclear Information System (INIS)

    Fukamachi, T.; Negishi, R.; Kawamura, T.

    1995-01-01

    To discuss the X-ray dynamical diffraction when the imaginary part of the X-ray polarizability is larger than the real part, the dispersion surface is studied as a function of the ratio between the real and the imaginary parts of the polarizability. The dispersion surface in the Laue case when the real part is zero has a similar form to that in the Bragg case when the imaginary part is zero. The relations between the dispersion surface and the diffracted intensity are studied in some special cases. The abnormal absorption and the abnormal transmission effect are related to the features of the dispersion surface. (orig.)

  2. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    Science.gov (United States)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  3. Photoabsorption coefficient of alloys at Al with transition metals V, Fe, Ni and with Cu and Pr from 30 eV to 150 eV photon energy

    International Nuclear Information System (INIS)

    Hagemann, H.J.; Gudat, W.; Kunz, C.

    1975-10-01

    The absorption coeffecient of VAl 3 , FeAl, NiAl, NiAl 3 , CuAl 2 , PrAl 2 and of disordered V-Al (16 at. % Al, 28 %, 41%) and Fe-Al (11%) alloys has been measured in the region of the Msub(2,3)-absorption of the transition metals and the L-absorption of Al. The strong changes of the Al spectrum in the region of the 100 eV maximum upon alloying are explained as another evidence of the EXAFS (extended X-ray absorption fine structure) nature of these structures. The broad, prominent absorption peaks from the 3p excitations in V and Fe and from the 4d excitations in Pr are influenced only little on alloying and thus appear to be of atomic origin. The fine structure at the onset of the Pr 4d-transitions is identical in the metal and the alloy but differs from that of Pr oxide. The only Msub(2,3)-edge which is detectably shifted is that if Ni (up to 2.1 eV), whereas the onset of the Al Lsub(2,3)-edge is shifted in all the alloys (up to 1.1 eV). The shifts are interpreted in accordance with X-ray fluorescence and nuclear resonance measurements as changes of the density of states in the valence band of the alloys. (orig.) [de

  4. Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption

    International Nuclear Information System (INIS)

    Kriegel, I.; Scotognella, F.; Soavi, G.; Brescia, R.; Rodríguez-Fernández, J.; Feldmann, J.; Lanzani, G.; Tassone, F.

    2016-01-01

    Highlights: • We study the photophysics of CdTe nanorods by ultrafast absorption spectroscopy. • We fit photobleaching and photoinduced absorption features at all time delays. • Dynamics are extracted from superpositions of bleaches (Gaussians) and derivatives. • Fast non-radiative recombination and slower hole trapping processes are extracted. • A potential approach to unveil ultrafast non-radiative recombination processes. - Abstract: In transient absorption (TA) spectra, the bleach features originating from state filling are overlapped by their energy-shifted derivatives, arising from excited state energy level shifts. This makes the direct extraction of carrier dynamics from a single-wavelength time-trace misleading. Fitting TA spectra in time, as Gaussian functions and their derivative-like shifted Gaussians, allows to individually extract the real dynamics of both photobleached transitions, and their energy shifts. In CdTe nanorods (NRs) we found a delayed heating of holes due to the release of the large excess energy in the electron relaxation process. The slow hole-trapping process is consistent with a high number of surface trap states in these model NRs. Our results show that only a correct disentanglement of bleaching and energy shift contributions provides a reliable framework to extract the underlying carrier relaxation dynamics, including trapping, non-radiative recombination, and eventually carrier multiplication.

  5. Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, I., E-mail: ilka.kriegel@iit.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Scotognella, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy); Soavi, G. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Brescia, R. [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy); Rodríguez-Fernández, J.; Feldmann, J. [Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich (Germany); Lanzani, G., E-mail: guglielmo.lanzani@iit.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy); Tassone, F. [CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy)

    2016-06-01

    Highlights: • We study the photophysics of CdTe nanorods by ultrafast absorption spectroscopy. • We fit photobleaching and photoinduced absorption features at all time delays. • Dynamics are extracted from superpositions of bleaches (Gaussians) and derivatives. • Fast non-radiative recombination and slower hole trapping processes are extracted. • A potential approach to unveil ultrafast non-radiative recombination processes. - Abstract: In transient absorption (TA) spectra, the bleach features originating from state filling are overlapped by their energy-shifted derivatives, arising from excited state energy level shifts. This makes the direct extraction of carrier dynamics from a single-wavelength time-trace misleading. Fitting TA spectra in time, as Gaussian functions and their derivative-like shifted Gaussians, allows to individually extract the real dynamics of both photobleached transitions, and their energy shifts. In CdTe nanorods (NRs) we found a delayed heating of holes due to the release of the large excess energy in the electron relaxation process. The slow hole-trapping process is consistent with a high number of surface trap states in these model NRs. Our results show that only a correct disentanglement of bleaching and energy shift contributions provides a reliable framework to extract the underlying carrier relaxation dynamics, including trapping, non-radiative recombination, and eventually carrier multiplication.

  6. Simulations of absorption spectra of conjugated oligomers: role of planar conformation and aggregation in condensed phase

    Science.gov (United States)

    Yuan, Xiang-Ai; Wen, Jin; Zheng, Dong; Ma, Jing

    2018-04-01

    This Review highlights the structure/property relationship underlying the morphology modulation through various factors towards the exploration of light-absorbing materials for efficient utilisation of solar power. Theoretical study using a combination of molecular dynamics imulations and the time-dependent density functional theory demonstrated that the planarity plays an important role in tuning spectral properties of oligomer aggregates. The aggregation-induced blue-shift in absorption spectra of oligothiophenes and the red-shift for oligofluorenols were rationalised in a unified way from the reduced (and increased) content of planar conformations in molecular aggregates. The planarity versus non-planarity of oligomers can be modulated by introduction of alkyl side chain or steric bulky substituents. The substitution with various groups in the ortho-position of azobenzene leads to the distorted backbone, breaking symmetry, and hence the red-shift in spectra, expanding the application in biological systems with visible light absorption. The donor-acceptor substituent groups in conjugated oligomers can increase the degree of planarity, electron delocalisation and polarisation, and charge separation, giving rise to the red-shift in spectra and enhancement in polarisability and charge mobility for device applications. The solvent dependent and pH-sensitive properties and intramolecular hydrogen bonds also caused the shift of absorption spectra with the appearance of planar conformers.

  7. Modelling absorption and photoluminescence of TPD

    International Nuclear Information System (INIS)

    Vragovic, Igor; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C.; Gisslen, L.; Scholz, R.

    2008-01-01

    We analyse the optical spectra of N,N ' -diphenyl-N,N ' -bis(3-methyl-phenyl)-(1,1 ' -biphenyl)-4,4 ' -diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer

  8. Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption

    NARCIS (Netherlands)

    Larsen, D.S.; Papagiannakis, E.; van Stokkum, I.H.M.; Vengris, M.; Kennis, J.T.M.; van Grondelle, R.

    2003-01-01

    The excited-state dynamics of β-carotene in hexane was studied with dispersed ultrafast transient absorption techniques. A new excited state is produced after blue-edge excitation. Pump-repump-probe and pump-dump-probe measurements identified and characterized this state, termed S‡, which exhibits a

  9. Electronic structure study of Co doped CeO2 nanoparticles using X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Gautam, Sanjeev; Song, T.K.; Chae, Keun Hwa; Jang, K.W.; Kim, S.S.

    2014-01-01

    Highlights: • The electronic structural of Co–CeO 2 nanoparticles is investigated using XAFS. • Ce M 5,4 , Ce L 3 and O K edge NEXAFS reveal that the Ce-ions are in +4 valence state. • The NEXAFS spectrum performed at Co L3,2-edge confirms Co-ion in 2+ state. • The EXAFS analysis also show that Co ions are occupying Ce position in doped CeO 2 . • The distances between Ce–O and Ce–Ce/Co in all shells decreases with Co doping. - Abstract: We investigated the electronic structure of well characterized Co doped CeO 2 nanoparticles using X-ray absorption fine structure (XAFS) spectroscopy. Near edge X-ray absorption fine structure (NEXAFS) spectra at Ce M 5,4 , Ce L 3 and O K-edge conclude that the Ce-ions are in +4 valence state in pure as well as in Co doped CeO 2 nanoparticles. The local structure around Ce-atom in Co doped CeO 2 nanoparticles was also determined using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce L 3 edge. The EXAFS analysis suggest that the inter-atomic distance of Ce–O, Ce–Ce/Co decreases with Co doping, which indicate a contraction of the lattice. The decease in Ce–O distance also reflect that there is a formation of oxygen vacancies in CeO 2 matrix. The Debye–Waller factor also shows the consistent behaviour for all the coordination shells. The atomic multiplet calculations for Co L 3,2 -edge was performed to determine the valence state, symmetry and field splitting, which reflect that Co-ions are in 2+ state and substituted at Ce-site with crystal field splitting of 10Dq=-0.57eV. The XAFS measurements reveal that the Co-ions occupy the Ce position in the CeO 2 host matrix and create a oxygen vacancy

  10. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    Science.gov (United States)

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  11. A P-N Sequence Generator Using LFSR with Dual Edge Trigger Technique

    Directory of Open Access Journals (Sweden)

    Naghwal Nitin Kumar

    2016-01-01

    Full Text Available This paper represents the design and implementation of a low power 4-bit LFSR using Dual edge triggered flip flop. A linear feedback shift register (LFSR is assembled by N number of flip flops connected in series and a combinational logic generally xor gate. An LFSR can generate random number sequence which acts as cipher in cryptography. A known text encrypted over long PN sequence, in order to improve security sequence made longer ie 128 bit; require long chain of flip flop leads to more power consumption. In this paper a novel circuit of random sequence generator using dual edge triggered flip flop has been proposed. Data has been generated on every edge of flip flop instead of single edge. A DETFF-LFSR can generate random number require with less number of clock cycle, it minimizes the number of flip flop result in power saving. In this paper we concentrates on the designing of power competent Test Pattern Generator (TPG using four dual edge triggered flip-flops as the basic building block, overall there is reduction of power around 25% by using these techniques.

  12. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K. K.; Barnett, Ryan

    2017-11-01

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  13. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap.

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2017-11-17

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  14. Time evolution of absorption process in nonlinear metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)

    2009-05-15

    The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study

    Science.gov (United States)

    Dähn, Rainer; Scheidegger, André M.; Manceau, Alain; Schlegel, Michel L.; Baeyens, Bart; Bradbury, Michael H.; Chateigner, Daniel

    The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO 4), and low Ni concentration ([Ni] initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order

  16. The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kiprotich, Sharon, E-mail: KiprotichS@qwa.ufs.ac.za [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Dejene, Francis B.; Ungula, Jatani [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Onani, Martin O. [Departments of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2016-01-01

    This paper explains one pot synthesis of type II water soluble L-cysteine capped cadmium telluride (CdTe) core shell quantum dots using cadmium acetate, potassium tellurite and L-cysteine as the starting materials. The reaction was carried out in a single three necked flask without nitrogen under reflux at 100 °C. Results from PL show a sharp absorption excitonic band edge of the CdTe core with respect to the core shell which loses its shoulder during the growth of the shell on the core. The PL spectra indicate a drastic shift in emission window of the core which is simultaneously accompanied by an increase in emission intensity. X-ray diffraction pattern confirms the formation of hexagonal phase for all samples. Some difference in absorption edges were observed due to varying synthesis time of CdTe NPs. The position of the absorption band is observed to shift towards the lower wavelength side for shorter durations of synthesis.

  17. X-ray absorption study at the Mg and O K edges of ultrathin MgO epilayers on Ag(001)

    International Nuclear Information System (INIS)

    Luches, P.; D'Addato, S.; Valeri, S.; Groppo, E.; Prestipino, C.; Lamberti, C.; Boscherini, F.

    2004-01-01

    We determined the local atomic structure of MgO epilayers on Ag(001) by means of polarization-dependent x-ray absorption spectroscopy measurements at the Mg and O K edges. A quantitative analysis of the data in the extended energy range has been performed using multiple scattering simulations. We found that, even in the ultrathin limit, the local structure of the films is rocksalt and we obtained a quantitative evaluation of the average in-plane and out-of-plane film strain at the different thicknesses investigated. An in-plane compressive strain, due to lattice mismatch with the Ag substrate, is clearly present for the 3 ML film. The out-of-plane lattice constant is found to be expanded, in agreement with the expected behavior for a tetragonal distortion of the unit cell. This growth-induced strain is gradually released with increasing thickness and it is almost completely relaxed at 20 ML. Any significant intermixing with the Ag substrate can be ruled out. An expansion of the interplanar distance at the MgO-Ag interface is detected and its sign and magnitude are found to be in agreement with recent ab initio simulations. This work provides previously unavailable input for modeling the physical properties of the system and supports the hypothesis that the different electronic properties of MgO films on Ag(001) are not related to structural or compositional differences at the ultrathin limit

  18. Analysis of sulfidic linkages formed in natural rubber latex medical gloves by using X-ray absorption near edge structure

    Science.gov (United States)

    Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.

    2017-09-01

    A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.

  19. Critical gradients and plasma flows in the edge plasma of Alcator C-Moda)

    Science.gov (United States)

    Labombard, B.; Hughes, J. W.; Smick, N.; Graf, A.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Zweben, S. J.; Alcator C-Mod Team

    2008-05-01

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields—a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when B ×∇B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and "critical gradient" values in the edge plasma.

  20. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  1. Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration

    International Nuclear Information System (INIS)

    Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.

    2000-01-01

    The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation

  2. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.

    Science.gov (United States)

    Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih

    2013-05-01

    2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.

  3. X-Ray Absorption in Carbon Ions Near the K-Edge

    Science.gov (United States)

    Hasoglu, M. F.; Abdel-Naby, Sh. A.; Nikolic, D.; Gorczyca, T. W.; McLaughlin, B. M.

    2007-06-01

    K-shell photoabsorption calculations are important for determining the elemental abundances of the interstellar medium (ISM) from observed X-ray absorption spectra. Previously, we performed reliable K-shell photoabsorption calculations for oxygen [1-3] and neon [4,5] ions. We have executed detailed R-matrix calculations for carbon ions, including Auger broadening, by using an optical potential, and relaxation effects, by using pseudoorbitals with the necessary pseudoresonance elimination. This work was funded by NASA's Astronomy Physics Research and Analysis (APRA) and Solar and Heliospheric Physics (SHP) Supporting Research and Technology (SR&T) programs. References: [1] T. W. Gorczyca and B. M. McLaughlin. J Phys. B. 33 L859 (2000) [2] A. M. Juett, et al., Astrophys. J. 612, 308 (2004) [3] J. Garcia et al., Astrophys. J. Supp. S. 158, 68 (2005) [4] T. W. Gorczyca., Phys. Rev. A. 61, 024702 (2000) [5] A. M. Juett, et al., Astrophys. J. 648, 1066 (2006)

  4. Low absorption InP/InGaAs-MQW phase shifters for optical switching

    NARCIS (Netherlands)

    Vreeburg, C.G.M.; Smit, M.K.; Bachmann, M.; Kyburz, R.; Krähenbühl, R.; Gini, E.; Melchior, H.; Shi, L.; Spiekman, L.H.; Leijtens, X.J.M.

    1995-01-01

    InP/InGaAs-MQW phase shifters with low absorption loss and low electroabsorption loss have been realized. Phase shift efficiency for TE-polarized light at lambda =1.55 mu m was 6.8 degrees V/sup -1/ mm/sup -1/ with negligible absorption loss and at lambda =1.51 mu m the efficiency was 8.9 degrees

  5. Spectroscopic measurement of 204Pb isotope shift and 205Pb nuclear spin

    International Nuclear Information System (INIS)

    Schonberger, P.

    1984-01-01

    The isotope shift of 204 Pb and the nuclear spin of 1.4 X 10 7 -y 205 Pb was determined from a high-resolution optical measurement of the 6p 23 P 0 -6p7s 3 P 1 0 283.3-nm resonance line. The value of the shift, relative to 208 Pb is -140.2(8) x 10 -3 cm -1 , the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of 205 Pb I = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or long-lived isotope. High resolution optical absorption spectra were obtained with a 25.4 cm diffraction grating in a 9.1 m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of 204 Pb and 207 Pb

  6. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-01-01

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L III edge and XANES from the cerium L II edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO 2 , with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  7. Nature of the fundamental band gap in GaNxP1-x alloys

    International Nuclear Information System (INIS)

    Shan, W.; Walukiewicz, W.; Yu, K. M.; Wu, J.; Ager, J. W. III; Haller, E. E.; Xin, H. P.; Tu, C. W.

    2000-01-01

    The optical properties of GaN x P 1-x alloys (0.007≤x≤0.031) grown by gas-source molecular-beam epitaxy have been studied. An absorption edge appears in GaN x P 1-x at energy below the indirect Γ V -X C transition in GaP, and the absorption edge shifts to lower energy with increasing N concentration. Strong photomodulation signals associated with the absorption edges in GaN x P 1-x indicate that a direct fundamental optical transition is taking place, revealing that the fundamental band gap has changed from indirect to direct. This N-induced transformation from indirect to direct band gap is explained in terms of an interaction between the highly localized nitrogen states and the extended states at the Γ conduction-band minimum. (c) 2000 American Institute of Physics

  8. X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses

    OpenAIRE

    Pickup, David M.; Ahmed, Ifty; Fitzgerald, Victoria; Moss, Rob M.; Wetherall, Karen; Knowles, Jonathan C.; Smith, Mark E.; Newport, Robert J.

    2006-01-01

    Phosphate-based glasses of the general formula Na2O-CaO-P2O5 are degradable in an aqueous environment, and therefore can act as antibacterial materials through the inclusion of ions such as copper. In this study, CuO and Cu2O were added to Na2O-CaO-P2O5 glasses (1-20 mol% Cu) and X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HEXRD) used to probe the local environment of the copper ions. Copper K-edge X-ray absorption near-edge structure (XANES) spectra confirm the oxi...

  9. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Gritti Claudia

    2016-07-01

    Full Text Available Decorating semiconductor surfaces with plasmonic nanoparticles (NPs is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  10. Modification of the Absorption Edge of GaAs Arising from Hot-Electron Effects

    DEFF Research Database (Denmark)

    McGroddy, J. C.; Christensen, Ove

    1973-01-01

    We have observed a large enhancement of the electric-field-induced optical absorption arising from hot-electron effects in n-type GaAs at 77 K. The magnitude and field dependence of the enhancement can be approximately accounted for by a theory attributing the effect to broadening of the final...... states of the optical transitions by interaction with the nonequilibrium optical phonons produced by the hot electrons....

  11. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    Science.gov (United States)

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  12. Modelling absorption and photoluminescence of TPD

    Energy Technology Data Exchange (ETDEWEB)

    Vragovic, Igor [Dpto. de Fisica Aplicada and Inst. Universitario de Materiales de Alicante, Universidad de Alicante, E-03080 Alicante (Spain)], E-mail: igor.vragovic@ua.es; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C. [Max-Planck-Institut fuer Mikrostrukturphysik, D-06120 Halle (Germany); Gisslen, L.; Scholz, R. [Walter Schottky Institut, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2008-05-15

    We analyse the optical spectra of N,N{sup '}-diphenyl-N,N{sup '}-bis(3-methyl-phenyl)-(1,1{sup '}-biphenyl)-4,4{sup '}-diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer.

  13. Determining metal ion distributions using resonant scattering at very high-energy K-edges: Bi/Pb in Pb5Bi6Se14

    International Nuclear Information System (INIS)

    Zhang Yuegang; Lee, P.L.; Shastri, S.D.; Shu Deming; Wilkinson, A.P.; Chung Duck-Young; Kanatzidis, M.G.

    2005-01-01

    Powder diffraction data collected at ∝ 86 keV, and just below both the Pb and the Bi K-edges, on an imaging plate detector using synchrotron radiation from the Advanced Photon Source have been used to examine the Pb/Bi distribution over the 11 crystallographically distinct sites in Pb 5 Bi 6 Se 14 [space group P2 1 /m, a=16.0096(2) Aa, b=4.20148(4) Aa, c=21.5689(3) Aa and β=97.537(1) 0 ]. The scattering factors needed for the analyses were determined both by Kramers- Kronig transformation of absorption spectra and by analyses of diffraction patterns from reference compounds. Even with the relatively low scattering contrast that is available at the K-edges, it was possible to determine the Pb/Bi distribution and probe the presence of cation site vacancies in the material. The current results indicate that resonant scattering measurements at high-energy K-edges are a viable, and perhaps preferable, route to site occupancies when absorption from the sample or sample environment/container is a major barrier to the acquisition of high-quality resonant scattering data at lower-energy edges

  14. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  15. Acoustic absorption behaviour of an open-celled aluminium foam

    International Nuclear Information System (INIS)

    Han Fusheng; Seiffert, Gary; Zhao Yuyuan; Gibbs, Barry

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, respectively. The sound dissipation mechanisms in the open-celled foams are principally viscous and thermal losses when there is no air-gap backing and predominantly Helmholtz resonant absorption when there is an air-gap backing

  16. Hole distribution in (Sr, Ca, Y, La)14Cu24O41 compounds studies by x-ray absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Kabasawa, Eiki; Nakamura, Jin; Yamada, Nobuyoshi; Kuroki, Kazuhiko; Yamazaki, Hisashi; Watanabe, Masamitsu; Denlinger, Jonathan D.; Shin, Shik; Perera, Rupert C.C.

    2008-01-01

    The polarization dependence of soft x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) near the O 1s absorption edge was measured on two-leg ladder single-crystalline samples of (Sr, Ca, Y, La) 14 Cu 24 O 41 (14-24-41). The hole distributions in 14-24-41 compounds are determined by polarization analysis. For samples with less than or equal to 5 holes/chemical formula (c.f.), all holes reside on the edge-shared chain layer. In the case of Sr 14-x Ca x Cu 24 O 41 (6 holes/c.f.), there is approximately one hole on the two-leg ladder layer, with about five holes remaining on the edge-shared chain layer. By Ca substitution for Sr in the Sr 14-x Ca x Cu 24 O 41 samples, 0.3 holes transfer from the edge-shared chain to the two-leg ladder layer. It is possible that some of the holes on the two-leg ladder layer move from the rung sites to the leg sites upon Ca substitution. (author)

  17. Electronic properties and optical absorption of a phosphorene quantum dot

    Science.gov (United States)

    Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.

    2018-03-01

    Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.

  18. Modification of tokamak edge turbulence using feedback

    International Nuclear Information System (INIS)

    Richards, B.; Uckan, T.; Wootton, A.J.; Carreras, B.A.; Bengtson, R.D.; Hurwitz, P.; Li, G.X.; Lin, H.; Rowan, W.L.; Tsui, H.Y.W.; Sen, A.K.; Uglum, J.

    1994-01-01

    Using active feedback, the turbulent fluctuation levels have been reduced by as much as a factor of 2 in the edge of the Texas Experimental Tokamak (TEXT) [K. W. Gentle, Nucl. Fusion Technol. 1, 479 (1981)]. A probe system was used to drive a suppressor wave in the TEXT limiter shadow. A decrease in the local turbulence-induced particle flux has been seen, but a global change in the particle transport at the present time has not been observed. By changing the phase shift and gain of the feedback network, the amplitude of the turbulence was increased by a factor of 10

  19. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    Science.gov (United States)

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measurement of isotope shift of recycled uranium by laser induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Oba, Masaki; Wakaida, Ikuo; Akaoka, Katsuaki; Miyabe, Masabumi

    1999-07-01

    Isotope shift of the recycled uranium atoms including the 236 U was measured by laser induced fluorescence method. Eight even levels at 2 eV and three odd levels at 4 eV were measured with isotope shifts among 238 U, 236 U and 235 U obtained. As for the measurement of the 4 eV levels, the Doppler free two photon absorption method was used, and the hyperfine structure of the 235 U was analyzed simultaneously. The isotope shift of 234 U was also observed in the three transition. (J.P.N.)

  1. Electrostatic Origin of the Red Solvatochromic Shift of DFHBDI in RNA Spinach.

    Science.gov (United States)

    Bose, Samik; Chakrabarty, Suman; Ghosh, Debashree

    2017-05-11

    Interactions with the environment tune the spectral properties of biological chromophores, e.g., fluorescent proteins. Understanding the relative contribution of the various types of noncovalent interactions in the spectral shifts can provide rational design principles toward developing new fluorescent probes. In this work, we investigate the origin of the red shift in the absorption spectra of the difluoro hydroxybenzylidene dimethyl imidazolinone (DFHBDI) chromophore in RNA spinach as compared to the aqueous solution. We systematically decompose the effects of various components of interactions, namely, stacking, hydrogen bonding, and long-range electrostatics, in order to elucidate the relative role of these interactions in the observed spectral behavior. We find that the absorption peak of DFHBDI is red-shifted by ∼0.35 eV in RNA relative to the aqueous solution. Earlier proposals from Huang and co-workers have implicated the stacking interactions between DFHBDI and nucleic acid bases to be the driving force behind the observed red shift. In contrast, our findings reveal that the long-range electrostatic interactions between DFHBDI and negatively charged RNA make the most significant contribution. Moreover, we notice that the opposing electrostatic fields due to the RNA backbone and the polarized water molecules around the RNA give rise to the resultant red shift. Our results emphasize the effect of strong heterogeneity in the various environmental factors that might be competing with each other.

  2. The silicon neighborhood across the a-Si:H to {mu}c-Si transition by X-ray absorption spectroscopy (XAS)

    Energy Technology Data Exchange (ETDEWEB)

    Tessler, Leandro R.; Wang Qi; Branz, Howard M

    2003-04-22

    We report a synchrotron X-ray absorption spectroscopy study of the average neighborhood of Si near the transition from a-Si:H to {mu}c-Si on wedge-shaped samples prepared by hot-wire CVD in a chamber using a movable shutter. The thickness of the wedge varies from 30 to 160 nm. Nucleation of {mu}c-Si occurs at a critical thickness of approximately 100 nm. X-Ray absorption was measured at the Si K-edge (1.84 keV) by total electron photoemission yield. The absorption oscillations in the EXAFS region are very similar to all along the wedge. Analysis indicates an average tetrahedral first neighbor shell with radial disorder decreasing with crystallization. In the near-edge (XANES) region multiple scattering effects appear at the onset of crystallinity. Unlike single crystal silicon, these effects involve only double scattering within the first neighbor shell, indicating an ill-formed second shell in {mu}c-Si.

  3. Zn-K edge EXAFS study of human nails

    Energy Technology Data Exchange (ETDEWEB)

    Katsikini, M; Mavromati, E; Pinakidou, F; Paloura, E C [School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gioulekas, D, E-mail: katsiki@auth.g [Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2009-11-15

    Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Zn - K edge is applied for the study of the bonding geometry of Zn in human nails. The studied nail clippings belong to healthy donors and donors who suffer from lung diseases. Fitting of the first nearest neighboring shell of Zn reveals that it is bonded with N and S, at distances that take values in the ranges 2.00-2.04 A and 2.23-2.28A, respectively. Zn is four - fold coordinated and the ratio of the number of sulfur and nitrogen atoms (N{sub S}/N{sub N}) in the first coordination shell ranges from 0.52 to 1. The sample that belongs to the donor who suffers from lung fibrosis, a condition that is related to keratinization of the lung tissue, is characterized by the highest number of N{sub S}/N{sub N}. Simulation, using the FEFF8 code, of the Zn - K edge EXAFS spectra with models of tetrahedrally coordinated Zn with 1 (or 2) cysteine and 3 (or 2) histidines is satisfactory.

  4. Transaortic Alfieri Edge-to-Edge Repair for Functional Mitral Regurgitation.

    Science.gov (United States)

    Imasaka, Ken-Ichi; Tayama, Eiki; Morita, Shigeki; Toriya, Ryohei; Tomita, Yukihiro

    2018-03-01

    There is controversy about handling functional mitral regurgitation in patients undergoing aortic valve or proximal aortic operations. We describe a transaortic Alfieri edge-to-edge repair for functional mitral regurgitation that reduces operative excessive invasion and prolonged cardiopulmonary bypass time. Between May 2013 and December 2016, 10 patients underwent transaortic Alfieri edge-to-edge mitral repair. There were no operative deaths. The severity of mitral regurgitation immediately after the operation by transesophageal echocardiography was none or trivial in all patients. A transaortic Alfieri edge-to-edge repair for functional mitral regurgitation is a simple and safe approach. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements

    Science.gov (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.

    1998-11-01

    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  6. DECAB: process development of a phase change absorption process

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Goetheer, E.L.V.

    2011-01-01

    This work describes the conceptual design of a novel separation process for CO2 removal from flue gas based on precipitating solvents. The process here described (DECAB) is an enhanced CO2 absorption based on the Le Chatelier's principle, which states that reaction equilibrium can be shifted by

  7. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  8. The effect of hydrogen absorption on the structural, electronic and magnetic properties of the C15 Friauf-Laves phase compounds CeFe2, CeRu2 and LaRu2 : an x-ray absorption spectroscopy (XAS) study

    International Nuclear Information System (INIS)

    Chaboy, J.; Garcia, J.; Marcelli, A.

    1995-08-01

    An x-ray absorption spectroscopy (XAS) investigation of the structural changes occurred upon hydriding in the Friauf-Laves phase compounds CeFe 2 , CeRu 2 and LaRu 2 compounds is presented. The analysis of the extended x-ray absorption spectroscopy (EXAFS) spectra at the L-edges of the rare-earth and at the Fe K-edge indicates that the hydrogenation process leads to the suppression of the long-range crystalline order in all the hydride derivates investigated, as well as the different influence of H 2 in both the rare earth and transition metal sublattices. The correlation between the structural and magnetic changes induced by the hydrogen in the lost matrix is discussed in terms of the modification of the electronic properties, i.e., intermediate-valence of Ce, and of the hybridization between the transition metal and rare-earth

  9. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  10. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  11. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    Science.gov (United States)

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  12. Changes in forest productivity across Alaska consistent with biome shift.

    Science.gov (United States)

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  13. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    International Nuclear Information System (INIS)

    Gatuzz, E.; Mendoza, C.; García, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 10 21 cm –2 ; an ionization parameter of log ξ = –2.70 ± 0.023; an oxygen abundance of A O = 0.689 +0.015 -0.010 ; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A O =0.952 +0.020 -0.013 , a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  14. Absorption of surface acoustic waves by topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.

    2014-01-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies

  15. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Siddheshwar, E-mail: schopra1@amity.edu

    2017-01-15

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  16. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    International Nuclear Information System (INIS)

    Chopra, Siddheshwar

    2017-01-01

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  17. Effect of zinc doping on the bandgap and photoluminescence of Zn2+-doped TiO2 nanowires

    Science.gov (United States)

    Loan, Trinh Thi; Huong, Vu Hoang; Tham, Vu Thi; Long, Nguyen Ngoc

    2018-03-01

    This study was focused on the effect of Zn2+ dopant concentration on the absorption edge and photoluminescence of anatase TiO2 nanowires synthesized by hydrothermal technique. For the undoped anatase TiO2 nanowires, the indirect band gap of 3.26 eV and the direct band gap of 3.58 eV are assigned to the indirect Γ3 → X1b and direct X2b → X1b transitions, respectively. The Zn2+-doping makes the absorption edge of TiO2:Zn2+ nanowires shift towards the lower energy side (red shift). On the other hand, the replacing Ti4+ ions with Zn2+ ions creates oxygen vacancies (VO) and shallow defects associated with VO. Just these defects are responsible for the enhanced luminescence of Zn2+-doped TiO2 nanowires.

  18. Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II

    DEFF Research Database (Denmark)

    Yano, Junko; Robblee, John; Pushkar, Yulia

    2007-01-01

    High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy...... structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese......-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach...

  19. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  20. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    Science.gov (United States)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.